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Abstract. We have examined the nuclear localization 

of transiently and stably expressed nascent RNA tran- 

scripts containing or lacking introns in order to deter- 

mine if the spatial association of RNA transcripts and 

pre-mRNA splicing factors in nuclei is random or func- 

tionally significant. Our findings show that the associa- 

tion between nascent RNA and splicing factors in the 

nucleus is intron-dependent when the RNAs are either 

transiently or stably expressed. Furthermore, our data 

indicate that splicing factors are recruited to the tran- 

scription sites. The presence of both pre- and m R N A  at 

these locations suggest that pre-mRNA splicing occurs 

at the sites of transcription. In addition, electron micro- 

scopic examination of the highly active transcription 

sites has revealed a granular appearance which closely 

resembles, but is functionally different from, interchro- 

matin granule clusters. Our findings demonstrate that 

the nucleus is highly organized and dynamic with re- 

gard to the functions of transcription and pre-mRNA 

splicing. 

p RE-MRNA splicing, which involves intron excision 
and exon ligation, is an essential posttranscriptional 
modification for the majority of RNA transcripts 

transcribed by RNA polymerase II. Extensive biochemical 
and molecular approaches have shown that pre-mRNA 
splicing is a complex multi-step process (for reviews see 
Green, 1991; Sharp, 1994) which may involve up to 50--100 
proteins, some of which are snRNP components (Reed, 
1990). The development of an efficient in vitro splicing 
system (Krainer et al., 1984) significantly advanced our 
understanding of the basic steps involved in conventional 
pre-mRNA splicing. The specific roles of many of the 
components participating in the splicing reaction, includ- 
ing snRNPs and non-snRNP splicing factors, have been 
extensively investigated (for review see Green, 1991). In 
spite of an increased understanding of the biochemical 
mechanisms involved in pre-mRNA splicing, a clear pic- 
ture of the spatial and temporal organization of pre- 
mRNA splicing in the cell nucleus has not yet been 
achieved. 

Earlier studies have shown that many of the well charac- 
terized splicing factors including the major snRNPs and 
certain non-snRNP splicing factors such as SC35, SF2/ 
ASF, and other SR proteins are localized in a speckled nu- 
clear pattern in addition to being diffusely distributed in 
the nucleus (for a review see Spector, 1993). When the lo- 
calization of splicing factors was examined at the electron 
microscopic level, the speckled distribution pattern ob- 
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served at the light microscopic level was found to corre- 
spond to two distinct nuclear structures, interchromatin 
granule clusters, and perichromatin fibrils (Spector et al., 
1991). Both of these components have been previously de- 
fined according to their morphological characteristics (for 
a review see Fakan and Puvion, 1980). Interchromatin 
granule clusters do not incorporate [3H]uridine after short 
pulses of labeling (for a review see Fakan and Puvion, 
1980), and do not immunolabel with anti-DNA antibodies 
(Turner and Franchi, 1987). These findings suggest that in- 
terchromatin granule clusters are unlikely to be the sites of 
active transcription. Instead, they have been proposed to 
be sites of storage and/or reassembly of snRNPs and non- 
snRNP splicing factors (Jim6nez-Garcfa and Spector, 
1993; O'Keefe et al., 1994; Spector et al., 1993). In con- 
trast, perichromatin fibrils incorporate [3H]uridine after 
short pulses (for a review see Fakan, 1994) suggesting that 
they represent nascent transcripts, and therefore are the 
sites of active transcription. 

The elaborate organization of splicing factors in a speck- 
led pattern has been shown to reflect the transcriptional 
and splicing activities of the cell (Jim6nez-Garcfa and 
Spector, 1993; Spector et al., 1993; O'Keefe et al., 1994). 
When RNA polymerase II activity is inhibited upon treat- 
ment with a-amanitin, the distribution of splicing factors is 
reorganized into larger and fewer round structures. When 
examined using electron microscopy, splicing factors are 
primarily concentrated in interchromatin granule clusters, 
whereas, perichromatin fibrils are significantly decreased 
in these cells (Spector et al., 1993). In addition, microinjec- 
tion into cells of oligonucleotides or antibodies which in- 
hibit pre-mRNA splicing in vitro results in a similar redis- 
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tribution of splicing factors (O'Keefe et al., 1994). The 
reorganization of splicing factors due to the lack of either 
pre-mRNA splicing substrate or functional splicing com- 
ponents (snRNPs) 1 suggests that the localization of splic- 
ing factors at perichromatin fibrils is a result of the re- 
quirement of splicing factors at the sites of transcription. 
Furthermore, when cells are infected with adenovirus 2, 
splicing factors are recruited to the introduced highly ac- 
tive transcription sites as detected by immunostaining with 
multiple antibodies which specifically recognize splicing or 
transcription factors (Jim6nez-Garda and Spector, 1993; 
Pombo et al., 1994). These findings suggest that splicing 
factors shuttle between storage and/or reassembly sites 
(interchromatin granule clusters) and sites of active tran- 
scription and pre-mRNA splicing (Jim6nez-Garda and 
Spector, 1993; Pombo et al., 1994). However, other studies 
have not found splicing factors to be localized within these 
viral structures during the infection (Zhang et al., 1994), or 
at the late phase of the infection (Bridge et al., 1993, 1995). 

To analyze the spatial and temporal organization of pre- 
mRNA splicing in mammalian cells, several individual 
RNA species transcribed from endogenous templates 
have been localized and compared to the localization of 
splicing factors. The induced expression of c-fos tran- 
scripts was found to be closely associated with splicing fac- 
tors both spatially and temporally suggesting a close link 
between transcription and splicing (Huang and Spector, 
1991). Such a close association or colocalization between 
nascent RNA and splicing factors has also been observed 
for other endogenously expressed RNA transcripts such as 
fibronectin, neurotensin, collagen Ial ,  and the Epstein 
Barr virus Bam W RNA (Xing and Lawrence, 1991; Xing 
et al., 1993, 1995). However, conflicting observations have 
been reported with regard to the colocalization of [3-actin 
RNA and splicing factors (Zhang et al., 1994; Xing et al., 
1995). In addition, the localization of an intron-less RNA 
and its relationship to the localization of splicing factors 
has thus far not been reported. Therefore, it is presently 
unclear whether the spatial association of splicing factors 
and nascent RNA transcripts is functionally specific or a 
random coincidence. 

