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Abstract

When knowledge systems are deployed into a real-world ap-
plication, then the maintenance and the refinement of the
knowledge are essential tasks. Many existing automatic
knowledge refinement methods only provide limited control
and clarification capabilities during the refinement process.
Furthermore, often assumptions about the correctness of the
knowledge base and the cases are made. However, such as-
sumptions do not necessarily hold for real-world applications.
In this paper, we present a novel interactive approach for the
refinement of knowledge bases: Subgroup mining is used to
discover local patterns that describe factors potentially caus-
ing incorrect behavior of the knowledge system. The ap-
proach is supplemented by introspective subgroup analysis
techniques in order to help the user with the interpretation of
the refinement recommendations proposed by the system.

Introduction
The refinement of knowledge systems is a crucial success
factor for the implementation and maintenance of systems
deployed into real-world applications. When the knowledge
base is built manually, then typically refinements are neces-
sary throughout the initial deployment phase. Sometimes,
the developed knowledge base is still incomplete. In conse-
quence, extensions and not only modifications of the knowl-
edge have to be applied in order to improve the reliability of
the system.
In the past, many approaches for the automatic refinement
of knowledge bases have been proposed, e.g., (Ginsberg
1988; Boswell & Craw 1999; Carbonara & Sleeman 1999;
Knauf et al. 2002). In this paper, we propose a less auto-
matic but user-guided approach for carrying out refinements
of a knowledge base. For finding hot-spots in the knowl-
edge, i.e., possibly faulty areas, we use an subgroup mining
method that is well-known from machine learning research.
The user is pointed to hot spots, i.e., recommendations for
refinement given by a set of subgroup factors; these can then
be considered for the refinement selecting from four basic
refinement operators: Adapt/modify rules, extend knowl-
edge, fix case, and exclude case. As a major point we pro-
pose introspective methods to support the interpretation of
the discovered subgroups: The characteristic factors can be
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intuitively presented and ranked, and a subgroup can be ex-
emplified in terms of its typical or extreme cases. Our re-
finement approach also includes the modification or elimi-
nation of used test cases, which we found reasonable if the
test cases are taken from a real world application. Then, the
assumption, that all test cases are correct, cannot always be
made. Furthermore, we also emphasize the possibility of
adding new (previously missing) knowledge to the system,
which is important in the initial phase of development if the
modeled knowledge is incomplete.
The rest of the paper is organized as follows: First we intro-
duce subgroup mining and describe the subgroup-driven in-
teractive refinement process. Then, we introduce two novel
methods for introspective subgroup analysis. After that, we
present a case study of the presented approach, discuss re-
lated work, and conclude with a summary.

Subgroup Mining
In this section, we introduce the used knowledge represen-
tation and describe the general subgroup mining approach.

General Definitions
Let ΩA the set of all attributes with an associated domain of
values dom(a) for a ∈ ΩA. ΩD ⊆ ΩA denotes the set of all
diagnoses. VA is defined as the (universal) set of attribute
values (inputs) of the form (a = v), a ∈ ΩA, v ∈ dom(a).
For each diagnosis d ∈ ΩD we define a range dom(d): ∀d ∈
ΩD : dom(d) = {established ,not established}.
A diagnosis (output, solution) d ∈ ΩD is derived by (heuris-
tic) rules. A rule r for the diagnosis d can be considered
as a triple

