
IntruMine: Mining Intruders in Untrustworthy Data of Cyber-physical

Systems

Lu-An Tang1, Quanquan Gu1, Xiao Yu1, Jiawei Han1

Thomas La Porta2, Alice Leung3, Tarek Abdelzaher 1, Lance Kaplan 4

1Department of Computer Science, University of Illinois at Urbana-Champaign;
2Department of Computer Science, Pennsylvania State University;

3BBN Technology, 4U.S. Army Research Laboratory
{tang18,qgu3,xiaoyu1,hanj,zaher}@illinois.edu

tlp@cse.psu.edu, aleung@bbn.com, lance.m.kaplan.civ@mail.mil

Abstract

A Cyber-Physical System (CPS) integrates physical
(i.e., sensor) devices with cyber (i.e., informational)
components to form a situation-aware system that re-
sponds intelligently to dynamic changes in real-world. It
has wide application to scenarios of traffic control, en-
vironment monitoring and battlefield surveillance. This
study investigates the specific problem of intruder min-
ing in CPS: With a large number of sensors deployed
in a designated area, the task is real time detection of
intruders who enter the area, based on untrustworthy
data. We propose a method called IntruMine to detect
and verify the intruders. IntruMine constructs monitor-
ing graphs to model the relationships between sensors
and possible intruders, and computes the position and
energy of each intruder with the link information from
these monitoring graphs. Finally, a confidence rating
is calculated for each potential detection, reducing false
positives in the results. IntruMine is a generalized ap-
proach. Two classical methods of intruder detection can
be seen as special cases of IntruMine under certain con-
ditions. We conduct extensive experiments to evaluate
the performance of IntruMine on both synthetic and
real datasets and the experimental results show that
IntruMine has better effectiveness and efficiency than
existing methods.

1 Introduction

A Cyber-Physical System (CPS) is an integration of
sensor networks with informational devices. Examples
of CPS include many promising applications, such as
traffic monitoring [10, 19], environment control [17] and
national border patrol [4]. In particular, CPS has
important applications on the battlefield to help protect
troops and civilians [18]. Such a system employs a

large number of low cost, densely deployed sensors to
watch over designated areas and automatically detect
possible intruders [4]. Figure 1 shows the framework of
a battlefield CPS. The sentry nodes are the deployed
sensors. They constantly collect sound, magnetic or
temperature data from the environment. Land-based
gateways and aircraft bridges transmit sensor data to a
command center. The system in the command center
analyzes the collected data to produce information
about intruders. Such technology can enable military
forces to see through the “fog of war” and improve
decision making.

The key task in such a scenario is to mine the real
intruder information from a large set of untrustworthy
data. There are four major challenges:
• Untrustworthy data: The collected data are highly

unreliable due to hardware and communication lim-
its. Many deployment experiences have shown that
untrustworthy data is the most serious problem that
impacts CPS performance. Buonadonna et al. point
out that faulty data can occur in various unexpected
ways and less than 69% of their data could be used
for meaningful interpretation [17]. Szewczyk et al.
also find that about 30% of data are faulty in their
deployment [15]. It is difficult to filter out untrust-
worthy data records solely based on the data values,
since most faulty records have values similar to real
ones.

• Complex Requirements: Many intruder detection
algorithms rely on prior knowledge of the number
of intruders, movement speed, or energy (i.e., the
emitted signal strength) [14, 5, 2, 11]. However,
the users often cannot provide such attributes of
intruders in real applications. In contrast, they would
like to obtain fine-grained situational awareness of

Sentry Node

Overlapping seismic or

magnetic sensors, detect

sound and movement signals

Aircraft bridge

Transmit sensor data to

command center over long

distances.

Land based Gateway

Connect to sentry nodes and

collect sensor data

Command Center

Analyze the data and make

decision

Intruder

Figure 1: The Framework of a Battlefield CPS

the battlefield and require the system to generate
this information automatically. For example, the
threat posed by a vehicle is much higher than the
threat posed by a pedestrian. Since the vehicle and
pedestrian have different energy (i.e., emitted signal
strength), the users would like to know the intruder’s
energy to judge the threat level.

• Unsupervised Learning: Several intrusion detection
methods build up the models or classifiers based on
a training dataset [13, 12]. However, such training
datasets are hard to get in realistic deployments. It is
costly and error-prone to manually label a large sensor
dataset. In addition, the data are based on a specific
deployment plan, hence it is usually difficult to apply
a training set from one deployment to another. To
increase the system feasibility, the intruder mining
algorithm should use unsupervised learning that does
not require a large training dataset.

• Large Scale: A typical CPS includes hundreds, even
thousands of sensors [1]. Each sensor generates a
reading every few minutes, and the readings form a
huge data stream. Furthermore, many applications
require immediate action against intruders. The
mining must be efficient to process the huge data
stream and find intruders in real time.

In this paper, we propose a novel framework, Intru-
Mine, to find real intruders from untrustworthy data.
IntruMine is unsupervised yet effective. It iteratively
models the relationship between sensors and intruders
via monitoring graphs, and estimates the attribute val-
ues of the intruders based on the link information of
such graphs. The confidence of intruder detection is
computed based on the difference between the real sen-
sor readings and the estimated ones. This measurement
is used to verify the detected intruders and filter out

false positives. The contributions of this paper can be
summarized as follows.
• Proposing a monitoring graph model and conducting

the intruder mining using such a graph.
• Introducing the concepts of intruder confidence to

verify the detected intruders.
• Showing that IntruMine is well connected to two

classical models, which are proved to be special cases
of IntruMine under certain conditions.

• Carrying out extensive experiments to evaluate the
effectiveness and efficiency of IntruMine on both syn-
thetic and real datasets. Our experiments show that
IntruMine yields higher precision and time efficiency
than existing methods.