In this report, we have used transient and stable expres- 
sion systems to determine (a) whether the spatial associa- 
tion of nascent RNA and splicing factors is functionally 
specific or merely a random coincidence; (b) whether 
splicing factors are recruited to the sites of transcription as 
suggested from studies using adenoviral infection; and (c) 
the ultrastructural features of the active transcription sites. 
We have found that the association of nascent RNA tran- 
scripts with splicing factors is intron-dependent during 
transient or stable expression. Splicing factors are re- 
cruited to the sites of active transcription of introduced in- 
tron-containing templates. In addition, electron micro- 
scopic analysis of highly active transcription sites has 
revealed a granular structure which closely resembles, but 
functionally differs from a typical interchromatin granule 
cluster. Together, these findings demonstrate a high de- 
gree of organization and signaling that takes place within 
the nucleoplasm. In addition, this study elaborates upon 

1. Abbreviations used in this paper: CLSM, confocal laser scanning micros- 
copy; DRB, 5,6-dichloro-l-!3-D-ribofuranosylbenzimidazole; snRNP, 
small nuclear ribonucleoprotein particle. 

the functional significance of interchromatin granule clus- 
ters which were first described by Swift (1959). 

Materials and Methods  

Cell Culture and Fixation 

HeLa cells were grown to subconfluence on glass coverslips in 35-mm- 

diam Petri dishes in DMEM supplemented with 10% FBS (GIBCO BRL, 

Gaithersburg, MD). Cells were maintained at 37°C with 10% CO2. HeLa cells 
that express the stably integrated constructs encoding 13-globin genomic or 

!3-globin cDNA were grown in the same conditions with the addition of 

200 I.~g/ml G418. The inhibition of RNA polymerase II transcription was 
achieved by the addition of tx-amanitin (50 Ixg/ml for 5 h) or 5,6-dichloro- 

1-13-D-ribofuranosylbenzimidazole (DRB) (25 IJ.g/ml for 3 h) to the culture 
medium. 

Plasmids 

Most constructs that we used were generous gifts from colleagues. Among 

them, constructs that expressed intron-less RNAs, 13-galactosidase, and 

Adenoviral VA RNA, and an RNA with a partial intron, CMVTAT, were 

provided by Drs. Shobha Gunnery and Michael Mathews (Cold Spring 
Harbor Laboratory); intron-containing RNAs: 13-globin genomic DNA 
(Caceres et al., 1994) was provided by Drs. Javier Caceres and Adrian 

Krainer, CGTAT (Ratnasabapathy et al., 1990) was provided by Drs. 

Shobha Gunnery and Michael Mathews, and [3-tropomyosin minigene 
(Helfman et al., 1988) was provided by Drs. Wei Guo and David Helfman 

(Cold Spring Harbor Laboratory). 13-Globin cDNA was inserted into the 

same parental plasmid as the 13-globin genomic DNA using PCR frag- 

ments so that both constructs could be expressed under identical condi- 
tions. 

Transfection 

Expression constructs were transiently transfected into HeLa cells by 
electroporation (Sambrook et al., 1989). Briefly, subconfluent cells in a 

100-mm culture dish were collected by trypsinization and mixed with 20 I~g 

of DNA including 7 ~g target DNA and 13 p.g sheared salmon sperm 

DNA. A 280-1xl mixture of cells in DMEM with 10% FBS and DNA was 
electroporated in an electroporator at 270 V and 960 I~FD. Cells were sub- 
sequently seeded onto glass coverslips in 35-mm-diam Petri dishes and 

were grown for either 7 or 24 h before being fixed for RNA or protein la- 

beling. To establish a stable integration of a construct, cells were grown in 
selection medium containing 400 Fg/ml of G418 beginning at 36 h after 
the transfection. 

In Vivo Incorporation of  BrUTP 

The in vivo transcription assay was performed according to published 
studies (Jackson et al., 1993; Wansink et al., 1993). Briefly, at 7 or 24 h 

posttransfection, ceils were rinsed once with PBS and once with a glyc- 
erol-containing buffer (20 mM Tris-HCl, pH 7.4, 5 mM MgCl 2, 25% glyc- 

erol, 0.5 mM PMSF, and 0.5 mM EGTA). Cells were then permeabilized 

in the glycerol buffer containing 0.1% Triton X-100 at room temperature 
for 3 min. Subsequently, cells were incubated in transcription cocktail (100 
mM KCI, 50 mM Tris-HCl, pH 7.4, 5 mM MgCI2, 0.5 mM EGTA, 25% 

glycerol, 1 mM PMSF, 2 mM ATP, 0.5 mM CTP, 0.5 mM GTP, 0.2 mM 
BrUTP and 25 U/ml RNAsin) for 4.5 min at 37°C. At the end of the tran- 

scription reaction, cells were gently rinsed twice with PBS, and then fixed 

in 4% formaldehyde in PBS. 

In Situ Hybridization 

In situ hybridization was performed as described previously (Huang and 

Spector, 1991). Fixed cells were washed, 3x 15 min each in PBS and per- 
meabilized in 0.5% Triton X-100 for 5 rain at 4°C. Cells were then rinsed 

in PBS, 2x  15 min each and once with 2x SSC. For nuclease digestions, 
cells were incubated with either 100 txg/ml of RNase A or 5 U/30 ~l of 
RNAse-free DNAse I (Boehringer Mannheim, Indianapolis, IN) at 37°C 
for 2 h and washed extensively in PBS before hybridization. 

Probes were made by nick translation of specific DNA templates in the 
presence of biotin- or digoxigenin-labeled dUTP. 100-500 ng of labeled 
probe was dried in a Speed-vac, together with 20 ~g of Escherichia coli 
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tRNA and 5 Ixg of sheared salmon sperm DNA. The pellet was resus- 

pended in 10 I~1 deionized formamide, heat-denatured at 75°C for 10 min 

and rapidly cooled in an ice water slurry. The final 20-1xl hybridization 

mixture (2x SSC, 10 mM Tris-HCl, pH 7.2,1 mM EDTA, 5% dextran sul- 

fate, 50% formamide [vol/vol], denatured probe, tRNA, and sheared 

salmon sperm DNA) was applied to each coverslip which was inverted 

onto an RNAse-free glass slide and was sealed with rubber cement. Hybrid- 

ization was carried out at 37°C in a humidified chamber overnight. After hy- 
bridization, cells were washed three times in 2x SSC and once in 1 x SSC. 