(
cond(r), conf(r), d

)
, where cond(r) is the rule

condition, conf(r) is the confirmation strength. Such a rule
r = cond(r) → d, conf(r) is used to derive the diagnosis
d, where the rule condition cond(r) contains conjunctions
and/or disjunctions of (negated) attribute values (findings)
fi ∈ VA. The state of a diagnosis is gradually inferred by
adding the confirmation strengths (points) of all the rules
that have fired; if the sum is greater than a specific threshold
value, then the diagnosis is assumed to be established.
Let CB denote the case base containing all available cases.
A case c ∈ CB is defined as a tuple c = (Vc,Dc), where
Vc ⊆ VA is the set of attribute values observed in the case c.
The set Dc ⊆ ΩD is the collection of diagnoses describing
the solution of this case.
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Basic Subgroup Mining
Subgroup mining (Klösgen 2002) is a method to discover
”interesting” subgroups of cases, e.g., ”smokers with a posi-
tive family history are at a significantly higher risk for coro-
nary heart disease”. A subgroup mining task mainly relies
on the following four properties: the target variable, the sub-
group description language, the quality function, and the
search strategy. We will focus on binary target variables.
Subgroups are described by relations between independent
(explaining) variables and a dependent (target) variable. A
subgroup description sd = {e1, e2, . . . , en} is defined by
the conjunction of a set of selection expressions. These se-
lectors ei = (ai, Vi) are selections on domains of attributes,
ai ∈ ΩA, Vi ⊆ dom(ai). Ωsd denotes the set of all possible
subgroup descriptions.
A quality function estimates the interestingness of the sub-
group mainly based on a statistical test. It is used by
the search method to rank the discovered subgroups dur-
ing search. Formally, a quality function q : Ωsd × VA → R
evaluates a subgroup description sd ∈ Ωsd given a target
variable t ∈ VA. Several quality functions are proposed, for
example in (Klösgen 2002). A classic quality function is the
binomial test that is applicable for binary target variables,

qBT =
p− p0√

p0 · (1− p0)
·
√

n ·
√

N

N − n
,

where p is the relative frequency of the target variable in the
subgroup, p0 is the relative frequency of the target variable
in the total population, N is the size of the total population,
and n denotes the size of the subgroup. The quality function
takes into account both the size of the subgroup and its the
deviation from the total population.
An efficient search strategy is necessary for subgroup min-
ing, since the search space is exponential concerning all
possible selection expressions. We apply a modified beam
search method, for which a subgroup description can be se-
lected as an initial value for the beam.

Statistical Characterization of Subgroups Subgroups
can always be characterized by the factors used to describe
them, i.e., by the selectors contained in the subgroup de-
scription. However, beside these principal factors there are
certain supporting factors, c.f., (Gamberger et al. 2005):
These are attribute values supp ⊆ VA contained in the sub-
group that are identified using basic statistical analysis. The
value distributions of their corresponding (supporting) at-
tributes differ significantly comparing the true positive (tar-
get class) cases contained in the subgroup and non-target
class cases contained in the total population.
We say, that an attribute value (a = v) of a supporting at-
tribute is characteristic for the subgroup, i.e., it is a support-
ing factor, if it is positively associated with the true positive
cases contained in the subgroup compared to all the negative
cases. For testing the statistical significance of an attribute
and an attribute value we apply the standard χ2-test for in-
dependence with a 0.05 significance level (i.e., with a confi-
dence level of 95%), and the correlation- or φ-coefficient for
binary variables, respectively.

Subgroup-Driven Interactive Refinement
In this section, we describe the process for interactive
knowledge refinement, and present the subgroup method
that provides potential faulty factors, i.e., recommendations
for refinement.

The Process of Interactive Knowledge Refinement
For subgroup mining we consider a binary target variable
corresponding to a diagnosis d, that is true (established) for
incorrectly solved cases. We try to identify subgroups with
a high share of this ”error” target variable. We distinguish
different error analysis states relating to the measures false
positives FP (a diagnosis is falsely predicted), false nega-
tives FN (a diagnosis is falsely not predicted) and the total
error ERR combining both false positives and false nega-
tives. Then, the potential faulty factors consist of the prin-
cipal factors contained in the subgroup description and the
supporting factors.
The subgroup-driven interactive refinement process mainly
consists of seven steps: (1) We consider a diagnosis d ∈ ΩD,
and select an analysis state e ∈ {FP, FN,ERR}. (2) A set
of subgroups SGSe is mined, either interactively by the do-
main specialist, or automatically by the system. Then, for
each subgroup SGi ∈ SGSe a set of potential faulty fac-
tors PFF i is retrieved. (3) This set PFF i is interpreted by
the domain specialist. (4) If needed, subgroup introspection
methods are applied in order to support the interpretation of
PFF i. (5) Based on the interpretation and analysis of PFF i

