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A B S T R A C T

Present Intrusion Detection Systems (IDSs) for MANETs require continuous monitoring which leads to

rapid depletion of a node’s battery life. To address this issue, we propose a new IDS scheme comprising

a novel cluster leader election process and a hybrid IDS. The cluster leader election process uses the Vickrey–

Clarke–Groves mechanism to elect the cluster leader which provides the intrusion detection service. The

hybrid IDS comprises a threshold based lightweight module and a powerful anomaly based heavy-

weight module. Initially, only the lightweight module is activated. The decision to activate the heavyweight

module is taken by modeling the intrusion detection process as an incomplete information non-

cooperative game between the elected leader node and the potential malicious node. Simulation results

show that the proposed scheme significantly reduces the IDS traffic and overall power consumption in

addition to maintaining a high detection rate and accuracy.

Copyright © 2015, The Authors. Production and hosting by Elsevier B.V. on behalf of Karabuk

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Mobile Ad-hoc Networks (MANETs) are a collection of hetero-

geneous, infrastructure less, self organizing and battery powered

mobile nodes with different resources availability and computa-

tional capabilities. The dynamic and distributed nature of MANETs

makes them suitable for deployment in extreme and volatile en-

vironmental conditions. They have found applications in diverse

domains such as military operations, environmental monitoring,

rescue operations etc. Each node in a MANET is equipped with a

wireless transmitter and receiver, which enables it to communi-

cate with other nodes within its wireless transmission range.

However, due to limited wireless communication range and node

mobility, nodes inMANETmust cooperate with each other to provide

networking services among themselves. Therefore, each node in a

MANET acts both as a host and a router.

The dynamic and distributed nature of MANETs make them vul-

nerable to various types of attacks like black hole attack, traffic

distortion, IP spoofing, DoS attack etc. Malicious nodes can launch

attacks against other normal nodes and deteriorate the overall per-

formance of the entire network [1–3]. Unlike in wired networks,

there are no fixed checkpoints like router and switches in MANETs,

where the Intrusion Detection System (IDS) can be deployed [4,5].

Therefore, nodes in MANETs must cooperate in many aspects in-

cluding intrusion detection for their well being [6–8]. IDSs have been

deployed with great degree of success across diverse domains like

wireless Ad-hoc networks [5,9], MANETs [10–12], wireless sensor

networks [13], cyber-physical system [14], cloud computing [15],

large scale complex critical infrastructures [16] etc. In this paper,

we focus on IDS for MANETs.

Due to absence of any centralized monitoring entity in MANETs,

each node runs its own IDS and usually operates in a promiscuous

mode. However, owing to limited battery life, it is not feasible to

keep the IDS running continuously on MANET nodes. Most of the

current MANET IDS schemes do not take into account the nature

of the environment they are operating in and therefore they end

up monitoring all nodes with equal probability, irrespective of

whether or not the node being monitored has a history profile of

being malicious. This results in a poor monitoring strategy wherein

the node operating the IDS ends upwastingmost of its energymoni-

toring the normal nodes. Another issue with many MANET IDS

schemes [17–19] is that they generate heavy intrusion detection

related traffic. Unlike the wired networks, MANETs have limited

bandwidth and therefore, a large amount of intrusion detection

related traffic can cause severe congestion in the network and limit

the flow of normal traffic. In addition, heavy intrusion detection

traffic also leads to more energy consumption amongMANET nodes

for processing them.

Designing a MANET IDS scheme that is energy efficient and gen-

erates a low IDS traffic, while at the same time maintaining a high

accuracy and detection rate is an active area of research. In this paper,

we model the intrusion detection process in MANETs using a game

theoretical framework. Game theory basedMANET IDSs [20–22] have

been found to be energy efficient as well as generate low IDS traffic
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through application of dynamic and economical monitoring strat-

egies. Game theory based IDS models the intrusion detection

problem as a non-cooperative game between two competing players

(attacker and defender), where the defender player (cluster leader

node) tries to maximize its payoff by increasing its probability of

successful intrusion detection while the attacker player (mali-

cious node) tries to minimize its probability of being detected by

the IDS.

Game theory based IDS scheme allows the IDS to assess the type

of the node beingmonitored and adopt appropriatemonitoring strat-

egies. Nodes are assigned maliciousness values based on the history

profile of their observed actions. Unlike most conventional IDSs that

adopt promiscuousmonitoring strategy and results in high IDS traffic

generation, game theory based IDS uses a dynamic monitoring strat-

egy wherein nodes with high maliciousness values are monitored

more frequently compared to nodes with lowmaliciousness values.