Signal Detection by Fluorescence Microscopy 

Hybridizations with biotinylated probes were detected by incubating in 
FITC-conjugated avidin (Vector Labs., Burlingame, CA) at 2 ixg/ml in 4x  

SSC as described by Huang and Spector (1991). Cells were then exten- 
sively washed in 4x  SSC at room temperature. Hybridizations with the 

digoxigenin-labeled probe were detected with FITC-conjugated anti- 
digoxigenin Fab' (Boehringer Mannheim) at a dilution of 1:20-1:40 in 

PBS. Cells were incubated in antibody for 1 h at room temperature and 

washed with PBS or PBS plus 0.1% Triton X-100. 

Immunolabeling 

After detection of the hybridization signal, cells were washed, 3x  10 rain 

each, in PBS and incubated with anti-SC35 primary antibody (Fu and Ma- 
niatis, 1990) at a dilution of 1:1,000, anti-B" (Habets et al., 1989) at a dilu- 

tion of 1:5, anti-Sm antibody (Lerner et al., 1981) at a dilution of 1:1,000, 

or anti-BrdU antibody (Boehringer Mannheim) at a dilution of 1:5 for 1 h 

at room temperature. Cells were rinsed in PBS, and then incubated with 

Texas red-conjugated goat anti-mouse antibody at a dilution of 1:30 for 

1 h at room temperature, followed by three washes in PBS. The coverslips 
were mounted onto glass slides with mounting medium containing 90% 

glycerol in 0.2 M Tris-base (pH 8.0) with 1 i~g/ml paraphenylenediamine 
as an antifading agent. Cells were examined with a Nikon FXA micro- 
scope equipped with epifluorescence and differential interference contrast 

optics. In double-labeling experiments, red and green fluorescence was si- 
multaneously detected in 0.5 p~m optical sections using a Leica TCS 4D 

confocal laser scanning microscope. Images were recorded with a Focus 

Graphics image recorder. 

Morphological Characterization by 
Electron Microscopy 

To examine the nuclear regions involved in the transcription and splicing 
of the transiently expressed RNAs at the EM level, we correlated the 

localization of the RNA at the light microscopic level to the immunode- 

tection of the same region at the EM level using anti-SC35 antibody. 8 h 

posttransfection, cells were fixed in 4% paraformaldehyde with 0.05% 
glutaraldehyde in PBS and were in situ hybridized to the corresponding 

probes as described above. The fluorescent hybridization signals of cells 
localized on gridded coverslips were photographed. Subsequently, the 

coverslip was floated off of the slide and the cells were fixed in 0.5% glu- 
taraldehyde for 20 min and washed in PBS containing 0.3 M glycine. Cells 

were then dehydrated by incubation in a series of ascending concentra- 

tions of ethanol and embedded in LR White resin at 60°C for 48 h. Thin 

sections of the same cell, previously photographed by fluorescence mi- 
croscopy, were immunogold labeled with antibodies specifically recogniz- 

ing SC35 and post-stained by the EDTA regressive method (Bernhard, 
1969) which revealed RNP-enriched structures. Sections were examined 

using a Hitachi H-7000 transmission electron microscope operated at 75 kV. 

Results 

To examine whether the spatial association between na- 
scent RNA transcripts and splicing factors in the nucleus is 
functionally specific, we have examined the localization of 
several transiently and stably expressed intron-containing 
RNAs or intron-less RNAs and compared their localiza- 
tion to the distribution of splicing factors in the same cells. 
If the colocalization between RNA and splicing factors 
was merely a random coincidence, intron-containing and 
intron-less RNAs would have an equal chance to associate 
with splicing factors. However, if the colocalization of na- 

scent RNA and splicing factors represents a functional in- 
teraction, one would expect such a colocalization to be in- 
tron-dependent. Three classes of templates were used in 
this study. They were (1) intron-less RNAs ([3-galactosi- 

dase, 13-globin cDNA, and Adenoviral VA RNA, an intron- 
less RNA transcribed by RNA polymerase III [Gunnery 
et al., 1992]); (2) RNA with a partial intron (CMVTAT), 
and (3) intron-containing RNAs (13-globin genomic DNA 
[Caceres et al., 1994], CGTAT [Ratnasabapathy et al., 
1990], and [3-tropomyosin minigene [Helfman et al., 1988]) 
(Fig. 1). The intron-containing [3-globin genomic and in- 
tron-less ~3-globin cDNA were expressed from the identi- 
cal parental plasmid. 

RNA Transcripts without Introns Do Not Associate 
with Splicing Factors 

HeLa cells were transiently transfected with constructs ex- 
pressing intron-less RNAs ([3-galactosidase or [3-globin 
cDNA). 7 h after transfection, cells were subjected to in 
situ hybridization using the corresponding probes which 
were derived from the transfected construct. The same 
cells were also immunolabeled with a monoclonal antibody 
specifically recognizing SC35. The localization of the RNA 
and SC35 was observed in 0.5 I~m optical sections obtained 
using a confocal laser scanning microscope (CLSM). In 
situ hybridization demonstrated that both [3-galactosidase 
(Fig. 2 a) and [3-globin (Fig. 2 d) mRNA were localized to 
many discrete regions in the nucleus that were visualized 
as green dots. The number of dots per nucleus varied from 
four or five up to one hundred. Cytoplasmic RNA hybrid- 

Figure 1. D i a g r a m  i l lus t ra t ing the  cons t ruc t s  u sed  in t r ans ien t  

t ransfec t ions .  T h e  13-galactosidase and  13-globin c D N A  cons t ruc t s  

do no t  con ta in  in t ron  sequences .  T h e  C M V T A T  cons t ruc t  con-  

ta ins  a par t ia l  in t ron.  T h e  adenov i ra l  V A  cons t ruc t  con ta ins  nei-  

ther  an  in t ron  s e q u e n c e  n o r  a po ty (A)  tail and  is t r ansc r ibed  by 

R N A  p o l y m e r a s e  I lL  T h e  C G T A T  gene ,  [3-globin, an d  [3-tro- 

p o m y o s i n  m i n i g e n e  gene  cons t ruc t s  con ta in  in t ron  sequences .  

