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ABSTRACT Edge computing provides off-load computing and application services close to end-users, greatly reducing 
cloud pressure and communication overhead. However, wireless edge networks still face the risk of network attacks. To 
ensure the security of wireless edge networks, we present Federated Learning-based Attention Gated Recurrent Unit 
(FedAGRU), an intrusion detection algorithm for wireless edge networks. FedAGRU differs from current centralized 
learning methods by updating universal learning models rather than directly sharing raw data among edge devices and a 
central server. We also apply the attention mechanism to increase the weight of important devices, by avoiding the upload 
of unimportant updates to the server, FedAGRU can greatly reduce communication overhead while ensuring learning 
convergence. Our experimental results show that, compared with other centralized learning algorithms, FedAGRU 
improves detection accuracy by approximately 8%. In addition, FedAGRU’s communication cost is 70% less than other 
federated learning algorithms, and it exhibits strong robustness against poisoning attacks. 

INDEX TERMS wireless edge, intrusion detection, federated learning, gated recurrent unit

I. INTRODUCTION 

Nowadays, with the sharp increasement of traffic and number of 
users in wireless communication networks, the crowded 
backbone networks have suffered heavy workloads. The high 
latency and loss caused by the traditional cloud computing 
model can no longer meet the requirements of massive data 
processing. In response to this challenge, WENs (Wireless Edge 
Networks) are proposed [1]. A WEN migrates part of the 
network functions and data processing originally located in a 
core network to the edge of the network closer to the end-user. 

WENs face several challenges with respect to network 
security and performance [2]. The wireless channel 
characteristics of WENs make the connections unstable and 
vulnerable to malicious intrusion. Therefore, accurate intrusion 
detection algorithms are required to ensure data security and 
network performance. Most of the existing intrusion detection 
algorithms are centralized learning methods; thus, in the process 
of uploading massive data to the server, model performance is 
easily affected by unstable and low-speed transmission channels. 
The authors of [3] also pointed out that common machine 
learning algorithms usually follow the assumption that the data 
are IID (independent and identically distributed) as part of their 
derivation. However, in actual networks (especially edge 
networks), the device-generated data are typically non-IID (non-
independent and uniformly distributed). Training on non-IID 
data with existing machine learning methods leads to low model 
accuracy and model convergence failure [4]. 

This paper proposes a federated learning intrusion detection 
model called FedAGRU that adopts to wireless edge networks. 
FedAGRU uses the computing resources of edge devices and 

local data sets for model training and uploads model parameters 
to a server for collaborative training. Compared with traditional 
centralized learning methods, FedAGRU does not require the 
transmission of original data to a central server. Consequently, 
the risk of data leakage is reduced while ensuring model 
accuracy. The FedAGRU algorithm uses the attention 
mechanism to improve its overall convergence speed and 
communication efficiency. We use three real network data sets 
to evaluate our method on both IID and non-IID data samples. 
FedAGRU achieves better detection performance than the other 
tested centralized models and distributed models while greatly 
reducing communication costs. Moreover, FedAGRU has strong 
robustness, which can provide effective protection from 
poisoning attacks. 

The remaining sections of the paper are organized as follows: 
Section II reviews the research literature on federated learning 
and intrusion detection, Section III describes the intrusion 
detection framework based on federated learning, Section IV 
describes the experimental results, and Section Ⅶ concludes the 
paper. 

II. RELATED WORK 

A. FEDERATED LEARNING 

Due to data privacy issues, network bandwidth limitations, 
equipment availability, etc., it is unrealistic to collect all the data 
from the edge devices of a data center and conduct centralized 
training. Federated learning is emerging as a solution to these 
problems [5]. The author of [6] proved that federated learning 
also helps improve the accuracy of local participants’ models 
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because the limited data owned by any participant can easily fall 
into a local optimum. Furthermore, the models trained by other 
participants can effectively help participants discard local optima 
to obtain a more accurate model. 

In the application scenario of distributed intrusion detection, 
the data is independently generated by each device; thus, the 
local data set of any specific device cannot represent the overall 
distribution and approximate non-IID data. In [7], the Federated 
Averaging (FedAVG) algorithm was proposed, which combines 
local SGD (stochastic gradient descent) on each client with a 
server that performs model averaging. The idea of model 
averaging is similar to dropout training, i.e., an average model of 
the shared parameters of different clients. In the federated 
learning scenario, the main constraint is communication cost. 
Compared with synchronous stochastic gradient descent, the 
number of communication rounds required by the FedAVG 
algorithm is 10-100 fold reduced. 