This helps the IDS to conserve its energy and minimize the overall

IDS traffic generation. In a game theoretic IDS framework, a rigor-

ous monitoring strategy is adopted by the IDS if the environment

it is operating in is hostile. On the other hand, if the environment

is less hostile, a less rigorous monitoring strategy is adopted by the

IDS.

Most of the game theory based IDSs proposed in the literature

[19–21,23] assume a complete information game, wherein all players

(nodes) have complete information about the game, i.e., they make

an implicit assumption that various network parameters like energy

levels and types of network nodes (normal or malicious), accura-

cy and detection rate of IDS etc. are known to all nodes a priori. But,
such assumptions have limitations, since in most of the real network

settings each node only has a limited information about the network

parameters. Therefore, to address this issue of incomplete infor-

mation game, we propose a Bayesian game theory based MANET

IDS scheme that models the interaction between the attacker (ma-

licious node) and the defender (node operating IDS) in MANET as

a two person multi-stage, non-cooperative and incomplete infor-

mation game. The Bayesian model [19] allows the node operating

the IDS to adopt the most efficient monitoring strategy in an in-

complete information game settings by examining themaliciousness

history profile of the node being monitored and by evaluating the

Bayesian Nash equilibrium of the game.

In summary, this paper proposes a MANET IDS scheme with the

following objectives:

1. Modeling the intrusion detection process in MANETs as an in-

complete information Bayesian game as nodes in MANETs only

have partial information about the network.

2. Minimization of power consumption for operating IDS inMANETs.

3. Minimization of intrusion detection related traffic in MANETs.

4. Developing a MANET IDS scheme with high accuracy and de-

tection rate.

To achieve these objectives, we propose a new MANET IDS

scheme consisting of the following two components:

1. A MANET leader election mechanism: This component elects the

cluster leader node using the VCG mechanism [24] and en-

trusts it with the responsibility of providing intrusion detection

services to all other cluster nodes for a predefined period of time.

Cluster leader elections are held at regular intervals which ensures

uniform energy consumption among various cluster nodes for

operating the IDS.

2. A hybrid MANET IDS: This component comprises one light-

weight module and one heavyweight module. The lightweight

module is less powerful but requires less energy for its opera-

tion. On the other hand, the heavyweight module is more

powerful than the lightweight module but requires more energy

for its operation. Initially only the lightweight module is acti-

vated. If the action of the node being monitored by the

lightweightmodule is determined to bemalicious then the heavy-

weight module is activated, else the decision to activate the

heavyweight module is determined by the Nash Equilibrium of

the non-cooperative game played between the elected leader

node and the node being monitored.

The elected leader node operates the hybrid MANET IDS. Initial-
ly, only the lightweight module of the hybridMANET IDS is activated,

which calculates the Packet Forwarding Rate (PFR) of the poten-

tial malicious node being monitored. The PFR of any given node is

defined as the ratio of total number of packets received to the total

number of packets forwarded by the node over a given period of

time. If the PFR of the node being monitored is less than the thresh-

old value, then its action is assumed to be malicious and the

heavyweightmodule is activated formore rigorous analysis. However,

if the action of the node is found to be normal then the decision

to activate the heavyweight module is determined by modeling the

intrusion detection process as a multi-stage Bayesian game between

two competing players, where the players of the game are the cluster

leader node and the potential malicious node.

The cluster leader node has incomplete information about the

type of the opponent node (normal or malicious) and the follow-

ing two strategies: Monitor and Not Monitor. Here, the strategy

Monitor corresponds to the activation of the heavyweight module.

Similarly, the attacker player has two strategies: Attack and Not Attack.
The Bayesian Nash Equilibrium (BNE) of the game is the strategy

pair of the players which corresponds to the probability of the leader

node to play its strategy Monitor/Not Monitor and the probability

of the attacker player to play its strategy Attack/Not Attack. Intru-
sion detection process in MANETs is usually an incomplete

information game, where nodes only have partial information about

network parameters. The Bayesian game model allows the cluster

leader node to formulate its monitoring strategies based on its belief

about the type of the node (malicious or normal) being moni-

tored without requiring a complete information about that node.

It also minimizes the overall IDS traffic by adopting a non-

promiscuous monitoring strategy.

Simulation results in NS-2 [25] show that the proposed MANET

IDS scheme significantly reduces the power consumption for op-

erating the IDS among MANET nodes by 15–20% compared to a

randommodel. Further, the proposed scheme also maintains a high

level of detection rate against route compromise, traffic distortion and

black-hole attacks without introducing any significant traffic.