Bo th  in t ron -con ta in ing  [3-globin g e n o m i c  and  in t ron- less  13-globin 

c D N A  are  inser ted  into the  s a m e  expres s ion  vector.  
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Figure 2. The majority of transiently expressed intron-less RNAs or RNAs with a partial intron are not spatially associated with splicing 
factors in the cell nucleus. HeLa cells were transiently transfected with expression vectors which encoded for RNA transcripts without in- 
trons: 13-galactosidase (a-c), [3-globin cDNA (d-f), or R N A  transcripts containing a partial intron, CMVTAT (g-i), or adenoviral VA 
RNA transcribed by R N A  polymerase III (j-l). The RNAs were detected by fluorescence in situ hybridization (FISH) with biotinylated 

probes 8 h after transfection (a, d, g, and j). The splicing factor SC35 was localized in the same cells using a monoclonal antibody specif- 
ically recognizing SC35 (b, e, h, and k). Simultaneous detection of both RNAs and SC35 (c, f, i, and l) showed little to no colocalization 

between the RNAs and splicing factors. The bar represents 10 Ixm. 
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ization was also observed demonstrating that the RNA 

was being transported (Fig. 2 a). The amount of RNAs de- 

tected in the cytoplasm varied among cells expressing the 

same constructs and cells expressing different constructs. 
This variability may be due to the different expression lev- 
els of the same construct and/or differences in the stability 
of RNAs expressed from different constructs. Sometimes, 
visualization of cytoplasmic RNA also depended upon the 
focal plane of the cell which was examined. Optical sec- 

tions derived from the top of the cells usually revealed 
very little of the cytoplasm whereas optical sections de- 
rived from the bottom of the ceils displayed a much larger 
cytoplasmic area. The distribution of the splicing factor 
SC35 demonstrated a typical speckled localization in the 
cell nucleus (Fig. 2, b and e). Simultaneous examination of 

the localization of both the RNA and SC35 using CLSM 
revealed little spatial association between the 13-galactosi- 
dase or 13-globin m R N A  signals and the localization of 
SC35 in a majority of the cases, since both green (RNA) 
and red (SC35) signals were mostly observed in different 
regions (Fig. 2, c and f). We also examined the expression 

of an HIV Tat RNA lacking a 3' splice site (Fig. 2 g). We 
were interested in knowing whether a 5' splice site alone 

would elicit an association between the Tat RNA and 
splicing factors. The transcript was comprised of exon 1 of 
HIV Tat and a partial intron of 300 bp including the 5' 
splice site. When examined by CLSM, we did not observe 
a spatial association between the localization of this RNA 

and the splicing factor SC35 (Fig. 2 i). Furthermore, we 
have also examined the expression of adenoviral VA RNA, 
an RNA polymerase III  transcript. VA RNA does not 
contain any introns or a poly(A) tail. The localization of 
this RNA was observed in round dots in the nucleus (Fig. 

2 j). Similar to that observed with the previous three 
RNAs, detection of VA RNA (Fig. 2 j) and splicing factors 
(Fig. 2 k) in the same cell revealed little association be- 

tween the RNA and splicing factors (Fig. 2 l). 

RNA Transcripts Containing Introns Are Closely 
Associated with Splicing Factors 

We were next interested in examining the localization of 

RNAs that contain introns and their relationship with 
splicing factors in the nucleus. Constructs expressing RNA 
transcripts for [3-globin, CGTAT,  and a [3-tropomyosin 
minigene (Fig. 1) were transfected into HeLa cells. The 
expression of the RNA and the localization of the splicing 
factors in the same cells were simultaneously detected by 
CLSM (Fig. 3). The localization of the majority of the 
RNA signal (~85%) from all three constructs were colo- 
calized with the splicing factor SC35 (Fig. 3, c, f, and i). 
Such a colocalization was also observed when other splic- 
ing factors such as U2 snRNPs were examined using a 
monoclonal antibody specifically recognizing the U2 B" 
protein (Habets et al., 1989) (Fig. 3/)  or other anti-snRNP 
antibodies (Sm, maG) (data not shown). The size and 
shape of the RNA localization signals varied in different 
cells or even in the same cell. Some of the intron-contain- 
ing RNAs were localized as large clusters in the nucleus 
(Fig. 3, g and j). The corresponding nuclear regions were 
also occupied by similar size and shape clusters of splicing 
factors which were larger than a native SC35 speckle (Fig. 

3, h and k, arrows). In addition, the fluorescence signal of 
the SC35 immunostaining in the speckles containing the 

transiently expressed RNAs (Fig. 3, h and k, arrows) ap- 

peared brighter in intensity suggesting a reorganization or 
recruitment of splicing factors to the location of the na- 

scent RNA transcripts. However, we did not detect a core 
of splicing factors within a larger region of RNA as re- 
ported for the localization of poly(A) + RNA (Carter et al., 

1993). 
Control experiments in which ceils were transfected 

with carrier DNA alone, and then hybridized with probes 
derived from either intron-less or intron-containing RNA 
expression constructs resulted in no hybridization signals 
compared to 5--40% of the cells showing a positive hybrid- 
ization signal when transfected with each of the seven con- 

structs above. Furthermore, when cells were pretreated 
with RNAse A for 2 h at a concentration of 200 ~g/ml be- 
fore the hybridization, no signal was observed. 

We have examined the localization of RNA expressed 
from seven different constructs and we have found that 
the association between the localization of nascent RNA 
transcripts and splicing factors is dependent upon the pres- 

ence of a complete intron. To ensure that these observa- 
tions were representative, we have examined a large num- 
ber of cells that expressed these constructs and evaluated 
the association of their localization with splicing factors by 
CLSM. Over 400 sites of RNA localization were examined 
for the expression of each construct. The quantitative 
analysis is summarized in Fig. 4. The percentage of RNA 

localization sites that were colocalized, not colocalized, or 
partially colocalized with SC35 were plotted on the Y axis 
and the RNAs are indicated on the X axis. This histogram 
clearly demonstrated that the localization of intron-less 

RNA or RNA with a partial intron did not overlap with 
the localization of SC35 in over 80% of the cases exam- 
ined. In contrast, over 85% of the localization sites of in- 
tron-containing RNA were found to be colocalized with 
SC35. These findings clearly show that the association be- 
tween the localization of nascent RNA transcripts and 

splicing factors is intron-dependent and not random. 
Therefore, the colocalization is likely to be the result of a 
functional interaction between pre-mRNA and splicing 
factors. 