The convergence of the federated learning algorithm is always 
a problem. Based on FedAVG, the authors of [8] proposed a 
federated optimization framework for heterogeneous networks 
called FedProx. FedProx solves the statistical heterogeneity 
problem of different devices by setting a correction term to make 
the local model on a device closer to the global model. 
Theoretical analyses and experiments have proven that the 
model converges quickly, which helps federated learning 
participants save time and resources. In the LoAdaBoost-
FedAVG algorithm [9], participants train a model with local data 
and compare the cross-entropy loss with the median loss from 
the previous round of training. If the current cross-entropy loss 
is high, the model is retrained prior to global model aggregation 
to improve learning efficiency. Simulation results have shown 
that LoAdaBoost-FedAvg converges quickly. 

The authors of [10] proposed that data poisoning is one of the 
most relevant and emerging security threats in data-driven 
machine learning algorithms, especially with untrusted data, but 
few general defense mechanisms against poisoning attacks in the 
federated learning framework have been proposed. 

B. INTRUSION DETECTION 

In recent years, deep learning has been increasingly applied to 
wireless network intrusion detection. Yang et al. [11] proposed 
a wireless network intrusion detection method based on an 
improved convolutional neural network (ICNN), and the KDD 
CUP99 data set was used to verify the algorithm's effectiveness. 
In [12], the author proposed an intrusion detection model called 
LA-GRU based on a novel imbalanced learning method and 
gated recurrent unit (GRU) neural network. LA-GRU not only 
obtained excellent overall detection performance with a low 
false alarm rate, but also effectively solved the learning problem 
of imbalanced traffic distribution. Intrusion detection models 
based on machine learning require sufficient data to establish 
normal behavior as a baseline for abnormal behavior. However, 
it is infeasible to centralize all training and testing data for the 
following reasons: (1) resource constraints, (2) data security and 
privacy issues, and (3) high transmission delay. 

Moreover, according to the traditional cloud-centric intrusion 
detection scheme, high latency makes real-time detection 
difficult, and network security measures come too late. To make 
full use of the characteristics and advantages of edge computing, 
using the computing resources at the edge of a network for 

collaborative intrusion detection has become a research focus. In 
[13], a cooperative distributed intrusion detection system was 
proposed where each node in the network looks for 
abnormalities in local network data and a distributed 
coordination mechanism is used to detect network attacks. 
However, the efficiency of these collaborative detection schemes 
is not high, and the false alarm rate is high [14]. The authors of 
[15] proposed a novel distributed GAN (generative adversarial 
network) architecture that provides an effective intrusion 
detection system by adapting a mechanism in which every IoT 
(Internet of Things) device monitors the neighbor IoT devices, 
the proposed distributed intrusion detection system does not 
require any sharing of datasets among the IoT devices, compared 
with the standalone GAN-based intrusion detection system, the 
distributed GAN-based intrusion detection system has a higher 
accuracy rate. 

The authors of [16] applied federated learning technology to 
intrusion detection, and their training and testing accuracy on the 
CICIDS2017 data set was approximately 97%, which signifies 
improved efficiency and confidentiality of training. The authors 
of [17] proposed an intrusion detection method based on the long 
and short-term memory framework of federated learning with 
higher classification accuracy than traditional methods. The 
authors of [18] found that an edge network intrusion detection 
system based on federated learning was vulnerable to poisoned 
samples and had incorrectly classified malicious traffic as benign. 

III. INTRUSION DETECTION MODEL 

In this section, we first propose an intrusion detection model by 
a combined model with GRU (gated recurrent unit) and SVM 
(Support Vector Machine), then describe common federated 
learning algorithms, and finally propose the improved federated 
learning algorithm called FedAGRU. FedAGRU features an 
aggregation mechanism in which different clients have different 
weights. The server merges the weighted model parameters to 
speed up model convergence, which effectively prevents the 
uploading of parameters harmful to the overall model and 
reduces the communication overhead. 

