
Intrusion Detection: A Bioinformatics Approach

Scott Coull1

coulls@cs.rpi.edu
Joel Branch1

brancj@cs.rpi.edu
Boleslaw Szymanski1

szymansk@cs.rpi.edu
Eric Breimer2

ebreimer@siena.edu

1Rensselaer Polytechnic Institute
110 Eighth Street
Troy, NY 12180
(518) 276-8326

2Siena College
515 Loudon Road

Loudonville, NY 12211
(518) 786-5084

Abstract

This paper addresses the problem of detecting
masquerading, a security attack in which an intruder
assumes the identity of a legitimate user. Many
approaches based on Hidden Markov Models and various
forms of Finite State Automata have been proposed to
solve this problem. The novelty of our approach results
from the application of techniques used in bioinformatics
for a pair-wise sequence alignment to compare the
monitored session with past user behavior. Our algorithm
uses a semi-global alignment and a unique scoring system
to measure similarity between a sequence of commands
produced by a potential intruder and the user signature,
which is a sequence of commands collected from a
legitimate user. We tested this algorithm on the standard
intrusion data collection set. As discussed in the paper,
the results of the test showed that the described algorithm
yields a promising combination of intrusion detection rate
and false positive rate, when compared to published
intrusion detection algorithms.

Keywords

Intrusion detection, sequence alignment, bioinformatics,
masquerade detection, pattern matching

1. Introduction

In the field of computer security, one of the most
damaging attacks is masquerading, in which an attacker
assumes the identity of a legitimate user in a computer
system. Masquerade attacks typically occur when an
intruder obtains a legitimate user’s password or when a
user leaves their workstation unattended without any sort
of locking mechanism in place. It is difficult to detect this
type of security breach at its initiation because the

attacker appears to be a normal user with valid authority
and privileges. This difficulty underlines the importance
of equipping computer systems with the ability to
distinguish masquerading attacker actions from legitimate
user activities.

The detection of a masquerader relies on a user
signature, a sequence of commands collected from a
legitimate user. This signature is compared to the current
user’s session. The underlying assumption is that the user
signature captures detectable patterns in a user’s sequence
of commands. A sequence of commands produced by the
legitimate user should match well with patterns in the
user’s signature, whereas a sequence of commands
entered by a masquerader should match poorly with the
user’s signature. Designing algorithms to distinguish
legitimate users and masqueraders based on user
signatures has been extensively studied [12][14].

In this paper, we propose a new algorithm that uses
pair-wise sequence alignment to characterize similarity
between sequences of commands. Sequence alignment
has been extensively applied in the field of bioinformatics
as a tool for comparing genetic material [3][4]. Our
algorithm, which is a unique variation of the classic
Smith-Waterman algorithm [17], uses a novel scoring
scheme to construct a semi-global alignment. The
algorithm produces an effective metric for distinguishing
a legitimate user from a masquerader.

To provide a self-contained paper, we describe the
details of the intrusion detection problem and we
introduce the fundamental concepts of sequence
alignment. In subsequent sections, we describe the semi-
global alignment algorithm, the scoring scheme, and the
experimental results. We conclude with a discussion of
future work and improvements.

2. Background

2.1 Intrusion Detection

Standard security deployments such as firewalls,
patched operating systems and password protection are
limited in their effectiveness because of the evolving
sophistication of intrusion methods and their increasing
ability to break through entry points of a guarded
infrastructure [10]. An intrusion detection system (IDS)
addresses the layer of security following the failure of the
prior devices. This layer usually monitors any number of
data sources (i.e., audit logs, keystrokes, network traffic)
for signs of inappropriate or anomalous behavior. Since
attacks occurring at this level are sophisticated enough to
bypass entry point protection, advanced algorithms and
frameworks for detection are required to prevent total
subversion of critical resources. While no computer or
network is entirely secure, intrusion detection is essential
for any computer-based infrastructure, in which the value
of its assets draws the attention of potential attackers.
Traditionally, there have been two main classes of IDSs:
host-based and network-based systems. A host-based IDS
monitors the detailed activity of a particular host.
Depending on the specific IDS implementation, any
number of data sources can be used to search for
malicious activity. Solaris Basic Security Module (BSM)
provides system call traces which are typically used as
datasets for host-based IDSs [15]. For instance, when an
analysis of the BSM data shows signs of an intrusion, the
IDS alerts the system administrator of an attack. In other
implementations, host-based systems also use such
identifying information as a user’s keystrokes and
command execution patterns.

