Introductory Quantum Optics

This book provides an elementary introduction to the subject of quantum optics, the study of the quantum-mechanical nature of light and its interaction with matter.

The presentation is almost entirely concerned with the quantized electromagnetic field. Topics covered include single-mode field quantization in a cavity, quantization of multimode fields, quantum phase, coherent states, quasiprobability distribution in phase space, atom–field interactions, the Jaynes– Cummings model, quantum coherence theory, beam splitters and interferometers, nonclassical field states with squeezing etc., tests of local realism with entangled photons from down-conversion, experimental realizations of cavity quantum electrodynamics, trapped ions, decoherence, and some applications to quantum information processing, particularly quantum cryptography. The book contains many homework problems and a comprehensive bibliography.

This text is designed for upper-level undergraduates taking courses in quantum optics who have already taken a course in quantum mechanics, and for first- and second-year graduate students.

A solutions manual is available to instructors via solutions@cambridge.org.

CHRISTOPHER GERRY is Professor of Physics at Lehman College, City University of New York. He was one of the first to exploit the use of group theoretical methods in quantum optics and is also a frequent contributor to *Physical Review A*. In 1992 he co-authored, with A. Inomata and H. Kuratsuji, *Path Integrals and Coherent States for Su (2) and SU (1, 1)*.

PETER KNIGHT is a leading figure in quantum optics, and in addition to being President of the Optical Society of America in 2004, he is a Fellow of the Royal Society. In 1983 he co-authored *Concepts of Quantum Optics* with L. Allen. He is currently Head of the Physics Department of Imperial College and Chief Scientific Advisor at the UK National Physical Laboratory.

Introductory Quantum Optics

Christopher Gerry

Lehman College, City University of New York

Peter Knight

Imperial College London and UK National Physical Laboratory

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge, CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© C. C. Gerry and P. L. Knight 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

Typefaces TimesNewRoman 10/13 pt. and Universe System $L^{T}EX 2_{\mathcal{E}}$ [TB]

A catalog record for this book is available from the British Library

Library of Congress Cataloging in Publication data Gerry, C. C. (Christopher C.) Introductory quantum optics / Christopher Gerry, Peter Knight. p. cm. Includes bibliographical references and index. ISBN 0 521 82035 9 – ISBN 0 521 52735 X (paperback) 1. Quantum optics. I. Knight, Peter (Peter L.) II. Title. QC446.2.G47 2004 535'.15 – dc22 2004051847

ISBN 0 521 82035 9 hardback ISBN 0 521 52735 X paperback

The publisher has used its best endeavors to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.

> C. C. G. dedicates this book to his son, Eric. P. L. K. dedicates this book to his wife Chris.

Contents

Ack	page xii	
1 I	ntroduction	1
1.1	Scope and aims of this book	1
1.2	History	2
1.3	The contents of this book	7
	References	8
	Suggestions for further reading	8
2 F	ield quantization	10
2.1	Quantization of a single-mode field	10
2.2	Quantum fluctuations of a single-mode field	15
2.3	Quadrature operators for a single-mode field	17
2.4	Multimode fields	18
2.5	Thermal fields	25
2.6	Vacuum fluctuations and the zero-point energy	29
2.7	The quantum phase	33
	Problems	40
	References	41
	Bibliography	42
3 0	Coherent states	43
3.1	Eigenstates of the annihilation operator and minimum	
	uncertainty states	43
3.2	Displaced vacuum states	48
3.3	Wave packets and time evolution	50
3.4	Generation of coherent states	52
3.5	More on the properties of coherent states	53
3.6	Phase-space pictures of coherent states	56
3.7	Density operators and phase-space probability distributions	59
3.8	Characteristic functions	65
	Problems	71
	References	72
	Bibliography	73

viii

Cambridge University Press 052152735X - Introductory Quantum Optics Christopher Gerry and Peter Knight Frontmatter More information

Contents

4 Eı	mission and absorption of radiation by atoms	74
4.1	Atom-field interactions	74
4.2	Interaction of an atom with a classical field	76
4.3	Interaction of an atom with a quantized field	82
4.4	The Rabi model	87
4.5	Fully quantum-mechanical model; the Jaynes-Cummings	
	model	90
4.6	The dressed states	99
4.7	Density-operator approach: application to thermal states	102
4.8	The Jaynes–Cummings model with large detuning: a dispersive	
	interaction	105
4.9	Extensions of the Jaynes-Cummings model	107
4.10	Schmidt decomposition and von Neumann entropy for the	
	Jaynes–Cummings model	108
	Problems	110
	References	113
	Bibliography	114
5 Q	uantum coherence functions	115
5.1	Classical coherence functions	115
5.2	Quantum coherence functions	120
5.3	Young's interference	124
5.4	Higher-order coherence functions	127
	Problems	133
	References	133
	Bibliography	134
	eam splitters and interferometers	135
	Experiments with single photons	135
6.2	Quantum mechanics of beam splitters	137
6.3	Interferometry with a single photon	143
6.4	Interaction-free measurement	144
6.5	Interferometry with coherent states of light	146
	Problems	147
	References	149
	Bibliography	149
7 No	onclassical light	150
7.1	Quadrature squeezing	150
7.2	Generation of quadrature squeezed light	165
7.3	Detection of quadrature squeezed light	167
7.4	Amplitude (or number) squeezed states	169
7.5	Photon antibunching	171