A. GRU-SVM 

Federated learning algorithms are typically used in models based 
on SGD (Stochastic Gradient Descent), mainly DNNs (deep 
neural networks) [19]. However, DNNs cannot simulate changes 
in time series. Network traffic data is essentially time series data, 
and RNNs (recurrent neural networks) are typically used to 
process sequence data[20]. However, due to shortcomings such 
as gradient disappearance and gradient explosion, traditional 
RNNs have limitations for long-term prediction [21]. In contrast, 
GRU has a relatively simple structure, fewer parameters and a 
faster training speed. Therefore, GRU model as shown in Fig. 1 
is chosen as our training model for federated learning: 

 

FIGURE 1.  GRU Model  
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 ( )-1,t r t tr w h X=                (1) 

 ( )1,t z t tw hz X −=                (2) 

 ( )1tanh ,t h t t th w r h X−=               (3) 

( ) 11t t t t th z h z h−= −  +              (4) 

( )t o twg h=                  (5) 
where Xt is the input vector, σ is a sigmoid function, h is the 

output vector and h  is the candidate output. The subscript t 
represents the current time step, t−1 is the last time step, and w 
represents undetermined parameters. In Eqs. (1) and (2), r is 
denoted as a reset gate that determines how to combine new 
input information with previous memory, z is denoted as an 
update gate that defines how much of the previous information 
needs to be saved to the current time step, and g determines the 
final output in (5). 

Deep learning classification models frequently use the 
Softmax activation function as their last neural network layer to 
obtain classification results and minimize cross-entropy loss. 
The Softmax function outputs the probability of a category. The 
authors of [22] proposed that the classification performance of a 
detection model would improve if a linear SVM (support vector 
machine) replaced Softmax in the final output layer of the GRU 
model. Thus, we use an SVM as the last layer of our model for 
classification, and use Hinge Loss as the objective function: 

( )( )22
2

1

1
min max 0,1

2

n

i

i

i iL w C y wx b
=

= + − +‖‖      (6) 

where iy  is the true label, kx  is the output of the GRU 
model and input to the SVM, w  is the training weight, and C 
is a penalty parameter representing error tolerance. An 
excessive penalty coefficient leads to overfitting and poor 
model generalization ability; a small penalty coefficient leads 
to underfitting and increases the number of classification errors. 
The decision function generates a score vector for each class 
and returns the maximum value as the predicted class: 

)sl ib gl na (a e rgma )x( i iw= x b+          (7) 

B. FEDERATED LEARNING FRAMEWORK 

 
FIGURE 2.  Intrusion detection based on federated learning framework 

There are two main entities in a FL (federated learning) system, 
namely, the data owner (participant) and model owner (FL 
server). As shown in Fig. 2, edge devices use private data sets 
to train local intrusion detection models and only send local 
model parameters to the FL server (usually located at the cloud 
center); then, all the collected local models are aggregated to 
generate a global model. In this paper, the term "client" 

encompasses network entities such as devices, nodes, and 
sensors.  

We assume that the local data set stored by client k is kD  of 
size | |kD , the main steps of intrusion detection based on the 
federated learning framework are as follows:  

Step 1 (task initialization): The server determines the 
training task of intrusion detection and specifies the global 
model and hyperparameters of the training process. The server 
then broadcasts the initialized global model parameters 

G

t
W  to 

selected participants. 
Step 2 (local model training and update): Based on the global 

model 
G

t
w , each client uses local private data to update local 

model parameters 1
k

t
w

+ . The goal of client k at iteration t is to 
find the optimal parameter that minimizes the loss function: 

( )1
arg min ,k k k

t t
w L w D

+ =  , so as to effectively detect network 
intrusions. 

Step 3 (global model aggregation and update): All K clients 
collaboratively train a global prediction model. In the FedAVG 
algorithm, the server averages the client model parameters to 

obtain a new global model: 11
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= , and sends the updated global model parameters 

back to the data owner. Algorithm 1 gives a pseudo-code 
description of the FedAVG algorithm. 

