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Abstract: Smart agriculture is a popular domain due to its intensified growth in recent times. 

This domain aggregates the advantages of several computing technologies, where the IoT is 

the most popular and beneficial. In this work, a novel and effective deep learning based 

framework is developed to detect intrusions in smart farming systems. The architecture is three-

tier, with the first tier being the sensor layer, which involves the placement of sensors in 

agricultural areas. The second tier is the Fog Computing Layer (FCL), which consists of Fog 

nodes, and the proposed IDS is implemented in each Fog node. The gathered information is 

transferred to this fog layer for further analysis of data. The third tier is the cloud computing 

layer, which provides data storage and end-to-end services. The proposed model includes a 

fused CNN model with the bidirectional gated recurrent unit (Bi-GRU) model to detect and 

classify intruders. An attention mechanism is included within the BiGRU model to find the key 

features responsible for identifying the DDoS attack. In addition, the accuracy of the 

classification model is improved by using a nature-inspired meta-heuristic optimization 

algorithm called the Wild Horse Optimization (WHO) algorithm. The last layer is the cloud 

layer, which collects data from fog nodes and offers storage services. The proposed system will 

be implemented in the Python platform, using ToN-IoT and APA-DDoS attack datasets for 

assessment. The proposed system outperforms the existing methods in accuracy (99.35%), 

detection rate (98.99%), precision (99.9%) and F-Score (99.08%) for the APA DDoS attack 

dataset and the achieved accuracy of the ToN-IoT dataset (99.71%), detection rate (99.02%), 

precision (99.89%) and F-score (99.05%). 

 

Keywords: Intrusion detection, Label encoding, Smart agriculture, Detection, Attention 
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1. Introduction 

The agricultural region plays a dynamic role in the country’s financial growth and is one of the 
most crucial food providers. In order to meet the demands, the Food and Agriculture 

Organization (FAO) of the United Nations states that worldwide food productivity must reach 

70% by 2050 [1]. Even though the current productivity rate is capable of meeting the demands, 

a report claimed that about 500 million people across the globe suffer from malnutrition while 

around 821 million people go hungry [2]. It is also estimated that the global population has 

increased to over 2 billion, and most of the impact of population growth. It might be seen in 

countries like India, Nigeria, Ethiopia, Pakistan, Egypt, the Democratic Republic of Congo, the 

United States, Indonesia and the United Republic of Tanzania [3]. It might also be problematic 

to meet the water demands of 40% by 2030, and arable land destruction impacts the overall 

food supply. Therefore, many sustainable systems and resources are required to obtain and 

maintain higher productivity levels to meet increasing demands worldwide [4, 5]. 



The increase in productivity requires advancements in cultivation practices and the 

adaptability of several technologies to provide crucial knowledge about the farm fields to take 

appropriate actions. Integrating novel and innovative technologies in the fields to gain 

optimized irrigation process is termed smart farming or precision farming [6, 7]. The 

technological integration provides more information regarding the fields and plants to enhance 

the irrigation procedure and to obtain optimal outcomes [8]. This information includes the 

presence of pests in the crops, the water requirement for the plants, the area needed to achieve 

higher production, resources required to control pests, the amount of fertilizers needed, etc. All 

these can be achieved by adapting prediction technologies, measurements of the environment 

and tools of automation [9, 10]. This combination can escalate the overall agricultural 

production to several extents without requiring huge amounts of natural resources. Smart 

farming integrates several technologies, protocols, computing paradigms and devices to 

empower the farmers to gather and understand most details regarding the farm fields [11, 12]. 

Since integrating technologies in smart farming offers undeniable benefits to farmers, this 

integration comes with many difficulties and complexities [13]. Among those challenges, the 

most terrifying one is intrusions intentionally introduced into embedded technologies to gain 

access to the accumulated data. Most security challenges are due to the vulnerability of the 

systems integrated into smart farming and due to their contained power [14, 15]. Technologies 

like artificial intelligence (AI), the Internet of Things (IoT), deep learning (DL), etc., were used 

for the effective removal of challenges like resource wastage and shortage of food [16]. Labor 

cost reduction, water and electricity conservation and the farmers can keep a record of their 

yield were the main advantages of IoT based smart agriculture [17]. The devices included in 

the fields collect crucial data regarding the farm fields and transmit them to the servers for 

storage. During the transfer of the data to the destination, there is a higher possibility of various 

security attacks that require quick fixes [18]. The most common attack in smart farming is the 

distributed denial of service (DDoS) attack, which can generate fake traffic on the network. 

