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2Institute of Telecommunications, Warsaw University of Technology, Poland

Abstract—Nowadays, the growth of advanced technologies is
paving the way for Industrial Control Systems (ICS) and making
them more efficient and smarter. However, this makes ICS more
connected to communication networks that provide a potential
platform for attackers to intrude into the systems and cause
damage and catastrophic consequences. In this paper, we propose
implementing digital twins that have been equipped with an
intrusion detection algorithm. Our novel algorithm is able to
detect attacks in a timely manner and also diagnose the type of
attack by classification of different types of attacks. With digital
twins, which are a new concept in ICS, we have virtual replicas
of physical systems so that they precisely mirror the internal
behavior of the physical systems. So by placing the intrusion
detection algorithm in digital twins, security tests can be done
remotely without risking negative impacts on live systems.

Index Terms—Intrusion detection, Digital twins, Industrial
control systems

I. INTRODUCTION

Today, smart manufacturing has attracted much attention

[1], and the growth of Internet-of-things (IoT) and cloud

computing are paving the way for the smart factories that

will realize Industry 4.0. As part of Industry 4.0, Industrial

Control Systems (ICS), which consists of combinations of

control components that act together to achieve an industrial

objective, are becoming connected and part of the networked

systems in the factory. Although, networked ICSs increase the

efficiency of the systems, they may jeopardize the system’s

security at the same time, since they can provide a critical

platform through which attackers may be able to intrude into

the system.

Some examples of recent cyber attacks that targeted ICSs

are the Stuxnet computer worm attacks on Iran’s nuclear

installation in 2010 [2], BlackEnergy malware attack on the

Ukrainian power grid in 2015 [3], HatMan malware attack on

critical infrastructure using Schneider Electrics Safety Instru-

mented Systems in 2017 [4], malware attack on 40 percent of

all ICS in energy organizations protected by Kaspersky Lab so-

lutions in 2017 [5], and the cyber attacks on three U.S. natural

gas pipeline companies in 2018 [6]. These attacks demonstrate
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security weaknesses and the necessity for appropriate security

measures to protect ICS infrastructure.

According to this significant increase in cyber attacks, much

attention has been paid to intrusion detection in ICS over the

recent years.

Digital twin is a rather new concept in industry. With digital

twins, we have virtual replicas of physical systems so that

they precisely mirror the internal behavior of the physical

systems [7]. So using this virtual environment for security

tests instead of the real system prevents any interference with

the live systems.

Hence, in this paper, we propose a digital twin based

intrusion detection technique due to a couple of reasons. First,

applying security tests may have some negative effects on the

live systems and cause to reduce the efficiency of the systems.

Also, an intrusion detection system in the digital domain can

include methods that require much more computing resources

than if deployed in the real system. For instance, machine

learning techniques usually are hard to realise in the physical

domain, where there often are embedded devices with limited

computing power and more restrictive programming models.

There are a few papers that have suggested intrusion de-

tection as a use case for digital twins. To the best of our

knowledge, so far, only two papers have been published

that show how the concept of digital twins can be used to

implement intrusion detection systems. Authors in [8], defined

two rules, namely, safety and security rules, that specific

digital twins must adhere to. However, this research missed the

synchronization between digital twins and the real systems. So

real systems’ data is not incorporated into the implemented

intrusion detection. Moreover, the proposed rules are very

limited as an intrusion detection method for detecting cyber

attacks. Regarding these issues, authors in [9] proposed a

passive state replication to create synchronization between

physical systems and digital twins that is a fundamental

requirement for realizing the intrusion detection using digi-

tal twins. However, this synchronization method only copy

some limited data of physical system to digital twin and it

does not make the digital twin able to follow the physical

system continuously for instance, when there are unexpected

changes in the physical system. Further, the authors proposed

a behavior-specification-based intrusion detection to determine

whether the system’s behavior during runtime diverges from

the predefined correct behavior due to an intrusion. However,



creating the specification of the system’s correct behavior

typically requires processing effort, whereas in this paper the

authors sidestep this issue by making the assumption that the

specification of the system is readily available.

Motivated by synchronization challenges in digital twins, in

our prior work [10] we proposed an architecture to implement

a digital twin that makes it able to follow its physical counter-

part’s behavior continuously and guarantees synchronization

between digital twins and physical systems. In this paper,

we equip this architecture with a novel intrusion detection

algorithm that unlike [9] does not need a specification of the

system’s correct behavior. We demonstrate how the digital

twin concept can be used for intrusion detection. Further,

we develop a novel algorithm in the digital twin for timely

detection of attacks on ICS. Also, we propose an approach to

diagnose the type of attack after detecting it by classification of

different types of attacks. Finally, we evaluate the capability of

the proposed anomaly detection algorithm through simulation

studies.