 

Algorithm 1: FedAVG. Given K clients (indexed by k); B 
is the local minibatch size; E is the number of local epochs; 
R is the number of global rounds; C is the fraction of clients; 
  is the leaning rate;  
procedure GLOBALOPTIMIZATION:  

initialize ow  on public dataset 
for each round t = 1,2,... do  

m←max( C K ,1)   
St←(random set of m clients) 

for each client k∈St in parallel do 
1t

kw
+ = ClientUpdate(k, t

kw ) 

1 1

1

t
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tkt

G kG

k

n
w w

N
w+ +

=

= +  

procedure ClientUpdate(k, w):  //Run on selected client k 
Bk←(split local client data into batches of size B)  
for each local epoch i from 1 to E do  

for batch b∈Bk  do  

( );w w L w b= −   

return w to server 
 

The calculation volume of FedAVG is controlled by three key 
parameters: C, the proportion of clients performing calculations 
in each round; B, the local mini-batch size used for client updates; 
E, the number of training rounds for each client on local data. 
When B =   (complete local data set), and E=1 corresponds to 
FedSGD (FederatedSGD) [7], FedSGD is the fastest update 
algorithm in FL. It only requires each local client to calculate the 
average gradient once before uploading it to the server, so it 
requires minimal computing resources. This explains why most 
studies use FedSGD as a baseline. 
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C. IMPROVED FEDERATED LEARNING ALGORITHM 

Federated learning for edge networks requires interaction 
with multiple edge nodes. On the one hand, because the 
wireless connection between the client and server is 
typically slow or unreliable, the number of communication 
rounds between the client and server is minimized. On the 
other hand, the data set of any single client is smaller than 
the total data set, and the edge client has a relatively fast 
processor. Thus, the computational cost is often negligible 
compared to the communication cost, and the delay in 
communication is the performance bottleneck of the entire 
learning framework [23]. For this reason, our goal is to 
minimize the accumulated number of communication 
rounds while ensuring the convergence of the learning 
algorithm:  

( ) ( )
1

*

1

minimize 

1
. . lim =0

T

t
t

T

ttT

C

s t f f
T

=

=→
−


 x x

     (8) 

where tC  is the number of clients uploading local updates 
to the server at iteration t. 

The authors of [4] verified that several client-specific 
local optimizations are not closely related to the aggregation 
of collaborative training on the server. CMFL [24] proposed 
that, to avoid the transmission of irrelevant local updates, 
each client should be aware of the collaborative 
optimization trend in global aggregation. At each learning 
iteration, the client should compare local and global updates 
to determine if they are relevant. Assuming that 

1 2{ , ,..., }Nw w w=W  is the local model parameter update, and 
W   is the global model parameter, CMFL calculates the 
percentage of the same symbolic parameter as the 
correlation measure: 

( ) ( )( )
1

1
( , ) sign sign

N

j j
i

e I
N =

= =W W WW      (9) 

where ( ) ( )( )sign sign =1j jI = WW  if jW  and jW  are of 
the same sign, and 0 otherwise. 

This paper proposes an improved federated learning method, 
FedAGRU, which uses the idea of the attention mechanism to 
calculate the importance of uploaded model parameters. The 
criterion of importance is based on improvement of the 
classification performance of the global model so that different 
clients are sorted according to their importance. When 
bandwidth resources are scarce, clients with high importance 
(the weight of upload parameters is high) can be preferentially 
allowed to upload over those with low importance, whose 
impact on the overall performance of the model is reduced. If 
a local model has an importance lower than a certain threshold 
and exceeds a set number of times, it is no longer calculated, 
and only the global model parameters are accepted for updating. 
This decreases the calculation cost and greatly reduces the 
communication cost while ensuring model convergence. The 
FedAGRU algorithm is described in Algorithm 2. It improves 
upon the FedAVG algorithm in several areas: 

(1) Central server: As with the previous federated learning 
algorithm, we initialize and issue model parameters on the 
server, wait for client model parameters to be uploaded, and 
perform aggregation updates. Considering the wireless edge 
network environment, we propose an asynchronous update 

process for the server. After receiving a client update 
(multiple clients completing their local calculations at the 
same time results in multiple updates), the central server 
starts updating the model parameters w without waiting for 
other clients to complete their calculations. 

Suppose that in round t, the server receives updates from 
s clients, the central server model is ( )tw  , and 

1 2 ... sN D D D
 = + + +   is the total number of client data 

samples. We then calculate server updates by summarizing 
client updates as follows: 

1

( ) ( )

s
k

k

k

t t
N


=

=w w            (10) 

where ( )k tw   is the local model parameter of client k at 
round t. In the update aggregation process, the attention 
mechanism is introduced to increase the weights of important 
update parameters. 