This attack intensifies by compromising multiple devices in the network to generate fake traffic 

to overwhelm the network [19, 20]. Therefore, this paper focuses on developing an effective 

intrusion detection system (IDS) that can accurately detect and classify the DDoS attack on the 

network.  

Smart agriculture is a popular domain due to its intensified growth in recent times. This 

domain aggregates the advantages of several computing technologies, where the IoT is the most 

popular and beneficial. The IoT system places sensors on agricultural fields to collect important 

data regarding crops and fields to improve the overall productivity rate. While transmitting the 

sensed data from the fields to the destination, there is a possibility of the occurrence of cyber-

attacks that intruders design to gain access to the contents being transmitted. If the equipment 

installed in the field increases the production loss, it will be a serious issue. The main objectives 

of the proposal are as follows: 

➢ Designing a new and effective hybrid deep learning based IDS framework for smart 

farming applications. 

➢ A 3-tier architecture is considered in the work, where the sensing layer contributes to 

the agricultural fields on which the sensors are located, fog computing layer (FCL), 

where the IDS framework is deployed and the cloud computing layer for storage. 

➢ A hybridization of deep learning named Fused and Optimized CNN-BiGRU (FOCB) 

with the metaheuristic optimization algorithm called Wild Horse Optimization (WHO) 

is explored to gain significant improvements in classification accuracy. 

➢ The significance of the features representing DDoS attacks is further enhanced by 

adding an attention mechanism at the end of the BiGRU model. 



The following sections are structured as follows: Section 2 explains the related works on 

IDSs. Section 3 underlines the proposed IDS procedure. Section 4 evaluates the results and 

discussion. The conclusion of the work is explained in section 5. 

 

2. Related work 

Some of the recent and effective IDS frameworks contributing to security in smart farming are 

discussed below: 

Smart farming embeds advanced computing technologies with general farming operations 

to enhance performance and improve the overall production rate. With the convergence of the 

IoT with the smart farming scenario, farming operations have achieved considerable 

improvement. Since IoT devices are placed directly on the fields, many threats are encountered 

that require prompt solutions to be protected from cyber-attacks. One methodology has been 

declared by Ferrag et al. [21] depend on the integration of IoT with smart farming, where the 

IDS was developed to protect the data from DDoS attacks. The system model included a 

sensing layer, FCL and the cloud layer. The sensors in the sensing layer captured the data from 

fields and forwarded it to fog nodes where the IDS framework detected the DDoS attacks. The 

IDS framework was developed using three DL models: Deep Neural Network (DNN), CNN 

and Recurrent Neural Network (RNN), each trained on the data sets for classification. The 

results proved the performance of the model compared to previous work. 

Another methodology for IDS to secure the data from agricultural fields was introduced by 

Raghuvanshi et al. [22]. The IoT sensors were placed on the fields in the methodology to collect 

agricultural data. The NSL-KDD dataset was utilized as the input to the framework, where 

initially, pre-processing was carried out by converting all the symbolic features into numeric 

features. Following this step, feature extraction was performed using the principal component 

analysis (PCA) technique. The classification was performed using machine learning methods 

such as Random Forest (RF), Support Vector Machine (SVM) and Linear Regression (LR). 

The methodology was compared to other ML methods to demonstrate the increased 

performance achieved. 

The technologies used in smart agriculture are effective instruments capable of generating 

temporal, spatial and time-series data streams collected from fields. These generated data must 

be protected from adversarial attacks to enhance agricultural productivity. Moso et al. [23] 

introduced an ensemble anomaly detector called Enhanced Local Selective Combination in 

Parallel Outlier Ensembles (ELSCP) to accomplish the task. A data-driven unsupervised 

methodology was presented that was applied to two different case studies, where one dealt with 

global positioning system (GPS) traces and the other dealt with crop data. While dealing with 

the crop data, the ELSCP framework predicted the crop’s state and detected anomalies present 

in the data. The experimental outcomes of the model proved that the model was capable of 

accurately identifying the anomalies related to crop damage. 

Establishing a smart farm includes several different equipment that is operated to achieve 

certain functionality. Anomalies in such equipment decrease the reliability of smart farms and 

cause various troubles. A method to solve the above issue was introduced by Park et al. [24], 

integrating the deep learning technique. The technique was established to secure pig house 

equipment and enhance livestock management. The data accumulated in the equipment, such 

as the environmental factors, were used for training purposes. The RNN model was utilized in 

the method for training and classification purposes. Environmental factors such as temperature, 

ventilation, CO2, humidity, external and radiator temperatures are used for training purposes. 