Stably Expressed Intron-containing RNA Also 
Colocalizes with Splicing Factors 

To confirm the observations made in the transient trans- 
fection assays, we have also evaluated the localization of 

stably expressed intron-less vs intron-containing RNAs 
and their association with splicing factors. The expression 
of RNA from a stably integrated 13-globin eDNA or [3-globin 
genomic DNA was examined. The localization of [3-globin 
mRNA made from a stably integrated [3-globin eDNA was 
not associated with SC35 (Fig. 5 c, arrow) in over 80% of 
the cells examined. In contrast, we found that [3-globin 
RNA made from the genomic DNA was colocalized with 
the splicing factor SC35 (Fig. 5f, arrow) in 98% of the cells 
examined. Similar to our observations of transiently ex- 
pressed RNAs, the shape of the region containing the sta- 
bly expressed RNA resembled the localization of the splic- 
ing factors at that site in a majority of the observed cells 
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Figure 3. The transiently expressed R N A  transcripts containing introns are spatially associated with splicing factors. HeLa cells were 
transfected with expression vectors which encode for intron-containing RNAs including 15-globin (a-c), CGTAT (d-f), or 13-tropomyosin 
minigene (g-l). The localization of these RNAs was examined by FISH with biotinylated probes 8 h after transfection (a, d, g, and j). 
The localization of splicing factors in the same cells was detected by immunostaining with a monoclonal antibody specifically recogniz- 
ing SC35 (b, e, and h), or U2 snRNP B" protein (k). R N A  and splicing factors colocalized to the same nuclear regions (c, f, i, and/). Note 

that in many cases both signals were detected as large clusters (arrow). The bar represents 10 I~m. 
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The association of transcripts and splicing factors 

Figure 4. Quantitative analysis demonstrating that the spatial as- 
sociation between the nascent RNA transcripts and splicing fac- 
tors in the nucleus is intron-dependent. The constructs are indi- 
cated on the X axis and the percentage of RNA localization sites 
that colocalized, did not colocalize, or partially colocalized with 
SC35 are plotted on the Y axis. Four hundred transcription sites 
were analyzed in each case. 

(i.e., size and shape were the same) (compare the signal at 
the arrows in Fig. 5, e and f). The intron-dependent colo- 
calization between stably expressed nascent RNA tran- 
scripts containing introns and splicing factors further sup- 
ports the idea that such an association is functionally 
specific. 

The Localization of the RNA Represents the Site 
of Transcription 

We were next interested in determining whether the local- 
ization of transiently expressed RNA represented the sites 

of transcription. To address this question, we have exam- 
ined the incorporation of BrUTP in transfected cells, after 
a short pulse, and tried to correlate the sites of transcrip- 
tion with the sites of RNA localization. If we could detect 
active incorporation of BrUTP at the same nuclear loci 
where the RNA was localized, this would indicate that 
these sites were the sites of transcription. 8 h after trans- 
fection, cells were incubated in a transcription mixture 
containing BrUTP for 4.5 min as described in Materials 
and Methods. Simultaneous detection of the localization 
of RNA (Fig. 6, a and d) and the incorporation of BrUTP 
(Fig. 6, b and e) revealed that the localization of the RNA 
produced by the transfected templates corresponded to 
the sites of active transcription. Such a colocalization was 
observed for both intron-less [3-globin mRNA (Fig. 6 c) 
and intron-containing [3-tropomyosin minigene RNA (Fig. 

6 f). In some cells that expressed intron-containing RNA, 
the level of transcription of the exogenous templates was 
so high that an elevated incorporation of BrUTP was ob- 
served (Fig. 6 e, arrows) further supporting that the sites of 
the RNA localization were the sites of transcription. Vari- 
ations in the BrUTP incorporation at different loci were 
also observed (Fig. 6, b and e) suggesting that there were 
differences in the extent of transcription among the differ- 

ent templates in a single cell. Alternatively, some of the 

transcription sites may have contained multiple copies of 
the transfected templates. In addition, in many cases, we 

have observed the localization signal of the RNA to be 

larger than the BrUTP incorporation signal. One explana- 

tion of this observation is that the localization of the RNA 

may represent both RNAs that were made during the 4.5 
rain pulse of BrUTP as well as some of those that were 
made before the labeling, whereas, the signal for BrUTP 
incorporation only represented the RNA that was made 
during the 4.5-min of pulse labeling. 

The Localization of lntron-containing RNA Represents 
the Site of Pre-mRNA Splicing 

Since the sites of RNA localization represented the sites of 
transcription, we were interested in determining if pre- 
mRNA splicing occurred at the sites of transcription. To 

address this question, we investigated whether the RNA 
localization clusters contained both pre-mRNA and mRNA 
since the sites of pre-mRNA splicing should have both 
splice precursors (pre-mRNA) and spliced products 
(mRNA). The expression of the [3-tropomyosin minigene 
was used as an example to dissect the components of the 
localized RNA. Introns 6 and 7 were subcloned and used 

as probes to specifically hybridize t O [3-tropomyosin pre- 
mRNA (Fig. 7). Splice junction probes were used to spe- 
cifically hybridize to the mRNA (Fig. 7). The splice junc- 
tion probe was a biotinylated 24-mer oligonucleotide, half 
of which was complementary to 12 nucleotides at the 3' 
end of exon 5, and the other half was complementary to 12 
nucleotides at the 5' end of exon 6 (Fig. 7). Only when ex- 
ons 5 and 6 are ligated, can this probe form a stable duplex 
with the target mRNA and therefore give a hybridization 
signal under the relatively high hybridization stringency 
used in this study. 

Cells expressing the [3-tropomyosin minigene RNA 
were simultaneously hybridized to intron-specific probes 

which were localized by Texas red-conjugated anti-digoxi- 
genin (red) (Fig. 8 b) and to the splice junction probes 
which were localized by FITC-conjugated avidin (green) 
(Fig. 8 a). When cells were simultaneously scanned by 
CLSM, the pre-mRNA and the mRNA appeared to oc- 
cupy the same nuclear regions (Fig. 8 c) demonstrating 
that pre-mRNA splicing took place in those regions. A 
splice junction probe spanning exons 5 and 8, which repre- 
sented ~50% of the spliced product for this RNA, pro- 
vided similar results as that observed with the splice junc- 

tion exon 5 to 6 probe described above (data not shown). 
Hybridization with 12-mer oligonucleotides complemen- 

tary to either the 3' end of exon 5 or the 5' end of exon 6 
or exon 8 at the same stringency used for the splice junc- 
tion probes did not result in specific signals, suggesting 
that the observed signals with the splice junction probes 
represented mRNA (data not shown). In some cells where 
the expression of the gene was extremely high, such that 
all of the nuclear regions enriched in splicing factors were 
found to be colocalized with the [3-tropomyosin RNA, pre- 
mRNA was also detected in the cytoplasm with the intron- 
specific probe (Fig. 8, d and f). The presence of unspliced 
RNA in the cytoplasm suggested that the splicing machin- 
ery was saturated by the overexpression of the transfected 
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Figure 5. The intron-dependent association between nascent RNA transcripts and splicing factors is also observed in stable cell lines. 
Intronless [3-globin cDNA (a-c) and intron-containing [3-globin genomic DNA (d-f) were stably integrated into the HeLa cell genome. 
The RNAs were detected by fluorescence in situ hybridization with biotinylated probe s (a and d). The localization of the splicing factor 
SC35 in the same cells was detected by immunostaining with monoclonal antibody specifically recognizing SC35 (b and e). The localiza- 
tion of [3-globin mRNA transcribed from the [3-globin cDNA construct was not spatially associated with SC35 in the majority of cells ex- 
amined (arrowhead in c). In contrast, the localization of [3-globin RNA transcribed from the [3-globin genomic construct colocalized 
with SC35 (arrowhead in f). The bar represents 10 ixm. 

templates and unable to splice all the R N A s  that were 

made. Alternatively, a putative nuclear retention factor 

responsible for keeping unspliced p re -mRNA in the nu- 

cleus may have become saturated. 

