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Abstract 
 

This paper addresses the problem of detecting 
masquerading, a security attack in which an intruder 
assumes the identity of a legitimate user. Many 
approaches based on Hidden Markov Models and various 
forms of Finite State Automata have been proposed to 
solve this problem. The novelty of our approach results 
from the application of techniques used in bioinformatics 
for a pair-wise sequence alignment to compare the 
monitored session with past user behavior.  Our algorithm 
uses a semi-global alignment and a unique scoring system 
to measure similarity between a sequence of commands 
produced by a potential intruder and the user signature, 
which is a sequence of commands collected from a 
legitimate user.  We tested this algorithm on the standard 
intrusion data collection set. As discussed in the paper, 
the results of the test showed that the described algorithm 
yields a promising combination of intrusion detection rate 
and false positive rate, when compared to published 
intrusion detection algorithms. 
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1. Introduction 
 

In the field of computer security, one of the most 
damaging attacks is masquerading, in which an attacker 
assumes the identity of a legitimate user in a computer 
system.  Masquerade attacks typically occur when an 
intruder obtains a legitimate user’s password or when a 
user leaves their workstation unattended without any sort 
of locking mechanism in place.  It is difficult to detect this 
type of security breach at its initiation because the 

attacker appears to be a normal user with valid authority 
and privileges. This difficulty underlines the importance 
of equipping computer systems with the ability to 
distinguish masquerading attacker actions from legitimate 
user activities.  

The detection of a masquerader relies on a user 
signature, a sequence of commands collected from a 
legitimate user. This signature is compared to the current 
user’s session.  The underlying assumption is that the user 
signature captures detectable patterns in a user’s sequence 
of commands. A sequence of commands produced by the 
legitimate user should match well with patterns in the 
user’s signature, whereas a sequence of commands 
entered by a masquerader should match poorly with the 
user’s signature. Designing algorithms to distinguish 
legitimate users and masqueraders based on user 
signatures has been extensively studied [12][14]. 

In this paper, we propose a new algorithm that uses 
pair-wise sequence alignment to characterize similarity 
between sequences of commands.  Sequence alignment 
has been extensively applied in the field of bioinformatics 
as a tool for comparing genetic material [3][4]. Our 
algorithm, which is a unique variation of the classic 
Smith-Waterman algorithm [17], uses a novel scoring 
scheme to construct a semi-global alignment.  The 
algorithm produces an effective metric for distinguishing 
a legitimate user from a masquerader.   

To provide a self-contained paper, we describe the 
details of the intrusion detection problem and we 
introduce the fundamental concepts of sequence 
alignment.  In subsequent sections, we describe the semi-
global alignment algorithm, the scoring scheme, and the 
experimental results.  We conclude with a discussion of 
future work and improvements. 



2. Background 
 

2.1 Intrusion Detection 
 

Standard security deployments such as firewalls, 
patched operating systems and password protection are 
limited in their effectiveness because of the evolving 
sophistication of intrusion methods and their increasing 
ability to break through entry points of a guarded 
infrastructure [10]. An intrusion detection system (IDS) 
addresses the layer of security following the failure of the 
prior devices. This layer usually monitors any number of 
data sources (i.e., audit logs, keystrokes, network traffic) 
for signs of inappropriate or anomalous behavior. Since 
attacks occurring at this level are sophisticated enough to 
bypass entry point protection, advanced algorithms and 
frameworks for detection are required to prevent total 
subversion of critical resources. While no computer or 
network is entirely secure, intrusion detection is essential 
for any computer-based infrastructure, in which the value 
of its assets draws the attention of potential attackers.  
Traditionally, there have been two main classes of IDSs: 
host-based and network-based systems. A host-based IDS 
monitors the detailed activity of a particular host. 
Depending on the specific IDS implementation, any 
number of data sources can be used to search for 
malicious activity. Solaris Basic Security Module (BSM) 
provides system call traces which are typically used as 
datasets for host-based IDSs [15]. For instance, when an 
analysis of the BSM data shows signs of an intrusion, the 
IDS alerts the system administrator of an attack. In other 
implementations, host-based systems also use such 
identifying information as a user’s keystrokes and 
command execution patterns. 

Network-based IDSs monitor networks of computers 
and other devices (i.e., routers and gateways) that are 
normally subject to attacks. Subsequently, rather than 
using machine and process-oriented data, such as that 
from BSM, network-based IDSs primarily use data from 
network traffic in detecting intrusions. The most popular 
program used to capture network traffic is tcpdump, 
which can display or store every field belonging to a TCP 
packet [7]. Different implementations of network-based 
IDSs may serve different functions. For instance, some 
network-based systems may monitor only the traffic 
activity of a single host, while distributed tools may 
analyze the aggregate traffic information from a range of 
devices on the same network. To prevent confusion, we 
use data-centric definitions in distinguishing between host 
and network-based IDSs. 