The method provided better and correct outcomes related to other current mechanisms. 

The main intention of developing the precision farming system is to reduce the burden on 

farmers and increase the overall net productivity. To achieve this, the agricultural sector 

embeds multiple devices labeled with specific objectives. One such equipment only provides 



water to the agricultural field when needed. Thakur et al. [25] introduced a methodology for 

intrusion identification, where several sensors were utilized to obtain the data. The method also 

focused on detecting intrusions in the fields before the captured data was forwarded to cloud 

servers. The methodology utilized and monitored soil data, and different forms of intrusions in 

the fields were detected. The effectiveness of the approach was proved through experiments. 

Several IDS methodologies are proposed in the literature to accurately detect and classify 

the attacks so that the data can be transmitted securely. Among the introduced methodologies, 

deep learning based techniques are highly flourished due to their excellent learning capacity. 

The existing techniques, however, suffer from various issues such as poor data quality, training 

data overfitting, training data underfitting, non-representative and insufficient training data. All 

these problems are required to be resolved efficiently to improve the overall growth of 

agriculture.   

 

3. Proposed methodology 

The proposed smart farming architecture is three-tier. The first tier is the agricultural sensor 

layer, which involves the placement of sensors in agricultural areas to gather environmental 

information data. The gathered agricultural information is transmitted to the fog layer for 

analysis. The second stage is the FCL, which consists of Fog nodes, and within each Fog node, 

the proposed IDS is implemented. The third stage is the cloud computing layer for storing the 

data and providing the end to end services. The proposed model includes label encoding and 

data normalization for pre-processing and a fused model of bidirectional gated recurrent unit 

(Bi-GRU) with a CNN model to detect and classify the intrusions. An attention mechanism is 

included within the BiGRU model to find the key features responsible for identifying the DDoS 

attack. 

Further, the model classification accuracy is polished using a nature inspired meta-heuristic 

optimization algorithm called the WHO algorithm. The last layer is the cloud layer, which 

collects data from fog nodes and offers storage services. Figure 1 shows the proposed 

methodology. 
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3.1 The BiGRU-CNN based IDS  

For the detection of DDoS attacks in the IDS, the ToN-IoT dataset and the APA-DDoS-Attack 

dataset are used as input data. A number of attacks are included in the dataset used, and the 



proposed IDS is used to identify the DDoS attack from the dataset. The BiGRU-CNN IDS 

contains 5 layers: input layer, BiGRU layer, attention layer, convolution layer and output layer. 

 

3.1.1 Input layer 

Data from the ToN-IoT dataset and APA-DDoS-Attack dataset are first pre-processed. The 

pre-processing section contains label encoding and data normalization. In label encoding, non-

numerical data are converted to numerical values. The categorical features were converted to 

numerical values using the label encoder. Each and every categorical value in the dataset was 

converted to a number using the label encoding technique. The min-max method is the next 

data normalization process that allows the values to fall within the same range. To normalize 

data in the range 0 and 1, the expression used is,  

minmax

min

−
−

=
Z

Z              (1) 

Where Z and Z  are real and normalized data, respectively, min is the minimum and max
is maximum values.  

 

3.1.2 BiGRU layer 

A sequence-processing model called BiGRU consists of two GRUs. One GRU receives input 

in the forward direction, the other in the reverse direction. The GRU is a modified version of 

the RNN. Reduced computational cost, training efficiency and simpler structure are the main 

advantages of GRU. The design of the BiGRU model is depicted in figure 2. 
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Figure 2: Structure of BiGRU 

 

Equation (2) defines the GRU’s underlying computation method,  
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The sigmoid activation function   is used to convert intermediate states to the range [0,1], 

1−tk  and tk  are the outputs at the time 1−t and t , respectively. ty is the input arrangement 

value at the time t . The output state is tk


; tr  and tz are the reset and update gates; 
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V  are the coefficient matrices of the weight in every part; tanh is a 

hyperbolic tangent function and is the element wise multiplication. The output tk  of each 

time step t  contains two vectors from forward propagation tk


 and backward propagation tk
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3.1.3 Attention layer 

To strengthen the performance of the IDS, an attention mechanism is added to the output of 

the BiGRU layer. The most crucial features responsible for IDS are selected using the attention 

mechanism to identify the DDoS attack. The attention mechanism introduces a weight 

coefficient according to the importance of identifying the important features for selecting a 

DDoS attack. The calculation process is shown in equation (3), 

))tanh(max( 3331 bHWwsoft
T +=     (3) 
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The output from the BiGRU model after the attention mechanism is given to the 

convolution layer. 