guilty (faulty) elements in the knowledge base or the case
base are identified, and appropriate modification steps are
applied. Then, the solutions of each case in the case base
are recomputed. (6) The (changed) state of the system is
assessed: The analysis measure e is checked for improve-
ments. (7) If necessary, the process is iterated.
Refinement operators can either modify the knowledge base
or the used case base. The knowledge base is usually
adapted in order to fit the available correct cases. The case
base is adapted, if particular cases are either wrong or they
denote an extraordinary, exceptional state, which should not
be modeled by the knowledge base. If the expert decides that
the subgroup descriptions are reasonable (valid), then the
knowledge base needs to be corrected. Otherwise, if they are
not meaningful, then this can imply that the contained cases
need corrections. We propose the following refinements:
• Adapt/modify rules: generalize or specialize conditions

and/or rule actions. This operator is often appropriate if
only one selector is contained in valid subgroups.

• Extend knowledge: add missing relations to the knowl-
edge base. This operator is often applicable for at least
two factors with a meaningful dependency relation.

• Fix case: correct the solution of a single case, or correct
the findings of a case, if the domain specialist determines
that the case has been labeled with the wrong solution.

• Exclude case: exclude a case from the analysis. If the set-
ting of the case cannot be explained by factors accounted
for by the knowledge base, e.g., by external decisions,
then the case should be removed.

Examples of the application of the refinement operators are
given in the case study below.
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Figure 1: Visualizing Subgroups and Interesting Factors Figure 2: Supporting Factors

Visualizing Subgroups and Interesting Factors
An interactive refinement approach typically is not reason-
able, if the user is not supported by visualization techniques,
since the refinement space is usually too large. Therefore,
we provide visualization methods for interactively browsing
and testing subgroup hypotheses.
An exemplary visualization from the medical domain is
shown in Figure 1, where the distributions of several fac-
tors are given. The subgroup toothlax = minor (Lockerungs-
grad = Grad I) (Annotation 1) is shown with 39 incorrectly
solved cases and 152 correctly solved cases; the general
population contains 84 incorrectly and 694 correctly solved
cases (Annotation 3). The rows in the table below the sub-
group show the value distributions of the other attributes.
Labels with a large ’dark-gray’ sub-label, or a vertical bar
that is close to the top, indicate ”interesting” attribute val-
ues. The size of the ’dark-gray’ sublabel relates to the share
of the target variable in the subgroup. In the example vi-
sualization the cell attachmentloss = strong (Attachmentloss
= gravierend, 31-50%) is the best one considering its size,
and also the target share (Annotation 2). In this visualiza-
tion the user is able to inspect different subgroups directly
by one click on the corresponding cells. All elements, i.e.,
subgroups, rules, and cases, can be browsed directly by one
click, and changes can be traced immediately. The changes
are also intuitively reflected by the size of the bars (Anno-
tation 3). Therefore, the user-guided integrated method pro-
vides direct interaction and instant feedback to the user.
Figure 2 shows an exemplary list of the supporting fac-
tors for the subgroup toothlax = minor (Lockerungs-
grad = Grad I) AND attachmentloss = strong (Attach-
mentloss = gravierend, 31-50%) AND clinical crown
= 3-5mm/Caries/Defect (Klinische Krone=3-5mm, kleine
Füllung/Karies/Defekt). The supporting factors include the
descriptor endodontic state = possible (Vitalität, Perkus-
sion, Endo=Vit. -, Perk +, Endo möglich) with the weak
score (+) and the descriptor root caries=minor or on surface
(Wurzelkaries = klein bzw. oberflächig) also with a weak
score (+). These two factors both occur in 2 of the 6 pos-
itive subgroup cases. The scores represent the strength of
the supporting factors that provide an intuitive overview of
other significant factors in the subgroup. A method to derive
these confirmation strengths will be introduced below.