Network-based IDSs monitor networks of computers
and other devices (i.e., routers and gateways) that are
normally subject to attacks. Subsequently, rather than
using machine and process-oriented data, such as that
from BSM, network-based IDSs primarily use data from
network traffic in detecting intrusions. The most popular
program used to capture network traffic is tcpdump,
which can display or store every field belonging to a TCP
packet [7]. Different implementations of network-based
IDSs may serve different functions. For instance, some
network-based systems may monitor only the traffic
activity of a single host, while distributed tools may
analyze the aggregate traffic information from a range of
devices on the same network. To prevent confusion, we
use data-centric definitions in distinguishing between host
and network-based IDSs.

Network and host-based IDSs, can be further
classified based on two methods of detection: anomaly
detection and penetration identification. The former
method attempts to differentiate “anomalous” activity

from the established normal operating behavior of a
computer system, application, or user. Thus, in general,
the IDS must first train on data representing normal
behavior before it can be deployed in an operative
detection mode. The principle advantage of an anomaly
detection system is that it can detect previously unknown
attacks [8]. Considering this, anomaly-based systems are
strongly applicable to masquerade detection, which is the
problem of focus in this paper. Penetration identification
(often referred to as misuse detection) is the second major
detection technique. After a “signature” is defined that
identifies a manifestation of an attack, the attack can be
discovered in either monitored network traffic or host-
based audit trails. Penetration identification systems
typically yield fewer false alarms; however, they require
continuous updates, as their signature databases may
become outdated fairly quickly.

There are many types of host and network intrusion
attacks. Intrusion classifications can be based on intent.
For instance, the denial-of-service attack aims to either
completely shut down or degrade the performance of a
network, computer or process. Remote-to-local attacks are
used by assailants who attempt to illegally gain access to
a machine on which they have no account. These attacks
target one specific resource. On the other hand,
surveillance (or scan) attacks use distributed software to
find vulnerabilities across hundreds of machines. In 1998,
a seminal study was performed by DARPA to evaluate
the performance of various IDSs in detecting these
attacks. Specific details about the attacks and IDS
evaluation are available in [9].

In our work, we focus on masquerade attacks in which
an assailant attempts to impersonate a legitimate user after
gaining access to this legitimate user’s account.
Masquerade attacks often arise after a successful remote-
to-local attack; however, masquerading can also result
from far simpler means. An example is a temporarily
unattended workstation with a legitimate user logon
session still active and unlocked. Anyone can access such
a workstation and all resources accessible through the
logon account. The broad range of damage that can be
performed via masquerade attacks (i.e., stolen documents,
data, or email) makes them one of the most serious threats
to computer and network infrastructure.

Matching the potentially devastating costs of
masquerade attacks is the difficulty in successfully
detecting them. As stated previously, masquerade
detection falls under the cover of anomaly detection,
which already poses a challenge in implementation alone.
Masquerade detection adds another layer of complexity to
the problem. A masquerader may happen to have similar
behavioral patterns as the legitimate user of an account to
which he or she is currently logged therefore escaping
detection and successfully causing damage under the
cover of seemingly normal behavior. Another problem is

caused by computer users’ tendency toward concept
drift—a change in activity that is not captured strongly in
the original user signature. As a result legitimate user
command sequences may differ enough from the
signature to appear to be an intrusion. In the following,
we will refer to missed attacks as false negatives and to
false alarms as false positives.

There have been numerous attempts at successfully
detecting masquerade attacks (minimizing false
negatives) without degrading the quality of a user’s
session (minimizing false positives). A seminal work by
Schonlau et al. [14] analyzes the performance of various
masquerade detection methods. Results showed that the
method yielding the lowest number of false alarms was
uniqueness, which had a false positive rate of 1.4%.
However, it had a false–negative rate of 60.0%. Another
good performer was the Bayes one-step Markov with a
false positive rate of 6.7% and a false negative rate of
30.7%. In another paper [12], Maxion and Townsend
analyzed the sources of error made by the detection
mechanisms covered by Schonlau et al. and proposed
several improved methods, among which the Naïve Bayes
with updates yielded excellent 1.3% of false positive rate
with a respectable 38.5% of false negative rate.

We choose to depart from Schonlau and Maxion’s
approach in trying to detect masquerade attacks with
greater accuracy by unconventional methods. Most
masquerade detection attempts begin with an analysis of a
user’s command sequences, which is a logical step. This
type of data represents a user feature often termed as
biometric [1]. The behavioral features of biometrics, in
general, include such characteristics as handwriting and
speech patterns, inapplicable for computer masquerading.
The physiological features include fingerprints and eye
color—things that do not change over time but are not
available for remote computer sessions. User’s command
sequences on a computer system will of course change
over time, but an adequate record of his or her normal
behavior will capture most sequence variations.
Nonetheless, the classification of the data used for
detection led us to an appropriate class of algorithms and
mechanisms for effective detection: bioinformatics.