(2) Parameter importance calculation: Attention mechanisms 
have a significant effect on feature representation [25]. Initially 
applied to image recognition, the attention mechanism can select 
the most relevant information in a large amount of information. 
Inspired by the attention mechanism and the CMFL algorithm, 
the importance of uploaded model parameters should be 
differentiated to increase the weights of parameters uploaded by 
the client that are beneficial to the model and optimize the 
performance of the global model. The FedAGRU algorithm uses 
the attention mechanism on a central server to assign different 
weights to the model parameters of different clients. The set of 
model parameter vectors output by k clients is expressed as 

1 2, ,..., ][
k

ww wW = , and the attention mechanism generates a 
weighted output representation: 

tanh( )=M W                 (11) 

( )softmax T
m= W M              (12) 

* T= W H A                 (13) 
where m

W is a parameter matrix to be learned that is 
realized by the linear layer, and weight matrix 

1 2 ][ k, ,A ...a ,= a a  represents the importance of the 
parameters of different clients. In addition, we combine weight 
normalization to reduce the calculation cost. The larger the 
weight, the more important the client is to overall intrusion 
detection performance. If the final obtained parameter weight 
of the client is less than the set threshold v, it does not 
participate in the parameter aggregation of the server. 
Assuming that the obtained model parameter set with 
parameter weights greater than threshold v is 

1 2, ,..., ][ sww wW = , the final converged model parameter is: 

1 * i

s

G i
i

i

D
a w

N=
=W              (14) 

where *
N  is the total number of data samples of the final 

selected clients, GW   and weight matrix 1 2 ][ k, ,A ...a ,= a a  
are broadcast to the selected participants. 

(3) Local optimization on the client. Client-side optimization 
is obtained by using client data to perform local model training 
iterations. If the client importance is greater than threshold v, a 
local model update is calculated and uploaded. If the client 
importance is less than threshold v for multiple consecutive time 
steps, and the number of times exceeds a set tolerance threshold, 
the client is marked as “False”, and the client no longer uses the 
local data set to calculate and upload parameters, but only 
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accepts global broadcasted model parameters for updating. This 
not only reduces communication costs, but also prevents 
irrelevant updates from depleting computing resources and 
affecting detection performance. This local optimization method 
also effectively prevents poisoning attacks. 

Assuming 1 2{ }, , , nxx x= X  is an input time series of the 
GRU-SVM model, and 1 2{ }, , , nyy y= Y  is the true label 
set, the FedAGRU pseudocode is described in Algorithm 2. 

 

Algorithm 2: FedAGRU. Given K clients (indexed by k); 
B is the local minibatch size; E is the number of local 
epochs; R is the number of global rounds; C is the fraction 
of clients;    is the leaning rate; v is the importance 
threshold; T is the tolerance threshold 
procedure GLOBALOPTIMIZATION:  

According to X, Y and Eq.(1)-(7), initialize the cloud GRU-
SVM model ( )f W, X,Y , ), , ,r z h o

t
G w w w w（W , and t

H ； 

for each round t = 1,2,... do  
m←max( C K ,1)   
St←(random set of m clients) 

for each client k∈St in parallel do 

1t
kW
+ = ClientUpdate(k, t

GW ) 
Calculate the client importance 

1 2, , ..., ][ ka a aA =  following Eq.(11)-(14) 
obtain the global aggregation update  

1
* i

s

G i
i

i

D
a

N=

=W w  where ka v  

Update parameter 1t
GW
+ , +1t

H  

procedure ClientUpdate(k, w):  //Run on selected client k 
Bk←(split local client data into batches of size B)  
if ka v  then kc = kc +1 