Since the battlefield surveillance is one of the most
important application of CPS, we motivate the prob-
lem by examples of detecting intruders on battlefield.
However, the proposed framework is flexible to extend
to other scenarios, such as environmental monitoring,
traffic control and national border patrol.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the preliminary knowledge and prob-
lem formulation; Section 3 proposes the intruder mining
techniques; Section 4 discusses the connections between
IntruMine and other models, as well as the algorithm’s
time complexity analysis. Section 5 conducts the per-
formance evaluations; Section 6 briefly comments on re-
lated works and Section 7 concludes the paper.

2 Problem Formulation

The CPS employs a large number of sensors to monitor
areas. Such sensors are expected to be of low cost, small
size and low transmission load. As a result, inexpensive
passive sensors are often the best choice.

Though having different mechanisms and measure-
ments, most passive sensors report the detected sig-
nals as a numeric value. For example, an acoustic
sensor measures the air pressure of sound wave and a
magnetic sensor generates the readings about magnetic
force. Such measurements are influenced by two factors:
(1) the intruder’s energy (i.e., the strength of emitted
signals from the intruder); (2) the distance between the
sensor and the intruder. Usually we can model the re-
lationship between intruder o and sensor s as Eq. (2.1).

(2.1) f(o, s) =
e

α · d(o, s)β + γ

where e is o’s energy and d(o, s) is the Euclidean
distance between them. The parameters α, β and γ
are determined by the sensor types and mechanisms.

If there are multiple intruders in the monitoring
area, we assume that their signals aggregate at each
sensor. Let O be the intruder set, sensor s’s reading is
estimated as Eq. (2.2).

(2.2) r̂(s) =
∑

o∈O

f(o, s) =
∑

o∈O

e

α · d(o, s)β + γ

All real world signals are influenced by noise, hence
the observed reading of s is

r(s) = r̂(s) + ε =
∑

o∈O

f(o, s) + ε

=
∑

o∈O

e

α · d(o, s)β + γ
+ ε(2.3)

Without loss of generality, we assume that the
background noise is zero mean Gaussian noise, i.e.,
ε ∼ N(0, σ2).

Note that the sensor readings are collected and
transmitted by various gateways, such as the aircraft
bridges in Figure 1. There are many state-of-the-
art works on gateway design, sensor deployment and
message transmission [9, 3]. Since the main theme of
this study is on data mining, we assume that the data
can be collected by CPS (i.e., the sensors have been
already deployed and the command center can receive
timeslice snapshots of the data in real time). Now the
task boils down to find out the intruders’ information
from such data.

Problem Definition: Let S be the set of de-
ployed sensors in a CPS, S ={s1(xs1, ys1), s2(xs2, ys2),
s3(xs3, ys3), . . ., sn(xsn, ysn)}, and R be the sen-
sors’ readings in a snapshot, R ={r(s1), r(s2), . . .,
r(sn)}. The task of IntruMine is to estimate the

Notation Explanation Notation Explanation

S the sensor set s, si, sj the sensors

O the intruder set o, oi, oj the intruders

G the monitoring graph set g the monitoring graphs

R the reading set r(s) the reading of s

, , the sensing parameters (o) the confidence of o

r the reading threshold o the confidence threshold

x, y the 2D coordinates ei the energy of oi

 the attribute vector the reading difference

 the background noise the standard deviation

Figure 2: List of Notations

intruders O ={o1(xo1, yo1, e1), o2(xo2, yo2, e2), . . .,
ok(xok, yok, ek)} based on S and R.

We will propose intruder mining techniques in the
next section. Figure 2 lists the notations used through-
out this paper.

3 Intruder Mining

3.1 Monitoring Graph
Although the CPS has a large set of deployed sensors,

not all of them are relevant to intruder mining. Typ-
ically, only a few of the sensors have detected signals
from intruders. Thus the first step of IntruMine is to
select the set of relevant sensors and make a rough ini-
tialization for the intruders. Let us examine an example
in the system.

Example 1. Figure 3 shows a snapshot in CPS. The
triangle nodes represent intruders and round ones are
the deployed sensors. The sensors with relatively high
readings are tagged with red color (i.e., solid circle) and
those with normal readings are in blue color (i.e., shaded
circle). Intruder o1 is detected by sensors s1, s2, s3,
s5 and s6. s1’s reading is the highest since it is the
closest to the intruder. s4 should also detect o1 but it
reports a false negative reading. Intruder o2 influences
the readings of s7, s9, s10 and s11. However, s12, s13,
s14 and s15 are damaged by the harsh environment, they
send out false positive readings.

Example 1 shows that the sensors near the intruders
usually have higher readings than sensors that are far
away: s1 and s7 both have higher readings than their
neighbors, i.e., their readings are local maxima. Such
sensors are denoted as the peak reading sensors. They
can be easily obtained by a single scan of the sensors’
readings.

For each peak reading sensor s, IntruMine initial-

s2=80
s3=61

s8=8

s1=91

s4=7

s5=34

s7=59

s6=55

s15=43

s13=62

s14=23

s10=42
s11=29

s12=62

s16=9

s17=6

s9=43

o1 o2

intruder

sensor with

high reading

sensor with

low reading

Figure 3: Example: A Snapshot in CPS

izes an intruder o at s’s position and sets the energy of o
as the peak reading. In some rare cases, the neighboring
sensors may have the same readings, such as sensors s12

and s13 in Figure 3. Then the system randomly picks
one of them to initialize the intruder. It is worth noting
that other strategies can also be used to initialize the in-
truders, such as sampling method [16], random selection
[14], and so on. However, the peak sensor-based method
is the most effective way according to our experiments.

With the initialized intruders, the system can select
relevant sensors to construct the relationship graph.