2.2 Sequence Alignment

Sequence alignment is a well-studied tool used to
quantify and visualize similarity between sequences.
Sequence alignment has been most prominently applied in
the comparison of genetic material such as DNA, RNA,
and protein sequences [4]. The applications of sequence
alignment include searching sequence databases for
specific genes or patterns [3], and discovering
phylogenetic relationships through the use of multiple
alignments [2].

Sequence alignment is a generalization of the classic
longest common subsequence problem (lcs). Given two
strings A = a1a2...am and B = b1b2...bn, with m <= n, over
some alphabet Σ of size s, the lcs-problem is to find a
sequence of greatest possible length that can be obtained
from both A and B by deleting zero or more (not
necessarily adjacent) characters. Alternatively, the lcs-
problem can be described as the problem of aligning two
strings in order to maximize the number of matching
characters by inserting gaps into either string in order to
shift the characters into matching alignment.

The length of the longest common subsequence is an
intuitive measure of similarity between two strings [17].
To improve its capabilities as a tool for comparison, a
scoring function can be used to rank different alignments
so that biologically plausible alignments score higher. The
scoring function assigns positive scores to aligned
characters that either match or are known to be similar.
Negative scores are assigned to both aligned characters
that are dissimilar and characters that are aligned with
gaps. Typically, the score of an alignment is the sum of
the scores of each aligned pair of symbols. The task of
optimal sequence alignment is to find the highest scoring
alignment for a given scoring function and pair of strings.
An efficient dynamic programming algorithm for optimal
sequence alignment was first presented by Needleman
and Wunsch [13]. Similar to the length of the longest
common subsequence, the alignment score serves as a
metric for quantifying similarity among input strings.
Alignments are not only a useful metric for measuring
similarity, but the alignments themselves serve as an
important visual tool in assessing the similarity. Figure 1
shows an example of a typical alignment where a dash
indicates a gap and a vertical bar indicates a character
match.

Figure 1: Example of sequence alignment

While computing the optimal alignment of two strings
has proven to be a useful tool in the comparison of entire
strings, it is often important to identify more subtle types
of similarity. While two strings may not possess
homogeneity over their entire length, they may contain
smaller substrings that are highly similar. To
accommodate for this possibility, Smith and Waterman
[16] designed a modification of the Needleman-Wunsch
alignment algorithm to compute a local alignment.
Rather than align two strings over their entire length, the
local alignment algorithm aligns a substring of each input

--GTGACATGCGAT--AAGAGG---CCTT--AGATCCGGATCTT
 | ||| |||||| ||| |||| ||||| | ||||

GGGAGAC-TGCGATACAAG---TTACCTTGTAGATCTG—TCTT

Key: - gap
| match

string. Given a scoring function and two strings A =
a1a2...am and B = b1b2...bn, with m <= n, the local
alignment problem is to find substrings α and β of A and
B, respectively, whose alignment score is maximum over
all possible pairs of substrings from A and B.

Previously, an alignment implied that every character
from one string had to be aligned with either a character
from the other string or a gap. Thus, every character in
the two input strings contributed to score of the optimal
alignment. This type of an alignment is referred to as a
global alignment. In a local alignment, only the
characters in the two aligned substrings contribute to the
score of the optimal alignment. Thus, for each string, a
suffix and a prefix are ignored by the scoring system.
Figure 2 shows the difference between a global and local
alignment. By allowing a suffix and prefix to be ignored,
a local alignment can discover subtle regions of similarity
that may go undetected by a global alignment algorithm.
While this problem appears to be much more difficult in
terms of complexity, the Smith-Waterman local alignment
algorithm is only a slight modification of the Needleman-
Wunsch global alignment algorithm.

Figure 2: Global alignment vs. local alignment

Global alignment is the tool of choice when
comparing two strings that are believed to possess overall
similarity. Typically, the two strings are approximately
equal in length. Whereas, local alignment is the tool of
choice when comparing two strings whose lengths are
significantly different. Local alignment allows a
substring of the larger input string to be matched to the
smaller string. Typically, a global alignment algorithm
would fail to identify such similarity since most of the
characters from the longer string would have to be aligned
with gaps resulting in a negative score.

There are applications where neither local nor global
alignment is appropriate for characterizing the types of
similarity that may arise. These types of alignments are
often referred to as semi-global. In a local alignment, both
a prefix and suffix of both input strings can be ignored.
Thus, the alignment only involves a substring of each of
the two input strings. In a semi-global alignment, you can
choose to align only prefixes or suffixes of the original
input strings. In Figure 3, the first alignment allows only
prefixes to be ignored, whereas the second alignment only
allows suffixes to be ignored.