else kc =0 

if kc >T then 

client is marked as False, early stop  
else 

for each local epoch i from 1 to E do  
        for batch { , }i ix y ∈Bk  do  

( );w w L w b= −   

return w to server 

IV. EXPERIMENTS AND RESULTS 

We combine the KDD CUP 99 data set [26], the CICIDS2017 
data set provided by the Canadian Institute of Network Security 
[27] and the WSN-DS wireless network data set [28] to evaluate 
the model. Since each data set has different modes and 
characteristics such as network topology, traffic changes, attack 
methods, etc., using multiple data sets comprehensively verifies 
the adaptability of the model. Each data set is divided into 60%, 
20%, and 20% subsets for training, verification, and testing, 
respectively. The training set is divided into 10 clients on 
average, and each client learns its own model and uploads model 
parameters to the server for aggregation. Similar to the data 
setting method in [7], for the IID setting, each client is assigned 
the uniform distribution of all labels. For non-IID settings, 
labeled data are divided into 20 partitions, and each client 

randomly allocates data from 2 partitions of the two categories, 
which allows us to study the stability of each algorithm on highly 
non-IID data. 

To simulate the real federated learning scenario as much 
as possible, the model and data set are not located on a single 
high-performance machine [16]. In the experiment, the 
server is a desktop computer equipped with Core i9-9820x 
and GTX 1080 Ti, and the client is a laptop equipped with a 
Core I5-8300H CPU and a Raspberry Pi 3 equipped with an 
ARM Cortex A7 CPU. We use the PySyft federated learning 
framework [29] to build the experimental environment.  

TABLE I 
SUMMARY OF DATASET 

Dataset Types of network attacks 

WSN-DS Blackhole, Grayhole, Flooding, Scheduling 

KDD CUP99 DoS, R2L, U2R, Probing 

CICIDS2017 PortScan, Botnet, DoS/DDoS, Web Attack, Infiltration, 
Brute Force 

A. MODEL ARCHITECTURE 

In deep learning algorithms, the proper selection of 
hyperparameters, such as the number of hidden layers and 
hidden units in each hidden layer, greatly affects the 
performance of an algorithm. We studied the classification 
performance of FedAGRU under different hyperparameter 
configurations to determine the federated learning parameters of 
the FedAGRU algorithm: C(fraction of clients)=0.5, 
v(importance threshold)=0.05, T(tolerance threshold)=5. We 
also used the grid search method to find the best architecture of 
the GRU-SVM model in the FedAGRU algorithm. The final 
parameters are shown in Table II. 

TABLE II  
STRUCTURE OF GRU-SVM 

Hyper-parameters value 
Hidden Layers 
Hidden Units 

1 
128 

Dropout Rate 0.8 
SVM C 0.5 

Learning Rate 1e-4 

B. Comparison of different methods 

We use Accuracy, FAR, and F1score to evaluate the 
performance of the centralized model and federated learning 
model on the CICIDS2017 data set. 

For the centralized model, we select several popular methods 
in intrusion detection, GRU-SVM, GRU-softmax, ICNN and 
VAE, for comparison. These methods upload data to a server for 
centralized training. FedAVG is selected as a comparison 
method for federated learning. To better elucidate the advantages 
of the proposed algorithm, the training model of all the compared 
federated learning methods is GRU-SVM, and the specific 
hyperparameters are identical to those in Table II. The 
simulation results in Table III show that FedAGRU and the local 
model GRU-SVM have the highest detection accuracy and 
F1score as well as the lowest false alarm rate. In addition, their 
classification performance is 3%~8% higher than ICNN. This is 
because FedAGRU inherits the intrusion detection advantages of 
GRU-SVM, and the test accuracy of FedAGRU is 
approximately 1% higher than FedAVG. The experiment proves 
that the distributed learning of federated learning can achieve the 
training effect of the centralized model. We also found that the 
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distributed learning method has a performance advantage on 
non-IID data over centralized learning. 

 

TABLE III 
PERFORMANCE OF DIFFERENT METHODS 

Method 
 IID   non-IID   

Accuracy ( )  FAR ( )  F1score ( )  Accuracy ( )  FAR ( )  F1score ( )  

GRU-SVM(local) 
GRU-softmax(local) 

99.84% 
98.94% 

0.42% 
1.12% 

98.25% 
97.96% 

98.84% 
96.84% 

1.32% 
3.15% 

97.65% 
95.46% 

ICNN(local) 95.84% 5.16% 94.55% 90.74% 9.89% 90.55% 
VAE(local) 97.84% 3.28% 96.23% 95.84% 4.54% 94.23% 

FedAVG(GRU-SVM) 99.84% 1.82% 97.44% 97.84% 2.08% 97.02% 
FedAGRU 99.28% 0.73% 98.12% 98.82% 1.43% 97.12% 