Definition 1. Let s be a sensor, o be an intruder and
δr be the reading threshold. If f(o, s) > δr, then s and
o are in a monitoring-and-monitored relationship.

Intuitively, if s and o are in such a relationship,
then s’s reading is significantly influenced by o, i.e., s
captures a strong signal from o. Submitting Eq. (1)
into the condition of Definition 1, we get the following
corollary.

Corollary 1. Let o be an intruder, e be the intruder’s
energy and S be the sensor set, then the monitoring
sensor set of o is

So = {s|s ∈ S, d(o, s) < (
e/δr − γ

α
)

1
β }

Based on corollary 1, the system selects the mon-
itoring sensors for each initialized intruder. If we use
a link to represent the monitoring-and-monitored rela-
tionship, we can retrieve a set of monitoring graphs.

Figure 4 lists the detailed steps to construct the
monitoring graphs. The algorithm first retrieves the
peak sensor set Sp from the data (Lines 1 – 4). The
intruders are then initialized by the information of peak
sensor’s position and reading (Lines 5 – 9). Finally,
the system computes the monitoring sensors for each
intruder and constructs monitoring graphs based on
their relationships (Lines 10 – 15).
Example 2. Figure 5 shows the monitoring graphs
retrieved from Example 1. Four intruders are initialized
and their monitoring sensors are retrieved to construct

Algorithm 1. Monitoring Graph Construction

Input: sensor set S, reading set R at a snapshot,

reading threshold r.
Output: The monitoring graph set G.

1. initialize peak sensor set Sp;

2. for each sensor s of S

3. if r(s) is larger than the readings of s
neighbors

4. add s to Sp;

5. initialize intruder set O;
6. for each peak sensor sp in Sp;

7. initialize intruder o(xo, yo, e);

8. xo = xsp, yo = ysp, e = r(sp);

9. add o to O;

10. for each intruder o of O
11. retrieving the monitoring sensor set So;

 //Corollary 1
12. initialize monitoring graph g;

13. for monitoring sensor si of So

14. add link l(o, si) to g;
15. add g to G;

16. return G;

Figure 4: Algorithm: Constructing the Monitoring
Graphs

the graph. There are more than 30 sensors deployed in
the field, but the graphs filter out most of them and only
11 sensors are considered relevant in the constructed
graphs.

The monitoring graph is a bipartite graph. The
graph size is determined by the reading threshold δr. If
δr is high, few sensors are selected and the graphs are
tight. Otherwise, more monitoring sensors are included
in the graph. Some graphs may even connect with each
other. The monitoring graphs have two advantages: (1)
They help select out a small set of relevant sensors that
receive significant signals from the intruders; and (2)
the graphs partition the reading set and separate most
faulty readings from the real intruders. In Example
2, the real intruders o1 and o2 are in graphs g1 and
g2, and most faulty readings are in g3 and g4. Hence

s2=80
s3=61

s8=8

s1=91

s4=7
s5=34

s7=59

s6=55

s15=43

s13=62

s14=23

s10=42
s11=29

s12=62

s16=9

s17=6

s9=43

o1
o2

o4

o3

o1 o2 o4o3

s1

s2

s4

s7

s10

s15

s16

s17

s12

s13

s14

g1 g2 g3 g4

e1=91 e2=59 e3=43 e4=62

intruder

sensor with

high reading

sensor with

low reading

Figure 5: Example: The Monitoring Graphs

the influence of faulty readings on real intruders is
significantly reduced.

3.2 Estimation of Attributes of Intruders
The monitoring graphs are constructed based on the

initialization of the intruders. In other words, they
are derived from the peak reading sensors. Hence the
graphs may not be accurate. In Figure 5, g1 misses
sensors s3, s5 and s6, g2 should also include s9 and
s11. To overcome this problem, we propose the method
to adjust the attributes of intruders and refine the
monitoring graphs iteratively.

In a monitoring graph g, the reading of each sensor,
r(s), is already known. With the information of intrud-
ers, we can further calculate the estimated reading of s
as:

(3.4) r̂(s) =
∑
o∈g

f(o, s)

Then the probability of observing the sensor’s read-
ing as r(s) is

p(s) =
1√

2πσ2
e−

(r(s)−r̂(s))2

2σ2(3.5)

The joint probability of observing the readings
within monitoring graph g is

p(S) =
∏
s∈g

1√
2πσ2

e−
(r(s)−r̂(s))2

2σ2

= (
1√

2πσ2
)|g|e−

∑
s∈g(r(s)−r̂(s))2

2σ2(3.6)

Hence the log-likelihood of observing the readings

of sensors within monitoring graph g is

log(p(S)) ∝

−|g| log(σ2)−
∑

s∈g(r(s)− r̂(s))2

σ2
(3.7)

Suppose there are k intruders in the monitor-
ing graph g, the intruder’s attribute vector θ =
{(xo1, yo1, e1), (xo2, yo2, e2), . . . , (xok, yok, ek)}. Based
on the maximum likelihood criterion, the estimation of
θ is equivalent to

arg max
θ
−

∑
s∈g

(r(s)− r̂(s))2

= arg min
θ

∑
s∈g

(r(s)− r̂(s))2(3.8)

The difference between the estimated reading r̂(s)
and the real reading r(s) represents the error ε of in-
truder information. In the best case, the sensor’s read-
ings just fit intruder’s information and the difference is
minimized.

Let ∆g =
∑

s∈g(r(s)−r̂(s))2. We can use a gradient
descent algorithm to compute the attribute vector θ
iteratively. At the first iteration, θ is initialized with
the information of peak reading sensors. The value of
the n-th iteration can be calculated from the gradient
of (n− 1)-th iteration as follows.