II. TARGETED SYSTEM

The targeted system, which concerns industrial control sys-

tems, is illustrated in Fig. 1. In this figure, the physical domain

shows an industrial system, which is composed of several

different control systems. These control systems can represent

a factory where there are different kinds of machines and

robots. A digital twin for the system is deployed in the cloud

using the architecture in our prior work [10]. There will always

be a network between the physical domain and the cloud, and

also there can be a network between the components of a

control system inside the physical domain. These networks

create the possibility of cyber attacks on the signals that are

sent through them.

In this paper, as Fig. 1 shows, an intrusion detection system

is deployed in the digital twin in order to detect cyber attacks

on the real system. Also, we consider attacks that intrude into

the network and try to manipulate the measurement signal y
in order to drive the system to an unsafe state.

We consider two Scaling and Ramp attacks in which the

attacker inject false data into the signal and modify it. Ac-

cording to [11], [12] and [13], we can model these attacks as

follows:

• Scaling attack: In this type of attack, the measurement

signal is manipulated and its value depending on the

amount of scaling attack parameter λs, is converted to

a value greater or less than the actual value:

y∗(t) =

{

y(t) for t /∈ τa
(1 + λs) · y(t) for t ∈ τa

(1)

where τa indicates the attack period.

• Ramp attack: In this type of attack, since the beginning

of the attack, λr.t is added to the actual signal and

depending on the amount of λr, increases or decreases

the value of the signal:

y∗(t) =

{

y(t) for t /∈ τa
y(t) + λr.t for t ∈ τa

(2)

Fig. 1. Targeted system overview.

Since different attacks can have different effects on the

system, different mitigation methods may be needed to deal

with them. Therefore, after detecting the attack, it is also

important to classify the attack in order to choose the best

mitigation method for it. Hence, in next section, we explain

our proposed method to detect these attacks in a timely manner

and classify them.

III. PROPOSED SOLUTION

In this paper, we propose a novel intrusion detection, and we

also propose to apply this intrusion detection to digital twins

instead of the real system. Our proposed solution consists of

two parts: attack detection and attack classification.

A. Attack Detection

In order to detect an attack on the system, we propose to

use a Kalman filter [14] to estimate the correct signals in the

system. The Kalman filter uses input and output signals of

the system to estimate the correct output of the system. This

means that the Kalman filter optimally removes the destructive

effects of the attack and noises from the manipulated signal

and can estimate the correct behavior of the system. This

estimated signal can then be used to detect the occurrence

of the attack. In order to design a Kalman filter, first, an

observable state-space model of the system is needed. The

Kalman filter will be placed in the digital twin, and as the

digital twin is created based on [10], we can assume that

there exists a simulated model of the real system that has been

obtained easily by system identification algorithms. Therefore,

it is only necessary to create an observable realization of this

model to generate an observable state-space model.



After designing the Kalman filter, input and output signals

of the system, which, the Kalman filter has been designed for,

should be sent to the Kalman filter to estimate the correct

output signal.

By considering process noise and measurement noise in the

system, our targeted system can be modelled as follows:

xk+1 = Axk +Buk +Gwk w → N(0, Q)
yk = Cxk + Fvk v → N(0, R)

(3)

In this model x is the state vector, y is the output signal which

is measured by sensors, u is the input signal which is generated

by the controller, w is process noise, v is measurement

noise and subscript k shows time instance. Here, we consider

process noise and measurement noise to be white noise with

covariances Q and R respectively. Also, A, B, C, G, and F
are coefficient matrices.

A Kalman filter for this system will be designed using the

following recursive algorithm, which consists of two parts:

time update and measurement update [14]. The time update

part consists of the following steps:

1) x̂k|k−1 = Akx̂k−1k−1 +Bkuk (4)

2) Pk|k−1 = Gk−1Qk−1G
T
k−1 +Ak−1Pk−1|k−1A

T
k−1

(5)

and the measurement update part consists of following steps:

3) Kk = Pk|k−1C
T
k

(

CkPk|k−1C
T
k + FkRkF

T
k

)−1
(6)

4) x̂k|k = x̂k|k−1 +Kk

(

yk − Ckx̂k|k−1

)

(7)

5) Pk|k = (I −KkCk)Pk|k−1 (8)

where x̂ is the estimated state vector, P is the estimating

covariance matrix and K is the Kalman gain.