Network and host-based IDSs, can be further 
classified based on two methods of detection: anomaly 
detection and penetration identification. The former 
method attempts to differentiate “anomalous” activity 

from the established normal operating behavior of a 
computer system, application, or user. Thus, in general, 
the IDS must first train on data representing normal 
behavior before it can be deployed in an operative 
detection mode. The principle advantage of an anomaly 
detection system is that it can detect previously unknown 
attacks [8]. Considering this, anomaly-based systems are 
strongly applicable to masquerade detection, which is the 
problem of focus in this paper. Penetration identification 
(often referred to as misuse detection) is the second major 
detection technique. After a “signature” is defined that 
identifies a manifestation of an attack, the attack can be 
discovered in either monitored network traffic or host-
based audit trails. Penetration identification systems 
typically yield fewer false alarms; however, they require 
continuous updates, as their signature databases may 
become outdated fairly quickly. 

There are many types of host and network intrusion 
attacks. Intrusion classifications can be based on intent. 
For instance, the denial-of-service attack aims to either 
completely shut down or degrade the performance of a 
network, computer or process. Remote-to-local attacks are 
used by assailants who attempt to illegally gain access to 
a machine on which they have no account. These attacks 
target one specific resource. On the other hand, 
surveillance (or scan) attacks use distributed software to 
find vulnerabilities across hundreds of machines. In 1998, 
a seminal study was performed by DARPA to evaluate 
the performance of various IDSs in detecting these 
attacks. Specific details about the attacks and IDS 
evaluation are available in [9]. 

In our work, we focus on masquerade attacks in which 
an assailant attempts to impersonate a legitimate user after 
gaining access to this legitimate user’s account. 
Masquerade attacks often arise after a successful remote-
to-local attack; however, masquerading can also result 
from far simpler means. An example is a temporarily 
unattended workstation with a legitimate user logon 
session still active and unlocked. Anyone can access such 
a workstation and all resources accessible through the 
logon account. The broad range of damage that can be 
performed via masquerade attacks (i.e., stolen documents, 
data, or email) makes them one of the most serious threats 
to computer and network infrastructure. 

Matching the potentially devastating costs of 
masquerade attacks is the difficulty in successfully 
detecting them. As stated previously, masquerade 
detection falls under the cover of anomaly detection, 
which already poses a challenge in implementation alone. 
Masquerade detection adds another layer of complexity to 
the problem. A masquerader may happen to have similar 
behavioral patterns as the legitimate user of an account to 
which he or she is currently logged therefore escaping 
detection and successfully causing damage under the 
cover of seemingly normal behavior. Another problem is 



caused by computer users’ tendency toward concept 
drift—a change in activity that is not captured strongly in 
the original user signature. As a result legitimate user 
command sequences may differ enough from the 
signature to appear to be an intrusion. In the following, 
we will refer to missed attacks as false negatives and to 
false alarms as false positives. 

There have been numerous attempts at successfully 
detecting masquerade attacks (minimizing false 
negatives) without degrading the quality of a user’s 
session (minimizing false positives). A seminal work by 
Schonlau et al. [14] analyzes the performance of various 
masquerade detection methods. Results showed that the 
method yielding the lowest number of false alarms was 
uniqueness, which had a false positive rate of 1.4%. 
However, it had a false–negative rate of 60.0%. Another 
good performer was the Bayes one-step Markov with a 
false positive rate of 6.7% and a false negative rate of 
30.7%. In another paper [12], Maxion and Townsend 
analyzed the sources of error made by the detection 
mechanisms covered by Schonlau et al. and proposed 
several improved methods, among which the Naïve Bayes 
with updates yielded excellent 1.3% of false positive rate 
with a respectable 38.5% of false negative rate. 

We choose to depart from Schonlau and Maxion’s 
approach in trying to detect masquerade attacks with 
greater accuracy by unconventional methods. Most 
masquerade detection attempts begin with an analysis of a 
user’s command sequences, which is a logical step. This 
type of data represents a user feature often termed as 
biometric [1]. The behavioral features of biometrics, in 
general, include such characteristics as handwriting and 
speech patterns, inapplicable for computer masquerading. 
The physiological features include fingerprints and eye 
color—things that do not change over time but are not 
available for remote computer sessions. User’s command 
sequences on a computer system will of course change 
over time, but an adequate record of his or her normal 
behavior will capture most sequence variations. 
Nonetheless, the classification of the data used for 
detection led us to an appropriate class of algorithms and 
mechanisms for effective detection: bioinformatics. 