θn
i = θn−1

i − 1√
n

∂∆n−1
g

∂θn−1
i

(3.9)

Let Soi be the monitoring sensor set of intruder oi,
the gradient of ∆g with respect to xoi, yoi and ei are

Algorithm 2.

Input: The initialized monitoring graph set G.

Output: The updated graph set G.

1. for each graph g of G
2. retrieve intruder set O = {o1, o2 ok} from g;

3.
0
={(xo1, yo1, e1), (xo2, yo2, e2 xok, yok, ek)};

4. repeat
5. calculate the reading difference g;

6. calculate , , ;

7. compute
n
;

8. for each intruder oi in O

9. update xoi, yoi and ei according to
n
;

10. retrieve new monitoring sensor set Soi';
11. update graph g;

12. until stable;
13. return G;

Figure 6: Algorithm: Estimating the Intruder’s At-
tributes

computed as shown in Eqs. (3.10) to (3.12).

∂∆g

∂xoi
=

∑

sj∈Soi

4α(r(sj)− r̂(sj)) · ei · (xsj − xoi)

(αd(oi, sj)
β + γ)

2(3.10)

∂∆g

∂yoi
=

∑

sj∈Soi

4α(r(sj)− r̂(sj)) · ei · (ysj − yoi)

(αd(oi, sj)
β + γ)

2(3.11)

∂∆g

∂ei
=

∑

sj∈Soi

−2(r(sj)− r̂(sj))

αd(sj , oi)
β + γ

(3.12)

Based on theoretical analysis, we design the algo-
rithm to iteratively estimate intruder’s attributes as
shown in Figure 6. The algorithm first retrieves an in-
truder set and initializes the attribute vector θ based
on original monitoring graphs (Lines 1 – 3). At each
iteration, the system computes the reading differences
and gradients to update θ (Lines 5 – 7). Meanwhile
the algorithm regenerates new monitoring sensor set S′oi

and updates the graph g (Lines 8 – 11). After that, a
new round of estimation is carried out on the updated
graph. This process repeats until both the monitoring
graph and the estimation are stable (Line 12).

Example 3. Figure 7 shows the running process
of Algorithm 2. In the beginning, the intruders o1,
o2, o3 and o4 are initialized with the information

of peak reading sensors (i.e., hollow triangles). The
algorithm gradually adjusts the intruder’s positions and
energies during the process. New monitoring sensors are
retrieved according to the updated intruders (i.e., solid
triangles). In the updated graph g1, the sensors s3, s5

and s6 are linked with intruder o1. And the sensors s9

and s11 are also included in g2.

3.3 Verification of Trustable Sensors and In-
truders
The estimation algorithm adjusts the intruder’s at-

tribute values and updates the monitoring graphs. How-
ever, there are still two problems influencing the mining
accuracy: (1) some monitoring graphs are created due
to faulty readings and may not contain any real intrud-
ers (e.g., g3 and g4 in Figure 5). Hence the false positive
intruders will be generated by such graphs. (2) Some
sensors in the monitoring graph of real intruders are
unreliable, such as s4 in g1. To solve this problem, the
system needs to verify the estimated results.

From Eq. (3.7), the derivative of likelihood
log(p(S)) with respect to σ2 is

∂ log(p(S))
∂σ2

=

−|g|
σ2

−
∑

s∈g(r(s)− r̂(s))2

(σ2)2
(3.13)

Setting the derivative to zero, we obtain

σ2 =

∑
s∈g(r(s)− r̂(s))2

|g|(3.14)

Based on the estimated σ2, we can verify the reli-
ability of the sensor’s reading. A classic measurement
in statistics is the 3-standard deviation: If the devia-
tion of estimated reading r̂(s) with respect to the true
reading r(s) is not within 3 standard deviations, i.e.,
(r(s)− r̂(s))2 > 9σ2, then we judge that the reading of
such sensor is unreliable.

To filter out false positives, we define the confidence
of intruder detection as follows.

Definition 2. The confidence of detected intruder o is
the probability that o really exists, denoted as τ(o).

Intuitively, the readings of monitoring sensors are
caused by intruders. If the actual readings are similar to
the estimated ones, this suggests a high confidence that
the intruder is real. For a false positive, the difference
between actual and estimated readings will be large.
Therefore, we can estimate the confidence of a detected
intruder from the reading difference of its monitoring
sensor set.

In the verification process, the system first calcu-
lates the reading difference ∆oi for each intruder and

s2=80
s3=61

s8=8

s1=91

s4=7
s5=34

s7=59

s6=55

s15=43

s13=62

s14=23

s10=42
s11=29

s12=62

s16=9

s17=6

s9=43

o1 o2

o4

s1
s2

s7

s10

s15

s17

s12

s13

s14

g1

o3

o1

s3

s5
s6

s9

s11

o2
o3

g2 g3 g4

o4

e1=113 e2=72 e3=67 e4=32

s4

intruder

sensor with

high reading

sensor with

low reading

initialized

intruder

Figure 7: Example: The Estimation of Intruder’s Attributes

the average difference of all the intruders.

∆oi =

∑
s∈Soi

(r(s)− r̂(s))2

|Soi|(3.15)

∆̄ =

∑
oi∈O

∆oi

|O|(3.16)

Then the intruder detection confidence is estimated
as Eq. (3.17). For an intruder oi, if the monitoring
sensor’s readings are coherent with the information
(small reading difference), the intruder’s confidence is
high. If the reading difference is larger than ∆̄, which
indicates that the real readings are quite different from
the estimated ones. The intruder detection confidence
is set as zero.

τ(oi) =
{

1− ∆oi

∆̄
(∆oi < ∆̄)

0(∆oi ≥ ∆̄)
(3.17)

The entire process of intruder mining is summa-
rized as Algorithm 3 in Figure 8. The system starts
at generating monitoring graphs (Line 1). Then it esti-
mates the intruder’s attributes and meanwhile updates
the structure of monitoring graphs (Line 2). In the ver-
ification step, the system filters out unreliable sensors
since they may influence the computation of detected
intruder confidence (Lines 3 – 5). Finally, it computes
the confidence for each intruder and removes the un-
qualified ones (Lines 6 – 9).