However, one problem of a Kalman filter is that it requires

some characteristics of the noise. Q and R are the covariance

matrices of process and measurement noises, respectively,

and these are usually not known. To overcome this problem,

inspired by the proposed method in [15], we propose a particle

swarm optimization (PSO) and combine this with the Kalman

filter. In this method, first, in offline mode using a combination

of PSO and the Kalman filter, the optimal values of Q and R

can be found. Then, these obtained values are injected into the

Kalman filter for estimation in online mode.

Using this Kalman filter, state variables of the system are

estimated. The system’s output can also be estimated based on

these state variables and using the system model as follows:

ŷk = Cx̂k (9)

Now by comparing the estimated signal ŷk with the output

signal ỹk, which is virtual version of the measurement signal

y and regenerated by the digital twin and exactly follows y,

the residual signal is generated:

rk = ỹk − ŷk (10)

In order to distinguish attacks from noises and detect the

occurrence of an attack, it is necessary to use a detector.

Actually, the detector helps to make the effects of attacks

and noises on the signal more prominent and filter impacts

of noises and prevent false alarms. Our detector uses residual

signal r and generates h so as to detect attacks as follows:

hk = sup
k−k0<i<k

|ri|,

{

H0 : if hk ≤ threshold

H1 : if hk > threshold
(11)

where the hypothesis H0 indicates the normal operation of the

system and H1 indicates the abnormal mode of the system.

Since the Kalman filter cannot distinguish the changes

caused by the attack from the changes due to the presence

of the noise, a threshold for filtering the effects of noise and

preventing false alarms should be considered. Based on 68-

95-99.7 rule, in a Gaussian distribution, 68.27%, 95.45%, and

99.73% of the values lie within one, two, and three standard

deviations of the mean, respectively. Since the noise in this

paper is assumed to be Gaussian noise with zero mean, by

considering a threshold equal to 3σ, where σ, is the standard

deviation of the measurement noise, 99.73% false alarms that

may occur due to this noise can be filtered out.

B. Attack Classification

The goal of the classification is to categorize data into

distinct classes. Support Vector Machine (SVM) is a machine

learning approach used for classification, and in this approach,

a model is generated based on training data and then it can

be used to predict the class of new data. SVM supports both

binary classification and multi classification. In this paper, we

want to classify the state of the system as Normal, Scaling

attack or Ramp attack. Therefore, a multi classification must

be used. There are several methods for multi-class SVM,

but we apply the one-against-one method which is the most

efficient one based on [16]. In the one-against-one method,

k(k − 1)/2 classifiers are created:
(

w1
)T

φ(x) + b1 , ... ,
(

wk(k−1)/2
)T

φ(x) + bk(k−1)/2 where k is the number of

classes. Each of these classifiers is trained on data from two

classes. For training data from the ith and the jth classes, the

following binary classification problem is solved:

min
wij ,bij ,ξij

1
2

(

wij
)T

wij + C
∑

t
ξijt

(

wij
)T

φ (xt) + bij ≥ 1− ξijt , if yt = i
(

wij
)T

φ (xt) + bij ≤ −1 + ξijt , if yt = j

ξijt ≥ 0
(12)

where φ is the function that maps training data xt to a higher

dimensional space to make data more separable and C is the

penalty parameter. By minimizing 1
2 (w

ij)Twij we maximize
2

‖wij‖ , which is the margin between two groups of data. When

data are not linear separable, there is a penalty term C
∑

t
ξijt

which can reduce the number of training errors. Actually

SVM searches for a balance between the regularization term
1
2 (w

ij)Twij and the training errors. After all k(k − 1)/2
classifiers are constructed, if sign

((

wij)Tφ(x) + bij
))

says

x is in the ith class, then the vote for the ith class is added

by one. Otherwise, the jth is increased by one. Then, x is



predicted as the class with the largest vote, and in case that

two classes have identical votes we select the one with the

smaller index.

In this paper, we propose using the residual signal as

xt for classification. Our motivation behind this decision is

that the residual signal is the result from the comparison

between the virtual version of the real output signal and the

estimated output. Hence, it shows abnormal behavior of the

system caused by the attacks, and based on how this abnormal

behavior is for each class, we can train a model for attack

classification. By applying Ramp attacks and Scaling attacks

and also considering the condition where there is no attack,

we can generate training data. Then, by labeling these data as

class 0 for Normal condition, class 1 for when there is Scaling

attack, and class 2 for when there is Ramp attack, and using

one-against-one method, we train a model for classification.