 
2.2 Sequence Alignment 
 

Sequence alignment is a well-studied tool used to 
quantify and visualize similarity between sequences.  
Sequence alignment has been most prominently applied in 
the comparison of genetic material such as DNA, RNA, 
and protein sequences [4]. The applications of sequence 
alignment include searching sequence databases for 
specific genes or patterns [3], and discovering 
phylogenetic relationships through the use of multiple 
alignments [2]. 

Sequence alignment is a generalization of the classic 
longest common subsequence problem (lcs). Given two 
strings A = a1a2...am and B = b1b2...bn, with m <= n, over 
some alphabet Σ of size s, the lcs-problem is to find a 
sequence of greatest possible length that can be obtained 
from both A and B by deleting zero or more (not 
necessarily adjacent) characters. Alternatively, the lcs-
problem can be described as the problem of aligning two 
strings in order to maximize the number of matching 
characters by inserting gaps into either string in order to 
shift the characters into matching alignment. 

The length of the longest common subsequence is an 
intuitive measure of similarity between two strings [17]. 
To improve its capabilities as a tool for comparison, a 
scoring function can be used to rank different alignments 
so that biologically plausible alignments score higher. The 
scoring function assigns positive scores to aligned 
characters that either match or are known to be similar. 
Negative scores are assigned to both aligned characters 
that are dissimilar and characters that are aligned with 
gaps. Typically, the score of an alignment is the sum of 
the scores of each aligned pair of symbols. The task of 
optimal sequence alignment is to find the highest scoring 
alignment for a given scoring function and pair of strings. 
An efficient dynamic programming algorithm for optimal 
sequence alignment was first presented by Needleman 
and Wunsch [13].  Similar to the length of the longest 
common subsequence, the alignment score serves as a 
metric for quantifying similarity among input strings.  
Alignments are not only a useful metric for measuring 
similarity, but the alignments themselves serve as an 
important visual tool in assessing the similarity. Figure 1 
shows an example of a typical alignment where a dash 
indicates a gap and a vertical bar indicates a character 
match. 

 

 
Figure 1: Example of sequence alignment 

 

While computing the optimal alignment of two strings 
has proven to be a useful tool in the comparison of entire 
strings, it is often important to identify more subtle types 
of similarity.  While two strings may not possess 
homogeneity over their entire length, they may contain 
smaller substrings that are highly similar.  To 
accommodate for this possibility, Smith and Waterman 
[16] designed a modification of the Needleman-Wunsch 
alignment algorithm to compute a local alignment.  
Rather than align two strings over their entire length, the 
local alignment algorithm aligns a substring of each input 

--GTGACATGCGAT--AAGAGG---CCTT--AGATCCGGATCTT 
 | ||| ||||||  |||      ||||  ||||| |  ||||   

GGGAGAC-TGCGATACAAG---TTACCTTGTAGATCTG—TCTT 
 

Key: - gap 
| match 



string.  Given a scoring function and two strings A = 
a1a2...am and B = b1b2...bn, with m <= n, the local 
alignment problem is to find substrings α and β of A and 
B, respectively, whose alignment score is maximum over 
all possible pairs of substrings from A and B. 

Previously, an alignment implied that every character 
from one string had to be aligned with either a character 
from the other string or a gap.  Thus, every character in 
the two input strings contributed to score of the optimal 
alignment.  This type of an alignment is referred to as a 
global alignment.  In a local alignment, only the 
characters in the two aligned substrings contribute to the 
score of the optimal alignment. Thus, for each string, a 
suffix and a prefix are ignored by the scoring system.  
Figure 2 shows the difference between a global and local 
alignment.  By allowing a suffix and prefix to be ignored, 
a local alignment can discover subtle regions of similarity 
that may go undetected by a global alignment algorithm. 
While this problem appears to be much more difficult in 
terms of complexity, the Smith-Waterman local alignment 
algorithm is only a slight modification of the Needleman-
Wunsch global alignment algorithm. 