Example 4. Figure 9 shows the example of intruder
verification. After estimating the intruder’s attributes,
the system checks the sensors and removes s4 from g1.
Then, the scores of intruder detection confidence are

Algorithm 3. Intruder Mining

Input: sensor set S, reading set R at a snapshot,
reading threshold r, intruder confidence threshold o

Output: the estimated intruder set O.

1. generate the monitoring graph set G w.r.t. R, S

and r; //Algorithm 1
2. G;

//Algorithm 2

3. for each graph g of G

4. calculate the standard deviation ;

5. filter out unreliable sensors;
6. retrieve intruders from G to O;

7. for each intruder o of O

8. compute (o);
9. if (o) < o then remove from O;

10. return O;

Figure 8: Algorithm: Mining the Intruders

calculated. Suppose the confidence threshold δo is set
as 0.5. The false positives o3 and o4 are filtered out,
with o1 and o2 returned as the final result of intruder
mining.

4 Discussion

We presented the models and algorithms of IntruMine.
Although it is a novel approach, IntruMine is well con-
nected to some state-of-the-art models in literature.
Here we briefly describe two existing techniques for in-
truder detection and show that both of them are special
cases of IntruMine. We also study the time complexity
of the proposed method and show the advantages of In-
truMine over comparative methods based on complexity
analysis.

intruder

sensor with

high reading

sensor with

low reading

false

intruder

s1
s2

s4

s7

s10

s15

s17

s12

s13

s14

g1

o1

s3

s5
s6

s9

s11

o2
o3

g2 g3 g4

o4

e1=113 e2=72 e3=67 e4=32

(o1)=0.81 (o2)=0.94 (o3)=0 (o4)=0.46

Figure 9: Example: Intruder Verification

4.1 Connection to Other Models
The principles of maximum likelihood (ML) based

intruder detection method were proposed in [14]. This
method formulates the task of intruder detection as a
maximum likelihood estimation.

Let the reading set R = (r(s1), r(s2), . . . , r(sn)),
the intruder energy E = (e1, e2, , ek), and the relation
matrix

M =




1
αd(o1,s1)β+γ

1
αd(o1,s2)β+γ

· · · 1
αd(o1,sn)β+γ

· · · · · · · · · · · ·
1

αd(ok,s1)β+γ
1

αd(ok,s2)β+γ
· · · 1

αd(ok,sn)β+γ




The intruder attribute vector θ is denoted as
{xo1, yo1, e1, xo2, yo2, e2, . . . , xok, yok, ek}, the problem is
then formulated to estimate θ that

arg max
θ
− ||R− EM ||2 =

arg min
θ
||R− EM ||2(4.18)

Eq.(4.18) is actually a special case of IntruMine by
setting the reading threshold δr to 0. In the monitoring
graph construction step, when the system retrieves
monitoring sensor set So of intruder o, for each sensor
s ∈ S,

(4.19) f(o, s) =
e

α · d(o, s)β + γ
> δr = 0

Then a link of s and o should be constructed in the
monitoring graph g. In this way, eventually g includes
all the sensors of S and Eq. (3.8) in Section 3.2 turns
out to be:

arg max
θ
−

∑
s∈g

(r(s)− r̂(s))2

= arg min
θ

∑
s∈g

(r(s)− r̂(s))2

= arg min
θ

∑

s∈S

(r(s)− r′(s))2

= arg min
θ
||R− EM ||2(4.20)

Hence IntruMine is reduced to the ML model.
In such case, there is only one monitoring graph g
constructed. This graph contains all the sensors and the
initialized intruders, with links between each pairs of a
sensor and an intruder. In the step of estimating the
intruder’s attributes, no matter how the position and
energy of intruder o changes, for each sensor s linked
with o, f(o, s) > δr = 0. Then no link of g will be
removed and the structure of g stays unchanged during
the estimation process. Algorithm 2 is thus degenerated
to the maximum likelihood estimation on a fixed graph.

The TruAlarm method is introduced in [16]. This
method samples out several positions to initialize the
intruders. TruAlarm links the intruders with alarming
sensors within a fixed distance threshold δd and con-
structs the object-alarm graphs. The alarm trustwor-
thiness analysis is carried out on such graphs.

The object-alarm graphs of TruAlarm can be de-
duced from IntruMine’s monitoring graph by setting
certain constraints and premises: (1) The intruder’s lo-
cations are constrained to a set of sampling points; and
(2) all the intruders have the same energy level. When
computing the monitoring sensor set for each intruder,
the system can select the sensors within a fixed distance
threshold δd = (e/δr−γ

α)
1
β .

Note that, both ML and TruAlarm methods detect
the intruders with some premises: ML requires the
number of intruders as input, and TruAlarm needs the
distance threshold and possible intruder locations for
sampling. However in real applications, it is hard for
users to provide such parameters in advance. Incorrect
inputs may also bring down the detection accuracy. It
is a significant step forward for IntruMine to detect
intruders without those premises.

4.2 Complexity Analysis
Generally speaking, IntruMine has three steps to

process the data: (1) Constructing the monitoring
graph and initializing the intruders (Algorithm 1); (2)
Estimating the intruder attributes (Algorithm 2); and
(3) Verifying the estimated results (Lines 3 – 10 in

Algorithm 3). We analyze the time complexity of each
step as follows.