Figure 3: Examples of semi-global alignments

3. Detection Algorithm

3.1 Overview

In the field of bioinformatics, sequence alignment is
used to determine the similarity between two DNA or
protein sequences, in a global, semi-global, or local
context, by aligning the nucleotides or amino acids in
each sequence, and producing a score that indicates how
well the sequences align with one another, and,
consequently, how similar they are. We can use this
concept to align sequences of commands, rather than
nucleotides or amino acids, and produce a score that
indicates how similar the two command sequences are to
one another. By aligning a small segment of commands
with the user’s signature, we can use the score of the
alignment as an indicator of the presence of an intrusion
within the segment that we are testing.

There are a number of factors that predispose these
sequence alignment algorithms for use in masquerade
detection, namely their abilities to find high-level patterns
within the alignment data and the sheer number of
parameters that can be changed to suit different types of
data. These parameters can be changed to allow for
different alignments of the data, which can then bring
about new high-level pattern matching. In particular, we
can use these properties not only to match commands, but
also to match generalized patterns that a user might be
prone to over the course of a number of computing
sessions. In this way, we are able to more readily judge
how indicative a sequence of commands is of a user, not
just by the commands themselves, but also by the high-
level patterns embedded within the commands.

3.2 Alignment Algorithm

To use a sequence alignment in the detection of a
masquerading user, we use a modification of the Smith-
Waterman local alignment algorithm to compute a semi-
global alignment. The problem with using a purely local
alignment to characterize similarity between command
sequences is that both a prefix and suffix can be ignored
in both sequences. For intrusion detection, it is critical

Global Alignment:
--AGATCCGGATGGT--GTGACATGCGAT--AAG--AGGCGTT
 ||| | | | ||||| |||||| ||| | | ||
GTCCATCTG--TCTTGGGTGAC-TGCGATACAAGTTA--CCTT

Local Alignment:
--AGATCCGGATGGT--GTGACATGCGATA--AG--AGGCGTT
 ||||| |||||||
GTCCATCTG--TCTTGGGTGAC-TGCGATACAAGTTA--CCTT

that we align the majority of the tested block of
commands to the user’s signature. If we were to allow a
large prefix and large suffix of the tested block of
commands to be ignored then the intrusion itself might be
ignored. The problem with using a purely global
alignment is that there may be large portions of the
signature that do not necessarily align with a segment of
the user’s commands. Thus, we want to design a scoring
system that rewards the alignment of commands in the
user segment but does not necessarily penalize the
misalignment of large portions of the signature. In the
remainder of this section the signature sequence, which
represents the user’s typical command behavior, will be
referred to as the UserSig. The monitored command
sequence, which may contain a possible subsequence of
masquerader commands, will be referred to as the
IntrBlck (tested block).

The algorithm, shown in Figure 4, starts by initializing
a matrix of floats, which is used to store the score
throughout the alignment process. Each position (i, j) in
the matrix corresponds to the optimal score of an
alignment ending at UserSigi and IntrBlckj. This optimal
score is computed by starting at the upper left corner of
the matrix (i.e., at the point (0,0)) and then recursively
making a step yielding the maximum from the three
following options:

Option 1 (diagonal step): The score ending at position
(i-1,j-1) plus matchScore(UserSigi,IntrBlckj), which is
a penalty or reward for aligning the UserSig’s ith
command with the IntrBlck’s jth command.

Option 2 (top-down step): The score ending at position
(i, j-1) plus gUserSig, which is the penalty for
introducing a gap into the UserSig.

Option 3 (left-right step): The score ending at position
(i-1,j) plus gIntrBlck, which is the penalty for
introducing a gap into the IntrBlck.

If Option 1 yields the largest value, then the optimal
alignment matches UserSigi with IntrBlckj. If Option 2 or
Option 3 yields the largest score, then the optimal
alignment associates either UserSigi or IntrBlckj with a
gap.

There are three essential parameters used in the
scoring system. The matchScore(UserSigi,IntrBlckj)
function returns a negative value if the two commands do
not match well and a positive value if they do. The
gUserSig and gIntrBlck are negative gap penalties
associated with inserting gaps into the UserSig and
IntrBlck, respectively.

If Option 1 or Option 2 results in a negative value,
then the alignment score is reset to zero. This zeroing of
the score allows a prefix of both the UserSig and IntrBlck
to have an arbitrary number of un-penalized gaps. The
assumption is that a portion of the UserSig can be ignored
without penalty. Since the UserSig is significantly longer
than the IntrBlck, it is expected that most of the
commands in the UserSig will not participate in the
alignment. Also, a small portion of the IntrBlck can be
ignored. However, there is a difference in ignoring
portions of UserSig and IntrBlck, since a high alignment
score should not be achievable if a large portion of the
IntrBlck is ignored. Thus, any alignment that ignores a
large prefix of the IntrBlck should have a relatively low
score. Similarly, when the algorithm reaches the right-
most column or the bottom-most row of the matrix, the
gap penalty is not applied. Thus, either a suffix of the
UserSig or a suffix of the IntrBlck is ignored. Once
again, if the latter is true then the alignment score will be
relatively low.