 

 
Figure 2: Global alignment vs. local alignment 

 

Global alignment is the tool of choice when 
comparing two strings that are believed to possess overall 
similarity.  Typically, the two strings are approximately 
equal in length.  Whereas, local alignment is the tool of 
choice when comparing two strings whose lengths are 
significantly different.  Local alignment allows a 
substring of the larger input string to be matched to the 
smaller string.  Typically, a global alignment algorithm 
would fail to identify such similarity since most of the 
characters from the longer string would have to be aligned 
with gaps resulting in a negative score. 

There are applications where neither local nor global 
alignment is appropriate for characterizing the types of 
similarity that may arise.  These types of alignments are 
often referred to as semi-global. In a local alignment, both 
a prefix and suffix of both input strings can be ignored.  
Thus, the alignment only involves a substring of each of 
the two input strings.  In a semi-global alignment, you can 
choose to align only prefixes or suffixes of the original 
input strings.  In Figure 3, the first alignment allows only 
prefixes to be ignored, whereas the second alignment only 
allows suffixes to be ignored. 

 

 
Figure 3: Examples of semi-global alignments 

 
3. Detection Algorithm 
 

3.1 Overview 
 

In the field of bioinformatics, sequence alignment is 
used to determine the similarity between two DNA or 
protein sequences, in a global, semi-global, or local 
context, by aligning the nucleotides or amino acids in 
each sequence, and producing a score that indicates how 
well the sequences align with one another, and, 
consequently, how similar they are.  We can use this 
concept to align sequences of commands, rather than 
nucleotides or amino acids, and produce a score that 
indicates how similar the two command sequences are to 
one another.  By aligning a small segment of commands 
with the user’s signature, we can use the score of the 
alignment as an indicator of the presence of an intrusion 
within the segment that we are testing. 

There are a number of factors that predispose these 
sequence alignment algorithms for use in masquerade 
detection, namely their abilities to find high-level patterns 
within the alignment data and the sheer number of 
parameters that can be changed to suit different types of 
data.  These parameters can be changed to allow for 
different alignments of the data, which can then bring 
about new high-level pattern matching.  In particular, we 
can use these properties not only to match commands, but 
also to match generalized patterns that a user might be 
prone to over the course of a number of computing 
sessions.  In this way, we are able to more readily judge 
how indicative a sequence of commands is of a user, not 
just by the commands themselves, but also by the high-
level patterns embedded within the commands. 

 
3.2 Alignment Algorithm 
 

To use a sequence alignment in the detection of a 
masquerading user, we use a modification of the Smith-
Waterman local alignment algorithm to compute a semi-
global alignment.  The problem with using a purely local 
alignment to characterize similarity between command 
sequences is that both a prefix and suffix can be ignored 
in both sequences. For intrusion detection, it is critical 

Global Alignment: 
--AGATCCGGATGGT--GTGACATGCGAT--AAG--AGGCGTT 
    ||| |  |  |  ||||| ||||||  |||  |  | || 
GTCCATCTG--TCTTGGGTGAC-TGCGATACAAGTTA--CCTT  
 
Local Alignment: 
--AGATCCGGATGGT--GTGACATGCGATA--AG--AGGCGTT 
                 ||||| |||||||  
GTCCATCTG--TCTTGGGTGAC-TGCGATACAAGTTA--CCTT  



that we align the majority of the tested block of 
commands to the user’s signature.  If we were to allow a 
large prefix and large suffix of the tested block of 
commands to be ignored then the intrusion itself might be 
ignored. The problem with using a purely global 
alignment is that there may be large portions of the 
signature that do not necessarily align with a segment of 
the user’s commands. Thus, we want to design a scoring 
system that rewards the alignment of commands in the 
user segment but does not necessarily penalize the 
misalignment of large portions of the signature. In the 
remainder of this section the signature sequence, which 
represents the user’s typical command behavior, will be 
referred to as the UserSig.  The monitored command 
sequence, which may contain a possible subsequence of 
masquerader commands, will be referred to as the 
IntrBlck (tested block). 

The algorithm, shown in Figure 4, starts by initializing 
a matrix of floats, which is used to store the score 
throughout the alignment process.  Each position (i, j) in 
the matrix corresponds to the optimal score of an 
alignment ending at UserSigi and IntrBlckj. This optimal 
score is computed by starting at the upper left corner of 
the matrix (i.e., at the point (0,0)) and then recursively 
making a step yielding the maximum from the three 
following options:  

Option 1 (diagonal step): The score ending at position 
(i-1,j-1) plus matchScore(UserSigi,IntrBlckj), which is 
a penalty or reward for aligning the UserSig’s ith 
command with the IntrBlck’s jth command.  

Option 2 (top-down step): The score ending at position 
(i, j-1) plus gUserSig, which is the penalty for 
introducing a gap into the UserSig. 