 

 

3.1.4 Convolution layer 

Multiple convolution kernels are used in the convolution layer to extract deeper features in the 

intrusion detection system. This layer includes a convolution layer and a pooling layer which 

is different from other neural networks. For the BiGRU-CNN based IDS, 3 different 

convolution kernels are used, using maximum pooling to extract the important features. The 

convolution kernel is related to weight and bias vectors. The nth kernel at position (i,j)  in the 

mth layer calculates the feature value 
m
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Where, 
1

,

−m

jix  is the input patch for the th
m )1( −  layer, centered at position ),( ji . The nth 

kernel filter’s weight (W ) and bias ( b ) terms, respectively in th
m  layer. The pooling layer is 

used to minimize the dimensions and increase robustness. The pooling method that determines 

the maximum value in the pooling windows uses Max Pooling in the pooling layer. 

 

3.1.5 Output layer 

The output of the convolution layer is sent to the fully linked layer of the output layer. The 

outcome of the convolution layer is given to the softmax classifier, where the softmax function 

is used for identifying the DDoS attack. The mathematical expression for the softmax function 

is,  

)max( cvZsoftzl +=     (6) 

Where c is the bias, v is the weight coefficient matrix, and lz is the attained output that is 

the DDoS attack.  

 

3.1.6 Parameter tuning using wild horse optimization 



In order to optimally tune the bias and weight parameter and thereby reduce the classification 

error rate, the WHO algorithm is aimed, which improves the accuracy of detecting DDoS 

attacks.  

In WHO, the social behavior of the wild horse is considered for the optimal selection of the 

parameter, which improves the detection accuracy. Initially, the population is divided into 

groups, where H  symbolizes the number of different attacks and M represents the total 

number of attacks in the system. The number of stallions equals H , since each group has a 

leader, and MH represents the population of foals and mares scattered in this group. 
ii
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Hj stlanYstlanSXXY +−= )()2cos(2 ,,      (7) 

i

HjY ,  denotes the current position of the mare or foal group member, stlan  gives the 

location of the stallion, S has a stochastic value in the interval -2 to 2 and X denotes the 

adaptive model projected as, 
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Where, 231 ,, TandTTR


 has an arbitrary value in the range of [0, 1]. The value of TDR 

reduces to 0 at the end of iteration starting from 1 given as, 
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The maximal iteration is represented as itmax . For a foal to move from group j to a 

transitory group when the foal moves to group i. The crossover operator is used to simulate 

horse mating behavior: 
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The group leader struggles a lot for the water hole, and the others should wait till the 

dominant group leaves the water hole: 
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WH is the location of the water hole, and the leader who finds the location is represented 

as
jHStlan . Based on the fitness value, the leader is selected in the next phases, and the leader’s 

position and the selected member are indicated as follows: 
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The fitness function used in WHO is the classification error rate, and the goal of the WHO 

algorithm is to minimize the classification error rate. The flow chart of the proposed WHO is 

shown in Figure 3, 
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Figure 3: Flowchart of WHO 

 

The suggested system helps to detect intrusions in smart farming systems with better 

performance. It mainly detects DDoS and DoS attacks. 

 

4. Results and Discussion 

This section analyses the effectiveness of the suggested IDS using different performance 

metrics. The evaluation metrics used for the analysis are accuracy, precision, detection rate, F-

measure, ROC and confusion matrix. 

 

4.1 APA-DDoS Attack Dataset 

As the connection between devices increased, the major challenge was the detection of attacks, 

for an intrusion detection system (IDS) was developed. Machine learning techniques have been 

developed to find the attacks which need access to attack patterns. The APA-DDoS attack 

contains different types of DDoS attacks. The dataset holds mainly ACK and PUSH-ACK 

DDoS attacks [26]. To improve the detection rate, the APA-DDoS attack dataset was used. 

70% of the dataset is used for training, while 30% is used for testing. 