Proposition 1: Let N be the number of sensors, k
be the number of estimated intruders, n be the total
number of monitoring sensors, and l be the number
of iterations in attribute estimation step. The time
complexity of step 1 is O(NlogN); step 2 is O(k(n +
logN)l), and step 3 is O(kn).
Proof: In step 1, the system has to scan all the sensors
and check each one’s neighbors to find out the peak
sensors. This process takes O(NlogN) with a spatial
index such as R-tree (since all the sensors have been
deployed and their positions are known in advance, it
is easy to build a spatial index). The system then
initializes k intruders from the peak reading sensors and
generates their monitoring sensor set with O(klogN)
time. The total time cost is O(NlogN + klogN). Since
k is much smaller than N , hence the time complexity of
step 1 is O(NlogN).

In step 2, the algorithm runs l iterations to reach
a stable state. At each iteration, the algorithm has
to compute the difference between real reading and
estimated reading of each monitoring sensor. In the
worst case, it has to scan k intruders to estimate a
sensor’s reading. There are n monitoring sensors in
total. The time cost of attribute estimation is O(kn).
After estimating the attributes, the algorithm also needs
to update the monitoring graphs with O(klogN) time.
Hence the total time complexity of step 2 is O(k(n +
logN)l).

In step 3, the algorithm computes the standard
deviation of every sensor and the confidence score for
each intruder. Both processes require to calculate the
differences between real reading and estimated reading
of the monitoring sensors, which takes O(kn) time.
Then the time complexity of step 3 is O(kn).

From Proposition 1, one can clearly see that the
main time cost is at step 2. Since N is fixed and k is
usually a small number. The key to improve algorithm’s
efficiency is to generate tight monitoring graphs, i.e.,
reduce the number of monitoring sensors, n. With a
reasonable reading threshold δr, IntruMine only selects
the monitoring sensors that are significantly influenced
by each intruder. In the ML method, δr is set to 0 and
the system takes count in all the sensors, i.e., n = N .
The time complexity for maximum likelihood estimation
is degenerated to O(kNl). In addition, the majority
of such sensors do not receive strong signals from the
intruders and cannot contribute to the estimation. The
system needs to take more iterations to reach a stable
state (with larger l). Hence the efficiency of ML is much
worse than IntruMine.

TruAlarm constrains the intruders to a sampling set
of fixed locations. If the algorithm wants to achieve a
high accuracy, it has to generate a large location set
and initializes the intruder at every sampling location.
In this way, the number of intruders, k, is much larger.
Since the algorithm needs to generate the monitoring
sensor set for each intruder, more sensors are inevitably
involved in the constructed graphs. The algorithm
efficiency is thus brought down due to larger monitoring
graphs. However, the detection accuracy of TruAlarm
may still be a problem. In [16], the authors report that
more that 80% of the sampled intruders does not exist
in the end. The peak reading sensor-based initialization
of IntruMine is more efficient and effective.

5 Performance Evaluation

5.1 Experiment Setup
Datasets: We conduct extensive experiments to eval-

uate the proposed methods, using both real-world and
synthetic datasets. To test the performance of Intru-
Mine in large and untrustworthy data collected from
CPS, we generate three synthetic datasets based on the
military trajectories in the CBMANET project [6], in
which an infantry battalion of 64 vehicles moves from
Fort Dix to Lakehurst during a mission lasting 3 hours.
The data generator simulates monitoring fields along
their routes with 400 to 10,000 deployed sensors, and
each sensor reports a reading every 10 seconds.
Baselines: The proposed IntruMine algorithm (IM) is
compared with TruAlarm method (TA) in [16]. We also
implement the maximum likelihood based estimation
(ML) method based on the principles proposed in [14].
We evaluate both efficiency and effectiveness of the
algorithms in the experiments.
Environments: The experiments are conducted on a
PC with Intel 7500 Dual CPU 2.20G Hz and 3.00 GB
RAM. The operating system is Windows 7 Enterprise.
All the algorithms are implemented in Java on Eclipse
3.3.1 platform with JDK 1.5.0. The datasets and
parameter settings are listed in in Figure 10.

Dataset Object Sensor. # Reading. # Faulty%

Real (D1) 5 213 2.1*105 ~10%

Syn 1 (D2) 64 400 4.3*105 20%

Syn 2 (D3) 64 2,500 2.7*106 30%

Syn 3 (D4) 64 10,000 1.1*107 40%

 r: 0.3 – 0.9, default 0.7; o: 0.2 – 0.8, default 0.6; =10, !=1, "=1;

Figure 10: Experiment Settings

5.2 Comparisons in Mining Efficiency
In the first experiment, we evaluate the efficiency of

different algorithms on default settings. The system
processes IM, TA and ML on the four datasets and
records their average time cost on each snapshot. Figure
11(a) shows the results by dataset and Figure 11(b)
records the algorithm’s running time w.r.t. the total
number of sensors, N . Note that the y-axes are in
logarithmic scale. IM achieves the best efficiency on
all the datasets. In the largest dataset D4, IM is an
order of magnitude faster than ML and two orders of
magnitude faster than TA.

1

10

100

1000

10000

100000

1000000

367 1367 2367 3367 4367 5367 6367 7367 8367 9367

IM TA ML

1

10

100

1000

10000

100000

1000000

D1 D2 D3 D4

IM TA ML

(a)

Time(unit: millisecond)
106

105

104

103

102

10

1

Time(unit: millisecond)

(b)

2500 5000 10000

N

106

105

104

103

102

10

1
400

Figure 11: Efficiency: (a) different datasets and (b)
sensor number

We also study the factors that influence IM’s effi-
ciency. We set the reading threshold δr as 30% to 90%
of the typical intruder energy and record the algorithm’s
time cost on datasets D1 to D4 in Figure 12(a). Then we
carry out the same experiments for confidence threshold
δo (Figure 12(b)). The results show that the influence
of δr is larger than δo, because δo only influences the
verification step, but δr determines the size the moni-
toring graphs. With higher δr, the system can generate
smaller monitoring graphs and increase the mining ef-
ficiency, especially in the large datasets with densely
deployed sensors (e.g., D4).