The rest of the paper has been structured in the following way.

Section 2 discusses about the background and related works on in-

trusion detection in MANETs. Section 3 presents the overall

description of our proposed MANET IDS scheme. Bayesian Game

model used for developing energy efficient IDS monitoring strate-

gies is discussed in section 3.1. A distributed and energy efficient

MANET leader election mechanism is discussed in section 3.2. A

hybrid MANET IDS along with its main components are discussed

in section 3.3. Experimental results and performance evaluation of

the proposed hybrid MANET IDS and MANET leader election mech-

anism are provided in Section 4. Finally, Section 5 provides the

conclusion and future work.

2. Background and related works

In this section, we provide a brief background study on differ-

ent types of MANET IDS based on their detection mechanism and

modes of operation. We then discuss about various intrusion de-

tection issues in MANETs and analyze the related works which have

been categorized into non-game theory based and game theory

based. Finally, the drawbacks associated with the related works have
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been listed out which provides us with the motivation for our work

to address them.

Based on their mode of operations, IDS in MANETs can broadly

be classified into anomaly based, signature based and specifica-

tion based. The anomaly based IDSs consist of the training phase

and the testing phase. The normal traffic profile of the network is

developed during the training phase and then the learned model

is used to analyze the current network traffic for sign of misbehav-

ior during the testing phase. Numerous anomaly detection methods

like statistical methods [26,27], data-mining methods [28] and

machine learning based methods [29] have been developed. The

main advantage of anomaly-based IDSs are their ability to detect

previous unknown attacks not seen during the training phase.

However, the main drawback of anomaly based IDSs is their high

False Positive (FP) alarm rate. Signature-based IDSs [30] use a da-

tabase of known attack signatures and raise an alarmwherever there

is a malicious traffic that matches with one or more attack signa-

tures in the database. They have high detection rate against known

attacks but cannot detect new attacks. They require frequent updates

to their signature database to detect new attacks. The specification-

based IDSs [31] specify a set of constraints on the network traffic

or protocols and any violations of these specifications are treated

as intrusions. They provide detection against both known and

unknown attacks with low false positive rate. However, the main

drawback of specification-based IDSs is their requirement of de-

tailed specifications for each program/protocol, which is a very time

consuming and computationally expensive process.

Based on their modes of operations, IDSs in MANETs can be

grouped into Stand-alone IDS, Distributed IDS and Clustered IDS. In
the Stand-alone IDS architecture, each node independently runs its

own IDS to determine intrusions. There is no cooperation between

the nodes in the network and every intrusion decision made by the

node is solely based on its own gathered information. Since partial

information on each individual node might not be enough to detect

attacks like network scans, this category of IDS is not suitable and

generally not preferred for MANETs. In the Distributed IDS archi-

tecture, every node participates in the intrusion detection process

by having an IDS agent running on them. The IDS agent collects local

event data to detect and identify local network intrusions. However,

neighboring IDS agents cooperate to perform a global intrusion de-

tection, when the local intrusion detection evidence is inconclusive.

In the Clustered IDS architecture, the network is divided into mul-

tiple clusters. Every cluster node runs its own IDS agent, which

monitors and detects local intrusions for the given cluster node, while

the cluster head runs the IDS agent both locally for its own node

and globally for the entire set of cluster nodes.

The conventional IDSs used in wired networks are ineffective and

inefficient for MANETs because of differences in their underlying

characteristics and architectures. Themajor issues encounteredwhile

developing an IDS for MANETs are:

• Lack of Central Monitoring Points: Unlike in wired networks there

are no centralized points like routers and gateways for moni-

toring network traffic in MANETs. IDS in MANETs needs to be

distributed and cooperative. However, limited bandwidth, low

energy levels, different computation capabilities of MANET nodes,

presence of malicious nodes etc. put a serious constraint on co-

operation among MANET nodes.

• Mobility: MANET topology may change frequently because of

mobile nodes that can exit or join the network arbitrarily. This

makes it difficult for the IDS to differentiate whether the node

sending an out of date routing information is simply out of syn-

chronization with other MANET nodes or whether the node has

been compromised.

• Wireless Links: Wireless networks have limited bandwidth com-

pared to wired networks. Heavy intrusion detection related traffic

could cause network congestion and limit the flow of normal

traffic. Therefore, MANET IDSs need to minimize their data flow

to avoid network congestion. But constraining the IDS traffic flow

may result in performance degradation of the IDSs and they may

not be able to respond to intrusions in real time.