		Contents	i
7.6	Schrödinger cat states	174	
	Two-mode squeezed vacuum states	182	
	Higher-order squeezing	188	
	Broadband squeezed light	189	
	Problems	190	
	References	192	
	Bibliography	194	
8 D	issipative interactions and decoherence	195	
8.1	Introduction	195	
8.2	Single realizations or ensembles?	196	
8.3	Individual realizations	200	
8.4	Shelving and telegraph dynamics in three-level atoms	204	
8.5	Decoherence	207	
8.6	Generation of coherent states from decoherence: nonlinear		
	optical balance	208	
8.7	Conclusions	210	
	Problems	211	
	References	211	
	Bibliography	212	
٥ ٥	ptical test of quantum mechanics	213	
	Photon sources: spontaneous parametric down-conversion	213	
	The Hong–Ou–Mandel interferometer	217	
	The quantum eraser	219	
	Induced coherence	222	
	Superluminal tunneling of photons	224	
	Optical test of local realistic theories and Bell's theorem	226	
	Franson's experiment	232	
	Applications of down-converted light to metrology without		
	absolute standards	233	
	Problems	235	
	References	236	
	Bibliography	237	
0 E	xperiments in cavity QED and with trapped ions	238	
	Rydberg atoms	238	
	Rydberg atom interacting with a cavity field	241	
	Experimental realization of the Jaynes–Cummings model	246	
	Creating entangled atoms in CQED	249	
	Formation of Schrödinger cat states with dispersive atom-field		
	interactions and decoherence from the quantum to the classical	250	
	Quantum nondemolition measurement of photon number	254	

х

Cambridge University Press 052152735X - Introductory Quantum Optics Christopher Gerry and Peter Knight Frontmatter More information

Contents	
10.7 Realization of the Jaynes–Cummings interaction in the	motion
of a trapped ion	255
10.8 Concluding remarks	258
Problems	259
References	260
Bibliography	261
11 Applications of entanglement: Heisenberg-limited	
interferometry and quantum information processing	263
11.1 The entanglement advantage	264
11.2 Entanglement and interferometric measurements	265
11.3 Quantum teleportation	268
11.4 Cryptography	270
11.5 Private key crypto-systems	271
11.6 Public key crypto-systems	273
11.7 The quantum random number generator	274
11.8 Quantum cryptography	275
11.9 Future prospects for quantum communication	281
11.10 Gates for quantum computation	281
11.11 An optical realization of some quantum gates	286
11.12 Decoherence and quantum error correction	289
Problems	290
References	291
Bibliography	293
Appendix A The density operator, entangled states, t	
Schmidt decomposition, and the von Neumann entropy	
A.1 The density operator	294
A.2 Two-state system and the Bloch sphere	297
A.3 Entangled states	298
A.4 Schmidt decomposition	299
A.5 von Neumann entropy	301
A.6 Dynamics of the density operator	302
References	303
Bibliography	303
Appendix B Quantum measurement theory in a (very nutshell	,
	304 307
Bibliography	30/
Appendix C Derivation of the effective Hamiltonian	for
dispersive (far off-resonant) interactions	308
References	311

	Contents	xi
Appendix D Nonlinear optics and spon	ntaneous parametric	
down-conversion	312	
References	313	
Index	314	

Acknowledgements

This book developed out of courses that we have given over the years at Imperial College London, and the Graduate Center of the City University of New York, and we are grateful to the many students who have sat through our lectures and acted as guinea pigs for the material we have presented here.

We would like to thank our many colleagues who, over many years have given us advice, ideas and encouragement. We particularly thank Dr. Simon Capelin at Cambridge University Press who has had much more confidence than us that this would ever be completed. Over the years we have benefited from many discussions with our colleagues, especially Les Allen, Gabriel Barton, Janos Bergou, Keith Burnett, Vladimir Buzek, Richard Campos, Bryan Dalton, Joseph Eberly, Rainer Grobe, Edwin Hach III, Robert Hilborn, Mark Hillery, Ed Hinds, Rodney Loudon, Peter Milonni, Bill Munro, Geoffrey New, Edwin Power, George Series, Wolfgang Schleich, Bruce Shore, Carlos Stroud Jr, Stuart Swain, Dan Walls and Krzysztof Wodkiewicz. We especially thank Adil Benmoussa for creating all the figures for this book using his expertise with Mathematica, Corel Draw, and Origin Graphics, for working through the homework problems, and for catching many errors in various drafts of the manuscript. We also thank Mrs. Ellen Calkins for typing the initial draft of several of the chapters.

Our former students and postdocs, who have taught us much, and have gone on to become leaders themselves in this exciting subject: especially Stephen Barnett, Almut Beige, Artur Ekert, Barry Garraway, Christoph Keitel, Myungshik Kim, Gerard Milburn, Martin Plenio, Barry Sanders, Stefan Scheel, and Vlatko Vedral: they will recognize much that is here!

As this book is intended as an introduction to quantum optics, we have not attempted to be comprehensive in our citations. We apologize to authors whose work is not cited.

C. C. G. wishes to thank the members of the Lehman College Department of Physics and Astronomy, and many other members of the Lehman College community, for their encouragement during the writing of this book.

P. L. K. would like especially to acknowledge the support throughout of Chris Knight, who has patiently provided encouragement, chauffeuring and vast amounts of tea during the writing of this book.

Acknowledgements

xiii

Our work in quantum optics over the past four decades has been funded by many sources: for P. L. K. in particular the UK SRC, SERC, EPSRC, the Royal Society, The European Union, the Nuffield Foundation, and the U. S. Army are thanked for their support; for C. C. G. the National Science Foundation, The Research Corporation, Professional Staff Congress of the City University of New York (PSC-CUNY).