0

500

1000

1500

2000

2500

30% 50% 70% 90%

D1 D2 D3 D4

0

500

1000

1500

2000

2500

0.2 0.4 0.6 0.8

D1 D2 D3 D4

(b)

Time(unit: millisecond) Time(unit: millisecond)

δr δo

(a)

Figure 12: Efficiency: IntruMine on different δr and δo

5.3 Evaluations of Detecting Effectiveness
To evaluate the quality of mining results, we retrieve

the intruder’s true position and energy in each snapshot
as the ground truth and compare the mining results
with them. The system first compares the number
of detected intruders with ground truth to calculate
the measures of precision and recall, then matches the
detected intruder to the nearest one in ground truth and
computes the relative errors of energy and position.

Since ML requires the exact number of real intrud-
ers as the input (i.e., with 100% precision and recall).
We only record the precision and recall of IM and TA
in Figure 13. Both of them can detect all the real in-
truders, but IM’s precision is about 20% higher. The
number of false positives reported by IM is only as half
as TA, because IM’s peak sensor based initialization and
intruder verification step could filter out the false posi-
tives effectively.

0%

20%

40%

60%

80%

100%

D1 D2 D3 D4

IM TA

(a)

Precision

0%

20%

40%

60%

80%

100%

D1 D2 D3 D4

IM TA

Recall

(b)

Figure 13: Effectiveness: (a) precision and (b) recall on
different datasets

All three methods can detect the intruders, we
further check their detecting effectiveness by calculating
the relative errors of energy and position. The results
are shown in Figure 14. ML has the largest errors: The
average energy error is more than 50% and the position
error is about 40% in D3 and D4. The reason of ML’s
failure is that the algorithm takes count in the reading
from all the sensors, and it is inevitably influenced
by the faulty readings and noises. ML’s accuracy
degenerates rapidly on dataset D3 and D4, since there
are more faulty readings. This result indicates that ML
is not feasible to process untrustworthy data. The errors
of IM are much lower, with no more than 5% in all the
datasets. The performance of IM even improves on D3

and D4, because with more deployed sensors, IM can
effectively filter the untrustworthy ones and utilize the
information for accurate estimation.

Then we investigate IM’s effectiveness with different
reading thresholds δr. Figure 15 shows IM’s precision
and recall on the four datasets w.r.t. different δr. When
increasing δr from 30% to 50%, IM has a rapid increase

4.2% 3.2% 1.2% 0.6%
0%

10%

20%

30%

40%

50%

D1 D2 D3 D4

IM TA ML

1.6% 3.6% 1.8% 1.6%

0%

20%

40%

60%

80%

D1 D2 D3 D4

IM TA ML

D1 D2 D3 D4

IM TA

(a) (b)

Energy Error Position Error

Figure 14: Effectiveness: (a) energy error and (b)
position error on different datasets

in precision, but the improvement is not significant with
even larger δr. Figure 16 records the energy and position
errors in the experiments. It is interesting to see that
both errors are high with extreme δr. The reason
is that, if δr is too low, the monitoring graphs may
involve many irrelevant sensors that affect the attribute
estimation. However, when δr is too high, there are very
few monitoring sensors in the graph, the information
might not be enough for accurate estimation. Hence, δr

should be set in a moderate range (from 0.5 to 0.7) to
achieve the best performance.

50%

60%

70%

80%

90%

100%

30% 50% 70% 90%

D1 D2 D3 D4

(a)

Precision

δr
50%

60%

70%

80%

90%

100%

30% 50% 70% 90%

D1 D2 D3 D4

δr

Recall

(b)

Figure 15: Effectiveness: (a) precision and (b) recall
w.r.t. δr

Finally, we tune the confidence threshold δo and
show the results in Figure 17 and 18. The major
function of δo is to filter false positives. As δo grows,
the precision increases. However, if δo is too high, some
real intruders will also be filtered out and IM cannot
guarantee 100% recall. The energy and position errors
also increase rapidly with extreme δo, since there are
not enough detected intruders to be matched with real
ones. As a result, δo should not be set more than 0.8.

6 Related Work

Arora et al. propose the intrusion detection problem
in wireless network and design a detection model with

30% 50% 70% 90%

D1 D2 D3 D4

0%

2%

4%

6%

8%

30% 50% 70% 90%

D1 D2 D3 D4

0%

2%

4%

6%

30% 50% 70% 90%

D1 D2 D3 D4

(a) (b)

Energy Error Position Error

δr δr

Figure 16: Effectiveness: (a) energy error and (b)
position error w.r.t. δr

50%

60%

70%

80%

90%

100%

0.2 0.4 0.6 0.8

D1 D2 D3 D4

50%

60%

70%

80%

90%

100%

0.2 0.4 0.6 0.8

D1 D2 D3 D4

(a)

Precision

δo δo

Recall

(b)

Figure 17: Effectiveness: (a) precision and (b) recall
w.r.t. δo

acoustic and magnetic sensors [1]. Lin et al. propose
a framework for the in-network intruder tracking [9].
Li et al. propose the techniques of detecting blackhole
and volcano patterns in directed networks, which is a
significant improvement in this area [8, 7]. Cevher and
Kaplan et al. study the problem of how to assign sensors
to different tracking and monitoring tasks to achieve the
optimal efficiency [3]. They propose a sensor assignment
algorithm with fuzzy location estimation.

The main concerns of the above methods are about
the sensor’s energy and communication bandwidth.
The solutions focus on providing an optimal sensor
deployment plan. The task of IntruMine is different.
But IntruMine actually complements those technologies
and improves the system’s applicability.