Figure 4: Semi-global alignment algorithm

Input: string UserSig of length m, string IntrBlck of length n
1. Initialize a matrix, D, of type integer
2. for i=0 to m
3. for j=0 to n
4. if(j=0 or i=0)
5. D[i][j]=0;
6. else
7. if(j=n or i=m)
8. top=D[i][j-1];
9. left=D[i-1][j];
10. else
11. top=D[i][j-1] – gUserSig;
12. left=D[i-1][j] – gIntrBlck;
13. if(top<0) top=D[i][j-1];
14. if(left<0) left=D[i-1][j];
15. diagonal=D[i-1][j-1] + matchScore(UserSigi-1,IntrBlckj-1);
16. D[i][j]=maximum(top,left,diagonal);
17. return D[m][n];

Each gap inserted into the UserSig corresponds to an
IntrBlck command that is ignored. Similarly, each gap
inserted into the IntrBlck corresponds to the ignored
UserSig command. To minimize the number of ignored
IntrBlck commands, the gUserSig penalty is set higher
than the gIntrBlck penalty. The overall scoring scheme is
designed to reward an IntrBlck that can be almost entirely
aligned to the UserSig with a minimal number of gaps and
mismatches.

In order to understand this algorithm’s viability in a
real-time environment, we must consider its time
complexity, so that we can determine how quickly it will
be able to run. Our algorithm, like the original Smith-
Waterman algorithm, has a time and space complexity of
O(mn), where m is the size of the UserSig and n is the size
of the IntrBlck. In general, this is not a very quick
algorithm; however, in the case of the masquerade
problem, our set of data is relatively small, and, therefore,
doesn’t hamper the real-time discovery of intruders. In
specific, we have a UserSig size of 5000 and an IntrBlck
size of 100 for each test, so we then have 500,000
iterations, which a modern computer could perform in
less than a second. Additionally, we must consider that
the use of commands by a user will not occur at such a
fast rate as to cause the time complexity of this algorithm
to become a factor in the detection of intruders.

3.3 Scoring Scheme Determination

The goal of our alignment algorithm is to match
characteristic groups of commands in a tested block with
similar groups in the user’s signature. This requires that
we heavily penalize any gaps that may be inserted into the
user signature, as we do not want commands in the tested
block to be aligned with gaps in the user’s signature.
Similarly, we would like to be able to insert gaps into the
tested block to simulate the insertion of commands
between characteristic groups of commands in the user’s
signature. This requires that we provide a slightly lesser
penalty for gaps in the tested block. Matches should
positively influence the score of an alignment, and should
be chosen so that matches are preferred to gaps.
Mismatches are kept at a constant score of 0, as a blanket
reward or penalty for any mismatch would unfairly favour
certain alignments, and would not disallow concept drift.

Given the above criteria, we chose scores of +1 for a
match between two aligned commands, -2 for a gap
placed in the tested block, -3 for a gap placed in the user’s
signature, and, of course, 0 for a mismatch between
aligned commands. This scoring scheme appears to
provide very reasonable detection and false positive rates,
and is intuitively suited to the requirements of our
problem.

4. Experiment Overview

4.1 SEA Data

To facilitate comparison with other masquerade
detection algorithms, we have chosen to use the
masquerade data provided by Schonlau et al. [15],
abbreviated to SEA, as a basis for our experimentation.
The SEA data was created using the UNIX acct auditing
utility, which records user’s commands augmented with
other metrics of interest. For our use, we only concern
ourselves with the command entries that have been
produced by this utility. The SEA data provides 50
blocks of 100 commands each (5000 total commands) for
each user, which can be assumed to be intrusion-free and
are used as training data for our system. In addition, we
are provided with 100 blocks of 100 commands each
(10000 total commands) for each user, in which we must
determine if a masquerade attack has occurred. To create
this data, commands were taken from 70 individual users,
and separated into two groups. One group, made up of 50
users, was used as our test subjects, while the other group,
made up of the remaining 20 users, had their commands
interspersed into the data of the 50 user test group. The
data from the 20 users was to be used as the masquerade
data to be detected. The SEA data has been the de facto
standard for masquerade detection algorithm testing
thanks to its wide-spread use and the difficulty of
obtaining alternative data due to privacy concerns. As a
result, SEA data is the obvious choice for our tests.

4.2 Experiment Metrics and Parameters

Our experimentation focuses on the effects of
changing the various parameters of the alignment
algorithm on the false positive and false negative rates.
One of the benefits of this particular approach is the sheer
number of tunable parameters. These parameters include:
reward for matches, penalties for gaps inserted into the
user’s signature or into the tested blocks, rewards or
penalties for mismatches, the threshold score for detection
of intrusions, user signature length, and tested block
length.