Subgroup Introspection
As outlined above, the results of the subgroup mining step
are a collection of subgroups which are used to derive a set
of potential faulty factors PFF (principal and supporting
factors). These are then proposed for refinement. For exam-
ple, consider the subgroup ”smokers with a positive family
history are at a significantly higher risk for coronary heart
disease”: the principal factors consist of smoker=true and
family history=positive, and the potential supporting factors
could be hypertension=true and overweight=true. The in-
terpretation of PFF depends on the judgment of the user,
especially on his/her existing background knowledge.
The principal factors can be regarded as strong factors that
occur in all cases of the subgroup, while the supporting fac-
tors can be regarded as weak factors that occur only in some
cases. As discussed by (Gamberger et al. 2005) presenting
the supporting factors can be very important since they can
provide additional evidence similar to naive Bayes.
In the following, we describe two methods for subgroup in-
trospection. The first approach obtains the factors that sta-
tistically characterize a subgroup and assesses the individual
strength of the characteristic factors in the sub-population
defined by the incorrectly solved, i.e., the target class cases
of the subgroup. The second method aims to exemplify a
subgroup using the subgroup extension, i.e., the set of cases
covered by the subgroup. Then, typical or extreme cases of
the subgroup can be presented to the user in order to provide
distinctive examples of the subgroup objects.

Introspecting Scored Subgroup Factors
In the following we will discuss how to characterize the sub-
group by its principal factors and the supporting factors; we
propose a technique for presenting the supporting factors in
an intuitive way using symbolic diagnostic scores. The char-
acteristic subgroup factors are presented with an assigned
strength corresponding to the evidence they provide for the
target concept.

Scoring Subgroup Factors A score is simple to interpret
and one of the standard knowledge formalization formats,
e.g., in the medical domain diagnostic relations are often
modeled as diagnostic scores (Puppe 1998). In general,
scores consist of a set of factors with assigned symbolic cat-
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egories. This representation is very suitable to be used for
characterizing subgroups by the set of supporting factors:
the symbolic categories of the factors contained in the score
denote the relative importance, or the strength of the individ-
ual scoring relations, i.e., the relation between the factor and
the target variable. For each factor (selector) e we construct
a scoring selector e′ = (e, sc) assigning a confirmation cat-
egory contained in the set sc ∈ {sc1, sc2, sc3} that specifies
confirming symbolic categories in ascending order. So, the
symbolic category sc expresses the strength or the relative
importance of the observation of a given selector e.
For rating the subgroup factors contained in the set PFF
concerning their confirmation strengths, we compare two
populations: The true positive contained in the subgroup
and the false positives of the total population. In this way
we identify how significantly a selector can discriminate be-
tween the cases containing the target concept in the sub-
group, and all remaining non-target class cases. It is easy to
see that the principal factors will always obtain the strongest
confirmation category, while the weaker categories will be
assigned to the supporting factors.
To compute scores we can utilize a method presented in
(Atzmueller, Baumeister, & Puppe 2006). Adapting it to
our refinement task, we construct a 2 × 2 contingency table
comparing the distribution of the supporting factor of the
true positives in the subgroup, i.e., the target class cases,
vs. all negative cases. If the association is significant,
then we compute a quasi-probabilistic score according to the
strength of the association utilizing the φ-coefficient. This
score is then mapped to a symbolic confirmation category
sc ∈ {sc1, sc2, sc3} using a suitable conversion table.