Option 3 (left-right step): The score ending at position 
(i-1,j) plus gIntrBlck, which is the penalty for 
introducing a gap into the IntrBlck. 

If Option 1 yields the largest value, then the optimal 
alignment matches UserSigi with IntrBlckj.  If Option 2 or 
Option 3 yields the largest score, then the optimal 
alignment associates either UserSigi or IntrBlckj with a 
gap. 

There are three essential parameters used in the 
scoring system. The matchScore(UserSigi,IntrBlckj) 
function returns a negative value if the two commands do 
not match well and a positive value if they do.  The 
gUserSig and gIntrBlck are negative gap penalties 
associated with inserting gaps into the UserSig and 
IntrBlck, respectively. 

If Option 1 or Option 2 results in a negative value, 
then the alignment score is reset to zero. This zeroing of 
the score allows a prefix of both the UserSig and IntrBlck 
to have an arbitrary number of un-penalized gaps.  The 
assumption is that a portion of the UserSig can be ignored 
without penalty.  Since the UserSig is significantly longer 
than the IntrBlck, it is expected that most of the 
commands in the UserSig will not participate in the 
alignment. Also, a small portion of the IntrBlck can be 
ignored.  However, there is a difference in ignoring 
portions of UserSig and IntrBlck, since a high alignment 
score should not be achievable if a large portion of the 
IntrBlck is ignored.  Thus, any alignment that ignores a 
large prefix of the IntrBlck should have a relatively low 
score.  Similarly, when the algorithm reaches the right-
most column or the bottom-most row of the matrix, the 
gap penalty is not applied.  Thus, either a suffix of the 
UserSig or a suffix of the IntrBlck is ignored.  Once 
again, if the latter is true then the alignment score will be 
relatively low. 

 

  
Figure 4: Semi-global alignment algorithm 

Input: string UserSig of length m, string IntrBlck of length n 
1. Initialize a matrix, D, of type integer 
2. for i=0 to m 
3.  for j=0 to n 
4.   if(j=0 or i=0) 
5.    D[i][j]=0; 
6.   else 
7.    if(j=n or i=m) 
8.     top=D[i][j-1]; 
9.     left=D[i-1][j]; 
10.    else 
11.     top=D[i][j-1] – gUserSig; 
12.     left=D[i-1][j] – gIntrBlck; 
13.     if(top<0) top=D[i][j-1]; 
14.     if(left<0) left=D[i-1][j]; 
15.    diagonal=D[i-1][j-1] + matchScore(UserSigi-1,IntrBlckj-1); 
16.    D[i][j]=maximum(top,left,diagonal); 
17. return D[m][n]; 



 

Each gap inserted into the UserSig corresponds to an 
IntrBlck command that is ignored. Similarly, each gap 
inserted into the IntrBlck corresponds to the ignored 
UserSig command.  To minimize the number of ignored 
IntrBlck commands, the gUserSig penalty is set higher 
than the gIntrBlck penalty. The overall scoring scheme is 
designed to reward an IntrBlck that can be almost entirely 
aligned to the UserSig with a minimal number of gaps and 
mismatches. 

In order to understand this algorithm’s viability in a 
real-time environment, we must consider its time 
complexity, so that we can determine how quickly it will 
be able to run.  Our algorithm, like the original Smith-
Waterman algorithm, has a time and space complexity of 
O(mn), where m is the size of the UserSig and n is the size 
of the IntrBlck.  In general, this is not a very quick 
algorithm; however, in the case of the masquerade 
problem, our set of data is relatively small, and, therefore, 
doesn’t hamper the real-time discovery of intruders.  In 
specific, we have a UserSig size of 5000 and an IntrBlck 
size of 100 for each test, so we then have 500,000 
iterations, which a modern computer could perform in 
less than a second.  Additionally, we must consider that 
the use of commands by a user will not occur at such a 
fast rate as to cause the time complexity of this algorithm 
to become a factor in the detection of intruders. 

 
3.3 Scoring Scheme Determination 
 

The goal of our alignment algorithm is to match 
characteristic groups of commands in a tested block with 
similar groups in the user’s signature.  This requires that 
we heavily penalize any gaps that may be inserted into the 
user signature, as we do not want commands in the tested 
block to be aligned with gaps in the user’s signature.  
Similarly, we would like to be able to insert gaps into the 
tested block to simulate the insertion of commands 
between characteristic groups of commands in the user’s 
signature. This requires that we provide a slightly lesser 
penalty for gaps in the tested block.  Matches should 
positively influence the score of an alignment, and should 
be chosen so that matches are preferred to gaps.  
Mismatches are kept at a constant score of 0, as a blanket 
reward or penalty for any mismatch would unfairly favour 
certain alignments, and would not disallow concept drift. 