To best facilitate comparison with other masquerade
detection algorithms, we use false positive rate, false
negative rate, and hit rate metrics to determine how well
our alignment algorithm performed. A false positive is a
non-intrusion block that the algorithm labeled as
containing an intrusion. A false negative is an intrusion
block that the algorithm has labeled as non-intrusion.
Finally, a hit is an intrusion block that the algorithm has
properly labeled as containing an intrusion. False

positives, false negatives and hits are computed for each
user, transformed into corresponding rates, which are then
summed and averaged over all 50 users. Figure 5
summarizes the metric calculations used by the algorithm.

Figure 5: Metric calculations

5. Results

5.1 Threshold Determination

To facilitate proper detection, a threshold score must
be determined to define at which point a score is
indicative of an attack. Rather than choosing an arbitrary
and static threshold score, we decided instead to
determine the initial threshold score for each user by
cross-validating the user’s signature against itself. We do
this by taking 20 randomly chosen, 100 command
sections of the user’s signature and aligning it to a
randomly chosen 1000 command section of the same
user’s signature. This allows us to create an initial
average score that is similar to the score that the user’s
testing data should produce. Additionally, we update this
average as new testing blocks are checked by averaging
the current testing block’s score, and all tested block
scores previous to it, with the initial average produced by
the training data. We then take a percentage of that
average as the threshold score. This allows us to
customize the threshold for each user so that if a
particular user did not have consistently high scoring
alignments with their user signature, this user’s testing
blocks will not be unduly flagged as intrusions. This, in
particular, allows our algorithm to be somewhat forgiving
of concept drift.

We are also able to choose a threshold percentage
which is appropriate with the amount of sensitivity which
we would like to express in the detection process. For
instance, if we are more concerned with keeping a secure
environment, then we would not mind an additional
amount of false positive alarms in exchange for increased
masquerade detection, so we can then use a higher
percentage threshold so that the required alignment score
would need be much closer to that user’s average score to

be considered a non-intrusion. Conversely, we can
choose a lower threshold percentage, which would allow
for a more lax security environment with less intrusive
alerts by allowing the score to be significantly lower than
the average of the user.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Threshold Percentage

P
er

ce
nt

a
ge

False Negative False Positive

Figure 6: False negative and false positive vs.
threshold percentage

5.2 Comparison to Local Alignment

As previously discussed, our semi-global alignment
algorithm is actually a modification of the Smith-
Waterman local alignment algorithm [17]. By comparing
our semi-global alignment algorithm to the original
Smith-Waterman algorithm, we are able to identify the
unique ability of our modified algorithm to detect
masquerade attacks in the SEA data. This comparison
also gives us an indication of an appropriate length for the
user’s signature. Good results for the local alignment
algorithm, which were not achieved, would indicate that
the tested block could be better aligned with a
subsequence of the full 5000 command user signature
sequence, rather than the full user signature.

While the local alignment algorithm performs
comparably with our modified semi-global algorithm in
areas of low sensitivity (low false positive rates and low
hit rates) and high sensitivity (high false positive rates and
high hit rates), it falls significantly below the performance
of our algorithm for median sensitivity, arguably the most
significant area of detection because it provides the best
trade-off between detection hit rates and false positive
rates. This indicates that using subsequences of the user’s
signature provides no benefit to the detection process.
Additionally, breaking the 5000 command user signature
into subsequences introduces additional logistical
problems for patterns which may cross subsequence
boundaries. It is, therefore, most intuitive to keep the
5000 command user signature as one sequence, and to
change the parameters of the alignment algorithm to

f = number of false positives
n = number of non-intrusion command sequence blocks
u = number of users (50 in our case)

false positiveoverall=([Σi
users (fi/ni)]/u)*100

fn = number of false negatives
n = number of intrusion command sequence blocks
c = number of users who have at least one intrusion block

false negativeoverall=([Σi
users(fni/ni)]/c)*100

hit rateoverall = 100 – false negativeoverall

discourage gaps in the user signature, as we mentioned
above, to provide an accurate alignment of the tested
block to the user’s signature. Similarly, it is intuitive to
use a tested block size of 100 commands because the SEA
data marks each 100 command block as an intrusion or a
non-intrusion, and provides no information on which
specific commands make up the intrusion. This limits the
tested block size to 100 commands, as larger or smaller
block sizes could not be checked for correctness.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

False Positive %

H
it

 %

Semi-Global Alignment Local Alignment

Figure 7: Hit rate as a function of false positive
rate for semi-global and local alignment methods

on SEA data

5.3 Command Mismatch Scoring

While the semi-global alignment algorithm works
fairly well by not rewarding or punishing mismatches,
these mismatches can be used to better determine how
well the tested block aligns to the user’s signature, and
therefore better tailor our algorithm to the problem of
masquerade detection. We can use a customized
mismatch scoring system to allow for the possibility that
the legitimate user may have interchanged one command
with another in a particular alignment. This allows us to
punish commands that are not as likely to be interchanged
while rewarding commands that have a good likelihood of
being interchanged with each other. Figure 8 summarizes
the mismatch score calculation.