We have also examined the fate of the transiently ex- 

pressed R N A  in the nucleus by treating cells with the tran- 

scription inhibitor, c~-amanitin 8 h after transfection. When 

cells were treated with 50 Ixg/ml of c~-amanitin for 5 h, the 

majority of the transiently expressed RNA,  both intron- 

containing (Fig. 8 g) or intron-less R N A  (data not shown), 

were only observed in the cytoplasm of the transfected 

cells. Little to no R N A  was detected in the nucleus sug- 

gesting that these R N A s  can be chased into the cytoplasm 

upon the inhibition of transcription. This finding also sug- 

gested that the large clusters of R N A  localization ob- 

served for the expression of certain intron-containing 

R N A s  was not due to an accumulation of R N A  because of 

an alteration in R N A  transport. Furthermore,  this finding 

demonstrated that R N A  transport was not blocked when 

R N A  transcription was inhibited. The splicing factors in 

the transfected and nontransfected cells that were treated 
with transcription inhibitor displayed a characteristic phe- 

notype of rounded large clusters (Fig. 8 h) typically ob- 

served after inhibition of R N A  polymerase II (Spector et 

al., 1993; Huang et al., 1994). However,  it is not possible to 

distinguish whether a subset of splicing factors in trans- 

fected cells remain at the previously active transcription 

sites. Interestingly, when cells were treated with DRB,  a 

transcription inhibitor (Sehgal et al., 1976) as well as a ki- 

nase inhibitor (Zandomeni  and Weinmann, 1984), both in- 

tron-containing and intron-less RNAs were not chased out 

of the nucleus (data not shown). In this case, the RNAs 

were colocalized with splicing factors in large clusters. This 

observation suggested that DRB affects other processes in 

the ceils in addition to the inhibition of RNA polymerase 

II activity. 

Ultrastructural Analysis of the Association of Splicing 
Factors and the Expression of lntron-containing RNA 

We next determined if the sites of transcription and pre- 

m R N A  splicing of the RNAs  generated from the trans- 

fected D N A  templates corresponded to a specific nuclear 

substructure. Transfected ceils were examined by fluores- 

cence in situ hybridization and the localization of the R N A  

signal was photographed. The marked cells were then pre- 

pared for immunoelectron microscopy. The nuclear struc- 

ture that corresponded to the hybridization signal was 
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Figure 6. The localization of the transiently expressed RNAs represents the sites of transcription. The incorporation of BrUTP for 4.5 
min in cells transfected with either a construct expressing an intron-less RNA (13-globin; a--c) or an intron-containing RNA (13-tropomy- 
osin minigene; d-f) was examined by immunostaining with a monoclonal antibody specifically recognizing BrUTP (b and e). The local- 
ization of the RNA was examined by FISH (a and d). The bar represents 10 Ixm. 

identified based upon its morphological appearance, posi- 

tion in the nucleus, as well as its immunogold labeling with 

anti-SC35 antibody since SC35 was shown to be colocalized 

with the RNA.  The C G T A T  construct which expressed 

the Tat R N A  with an intron was used as an example to ex- 

amine the R N A  localization by electron microscopy. The 

localization of the R N A  (Fig. 9 a) was found to correspond 

to a cluster with a granular appearance that also contained 

swirls of fibrils (Fig. 9, b and c). The structure of this clus- 

ter somewhat resembled interchromatin granule clusters 

seen in cells which were not transfected (for a review see 

Spector, 1993). However,  they were larger in size and rep- 

resented the active sites of transcription of the respective 

RNA.  Therefore,  while the observed R N A  localization 

signal appeared to be in clusters which morphologically re- 

sembled typical interchromatin granule clusters, their mo- 

lecular composition may be different. 

Variations in the Expression of  Exogenous Templates 
after Transient Transfection 

Throughout  our transient transfection experiments, we 

have found a large variation in the expression levels of 

various constructs and the same construct among different 

cells or different expression loci within a single cell. A 

comparison of the images in Figs. 2 and 3 shows that a 

large portion of the localization sites of intron-less R N A  

or R N A  with a partial intron (Fig. 2) are smaller than the 

SV40 enhancer 5 6 Intron 6 7 Intron 7 8,9 

I 

Exon junction pro m 

Figure Z Diagram illustrating the design of hybridization probes for the specific detection of 13-tropomyosin pre-mRNA and mature 
RNA. Introns 6 and 7 were used as pre-mRNA specific probes. Splice junction probes consisted of 12 nucleotides from the 3' end of an 
upstream exon and 12 nucleotides from the 5' end of a downstream exon. Splice junctions between exons 5 and 6 or exons 5 and 8 were 
used for detection of mRNA. 

Huang and Spector lntron-dependent Recruitment of Splicing Factors 727 



Figure 8. The localization sites of transiently expressed intron-containing RNA in HeLa cells represented the sites of pre-mRNA splic- 
ing. Detection signals of 13-tropomyosin minigene mRNA (a) and pre-mRNA (b) were found to colocalize (c). In some cells, pre-mRNA 
was detected in the cytoplasm (d). SC35 was simultaneously detected (e). The nuclear pre-mRNA coIocalized with SC35 (f). When 
RNA transcription was inhibited for 5 h in the presence of c~-amanitin (50 ixg/ml), f3-tropomyosin minigene RNA was no longer de- 
tected in the nucleus (g and i). SC35 was found in round and enlarged nuclear clusters, a pattern typically associated with a-amanitin 
treatment (h and i). The bar represents 10 I~m. 

localization sites of intron-containing R N A  (Fig. 3). Such 

observations suggested that the expression level of intron- 

less R N A  may be lower than that of intron-containing 

RNA.  These observations, at the single cell level, are con- 

sistent with previous studies using S1 nuclease protection 

assays or nuclear run-on experiments which found that in- 

trons increase the expression of R N A  transcripts (Aronow 

et al., 1989; Brinster et al., 1988; Buchman and Berg, 1988; 

Chung and Perry, 1989; Gallis et al., 1987). 