Given the above criteria, we chose scores of +1 for a 
match between two aligned commands, -2 for a gap 
placed in the tested block, -3 for a gap placed in the user’s 
signature, and, of course, 0 for a mismatch between 
aligned commands.  This scoring scheme appears to 
provide very reasonable detection and false positive rates, 
and is intuitively suited to the requirements of our 
problem. 

4. Experiment Overview 
 

4.1 SEA Data 
 

To facilitate comparison with other masquerade 
detection algorithms, we have chosen to use the 
masquerade data provided by Schonlau et al. [15], 
abbreviated to SEA, as a basis for our experimentation.  
The SEA data was created using the UNIX acct auditing 
utility, which records user’s commands augmented with 
other metrics of interest.  For our use, we only concern 
ourselves with the command entries that have been 
produced by this utility.  The SEA data provides 50 
blocks of 100 commands each (5000 total commands) for 
each user, which can be assumed to be intrusion-free and 
are used as training data for our system.  In addition, we 
are provided with 100 blocks of 100 commands each 
(10000 total commands) for each user, in which we must 
determine if a masquerade attack has occurred.  To create 
this data, commands were taken from 70 individual users, 
and separated into two groups.  One group, made up of 50 
users, was used as our test subjects, while the other group, 
made up of the remaining 20 users, had their commands 
interspersed into the data of the 50 user test group.  The 
data from the 20 users was to be used as the masquerade 
data to be detected.  The SEA data has been the de facto 
standard for masquerade detection algorithm testing 
thanks to its wide-spread use and the difficulty of 
obtaining alternative data due to privacy concerns. As a 
result, SEA data is the obvious choice for our tests. 

 

4.2 Experiment Metrics and Parameters 
 

Our experimentation focuses on the effects of 
changing the various parameters of the alignment 
algorithm on the false positive and false negative rates.  
One of the benefits of this particular approach is the sheer 
number of tunable parameters.  These parameters include: 
reward for matches, penalties for gaps inserted into the 
user’s signature or into the tested blocks, rewards or 
penalties for mismatches, the threshold score for detection 
of intrusions, user signature length, and tested block 
length. 

To best facilitate comparison with other masquerade 
detection algorithms, we use false positive rate, false 
negative rate, and hit rate metrics to determine how well 
our alignment algorithm performed.  A false positive is a 
non-intrusion block that the algorithm labeled as 
containing an intrusion.  A false negative is an intrusion 
block that the algorithm has labeled as non-intrusion.  
Finally, a hit is an intrusion block that the algorithm has 
properly labeled as containing an intrusion. False 



positives, false negatives and hits are computed for each 
user, transformed into corresponding rates, which are then 
summed and averaged over all 50 users. Figure 5 
summarizes the metric calculations used by the algorithm. 

 

 
Figure 5: Metric calculations 

 

5. Results 
 

5.1 Threshold Determination 
 

To facilitate proper detection, a threshold score must 
be determined to define at which point a score is 
indicative of an attack.  Rather than choosing an arbitrary 
and static threshold score, we decided instead to 
determine the initial threshold score for each user by 
cross-validating the user’s signature against itself.  We do 
this by taking 20 randomly chosen, 100 command 
sections of the user’s signature and aligning it to a 
randomly chosen 1000 command section of the same 
user’s signature.  This allows us to create an initial 
average score that is similar to the score that the user’s 
testing data should produce.  Additionally, we update this 
average as new testing blocks are checked by averaging 
the current testing block’s score, and all tested block 
scores previous to it, with the initial average produced by 
the training data.  We then take a percentage of that 
average as the threshold score.  This allows us to 
customize the threshold for each user so that if a 
particular user did not have consistently high scoring 
alignments with their user signature, this user’s testing 
blocks will not be unduly flagged as intrusions.  This, in 
particular, allows our algorithm to be somewhat forgiving 
of concept drift.   