4.2 ToN-IoT Dataset 

Telemetry datasets of Internet of things (IoT) and Industrial IoT (IIoT) sensors are included in 

the ToN-IoT dataset and split into 70% and 30% for training and testing sets. The dataset is 

allocated in the ratio of 70:30 for training and testing. The dataset contains 43 features with 9 

types of attacks and a normal vector. Attacks in IoT environments like Backdoor, MITM, 

DDoS, DoS, Injection, Password, Scanning, XSS and Ransomware are included in the dataset. 

 

4.3 Evaluation Metrics 

In estimating the suggested IDS, the chosen performance metrics play a vital role. The 

evaluation metrics selected for the estimation are Accuracy, Precision, Detection rate, F-score, 

and confusion matrix. 

 

4.3.1 Accuracy 

It is an amount of the IDS detection accuracy, which is described as the ratio of correctly 

detected observations to total observations in the test set.  
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4.3.2 Detection Rate  

The detection rate or recall is the number of detected positive cases divided by the entire 

number of events in the test set.  

FNTP
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4.3.3 Precision 

Precision gives the ratio of the number of detected attacks divided by the system’s total number 
of attacks. 
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+
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4.3.4 F-measure 

F-measure represents the average precision as well as recall. It measures the accuracy of the 

suggested IDS system using precision and recall. 
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4.4 Performance Analysis based on APA-DDoS Attack 

This section compares the performance of the proposed IDS to other current approaches [27] 

in terms of recall, accuracy, F-measure and precision. For the analysis, the APA-DDoS Attack 

dataset is utilized.  

 

 

 

 

 

 

 

 

 

Table 1: Comparison analysis of Accuracy, Precision, F-measure and Detection rate for  



APA-DDoS Attack dataset. 

Methods Accuracy Precision F-measure Detection rate 

SLSTM 98.98 94.11 94.14 94.12 

DT 96.92 78.31 77.99 77.85 

NB 75.36 69.19 63.47 63.8 

RF 97.47 78.4 77.45 76.62 

PROPOSED 99.35 99.90 99.08 98.99 

 

Table 1 gives a comparative analysis of the proposed system with current methods. The 

proposed system’s detection rate, precision, accuracy, and F-measure are compared with the 

existing methods for the APA-DDoS attack dataset. 

 

 
Figure 4: Confusion matrix of APA-DDoS Attack Dataset 

 

The confusion matrix (CM) of the APA-DDoS attack dataset is shown in figure 4. The CM 

compares the values predicted by the suggested system with the original target values. 

 



 
Figure 5: Performance Analysis of Accuracy 

 

The suggested system achieved a good performance in terms of accuracy with 99.35%. 

Figure 5 gives an accurate performance analysis of the suggested and existing methods. 

 

 
Figure 6: Performance Analysis Detection Rate 

 

Figure 6 gives the performance evaluation in terms of the detection rate of the suggested 

system with numerous present methods. The suggested system attained a 98.99% detection 

rate, while the existing methods achieved only 77.85% for DT, 63.8% for NB, 94.12% for 

SLSTM and RF 76.62%. So the suggested system outperformed in terms of the detection rate. 

 



 
Figure 7: Performance Analysis of F-measure 

 

Figure 7 gives the performance evaluation in terms of the F-measure of the suggested 

system with various existing methods. The suggested system attained 99.08% F-measure, while 

the existing methods have achieved only 77.99% for DT, 63.47% for NB, 94.14% for SLSTM 

and RF with 77.45%. So the suggested system outperformed in terms of F-measure. 

 

  
Figure 8: Performance Analysis of Precision 

 

Figure 8 gives the performance evaluation based on the precision of the suggested system 

with numerous existing methods. The suggested system attained 99.90% precision, while the 

existing methods have achieved only 78.4% for RF, 78.31% for DT, 94.11% for SLSTM and 

NB 69.19%. So the suggested system outperformed in terms of precision. 

 



 
Figure 9: ROC curve for APA-DDoS-Attack dataset 

 

Figure 9 depicts the receiver operating characteristic (ROC) curve, which is a representation 

of the rate of true positives vs. the rate of false positives. The ROC curve examines the 

performance of the classifier. Then, the analysis of training accuracy is shown in figure 10. 

 

 
Figure 10: Training accuracy vs testing accuracy for the suggested system with  

APA-DDoS Attack dataset 

 

Figure 10 shows the training accuracy with the testing for the suggested system for the 

APA-DDoS attack dataset. The suggested system achieved a better accuracy with 99.35%. 