Figure 8: Mismatch score calculation

We use the ratio of the number of times a particular
command in the tested block actually occurs in the user’s
signature to the expected number of occurrences a
command in the user’s signature. We then subtract 1
from this ratio and limit the maximum score to 1. This
essentially puts the mismatch score on a real number scale
from -1 to 1, such that if the tested block’s command
never occurs, or occurs fewer times than the average
command, we penalize the mismatch, but if the tested
block’s command occurs more times than the expected
average number of occurrences per command, we reward
the mismatch. Meanwhile, if the particular command has
the same number of occurrences as the expected average
number of occurrences per command, then we neither
reward, nor penalize this mismatch, as it does not
definitively indicate whether that command was entered
by the legitimate user or from a masquerader.

After implementing this mismatch scoring scheme, our
results drastically improved over the previous semi-global
algorithm where mismatches were neither rewarded, nor
penalized. Our selective reward and penalty of
mismatched command alignments based on command
frequency allows us to differentiate between a user and a
masquerader by taking into account concept drift in our
tested block sequences and allowing small variations in
user activity based upon their past activity.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60%
False Positive %

H
it

 %

Semi-Global Alignment (No Mismatch) Semi-Global Alignment (Mismatch)

Figure 9: Hit rate as a function of false positive
rate for semi-global with mismatch scoring and

semi-global without mismatch scoring

5.4 Overall Results

After tuning the algorithm, as described above, we
have produced a hit rate and false positive rate that are
extremely competitive with other top masquerade
detection algorithms. The only algorithms that perform
comparably with our current results are the Naïve Bayes
algorithms. All other algorithms perform somewhat worst
than our current best results, and though they may fall

M = Mismatch score
S = # of occurrences of the intrusion block command in the
 user’s signature
C = # of distinct commands in the user’s signature

M=[S/(5000/C)]-1
If(M>=1){ M=1}

near our Receiver Operator Characteristic (ROC) curve,
their detection abilities are clearly far below our 75.8% hit
rate [13].

Table 1: Comparisons to other algorithms

 Algorithms Hit Rate
False
Positive

Semi-Global Alignment 75.8% 7.7%
Bayes 1-Step Markov 69.3% 6.7%

Naïve Bayes (no updating) 66.2% 4.6%

Naïve Bayes (updating) 61.5% 1.3%

Hybrid Markov 49.3% 3.2%

IPAM 41.1% 2.7%

Uniqueness 39.4% 1.4%

Sequence Matching 36.8% 3.7%

Compression 34.2% 5.0%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

False Positive %

H
it

 %

Bayes 1-Step Markov Naïve Bayes (update)
Naïve Bayes (no update) Uniqueness
Hybrid Markov IPAM
Sequence Matching Compression
Semi-Global Alignment (Mismatch)

Figure 10: ROC curve with comparison points

6. Discussion & Future Work

Bioinformatics, as an area of study, is peculiarly suited
to create algorithms that can be applied in a myriad of
fields. The sequence alignment algorithms, as we
discussed here, are actually specialized pattern matching
algorithms, which, with some tuning, can be duly applied
to many different fields in which pattern matching is
applicable, intrusion detection in our case. Our particular
system is also equally applicable to graphic user interface
(GUI) interactions, as those interactions can be broken
down to various system calls, which would produce a set
of system calls. This set of system calls could then just as
easily be analyzed by this algorithm to determine
intrusions from GUI interactions.

Wepsi et al. have also noticed this peculiar and novel
use of bioinformatics algorithms in their use of the
Teiresias pattern matching algorithm to flag abnormal
Unix system calls that might indicate an attack on a Unix
process [18]. While both our alignment algorithm and the

Teiresias algorithm originated in the domain of
bioinformatics, their approaches to detection vary
considerably. In particular, we use sequence alignment to
score similarity between command sequences whereas
Wespi et al. use dominant patterns to classify abnormality
in Unix processes.

We have presented a novel implementation of a
modified sequence alignment algorithm for the detection
of masqueraders, and shown that, with appropriate
customization and tuning, it performs competitively when
compared to the top masquerade detection algorithms.
While a significant amount of customization has been
done to the generic Smith-Waterman local alignment
algorithm to produce a good masquerade detection
algorithm, there are still a number of additional metrics
which we could use for improvements in our algorithm’s
performance.