The expression of  intron-containing R N A  also varied. 

Using the example of 13-tropomyosin minigene expression, 

we have found that the expression level differed tremen- 

dously from cell to cell, and from 7 h to 24 h posttransfec- 

tion. At  the beginning of the expression period, when cells 

were examined 7 h after transfection, the localization sites 

of the R N A  tended to be smaller in size in some cells. At  

this stage, the distribution of the splicing factors in the 

same cells appeared t o b e  in a somewhat normal speckled 

distribution, and, in addition, to be colocalized at the R N A  

expression sites (data not shown). However,  at 24 h post- 

transfection the size of the R N A  localization signal was 

much larger. At  this stage, nearly all of  the splicing factors 

detected in the cells colocalized with the R N A  derived 
from the transfected templates (data not shown). Approx- 
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Figure 9. Electron microscopy demonstrates that the nuclear region occupied by actively transcribed intron-containing RNA consists of 
granular structures with swirling fibrils. After FISH, cells were processed for electron microscopy and immunolabeled with an antibody 
specifically recognizing SC35. The distribution of the fluorescence signal (arrowhead in A) correlated with the localization of SC35 in 
the same cell (arrowhead in B). EDTA regressive staining showed this region to be enriched in RNPs. Examination at higher magnifica- 
tion (C) demonstrated the granular nature of these regions reminiscent of interchromatin granule clusters in nontransfected cells. 

imately 20% of these cells displayed a significantly re- 

duced general level of endogenous cellular transcription, 

as compared to adjacent cells that were not transfected 

when examined by BrUTP incorporation. Some cells at 

late stage posttransfection showed a nearly complete inhi- 

bition of  endogenous transcriptional activity as well as the 

transcription of  the exogenous template (data not shown). 

To avoid all of these variations, which may affect cell via- 
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bility, we have restricted our studies to the evaluation of 
cells 7 h posttransfection. 

Discussion 

Transcription and Pre-mRNA Splicing 
Are Spatially Associated 

Our findings that the spatial association between nascent 
RNA transcripts and splicing factors is intron-dependent 
has demonstrated that this colocalization represents a 
functional interaction rather than being a random associa- 
tion. In addition, our observations that pre-mRNA and 
mRNA are colocalized at the sites of transcription support 
and further extend the idea that transcription and splicing 
are closely linked. The close association between these 
processes has been proposed in earlier studies that have 
examined nascent RNA transcripts of early Drosophila 
embryo genes (Beyer and Osheim, 1988), genes in mouse 
and Drosophila somatic cells (Fakan et al., 1986), as well 
as adenovirus 2 and [3-actin genes in HeLa cells (Zhang et 
al., 1994). Our findings are also consistent with observa- 
tions showing spliceosomes on nascent RNAs transcribed 
from the Balbiani ring genes of the dipteran Chironomus 
(Kiseleva et al., 1994), and splicing factors on the loops of 
lampbrush chromosomes in amphibian germinal vesicles 
(Wu et al., 1991). 

Using a transient transfection assay, we have observed a 
wide range in the levels of RNA expression among nuclei 
and at various times after transfection. The colocalization 
of intron-containing RNAs with splicing factors varied 
from small dots to large clusters. We interpret these find- 
ings to be the result of a kinetic equilibrium among at least 
four parameters, the rate of transcription, the rate of splic- 
ing, the rate of dissociation of mRNA from the spliceo- 
some, and subsequently transport away from the site of 
transcription. In addition, the copy number of templates at 
one locus may also contribute to the size of the RNA lo- 
calization signal. If the rate of pre-mRNA splicing is faster 
than the rate of transcription, the amount of splicing fac- 
tors localized at the site of transcription at any given mo- 
ment will be low and may approach the sensitivity limits of 
the light microscope. This situation could account for the 
observation by Zhang et al. (1994) in which the 13-actin 
pre-mRNA was observed to be spliced at the sites of tran- 
scription, but the splicing factors were not detected at 
those loci. Since pre-mRNA splicing occurred at these 
sites, it is unlikely that splicing factors were not present at 
the same nuclear regions. The simplest explanation is that 
the amount of splicing factors present were below the sen- 
sitivity of light microscopic detection. However, a reevalu- 
ation of the localization of 13-actin RNA and splicing fac- 
tors by Xing et al. (1995) has revealed a colocalization in 
89% of the cases observed. If the rate of transcription of a 
gene is much higher than the rate of splicing or the rate of 
dissociation from the spliceosome, the RNA localization 
signal at the transcription site would be larger and con- 
comitantly an increased number of splicing factors would 
be recruited to, and be present at, the sites of transcrip- 
tion. Ultimately, the extreme overexpression of an RNA 
could exhaust the available splicing factors and/or nuclear 

retention factors in the nucleus. At late time points post- 
transfection (24--48 h), we have observed transiently ex- 
pressed RNAs to leave the sites of transcription, which are 
presumably saturated with transcripts, and to be localized 
throughout the speckled pattern, at some sites that are not 
transcription sites (Huang, S., and D.L. Spector, unpub- 
lished data). This situation suggests that RNAs are being 
synthesized faster than splicing factors are being recruited 
to the sites of transcription. Thus, RNAs are being re- 
leased from the template before being associated with 
splicing factors and being spliced. In addition, at these late 
time points posttransfection, unspliced RNA is found in 
the cytoplasm suggesting that pre-mRNA splicing and/or 
nuclear retention is a saturable process. 

Splicing Factors Are Recruited to the Sites 
of Transcription 

At some of the more abundant expression sites of the in- 
tron-containing RNAs, splicing factors and the nascent 
RNAs were colocalized to the same nuclear regions in 
large clusters which are much larger than a normal speckle. 
In addition, the fluorescence intensity of the splicing factor 
localization at these transcription sites appeared higher 
than at endogenous speckles elsewhere in the nucleus 
where these RNAs were not present. The larger and more 
intensely concentrated clusters of splicing factors at the 
sites of transcription suggested that these factors were re- 
cruited from elsewhere in the nucleus upon the initiation 
of transcription of intron-containing RNA. Furthermore, 
in the study of both transiently and stably expressed in- 
tron-containing RNAs, we have found that the shape of 
the RNA localization resembled the localization of the 
splicing factors at the same sites. These observations sug- 
gest that the recruitment of splicing factors to these sites 
depends upon the presence of pre-mRNA. These findings 
confirm earlier studies using adenoviral infection that 
showed splicing factors (snRNPs) (Walton et al., 1989; 
Jim6nez-Garcfa and Spector, 1993; Pombo et al., 1994), 
RNA polymerase II, and hnRNP C protein (Jim6nez- 
Garcia and Spector, 1993) were recruited to sites of ade- 
novirus transcription. 