We are also able to choose a threshold percentage 
which is appropriate with the amount of sensitivity which 
we would like to express in the detection process.  For 
instance, if we are more concerned with keeping a secure 
environment, then we would not mind an additional 
amount of false positive alarms in exchange for increased 
masquerade detection, so we can then use a higher 
percentage threshold so that the required alignment score 
would need be much closer to that user’s average score to 

be considered a non-intrusion.  Conversely, we can 
choose a lower threshold percentage, which would allow 
for a more lax security environment with less intrusive 
alerts by allowing the score to be significantly lower than 
the average of the user. 
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Figure 6: False negative and false positive vs. 
threshold percentage 

 

5.2 Comparison to Local Alignment 
 

As previously discussed, our semi-global alignment 
algorithm is actually a modification of the Smith-
Waterman local alignment algorithm [17].  By comparing 
our semi-global alignment algorithm to the original 
Smith-Waterman algorithm, we are able to identify the 
unique ability of our modified algorithm to detect 
masquerade attacks in the SEA data.  This comparison 
also gives us an indication of an appropriate length for the 
user’s signature. Good results for the local alignment 
algorithm, which were not achieved, would indicate that 
the tested block could be better aligned with a 
subsequence of the full 5000 command user signature 
sequence, rather than the full user signature. 

While the local alignment algorithm performs 
comparably with our modified semi-global algorithm in 
areas of low sensitivity (low false positive rates and low 
hit rates) and high sensitivity (high false positive rates and 
high hit rates), it falls significantly below the performance 
of our algorithm for median sensitivity, arguably the most 
significant area of detection because it provides the best 
trade-off between detection hit rates and false positive 
rates.  This indicates that using subsequences of the user’s 
signature provides no benefit to the detection process.  
Additionally, breaking the 5000 command user signature 
into subsequences introduces additional logistical 
problems for patterns which may cross subsequence 
boundaries.  It is, therefore, most intuitive to keep the 
5000 command user signature as one sequence, and to 
change the parameters of the alignment algorithm to 

f = number of false positives 
n = number of non-intrusion command sequence blocks  
u = number of users (50 in our case) 

false positiveoverall=([Σi
users (fi/ni)]/u)*100 

 
fn = number of false negatives 
n = number of intrusion command sequence blocks 
c = number of users who have at least one intrusion block 

false negativeoverall=([Σi
users(fni/ni)]/c)*100 

 
hit rateoverall  = 100 – false negativeoverall 



discourage gaps in the user signature, as we mentioned 
above, to provide an accurate alignment of the tested 
block to the user’s signature.  Similarly, it is intuitive to 
use a tested block size of 100 commands because the SEA 
data marks each 100 command block as an intrusion or a 
non-intrusion, and provides no information on which 
specific commands make up the intrusion.  This limits the 
tested block size to 100 commands, as larger or smaller 
block sizes could not be checked for correctness. 
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Figure 7: Hit rate as a function of false positive 
rate for semi-global and local alignment methods 

on SEA data 
 

5.3 Command Mismatch Scoring 
 

While the semi-global alignment algorithm works 
fairly well by not rewarding or punishing mismatches, 
these mismatches can be used to better determine how 
well the tested block aligns to the user’s signature, and 
therefore better tailor our algorithm to the problem of 
masquerade detection.  We can use a customized 
mismatch scoring system to allow for the possibility that 
the legitimate user may have interchanged one command 
with another in a particular alignment.  This allows us to 
punish commands that are not as likely to be interchanged 
while rewarding commands that have a good likelihood of 
being interchanged with each other. Figure 8 summarizes 
the mismatch score calculation. 

 

 
Figure 8: Mismatch score calculation 

 

We use the ratio of the number of times a particular 
command in the tested block actually occurs in the user’s 
signature to the expected number of occurrences a 
command in the user’s signature.  We then subtract 1 
from this ratio and limit the maximum score to 1.  This 
essentially puts the mismatch score on a real number scale 
from -1 to 1, such that if the tested block’s command 
never occurs, or occurs fewer times than the average 
command, we penalize the mismatch, but if the tested 
block’s command occurs more times than the expected 
average number of occurrences per command, we reward 
the mismatch.  Meanwhile, if the particular command has 
the same number of occurrences as the expected average 
number of occurrences per command, then we neither 
reward, nor penalize this mismatch, as it does not 
definitively indicate whether that command was entered 
by the legitimate user or from a masquerader. 