• Limited Resources: Mobile nodes in MANETs consist of various

mobile devices with different computational capabilities and

energy resources. Therefore, signature-based IDS for MANETs

must take into account memory constraints for storing attack

signatures, while the anomaly-basedMANET IDS needs to be op-

timized to reduce energy usage for correlation of the network

traffic with the learned IDS model.

• Insecure Communication Link: MANETs are vulnerable to various

passive attacks like eavesdropping and interference. Therefore,

IDS traffic needs to be encrypted to prevent the attacker from

learning about the working principles of the IDS. However, em-

ploying cryptographic and authenticationmechanism inMANETs

is not feasible as they consume significant amount of energy and

are computationally expensive.

2.1. Related works

Shakshuki et al. [18] proposed an IDS named Enhanced Adap-

tive Acknowledgment (EAACK) for MANETs. Their scheme requires

all acknowledgment packets to be digitally signed by its sender and

verified by its receiver. They used DSA and RSA as digital signa-

tures and showed that their scheme is able to detect wide range

of attacks. However, the drawback of their scheme is the require-

ment to digitally sign all the acknowledgments which increases

computational overhead.

Marti et al. [32] proposed an IDS scheme for MANET which con-

sists of two different modules, viz. the Watchdog and the Pathrater.

In this scheme, the Watchdog acts as an IDS for the MANET and

detects malicious node behaviors in the network by promiscu-

ously listening to its next hop’s transmission. If theWatchdog notices

that its immediate next node fails to forward the packet within a

given period of time then it increments the node’s failure counter.

If the failure counter of themonitored node exceeds a threshold value

then the Watchdog reports the node as misbehaving. The Pathrater

is then employed to inform the routing protocol to avoid the re-

ported nodes for further data transmission. The drawback of this

scheme is that it requires continuous monitoring by the Watch-

dog for detecting intrusions.

Lui et al. [17] proposed a TWOACK MANET IDS scheme which

requires every data packets transmitted over three consecutive nodes

along the source to the destination path to be acknowledged. Every

node along the route has to send back an acknowledgment packet

to the node that is two hop counts away from it in the route. The

arrival of TWOACK packet at first node X (in the three consecutive

nodes along the route) indicates a successful transmission of packet

from node X to node Z via the intermediate node Y. However, if this

TWOACK packet is not received within a given predefined time in-

terval, both nodes Y and Z are reported as malicious. The drawback

of this scheme is that it introduces a routing overhead due to fre-

quent TWOACK packet generation.

Misra et al. [33] proposed a distributed self-learning, energy-

aware and low complexity protocol for intrusion detection inwireless

sensor network. Their protocol uses the stochastic Learning Au-

tomata (LA) on packet sampling mechanism to obtain an energy

efficient IDS. They showed that their approach was successful in de-

tecting and removingmalicious packets from theWSN. The drawback

of this scheme is that the LA needsmultiple rounds of learning before

it becomes efficient. Haddadi and Sarram [34] proposed a hybrid

IDS model for Wireless Local Area Network (WLAN) that uses both

misuse and anomaly based IDS sub-modules to detect intrusion. The

drawback of this approach is that the response times of the misuse
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based and anomaly based IDSs are different. It also introduces sig-

nificant computational overhead due to processing of the same data

traffic by two different IDSs.

A light weight, energy efficient and non-cryptographic intru-

sion detection solution against the gray hole attack in MANET is

proposed in Reference [35] by Mohanapriya and Krishnamurthi.

However, their scheme requires the IDS to operate in a promiscu-

ous mode to detect intrusions, which results in high power

consumption for operating the IDS.

A game-theoretic solution for Ad-hoc networks that models the

cooperation and selfishness of the networks are discussed in Ref-

erences [36,37]. In these schemes, each node decides whether to

forward or not forward a packet based on the trade-offs involved

in cost (energy consumption) and benefits (network throughput)

involved in collaborating with other nodes in the network. There-

fore, enforcing a cooperation mechanism ensures that a selfish node

that does not obey the network rules receives a low throughput.

The drawback of this scheme is that it assumes the complete in-

formation game, where nodes have full knowledge about the

network parameters.