There are at least two different mechanisms that could 
explain the movement of splicing factors from storage and/ 
or reassembly sites to the transcription sites of intron-con- 
taining RNA. First, the transcription of intron-containing 
RNA may trigger a signal transduction system which directs 
the movement of splicing factors to the sites of transcrip- 
tion. The triggering signal could be the newly synthesized 
intron-containing RNA, or the transcription apparatus it- 
self, such as the binding of polymerase and transcription 
factors to the promoter. Splicing factors which are nor- 
mally in excess at their sites of storage and/or reassembly 
would respond to the activation of transcription and move 
to those sites. One possible way of regulating the localiza- 
tion of splicing components is phosphorylation and de- 
phosphorylation. A recently identified serine kinase, SR 
protein kinase 1 (SRPK1), has been shown to be involved 
in the phosphorylation of SR proteins (Gui et al., 1994a,b). 
Addition of this kinase to permeabilized cells results in the 
dissociation of the speckled distribution of splicing factors 
(Gui et al., 1994a). Alternatively, it is also possible that 
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there is a soluble pool of splicing components which are 
ready to function in the nucleoplasm; the continuously 
generated intron-containing RNAs would recruit those 
factors and deplete the soluble pool. Some of the excess 
splicing factors at the sites of storage and/or reassembly 
would subsequently be released to supplement the soluble 
pool so that a certain concentration of these factors can be 
maintained. Both of these models could explain the re- 
cruitment of pre-mRNA splicing factors to sites of active 
transcription. Future experiments are needed to distin- 
guish between these or other possibilities. 

Analysis of the Structural Characteristics of the Sites of 
Transcription of Intron-containing RNA 

We have examined the sites of transcription and splicing 
of transiently expressed intron-containing RNA using 
electron microscopy. We observed a granular structure 
containing swirling fibrils. EDTA regressive staining (Bern- 
hard, 1969) revealed that these regions were RNP-enriched 
structures. These granular structures closely resembled in- 
terchromatin granule clusters observed in nontransfected 
cells (Spector, 1993). However, they were much larger in 
size and they corresponded to sites of transcription. Classi- 
cal studies have previously defined some of the functional 
characteristics of interchromatin granule clusters (for a re- 
view see Spector, 1993). Interchromatin granule clusters 
are composed of a group of 20-25 nm granules, some of 
which appear to be connected to each other giving the ap- 
pearance of beads-on-a-string. It is not clear as to what the 
exact molecular composition of a single granule is and if 
all of the granules have the same or a different molecular 
composition. A variety of splicing factors including snRNPs 
and the SR-protein family (for a review see Spector, 1993), 
as well as stable poly(A) + RNA (Huang et al., 1994) have 
been found to be enriched in interchromatin granule clus- 
ters in interphase nuclei. Since these clusters do not ac- 
tively incorporate [3H]uridine after a short pulse labeling, 
they are not likely to represent sites of active transcription 
(for a review see Fakan, 1994). ' 

Since most of the essential splicing factors including 
snRNPs and non-snRNP splicing factors have been found 
to be enriched in the interchromatin granule clusters in 
normal interphase nuclei, it is possible that the granular 
feature of the interchromatin granule clusters is due to the 
presence of a high concentration of splicing factors in 
these clusters. We interpret the observation of granular 
structures at the highly active transcription sites to be the 
result of the unusual amount of splicing factors recruited 
to those sites. This explanation will be further tested using 
a stable and inducible expression system where the expres- 
sion of an intron-containing RNA can be turned on and 
off, and the structural organization of the region can be di- 
rectly examined. Although the granular feature observed 
at the site of transcription of the transiently expressed in- 
tron-containing RNA morphologically resembles an inter- 
chromatin granule cluster in an interphase nucleus, the 
difference is that the splicing factors at these sites of trans- 
cription are actively engaged in splicing, whereas the fac- 
tors in the typical interchromatin granule clusters are most 
likely not involved in splicing activity. Our findings do not 

conflict with the previous concept that most interchroma- 
tin granule clusters are not involved in the transcription or 
splicing of nascent RNA transcripts. 

The Speckle Concept: A Model 

The relationship of the speckled distribution of splicing 
factors to the functions of transcription and pre-mRNA 
splicing has at times been controversial. Studies described 
above have extended and clarified our understanding of 
the spatial and temporal relationship between splicing fac- 
tors and transcription in the mammalian cell nucleus. We 
provide the following model of the functional organization 
of the cell nucleus. 

In a typical mammalian nucleus, splicing factors that are 
not engaged in splicing are mostly stored and/or reassem- 
bled in the larger speckles (interchromatin granule clusters). 
When transcription of intron-containing genes is activated, 
splicing factors are recruited to the sites of transcription. 
The amount of splicing factors recruited to the sites of tran- 
scription depends upon the kinetic equilibrium of the tran- 
scription level of the gene, the efficiency of RNA splicing, 
dissociation of the mRNA from the splicing complex, and 
the transport of the mRNA away from the transcription 
sites. When RNAs are expressed at low or moderate lev- 
els, the amount of splicing factors recruited to the sites of 
transcription is low and could be below the sensitivity of 
light microscopic detection. Such transcription sites are vi- 
sualized as perichromatin fibrils at the electron micro- 
scopic level which are diffusely distributed throughout the 
nucleus and are present on the surface of some of the in- 
terchromatin granule clusters; this would be the case for 
most cellular genes. However, when a gene is expressed at 
a very high level, a large number of splicing factors are re- 
cruited to the site of transcription resulting in a granular 
appearance which closely resembles, but is functionally 
different from a typical interchromatin granule cluster. 
Such is the case when one examines the sites of transcrip- 
tion of transiently expressed templates or highly expressed 
endogenous RNAs such as collagen Itxl subunit (Xing et 
al., 1995; Huang, S., and D.L. Spector, unpublished data) 
in young fibroblasts. The intron-dependent recruitment of 
splicing factors to the sites of active transcription suggests 
that the movement of splicing factors is highly regulated. 
Therefore, we propose that the organization of splicing 
factors is dynamic and reflects the transcriptional activity 
of the cells. 
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