After implementing this mismatch scoring scheme, our 
results drastically improved over the previous semi-global 
algorithm where mismatches were neither rewarded, nor 
penalized.  Our selective reward and penalty of 
mismatched command alignments based on command 
frequency allows us to differentiate between a user and a 
masquerader by taking into account concept drift in our 
tested block sequences and allowing small variations in 
user activity based upon their past activity. 
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Figure 9: Hit rate as a function of false positive 
rate for semi-global with mismatch scoring and 

semi-global without mismatch scoring 
 

5.4 Overall Results 
 

After tuning the algorithm, as described above, we 
have produced a hit rate and false positive rate that are 
extremely competitive with other top masquerade 
detection algorithms.  The only algorithms that perform 
comparably with our current results are the Naïve Bayes 
algorithms.  All other algorithms perform somewhat worst 
than our current best results, and though they may fall 

M = Mismatch score 
S = # of occurrences of the intrusion block command in the 
 user’s signature 
C = # of distinct commands in the user’s signature 

 
M=[S/(5000/C)]-1 
If(M>=1){ M=1} 



near our Receiver Operator Characteristic (ROC) curve, 
their detection abilities are clearly far below our 75.8% hit 
rate [13]. 

 
Table 1: Comparisons to other algorithms 

 Algorithms Hit Rate 
False 
Positive 

Semi-Global Alignment 75.8% 7.7% 
Bayes 1-Step Markov 69.3% 6.7% 

Naïve Bayes (no updating) 66.2% 4.6% 

Naïve Bayes (updating) 61.5% 1.3% 

Hybrid Markov 49.3% 3.2% 

IPAM 41.1% 2.7% 

Uniqueness 39.4% 1.4% 

Sequence Matching 36.8% 3.7% 

Compression 34.2% 5.0% 
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Figure 10: ROC curve with comparison points 
 

6. Discussion & Future Work 
 

Bioinformatics, as an area of study, is peculiarly suited 
to create algorithms that can be applied in a myriad of 
fields.  The sequence alignment algorithms, as we 
discussed here, are actually specialized pattern matching 
algorithms, which, with some tuning, can be duly applied 
to many different fields in which pattern matching is 
applicable, intrusion detection in our case.  Our particular 
system is also equally applicable to graphic user interface 
(GUI) interactions, as those interactions can be broken 
down to various system calls, which would produce a set 
of system calls.  This set of system calls could then just as 
easily be analyzed by this algorithm to determine 
intrusions from GUI interactions. 

Wepsi et al. have also noticed this peculiar and novel 
use of bioinformatics algorithms in their use of the 
Teiresias pattern matching algorithm to flag abnormal 
Unix system calls that might indicate an attack on a Unix 
process [18].  While both our alignment algorithm and the 

Teiresias algorithm originated in the domain of 
bioinformatics, their approaches to detection vary 
considerably. In particular, we use sequence alignment to 
score similarity between command sequences whereas 
Wespi et al. use dominant patterns to classify abnormality 
in Unix processes. 

We have presented a novel implementation of a 
modified sequence alignment algorithm for the detection 
of masqueraders, and shown that, with appropriate 
customization and tuning, it performs competitively when 
compared to the top masquerade detection algorithms.  
While a significant amount of customization has been 
done to the generic Smith-Waterman local alignment 
algorithm to produce a good masquerade detection 
algorithm, there are still a number of additional metrics 
which we could use for improvements in our algorithm’s 
performance. 

One great advantage of using alignments to 
characterize similarity between command sequences is 
that the alignment can produce many different statistics.  
These statistics include the density of the alignment 
(alignment score divided by alignment length), the 
maximum, minimum, and average gap length, the total 
number of matching and mismatched commands, and the 
total number of gaps in each of the aligned subsequences.  
These statistics measure different aspects of the similarity 
and they can be used to further distinguish user 
subsequences from intruder subsequences. 

Though this algorithm’s initial false positive rate is 
somewhat lackluster, we much consider that this is a new 
method of intrusion detection, and as such, initial testing 
was needed to determine its viability.  While the 
alignment score is effective in identifying intruders, it 
often misidentifies user subsequences as an intruder.  This 
may be the result of uncharacteristic user behavior, which 
can be identified and ignored.  Fortunately, there may be 
subtle differences between uncharacteristic user behavior 
and intruder behavior, which can be detected by looking 
at the alignment statistics in a multidimensional space.  A 
multidimensional approach using several different 
alignment statistics could be a more powerful and robust 
mechanism for decreasing the false positive rate of our 
algorithm.  Additionally, the parameters of the scoring 
algorithm itself (gap penalties, mismatch scoring, and 
match scoring) can be tuned even further to allow for a 
more dynamic scoring system, similar to what has already 
been done with the mismatch scoring, to better separate 
legitimate user activity from malicious attack.  
Furthermore, this method is significantly different from 
other intrusion detection technologies, and it is, therefore, 
particularly well suited to coupling with existing intrusion 
detection technologies in a hybrid system that could 
provide even more impressive results. 
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