Lui et al. [19] proposed a game theoretic framework to analyze

the interactions between pairs of attacking/defending nodes using

a Bayesian formulation in wireless Ad-hoc Networks. They sug-

gested a Bayesian hybrid detection approach for the defender, in

which a less powerful lightweight module is used to estimate the

opponent’s type, and a more powerful heavyweight module acts as

a last line of defense. They analyzed the obtainable Nash Equilib-

rium (NE) for the attacker/defender Bayesian game in both static

and dynamic settings and concluded that the dynamic approach is

a more realistic model, since it allows the defender to consistently

update its belief about the maliciousness of the opponent player

as the game evolves. The drawback of their work is that it is diffi-

cult to determine a reasonable prior probability about the

maliciousness of the attacker player.

Liu [38] proposed a general incentive-based method to model

attacker’s intent, objectives and strategies (AIOS) based on game the-

oretic formalization. The author developed an incentive-based

conceptual framework for AIOS modeling which can capture the in-

herent inter-dependency between AIOS and defender objectives and

strategies in such a way that AIOS can be automatically inferred.

The AIOS modeling enables the defender to predict which kind of

strategies are more likely to be taken by the attacker than the others,

even before such an attack happens. The AIOS inferences lead tomore

precise risk assessment and harm prediction. The drawback of the

scheme is that it assumes the complete information game.

Chen et al. [39] proposed a framework that applies two game the-

oretic schemes for economic deployment of intrusion detection agent.

In the first scheme, the interaction between an attacker and the in-

trusion detection agent is modeled and analyzed within a non-

cooperative game theory setting. Themixed strategy Nash Equilibrium

solution is then used to derive the security risk value. The second

scheme uses the security risk value derived by the first scheme to

compute the Shapley value of the intrusion detection agentwhile con-

sidering the various threat levels. This allows the network

administrator to quantitatively evaluate the security risk of each IDS

agent and easily select the most critical and effective IDS agent de-

ployment to meet the various threat levels to the network. The

drawback of this scheme is the computational overhead involved for

calculating the Shapley values of the intrusion detection agents.

A game theoretical framework to model the interaction between

the service provider and the attacker as an intrusion detection game

was proposed by Kodialam and Lakshman [23]. In this scheme, the

game is represented as a two person zero-sum game, wherein the

service provider tries to maximize its payoff by increasing its prob-

ability of successful detection while the attacker tries to minimize

its probability of being detected by the IDS. The optimal solution

for both players is to play the minmax strategy of the game. The

drawback of this model is the assumption that both players (at-

tacker and defender) have complete information about the topology

of the network and all links in the network, which allows the players

to choose the optimal path for playing theminmax strategy. However,

this assumption is usually invalid in real networks where the players

have an incomplete information about the network parameters.

Agah et al. [20] and Alpcan and Basar [21] addressed the attack–

defense problem in a sensor network as a two-player non-

cooperative, non-zero-sum game. In their model, the game is

assumed to have a complete information and the payoff function

of the opponent player decides each player’s optimal strategy. The

drawback of their work is the assumption that the players have com-

plete information about the game.

In summary, we found that most of the non-game theory based

IDS schemes proposed in the literature are computationally expen-

sive and require continuous monitoring, thereby leading to more

power consumption for operating the IDS. The game theory based

IDSs proposed in the literature addresses this issue to some extent.

However, most of the previous works on game theory basedMANET

IDS assumes a complete information game where both players (at-

tacker and defender) have complete information about the game.

But such an assumption is usually not valid in a real network, where

each node only has a partial information about the network because

all network parameters are not known a priori. We also found that

most of the games are static in nature where the strategies and utili-

ties of players are fixed and repeated over a period of time. This

approach fails in a dynamic environment where players adopt dif-

ferent strategies at various stages of the game. We also found that

most of IDSs proposed in literature for MANETs are specific to certain

classes of attacks like blackhole attack, wormhole attack etc. [32,40].

All these drawbacks in the related works provide us with the mo-

tivation to propose a newMANET IDS scheme based on incomplete

information game to address them.

In this paper, we propose a new IDS scheme for MANETs com-

prising of two different components viz. the MANET leader election

mechanism and the hybridMANET IDS. The former componentmini-

mizes the overall power consumption required for operating the IDS

by distributing the task of intrusion detection among various cluster

nodes. It elects the cluster leader node based on reputations and

energy levels of nodes. The elected leader node is designated with

the responsibility of providing intrusion detection services to all other

cluster nodes for a predefined period of time.