IV. EXPERIMENTS

We evaluate our proposed approach in Matlab Simulink

[17], and in this section we describe our simulation model

and our experiments.

A. Process

In this paper, we use a ball and beam process. The ball and

beam system consists of a long beam which can be tilted by

an electric motor together with a ball rolling back and forth

on top of the beam. This system is open-loop unstable and

without a controller, it will swing to one side or the other, and

the ball will fall off the end of the beam.

To stabilize the ball, a control system that measures the

position of the ball and adjusts the beam accordingly must be

used. Our motivation for choosing the ball and beam system

is that it is an intrinsically unstable and time-critical system,

and any attack on this system can make it unstable quickly.

So, evaluating our proposed method on this system can prove

the effectiveness of it.

We simulate the ball and beam process using the standard

Lagrangian equations of motion for the ball based on [18]. In

our ball and beam system, the length of the beam is 1 meter.

Therefore, the allowable position for the ball is between 0 and

1, and if it goes outside this range, it will fall.

B. Digital Twin

Based on our prior work [10], we create a digital twin for

the ball and beam process in Matlab Simulink, which follows

its physical counterpart continuously. The network between

the physical domain and digital part (cloud), is simulated with

TrueTime [19]. We consider the network to be an Ethernet

with 2.5% packet loss probability and a 40 ms network delay.

C. Generating Attack Signals

An attack should have two main features. First, it should

cause the system to go to an unsafe state, and second, it should

not be easily detectable. Ramp attacks add a ramp signal to

the measurement signal and causes a change of the position

of the ball. If the slope of this ramp signal is high, it changes

the ball’s position quickly. However, such an attack will be

detected easily. So, the slope should be low and change the

ball’s position gradually in which case it is difficult to detect.

Therefore, we chose 0.5 meters, which is in the middle of

the beam, as a setpoint for the ball’s position in the controller,

and based on this, choosing 0 < λr ≤ 0.1 in (2) for the Ramp

attack is reasonable, since it will cause the ball to fall off and

it will be difficult to detect.

Scaling attacks are not so different in terms of how they

gradually can change the ball’s position. The only main

difference between Scaling attacks with different parameters

λs, see (1), is the consequence. If λs ≥ 15, it will cause

the ball to fall. However, choosing λs out of this range, only

causes the ball’s position to change on the beam, but it does

not cause it to fall and damage the system. So λs ≥ 15 is a

reasonable range for this type of attacks.

D. Evaluation of Attack Detection Method

The performance of the detection algorithm is evaluated by

measuring the time it takes to detect an attack and comparing

it with the time it takes the attack to drive the system to an

unsafe state. Here, for the ball and beam system, we compare

the time it takes our detection method to detect an attack with

the time that the attack takes to cause the ball to fall off.

For this evaluation, we apply Ramp attacks and Scaling

attacks with different parameters chosen from the selected

range to the measurement signal in the physical domain y.

Then, we record the time it takes to detect the attack and the

time it takes for the attack to cause the ball to fall, which is the

time it takes for the position of the ball to increase more than

1 meter or decrease less than 0 meters, and then we compare

these two time.

E. Evaluation of Attack Classification Method

To classify attacks and diagnose the type of an attack, as

it said before, we use residual signal r as training data for

obtaining a model using SVM, and this model will classify

new residual data as Normal, Scaling attack and Ramp attack.

To generate the training data, first, we run the simulation in

normal conditions when there are no attacks several times for

60 s and record the residual signal. Using this signal we create

a vector containing residual data related to a normal condition

that we label as class 0.

In the next step, we apply Scaling attacks with different λs

to the measurement signal y for 60 s, and for each λs, we

record the residual signal. In this way, we create a vector

containing residual data related to Scaling attacks that are

labelled as class 1.

The reason for applying attacks for 60 s is that we want to

diagnose the type of attack as soon as it occurs. So, we need

to cover different data related to the beginning of the attack,

and therefore 60 s is well enough for this purpose.

In the third step, we apply Ramp attacks with different λr to

the measurement signal y for 60 s and for each λr, we record

the residual signal. In this way, we create a vector containing

residual data related to Ramp attacks that are labelled as class



2. By using this training data with the SVM algorithm, we

obtain a model that should be able to determine the class of

new data.

The next step is to test this model using testing data.