One great advantage of using alignments to
characterize similarity between command sequences is
that the alignment can produce many different statistics.
These statistics include the density of the alignment
(alignment score divided by alignment length), the
maximum, minimum, and average gap length, the total
number of matching and mismatched commands, and the
total number of gaps in each of the aligned subsequences.
These statistics measure different aspects of the similarity
and they can be used to further distinguish user
subsequences from intruder subsequences.

Though this algorithm’s initial false positive rate is
somewhat lackluster, we much consider that this is a new
method of intrusion detection, and as such, initial testing
was needed to determine its viability. While the
alignment score is effective in identifying intruders, it
often misidentifies user subsequences as an intruder. This
may be the result of uncharacteristic user behavior, which
can be identified and ignored. Fortunately, there may be
subtle differences between uncharacteristic user behavior
and intruder behavior, which can be detected by looking
at the alignment statistics in a multidimensional space. A
multidimensional approach using several different
alignment statistics could be a more powerful and robust
mechanism for decreasing the false positive rate of our
algorithm. Additionally, the parameters of the scoring
algorithm itself (gap penalties, mismatch scoring, and
match scoring) can be tuned even further to allow for a
more dynamic scoring system, similar to what has already
been done with the mismatch scoring, to better separate
legitimate user activity from malicious attack.
Furthermore, this method is significantly different from
other intrusion detection technologies, and it is, therefore,
particularly well suited to coupling with existing intrusion
detection technologies in a hybrid system that could
provide even more impressive results.

7. References

[1] Ashbourn, J. Biometrics: advanced identity identification:
the complete guide. Springer-Verlag, London, 2000.

[2] Carrillo, H., and Lipman, D. The multiple sequence
alignment problem in biology. SIAM Journal of Applied
Math 48(5): 1073-1082, 1988.

[3] Gelfand. M., Mironov, A., and Pevzner, P. Gene
recognition via splices sequence alignment. Proc. Natl.
Acad. Sci. USA, 93: 9061-9066, 1996.

[4] Goad, W., and Kanehisa, M. Pattern recognition in nucleic
acid sequences: a general method for finding local
homologies and symmetries. Nucleic Acids Research, 10:
247-263, 1982.

[5] Hirshberg, D. S. Algorithms for the longest common
subsequence problem. Journal of the ACM, 24: 664-675,
1977.

[6] Hubbard, T., Murzin, A., Brenner, S., and Chothia, C.
Scop: a structural classification of proteins database.
Nucleic Acids Research, 25: 236-239, 1997.

[7] Jacobson, V., Leres, C., and McCanne S. Tcpdump, June
1989. Available via anonymous FTP from ftp.ee.lbl.gov.

[8] Kemmerer, R. A., and Vigna, G. Intrusion detection: a brief
history and overview. IEEE Security & Privacy, 2002.
URL http://computer.org/computer/sp/articles/kem/

[9] Lippmann, R., Cunningham, R. K., Fried, D. J., Graf, I.,
Kendall, K. R., Webster, S. E., and Zissman, M. A. Results
of the darpa 1998 offline intrusion detection evaluation.
Recent Advances in Intrusion Detection, 1999, Second
International Workshop, RAID 1999.

[10] Loshin, P. Intrusion detection. Computer World, April
2001. URL
http://www.computerworld.com/hardwaretopics/hard
ware/story/0,10801,59611,00.html.

[11] Marchette, D. J. Computer intrusion detection and network
monitoring. Springer-Verlag New York, Inc., New York
NY, 2001.

[12] Maxion, R. A. and Townsend, T. N. Masquerade detection
using truncated command lines. Proceeedings of the
International Conference on Dependable Systems and
Networks (DSN-02), 219-228, Washington, D.C., June
2002. IEEE Computer Society Press, Los Alamitos,
California.

[13] Needleman, S. and Wunch, C. A general method applicable
to the search for similarities in the amno acid sequences of
two proteins. Journal of Molecular Biology, 48: 444-453,
1970.

[14] Schonlau, M., DuMouchel, W., Ju, W., Karr, A. F., Theus,
M., and Vardi, Y. Computer intrusion: detecting
masquerades. Statistical Science, 16(1): 58-74, February
2001.

[15] S.M. Inc. Sunshield basic security module guide, solaris 7.
Sun Part No. 8052635-10, October 1998.

[16] Smith, T. F. and Waterman, M. S. Identification of
common molecular subsequences. Journal of Molecular
Biology, 147: 195-197, 1981.

[17] Wagner, R. A. and Fisher, M. J. The string-to-string
correction problem. Journal of the ACM, 21:168-173,
1974.

[18] Wepsi, A., Dacier, M., and Debar, H. (1999) ‘An
Intrusion-Detection System Based on the Teiresias Pattern-
Discovery Algorithm’ EICAR 1999 Best Paper
Proceedings