 



 
Figure 11: Training loss vs testing loss for the suggested system  

With APA-DDoS Attack dataset 

 

The suggested system got low loss in testing and training. The training loss vs. a testing 

loss of the suggested system for the APA-DDoS Attack dataset is plotted in figure 11. 

 

4.5 Performance Analysis based on ToN-IoT Dataset 

This section compares the suggested IDS’s performance to other current approaches in terms 

of recall, accuracy, F-measure and precision. For the analysis, the ToN-IoT dataset is utilized.  

 

Table 2: Comparison analysis of Accuracy, Precision, F-measure and Detection rate for  

APA-DDoS Attack dataset. 

Methods Accuracy Precision Detection rate F-measure 

RF 97.81 87.5 85.43 86.41 

DT 95.34 74.42 80.0 76.33 

NB 90.62 77.68 77.7 72.43 

SLSTM 98.64 98.94 98.00 98.87 

PROPOSED 99.71 99.89 99.05 99.02 

 

Table 2 gives the comparison analysis of the suggested system with various existing 

methods like NB, DT, RF and SLSTM. 

 



 
Figure 12: Confusion matrix of ToN-IoT Dataset 

 

The confusion matrix (CM) of the ToN-IoT dataset, which indicates the performance of the 

classification, is shown in figure 12. The rows in CM symbolize the true label, and the columns 

symbolize the predicted labels. 

 

 
Figure 13: Analysis of Accuracy Performance 

 

Figure 13 gives a performance evaluation in terms of the accuracy of the suggested system 

with numerous existing methods. The suggested system attained 99.71% accuracy, while the 

existing methods achieved only 95.34% for DT, 90.62% for NB, 98.64% for SLSTM and RF 

97.81%. So the suggested system outperformed in terms of accuracy. 



 
Figure 14: Analysis of Detection rate Performance 

 

The suggested system achieved good performance in terms of a detection rate of 99.02%. 

Figure 14 gives the detection rate performance analysis of the suggested and present methods. 

 

 
Figure 15: Analysis of F-measure Performance 

 

Figure 15 gives the performance evaluation in terms of the F-measure of the suggested 

system with numerous present methods. The suggested system attained 99.05% F-measure, 

while the existing methods have achieved only 76.33% for DT, 72.43% for NB, 98% for 

SLSTM and RF with 86.41%. So the proposed system outperformed in terms of F-measure. 



 
Figure 16: Analysis of Precision Performance 

 

Figure 16 shows the performance evaluation in terms of precision. The various existing 

methods used are DT, RF, NB and SLSTM, with precisions of 74.42%, 87.5%, 77.68% and 

98.94%, respectively. The proposed system attained 99.89% precision. 

 

 
Figure 17: Graph of ROC curve for ToN-IoT dataset 

 

The classifier outcomes were evaluated using the Receiver operating characteristic (ROC), 

which gives the performance assessment of multiclass vectors in a dataset. To represent the 

ROC, the TP and the FP rates are considered. The ROC curve of the proposed system is shown 

in figure 17. 

 



 
Figure 18: Accuracy of Training vs. testing for the suggested system with  

APA-DDoS Attack dataset 

 

The accuracy of training and testing of the suggested system for the ToN-IoT dataset is 

plotted in figure 18. The suggested system with BiGRU-CNN achieved 99.71% accuracy. 

 

 
Figure 19: Training loss vs testing loss for the proposed system with  

APA-DDoS Attack dataset 

 

The proposed system got low loss in testing and training. The training loss vs. a testing loss 

of the proposed system for the ToN-IoT dataset is plotted in figure 19. 

 

5. Conclusion 

In this research, an effective intrusion detection system for DDoS attack detection for smart 

agriculture was developed. The data collected are pre-processed using data normalization and 

label encoding. A fused model of CNN with the bidirectional gated recurrent unit (Bi-GRU) 

model to detect as well as classify the intrusions. The BiGRU model includes an attention 

mechanism to find the most crucial features responsible for identifying the DDoS attack. 

Further, the model’s classification accuracy is enhanced with the use of a nature inspired 



metaheuristic optimization algorithm called the Wild Horse Optimization (WHO) algorithm. 

Standard performance metrics are used to calculate the intrusion detection system (IDS) 

performance. The developed IDS model can detect the DDoS attack in the smart agriculture 

and attained an accuracy of 99.35% for APA-DDoS-Attack and ToN-IoT datasets with 99.71% 

accuracy. In the future, this technique can be further improved to detect other IoT attacks. 
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