Discussion By characterizing a given subgroup by its prin-
cipal and supporting factors we obtain more evidence for the
target variable within the subgroup. If the supporting factors
are ranked and are assigned a score, then the user can get a
comprehensive and intuitive overview of the statistically sig-
nificant factors: The principal factors are the most important
factors describing the subgroup while the supporting factors
are used to statistically characterize the sub-population de-
fined by the positive cases of the subgroup.
For the refinement task, the ranked factors can provide direct
feedback for applying a refinement operator. If the factor has
a high confirmation category, and the false-positives of a di-
agnosis are considered, then the factor is a candidate for the
”adapt/modify rule” operator, i.e., reducing its strength. Fur-
thermore, principal factors combined with strong support-
ing factors can be good candidates for very specific complex
rules, by applying the ”extend knowledge” operator.

Subgroup Introspection by Exemplification

To support the user in the interpretation of the potential
faulty factors PFF , we propose to utilize the implicit expe-
riences contained in the cases of the case base as explaining
examples. Then, typical and extreme cases with a high cov-
erage of the set of describing factors PFF can be retrieved
for presentation to the user.

Retrieving Exemplary Cases A naive solution retrieves
all cases contained in the subgroup that are also containing
the target concept. However, this approach suffers from two
shortcomings: First, the set of cases can be quite large for a
comprehensive overview, and second a subset of PFF is not
taken into account very precisely, i.e., the supporting factors.
Therefore, we aim to retrieve a set of cases that have a high
coverage with the set PFF . Then, we have two options to
characterize the elements of PFF : First we can retrieve typi-
cal cases that are highly similar to PFF while the individual
cases can also be very similar to each other. These cases can
be used to exemplify the most common factors contained in
PFF . Second, we can retrieve extreme cases, i.e., cases that
are very similar to PFF but not to each other. This set of
diverse cases is discriminative but still similar to PFF and
can be used to get a comprehensive description of extreme
factor combinations concerning PFF .
For the retrieval step we use techniques known from case-
based reasoning (Aamodt & Plaza 1994). Here, given a
query case q the general goal is to retrieve a set of most sim-
ilar cases {ci}. The attribute values contained in the query
case are commonly called the problem description. We con-
struct a virtual query case q and define its problem descrip-
tion as the set of potential faulty factors PFF i obtained from
a given subgroup SGi. Optionally, the user can select a sub-
set of factors contained in PFF i, e.g., focusing on the most
interesting factors, or can include the target variable such
that specific queries can be formulated. Thus, the factors of
the query case can be interactively adapted to fit the analysis
requirements of the user.
For assessing the similarity of the query case q and a re-
trieved case c, we can use e.g., the well-known matching
features similarity function. For case comparison the set
of attributes is restricted to the attributes contained in the
query (w.r.t. PFF i), i.e., to the attributes Ω′

A = {a | ∃v ∈
PFF i, v ∈ dom(a)}; πa(c) returns the value of attribute a:

sim(q, c) =
|{a ∈ Ω′

A : πa(q) = πa(c)}|
Ω′

A

(1)

The diversity of a set of retrieved cases RC = {ci}k of
size k is measured according to the measure diversity(RC),
defined as follows:

diversity(RC) =

k−1∑
i=1

k∑
j=i+1

(
1− sim(ci, cj)

)
k · (k − 1)/2

, (2)

where the similarity of two cases is computed with respect
to the attributes in the constructed query case q.
To retrieve the set of most extreme cases we apply tech-
niques that obtain a set of most similar but diverse cases R
w.r.t the query case. There are several methods to retrieve
a set of diverse cases, c.f., (McSherry 2002). We apply the
Bounded Greedy (BG) algorithm: BG starts with a retrieval
set initially containing the most similar case to the query
case. In each iteration of the algorithm the case of the set of
2k most similar cases is selected that maximizes the product
of its similarity to the query case and its relative diversity
w.r.t. the cases that have been selected for the retrieval set
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so far. The relative diversity relDiversity(c,RC) of a case
c w.r.t. the retrieval set RC = {ci}m of size m is defined as

relDiversity(c,RC) =

m∑
i=1

1− sim(c, ci)

m
(3)