 

C. IMPACT OF FEDERATED PARAMETERS 

The IID and non-IID samples of the KDD CUP99 data set are 
used to analyze the influence of the federated parameters B 
(batch size) and E (number of local epochs) on communication 
rounds. Table IV compares the communication rounds required 
for FedSGD and FedAGRU when the F1 score of the model 
reaches 98% under different B and E. We found that increasing 
the number of local epochs (E) and setting a smaller batch size 
(B) reduces the communication cost. The FedAGRU algorithm 
in this paper has the smallest communication round with small 
batch size (B) and local epochs (E)=20. Compared with the 
FedSGD baseline algorithm, FedAGRU’s communication 
rounds are reduced 21 fold on IID sample data and 29 fold on 
non-IID sample data. Thus, the FedAGRU algorithm has higher 
communication efficiency than FedSGD. 

TABLE IV 
COMMUNICATION ROUND COMPARISON 

Method E B IID non-IID 
FedSGD 1   238 560 

FedAGRU    5 small 63(3.7 ) 73(7.7 ) 
FedAGRU    10 small 26(9.2 ) 36(15.6 ) 
FedAGRU    20 small 11(21.6 ) 19(29.4 ) 
FedAGRU    5 large 78(3.1 ) 89(6.3 ) 
FedAGRU 
FedAGRU 

   10 
   20 

large 
large 

54(4.4 ) 
39(6.1 ) 

74(7.6 ) 
57(9.8 ) 

D. MODEL PERFORMANCE & COMMUNICATION 
EFFICIENCY 

We evaluate the learning speed of the federated learning 
algorithm through communication rounds, and compare the 

classification accuracy performance of the three federated 
learning algorithms, FedAGRU, CMFL and FedAVG, using the 
GRU-SVM model under different numbers of communication 
rounds. On the basis of FedAVG, the CMFL algorithm uses the 
correlation between the global and local model to limit the 
updating of upload parameters. The correlation threshold of the 
CMFL algorithm is {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and 
we found it performs best at 0.7. In Fig. 3~5, we describe the 
relationship between the classification accuracy of the 
algorithms in each data set and the communication round. 
FedAGRU achieves the best performance and fastest learning 
speed under the same communication round. In other words, our 
method requires fewer communication rounds to achieve model 
convergence. On the IID and non-IID samples of the WSN-DS 
data set, the standard method FedAVG reaches a test accuracy 
of 90% by 21 and 32 communication rounds respectively, while 
FedAGRU requires only 9 and 22 communication rounds, 
respectively. Thus, our method reduces the number of 
communication rounds on the IID and non-IID samples by 57% 
and 31%, respectively. Similarly, on the CICIDS 2017 data set, 
FedAGRU achieves a communication round reduction of 69% 
and 41% on the IID and non-IID samples, respectively, 
compared to the standard method at 95% test accuracy. On the 
WSN-DS data set, FedAGRU achieves a 70% and 38% 
communication round reduction on the IID and non-IID samples, 
respectively, compared to the standard method at 95% test 
accuracy. Compared with the FedAVG algorithm, the CMFL 
algorithm improves the communication efficiency, but it is 
slightly weaker than the FedAGRU algorithm. 

 

 
(a)                                                (b)  

FIGURE 3.  Comparison of federated learning methods on WSN-DS dataset: (a) IID; (b) non-IID. 
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(a)                                                (b)  

FIGURE 4.  Comparison of federated learning methods on CICIDS 2017 dataset: (a) IID; (b) non-IID. 

 
(a)                                                (b)  

FIGURE 5.  Comparison of federated learning methods on KDD CUP99 dataset: (a) IID; (b) non-IID. 

 

E. PERFORMANCE COMPARISON OF FEDERATED 
LEARNING MODELS UNDER DIFFERENT CLIENT 
NUMBERS 

In this experiment, we explored the influence of the number of 
clients on the federated learning models. Their classification 
accuracy is shown in Fig. 6 on the non-IID sample of the KDD 
CUP99 data set under identical simulation environments. An 
increase in the number of clients was found to adversely affect 
the performance of FedAVG and CMFL. 