To generate testing data for normal conditions, we run the

simulation without applying any attacks for 50 s and record

the residual signal as testing data. Testing data for Scaling

attacks are generated by applying Scaling attacks at time 30
s for 20 s with different λs that are chosen from the range

λs ≥ 15. Testing data for Ramp attacks are generated by

applying Ramp attacks at time 30 s for 20 s with different

λr that are selected from the range 0 < λr ≤ 0.1.

To evaluate the performance of the classification algorithm,

the class (label) of the testing data using the obtained SVM

model is determined. The accuracy is then calculated as

follows:

Accuracy =
The number of correctly predicted data

Total number of testing data
×100%

(13)

For each of λs and λr value and normal condition, the

generation and evaluation of testing data is repeated 15 times

and finally, the average accuracy for each of λs and λr value

and normal condition are calculated. Since the variability of

accuracy for each of these conditions is really low and we

have a quite narrow confidence interval, 15-time repetition is

well enough.

V. RESULTS

In this section, the results of the evaluation of attack

detection and classification algorithms are presented.

Fig. 2 shows the signal h and the ball’s position in the

presence of Ramp attack with λr = 0.04 which is started at

30 s. In this attack, the attacker gradually changes the ball’s

position and as it can be seen in Fig. 2, the attack causes

the ball to fall off at 42.52 s. However, our attack detection

algorithm can detect this attack at 31.29 s, which is well before

the ball falls off.

Fig. 3 shows the results for a Ramp attack which is started

at 30 s with different values of λr. All chosen λr are small

enough to make the attack difficult to detect. For each λr, the

blue line shows the time it takes for the ball to fall off, and

the red line shows the time it takes for our detection algorithm

to detect the attack. As can be seen in the figure, all attacks

can be detected before the attack can drive the system to an

unsafe state and cause the ball to fall.

Fig. 4 shows a similar evaluation for the Scaling attack with

different λs. As can be seen in the figure, although these

attacks can quickly affect the system and move the ball off

the beam, our proposed detection technique can detect them

in a timely manner and before the ball falls off.

To evaluate the classification method, as is said in the

previous section, we apply a Ramp attack at time 30 s for 20 s.

So, before 30 s, there are no attacks and the condition should

be classified as Normal. After 30 s, the condition should be

classified as a Ramp attack. By calculating the accuracy, the

algorithm can be evaluated.

Fig. 2. Detecting Ramp attack with λr = 0.04.

Table I shows the average accuracy for the Ramp at-

tack with different λr. As can be seen, the accuracy for

λr = 0.03, 0.04, 0.05 decreases. The reason for this result

is that, in this interval, there is an overlap with other classes.

However, for other λr the accuracy is more than 91%. Also

the total average accuracy of all cases is 91.27%, which is a

high accuracy that shows that our classification method can

recognize a Ramp attack.

Similar to the Ramp attack, we apply a Scaling attack to

the system at time 30 s for 20 s and calculate the accuracy.

Table II shows the average accuracy for the Scaling attack with

different λs. The accuracy is more than 98% for all cases, and

the total average accuracy is 98.96%, which proves that our

classification method can recognize a Scaling attack.

Finally, we evaluate the accuracy when there are no attacks.

Fig. 3. Detecting Ramp attacks.



Fig. 4. Detecting Scaling attacks.

In this case, all data should be classified as Normal. The

average accuracy for this condition equals 99.94% that shows

that our classification method can recognize Normal conditions

excellently.

VI. CONCLUSIONS

Industrial control systems are increasingly being connected

to communications networks, which make them more vulner-

able to cyber attacks. Regarding this issue, in this paper, we

propose a digital twin based intrusion detection technique.

By deploying the intrusion detection system in the digital

domain, more advanced methods that require more computing

resources can be developed. Therefore, we have developed

and evaluated an intrusion detection mechanism for the digital

twin, which can both detect attacks and also classify the

type of attack. The intrusion detection mechanism uses a

combination of a Kalman filter to detect the attack, a particle

swarm optimization algorithm to estimate the noise, and

a support vector machine algorithm to classify the attack.

Through simulation studies in Matlab Simuling, we show that

TABLE I
ACCURACY OF RAMP ATTACK

CLASSIFICATION

Parameter λr Accuracy

0.01 91.42%

0.02 94.77%

0.03 83.97%

0.04 87.48%

0.05 89.88%

0.06 91.37%

0.07 92.44%

0.08 93.10%

0.09 93.85%

0.1 94.42%

TABLE II
ACCURACY OF SCALING ATTACK

CLASSIFICATION

Parameter λs Accuracy

20 98.97%

55 99.01%

100 99.03%

200 98.94%

300 98.95%

400 98.94%

500 98.93%

600 98.96%

700 98.93%

800 99.10%

900 98.92%

1000 98.95%

our detection method is highly effective to detect an attack

before the attack can drive the system to an unsafe state. Also,

we show that our classification approach can provide a high

accuracy when determining the types of attacks. Therefore,

our proposed approach can assist industrial control systems

with detecting cyber attacks before they cause damage and

also classify the type of attack, which will be of great benefit

when it comes to choosing the proper mitigation method for

each type of attack.