BG stops if the retrieval set reaches its pre-specified size of
k. Then the set of diverse cases can be presented to the user.
To obtain a smaller number of diverse (extreme) cases, we
can optionally select the smallest subset R′ ⊆ R where the
coverage between the problem description of a query case q
and the union of the problem descriptions contained in R′ is
maximized. The retrieved set of typical (or extreme) cases
is then presented to the user as a set of explaining examples
for the given set of potential faulty factors characterizing a
specific subgroup.

Discussion The exemplification approach for subgroup in-
trospection described above provides the option for further
exploratory analysis of a specific subgroup. By presenting
typical or extreme cases, the user obtains an intuitive im-
pression about the objects (cases) contained in the subgroup.
Then, the cases can be analyzed in-depth, e.g., with regard
to incorrect findings or an incorrectly assigned solution if a
subgroup is not meaningful to the domain specialist.
Besides inspecting discovered subgroups the exemplifica-
tion technique can also be used for summarizing certain
cases, i.e., if a subgroup is constructed with the special goal
of obtaining an overview of the contained cases. The pre-
sented approach is an alternative to the primary description
of a subgroup by its principal factors. For example, by in-
specting the set of diverse cases the domain specialist can
obtain a comprehensive overview of the general problem set-
ting that is manifested within a certain subgroup containing
a significant share of incorrectly solved cases.

Case Study
We performed a case study of the proposed interactive re-
finement method, and already presented first initial results
in (Atzmueller et al. 2005), without applying the introspec-
tion methods. Then, based upon the obtained experiences
and by utilizing the methods for subgroup introspection we
were able to further improve the knowledge system.
The case study was implemented in the medical domain with
a consultation and documentation system for dental findings
regarding any kind of prosthetic appliance, which is cur-
rently being extended. The systems aims to decide about
a diagnostic plan using the clinical findings: For decision
support the system derives two distinct diagnosis EX and IN
that either indicate the teeth that could be conserved (IN)
or should be extracted (EX). The cases always contain the
standard anamnestic findings and additional findings from
x-ray examinations, e.g., abnormal x-ray findings (apical,
periradicular), grade of tooth lax, endodontic state (root fill-
ing, pulp vitality), root quantity, root length, crown length,
level of attachment loss, root caries, tooth angulation and
elongation/extrusion.