 

FIGURE 6.  Comparison of federated learning methods under different 
numbers of clients 

This degradation in performance is because the added clients 
bring more updated parameters, making it more difficult for the 
server to perform simultaneous model parameter aggregation. In 
addition, the model parameters of some clients may also 

adversely affect the global model. In addition, this overhead can 
affect the upload of important client parameters, reducing the 
accuracy of the global model. Meanwhile, FedAGRU 
determines client importance, which potentially reduces the 
number of participating clients. In this manner, updates that 
benefit model performance are aggregated, ensuring model 
training reliability. 

F. POISONING ATTACKS  

In a poisoning attack, an attacker injects poisoned samples into 
a training data set to maximize the error of the learning classifier 
[30]. Poisoning attacks are typically used to test model 
robustness [31-32]. The most common poisoning strategy for 
federated learning is label-flipping, under the assumption that an 
attacker can manipulate the labels of client training samples. The 
training sets of the WSN-DS and KDD CUP99 data sets are 
randomly and evenly divided into 20 small labeled data sets and 
assigned to 20 clients. Then, 3 of the data sets are randomly 
selected to simulate poisoning attacks, One-fifth of the labels of 
the scheduling class in the training samples are selected and 
modified to the normal class. The characteristics of the data 
remain unchanged, causing incorrect model classification. The 
left side of Fig. 7 and Fig. 8 shows model classification results 
after training with normal samples, and the right side shows 
those after training with poisoned samples. 
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     (a) 

  
     (b) 

FIGURE 7.  Comparison experiment on the WSN-DS dataset: (a) FedAVG; (b) FedAGRU. 
 

  
      (a) 

  
       (b) 

FIGURE 8.  Comparison experiment on the CICIDS2017 dataset: (a) FedAVG; (b) FedAGRU. 
 

The FedAVG algorithm is severely affected by the poisoning 
attack. As a result, in the WSN-DS data set, the recognition rates 
of Scheduling, Flooding, Blackhole, Grayhole and Normal 
Traffic decrease by 5%, 4%, 1%, 1%, and 2%, respectively. In 
the CICIDS2017 dataset, the recognition rate of Infiltration 
decreases by 5%, that of DoS decreases by 3%, and that of Brute 
Force, Botnet, and Web Attack decrease by 2%. The poisoning 
attack affects the recognition rate of all labels. However, 
FedAGRU calculates client importance and suppresses the 
impact of poisoned samples on global classification performance. 
The recognition rate of Scheduling in the WSN-DS data set 
decreases by 2%, that of normal traffic decreases by 1%, and the 
other labels are unaffected. The r recognition rate of each 
category in the CICIDS2017 data set decreases within 1%. 
Experiments have proved that FedAGRU has strong robustness 
and can provide effective protection against poisoning attacks. 

VI. CONCLUSION 

This paper proposes an improved federated learning algorithm 
called FedAGRU for intrusion detection in wireless edge 
networks. FedAGRU effectively prevents the upload of 
parameters that do not benefit the overall model and reduces 
communication overhead. In a comparison with other methods, 
FedAGRU had better accuracy, robustness and efficiency. 

(1) The FedAGRU algorithm obtained higher detection 
accuracy with less communication overhead. Comparing the 
detection performance of the centralized model and the 
distributed model, we found that FedAGRU and GRU-SVM 
centralized learning have a higher detection accuracy and F1 
score, a lower false alarm rate, and 3%~8% improved 
classification performance compared with ICNN. The 
distributed learning of federated learning also achieved the 
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training effect of the centralized model experimentally. 
Compared with FedAVG, the learning accuracy of the 
FedAGRU algorithm improved by approximately 1%, and the 
number of communication rounds was reduced by up to 70%. 

(2) We explored the influence of federated learning 
parameters and the number of clients on the federated learning 
model. By setting the parameters properly, the communication 
cost could be further reduced, and the performance of FedAGRU 
remained stable even with a large number of clients. 

(3) We simulated poisoning attacks, a new attack method 
against machine learning algorithm models. The FedAVG 
algorithm was severely affected by poisoning attacks, resulting 
in a decline in the recognition rate of each label. In contrast, the 
FedAGRU algorithm effectively inhibited the influence of 
poisoned samples and exhibited strong robustness. 

In the future, we plan to study the safe aggregation of 
federated learning model parameters to further improve the 
reliability of our detection model. 
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