Hammad et al. propose the stream window join
algorithm to track moving objects in sensor network
database [5]. Aslam et al. propose a geometry-based
method to track the intruders [2]. Ozdemir et al. use
the techniques of particle filtering to track intruders
[11]. Sheng and Hu propose the maximum likelihood-
based estimation method [14] and Tang et al. propose
the TruAlarm filtering method [16]. In most methods,
the user has to provide some key parameters in advance,
such as the intruder’s moving speed, energy or the

0.2 0.4 0.6 0.8

D1 D2 D3 D4

0%

2%

4%

6%

8%

0.2 0.4 0.6 0.8

D1 D2 D3 D4

0%

2%

4%

6%

8%

10%

0.2 0.4 0.6 0.8

D1 D2 D3 D4

(a) (b)

Energy Error Position Error

δo δo

Figure 18: Effectiveness: (a) energy error and (b)
position error w.r.t. δo

number of intruders. Many studies also make the
assumption that there is no unreliable sensor data.

Pan et al. use the supervised learning method to
locate Receiving Signal Sensors (RSS)[13]. The trans-
fer learning techniques are proposed as semi-supervised
mining [12]. The main difference between those works
and IntruMine is about the sensors. The RSS are mov-
ing sensors that receive signals from some fix nodes
(APs). And the algorithm is designed to learn the sen-
sor’s locations. In the CPS applications, most sensors
are fixed and their locations are already known. The
problem is to detect the location of intruders. In ad-
dition, the techniques in [13, 12] are supervised/semi-
supervised learning. However, IntruMine is an unsu-
pervised method.

7 Conclusion and Future Work

This paper studies the problem of intruder mining
in untrustworthy data of cyber-physical systems. A
method called IntruMine is proposed to detect and
verify the intruders. In the IntruMine framework, the
system constructs the monitoring graphs and estimates
the intruder attributes with the link information of
such graphs. The information of reading difference
is used to filter out the unreliable sensors and false
positives. We prove that two existing models are special
cases of IntruMine with certain constraints. Extensive
experiments are conducted, which shows the scalability
and applicability of the proposed method.

There are many promising directions that can be ex-
plored further, such as predicting intruder’s movement
speed and directions beyond simple existence detection.
We also plan to extend IntruMine to other application
domains including environmental monitoring and traffic
control.

8 Acknowledgements

The work was supported in part by U.S. NSF grants
IIS-0905215, CNS-0931975, CCF-0905014, IIS-1017362,
the U.S. Army Research Laboratory under Cooperative

Agreement No. W911NF-09-2-0053 (NS-CTA). The
views and conclusions contained in this document are
those of the authors and should not be interpreted
as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here
on.

References

[1] A. Arora, P. Dutta, and S. Bapat. A line in the sand: a
wireless sensor network for target detection, classifica-
tion, and tracking. Computer Networks, 46(5):605–634,
2004.

[2] J. Aslam, Z. Butler, F. Constantin, and V. Crespi.
Tracking a moving object with a binary sensor network.
In SenSys, 2003.

[3] V. Cevher and L. M. Kaplan. Acoustic sensor network
design for position estimation. In ACM Transactions
on Sensor Networks, 2007.

[4] C.-Y. Chong and S. P. Kumar. Sensor networks:
Evolution, opportunities and challenges. In Proceedings
of The IEEE,, 2003.

[5] M. A. Hammad, W. G. Aref, and A. K. Elmagarmid.
Stream window join: Tracking moving objects in sensor
network databases. In SSDBM, 2003.

[6] T. Krout. Cb manet scenario data distribution. In
BBN Tech. Report, 2007.

[7] Z. Li, H. Xiong, and Y. Liu. Mining blackhole and
volcano patterns in directed graphs: A general ap-
proach. In Data Mining and Knowledge Discovery
Journal, 2012.

[8] Z. Li, H. Xiong, Y. Liu, and A. Zhou. Detecting
blackholes and volcanoes in directed networks. In
ICDM, 2010.

[9] C. Lin, W. Peng, and Y. Tseng. Efficient in-network
moving object tracking in wireless sensor network.
IEEE Transaction on Mobile Computing, 5(8), 2006.

[10] C. Lo and W. Peng. Carweb: A traffic data collection
platform. In MDM, 2008.

[11] O. Ozdemir, R. Niu, and P. K. Varshney. Tracking in
wireless sensor network using particle filtering: Phys-
ical layer considerations. In IEEE Trans. on Signal
Processing, 2009.

[12] R. Pan, J. Zhao, V. W. Zheng, and J. J. Pan. Domain
constrained semi-supervised mining of tracking models
in sensor networks. In KDD, 2007.

[13] S. J. Pan, J. T. Kwok, Q. Yang, and J. J. Pan. Adaptive
localization in a dynamic wifi environment through
multi-view learning. In AAAI, 2007.

[14] X. Sheng and Y. Hu. Maximum likelihood multiple
source localization using acoustic energy measurements
with wireless sensor networks. In IEEE Trans. on
Signal Processing, 2005.

[15] R. Szewczyk, J. Polastre, and J. Mainwaring. Lessons
from a sensor network expedition. In European Work-
shop on Wireless Sensor Networks, 2004.

[16] L. Tang, X. Yu, S. Kim, J. Han, C. Hung, and W. Peng.
Tru-alarm: Trustworthiness analysis of sensor networks
in cyber-physical systems. In ICDM, 2010.

[17] G. Tolle, J. Polastre, and R.Szewczyk. A macroscope
in the redwoods. In Sensys, 2005.

[18] R. Tomkins. Thermo eye helps keep peace. In Word
Press, 2007.

[19] Y. Zheng and X. Zhou. Computing with Spatial Trajec-
tories. Springer, 2011.