The used case base contained 778 cases corresponding to
778 examined teeth. We investigated the diagnosis referring
to tooth extraction/non extraction. Initially, the case base
contained 108 falsely solved cases (as evaluated by a domain
specialist). In the first phase of the case study described in
(Atzmueller et al. 2005) we managed to reduce the number
of incorrectly solved cases from 108 to 54 by 50%.
The domain specialist assessed several subgroups mined by
the system as significant, which were then used for knowl-
edge base refinement. We modified and added several rules,
some examples are given in Table 1. Subgroup description
#1 is an example for a simple modification. For abnormal
x-ray = only apical we modified the score, such that the
rule only contributes 5 points. For the following two sub-
group descriptions the corresponding rules exemplify two
general mechanisms: In rule #2 the condition root length
= longer than crown length counts as negative for extrac-
tion, and relativizes the factor tooth lax = medium which
is positive for extraction. The relativization can also work
the other way round, i.e., when a positive factor relativizes
a negative one. Then, for extraction, we would have to add
points, e.g., for tooth lax = medium and attachmentloss =
minor. For subgroup description #3 the selectors tooth lax =
minor and attachmentloss = strong are both positive for ex-
traction, but since they are assessed independently in the rule
base they should not be over-emphasized by being counted
twice. Therefore, the score points of the corresponding rules
were decreased.
During the case study especially the interactive part of the
method was very well accepted by the domain specialist,
who was supported by the presented visualization methods.
Furthermore, the domain specialist considered it very help-
ful and important to stay in full control of the refinements
during the steps of the refinement process.
The experiences obtained throughout the first part of the
case study motivated the development of further methods for
subgroup introspection, since the remaining 54 incorrectly
solved cases contained very small subgroups of erroneous
cases. Thus, the ”hot spots” needed to be analyzed in detail,
either statistically or by viewing the detailed cases. Both the
presentation of characterizing subgroup factors and exem-
plifying cases were key features for the domain specialist,
who performed the analysis. Furthermore, the exemplifica-
tion method allowed for a comprehensive overview on the
sub-population defined by a small set of exemplary cases
which was very helpful throughout the analysis.
Examples for further rules are given by the subgroup de-
scriptions #4 and #5. These were observed in small
sub-populations, and therefore the introspection techniques
proved highly useful in determining and validating such re-
lations. Rule #4 is similar to rule #1 while it was observed
in a significantly smaller number of cases. The highly spe-
cific rule #5 is an exception rule similar to rule #2: Factor
tooth lax = none observed in that situation is a strong fac-
tor negative for extraction. So far, we were able to improve
the knowledge base by reducing the number of incorrectly
solved cases by more than 50% from a total of 108 to 42.
Thus, we were able to improve the precision of the knowl-
edge base from 86% to 95%.
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No. Subgroup Description Diagnosis Points
1 abnormal x-ray = only apical EX 10→ 5
2 tooth lax = medium ∧ root length = longer than crown length EX -20
3 tooth lax = minor ∧ attachmentloss = strong EX -20
4 root caries = minor or on surface EX 10→ 5
5 tooth lax = none ∧ attachmentloss = strong ∧ endodontic state = possible EX -10

Table 1: Examples of discovered subgroups and according refinements

Related Work
In the past, various approaches for (automatic) knowledge
refinement were proposed, e.g. (Ginsberg 1988; Knauf et
al. 2002; Carbonara & Sleeman 1999). However, all auto-
matic methods depend on the tweak assumption (Carbonara
& Sleeman 1999), which implies that the knowledge base is
almost valid and only small improvements need to be per-
formed. In the case study described above the validity of
the knowledge base was quite poor (about 86% accuracy)
and therefore no tweak assumption could be made. In con-
trast, we expected that important rules were missing and that
we have to acquire additional knowledge during the pro-
cess. For this reason, we decided to choose a mixed refine-
ment/elicitation process, which emphasizes the interactive
analysis and modification of the implemented rules based on
found subgroup patterns. Similarly, (Carbonara & Sleeman
1999) use an inductive approach for generating new rules us-
ing the available cases. (Diamantidis & Giakoumakis 1999)
describe a framework for refinement by inductively creat-
ing a new knowledge base using incorrectly solved cases
annotated with justifying explicit explanations by experts.
(Kelbassa & Knauf 2005) also describe an approach supple-
menting formal methods with domain knowledge. However,
in our application we cannot expect that all cases contain the
correct solution, while automatic approaches mainly do as-
sume a correct case base. Therefore a thorough analysis of
the cases within the process was also necessary. Then, the
user is supported by the interactive approach and the intro-
spection strategies in order to obtain a comprehensive and
intuitive view of the subgroups and their descriptive factors.

Summary and Future Work
In this paper we presented an interactive approach for the
refinement of rule-based knowledge. In contrast to clas-
sical (automatic) approaches the user has to decide about
the actual refinement operators to be carried out, and is
strongly supported by the identification of hot spots that can
be analyzed in detail using introspective subgroup analy-
sis methods. In the future, we plan to investigate further
(automatic) refinement techniques to support the user, e.g.,
a semi-automatic refinement method that is adapted to the
used knowledge representation (rules with point scores).
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