REFERENCES

[1] J. Cheng, W. Chen, F. Tao, and C.-L. Lin, “Industrial IoT in 5G environ-
ment towards smart manufacturing,” Journal of Industrial Information

Integration, vol. 10, pp. 10–19, 2018.
[2] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security

& Privacy, vol. 9, no. 3, pp. 49–51, 2011.
[3] D. Alert, “Cyber-attack against ukrainian critical infrastructure,” Cyber-

security Infrastruct. Secur. Agency, Washington, DC, USA, Tech. Rep.

ICS Alert (IR-ALERT-H-16-056-01), 2016.
[4] ICS-CERT, “Hatman—safety system targeted malware,” Mar. 2017.

[Online]. Available: https://ics-cert.us-cert.gov/MAR-17-352-01-
HatManTargeted-Malware.

[5] Kaspersky Lab ICS-CERT, “Threat landscape for industrial au-
tomation systems in h2 2017,” Mar. 2018. [Online]. Avail-
able: https://icscert.kaspersky.com/reports/2018/03/26/threat-landscape-
for-industrial-automation-systems-in-h2-2017/.

[6] N. S. Malik, R. Collins, and M. Vamburkar, “Cyber-attack,
pings data systems of at least four gas networks,” Apr. 2018.
[Online]. Available: https://www.bloomberg.com/news/articles/2018-04-
03/day-after-cyberatta ck-a-third-gas-pipeline-data-system-shuts.

[7] M. Farsi, A. Daneshkhah, A. Hosseinian-Far, and H. Jahankhani, Digital

Twin Technologies and Smart Cities. Springer, 2020.
[8] M. Eckhart and A. Ekelhart, “Towards security-aware virtual environ-

ments for digital twins,” in Proceedings of the 4th ACM workshop on

cyber-physical system security, 2018, pp. 61–72.
[9] ——, “A specification-based state replication approach for digital twins,”

in Proceedings of the 2018 Workshop on Cyber-Physical Systems Secu-

rity and Privacy, 2018, pp. 36–47.
[10] F. Akbarian, E. Fitzgerald, and M. Kihl, “Synchronization in dig-

ital twins for industrial control systems,” arXiv e-prints, p. arXiv:
2006.03447, June 2020.

[11] Y.-L. Huang, A. A. Cárdenas, S. Amin, Z.-S. Lin, H.-Y. Tsai, and
S. Sastry, “Understanding the physical and economic consequences of
attacks on control systems,” International Journal of Critical Infrastruc-

ture Protection, vol. 2, no. 3, pp. 73–83, 2009.
[12] S. Sridhar and M. Govindarasu, “Model-based attack detection and

mitigation for automatic generation control,” IEEE Transactions on

Smart Grid, vol. 5, no. 2, pp. 580–591, 2014.
[13] F. Akbarian, A. Ramezani, M.-T. Hamidi-Beheshti, and V. Haghighat,

“Intrusion detection on critical smart grid infrastructure,” in 2018 Smart

Grid Conference (SGC). IEEE, 2018, pp. 1–6.
[14] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear

approaches. John Wiley & Sons, 2006.
[15] Y. Laamari, K. Chafaa, and B. Athamena, “Particle swarm optimization

of an extended kalman filter for speed and rotor flux estimation of an
induction motor drive,” Electrical Engineering, vol. 97, no. 2, pp. 129–
138, 2015.

[16] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE transactions on Neural Networks,
vol. 13, no. 2, pp. 415–425, 2002.

[17] MATLAB, 9.7.0.1190202 (R2019b). Natick, Massachusetts: The Math-
Works Inc., 2018.

[18] Ball and Beam: Simulink Modeling. [Online]. Available:
http://ctms.engin.umich.edu/CTMS/index.php?example=BallBeamsection
=SimulinkModeling.

[19] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzen, “How
does control timing affect performance? analysis and simulation of
timing using jitterbug and TrueTime,” IEEE control systems magazine,
vol. 23, no. 3, pp. 16–30, 2003.