The second component of the proposed IDS scheme is a game

theory based hybrid MANET IDS, which performs the actual intru-

sion detection operation. The leader node elected by the election

mechanism runs the hybridMANET IDS. The hybridMANET IDS com-

prises one lightweight module and one heavyweight module. The

lightweight module is less powerful and uses simple analytical rules

based on threshold values to detect intrusions. On the other hand,

the heavyweight module is more powerful and uses complex

association-mining rule techniques to detect anomalies. Initially, only

the lightweight module is activated. The decision to activate the

heavyweight module depends on the output of the lightweight

module. If an intrusion is detected by the lightweight module, then

it activates the heavyweight module for more rigorous analysis.

However, if no malicious activity is detected by the lightweight

module, then the network intrusion detection problem is modeled

as a non-cooperative game between the elected leader node and

the potential malicious node. In this case, the BNE of the game

decides the probability of activating the heavyweight IDS module.

3. Proposed MANET IDS scheme

In this section, we describe various assumptions and aspects

of our proposed MANET IDS scheme. First, the flowchart of the
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proposed scheme is provided and then its components viz. the
MANET cluster leader election mechanism and the hybrid MANET IDS
are described. The hybrid MANET IDS comprises a lightweight IDS

and a heavyweight IDS module. We make the following assump-

tions related to our proposed MANET IDS scheme:

• MANET is divided into a set of clusters using a standard cluster

algorithm [41]. Every node in a given cluster is within the trans-

mission range of each other.

• Each node ni in a given MANET cluster has the following asso-

ciated parameters: maliciousness value (pi), reputation value (Ri)

and energy value (Ei).

• The elected cluster node (CL) provides the intrusion detection ser-

vices to all other cluster nodes for a predefined period of time

by operating the IDS.

Fig. 1 shows the flowchart of our proposed MANET IDS scheme.

Initially, the cluster leader node CL is elected using the VCG mech-

anism [24]. CL is entrusted with the responsibility of providing

intrusion detection services to the entire set of cluster nodes for a

predefined period. The intrusion detection service provided by CL

to any given cluster node nj depends on nj’s reputation value (Rj).

Nodes with higher reputations are entitled to more service from CL

compared to nodes with lower reputations. The services provided

by CL to node nj includes monitoring the incoming traffic received

by nj from its neighbors as well as monitoring the outgoing traffic

of nj. CL may misbehave after being elected as a leader node by not

providing intrusion detection services to other cluster nodes or by

reporting the normal node as malicious. Therefore, a set of checker

nodes are elected to monitor the operations of CL. If CL is found to

be misbehaving by the checker nodes, then it is punished by low-

ering its reputation value. The detailed description of the MANET

leader election and punishment mechanism is provided in section

3.2.

After being elected as the cluster leader, CL assigns initial ma-

liciousness belief value (pi) to cluster node ni being monitored and

activates its lightweight IDS module to determine the action of ni.

The lightweight IDS module uses the packet forwarding rate (PFR)

of ni as a parameter to determine the action of ni as Attack or Normal.
The PFR of ni is defined as the ratio of total number of packets re-

ceived by ni to the total number of packets forwarded by ni over a

given interval of time. If the PFR of ni is less than the threshold value

TPFR , then the action of ni is assumed to be Attack. The pi value of

ni is then updated using the Bayes rule, and the heavyweight IDS

module of CL is activated for more rigorous analysis. However, if the

PFR of ni is greater than or equal to the threshold value TPFR , then

the action of ni is assumed to be Normal. In this case too, the pi value

of ni is updated using the Bayes rule but the decision to activate the

heavyweight IDS module is determined by representing the inter-

action between CL and ni as a non-cooperative game between two

competing players and calculating the Bayesian Nash Equilibrium

(BNE) of the game. The BNE of this game corresponds to the strat-

egy combination (q*, p*), where q* is the probability of CL to activate

its heavyweight IDS module and p* is the probability of ni to play

Fig. 1. Flowchart of the proposed MANET IDS scheme.
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its strategy Attack. Any unilateral deviation by either players (CL or

ni) from the BNE strategy reduces the payoff (increase in monitor-

ing cost for CL or increased probability of getting caught for ni) of

the deviating player. Therefore, in this case, the decision to acti-

vate the heavyweight IDS is probabilistic and depends on the BNE

of the game. The probabilistic activation of the heavyweight IDS

module is achieved by using a random number generator that gen-

erates a random number between 0 and 1. If the generated number

is greater than or equal to the value of q* then the heavyweight IDS

module is activated; otherwise, it is not activated. The heavy-

weight module is an anomaly based IDS that uses association-rule

mining technique to determine the action of ni as attack or normal.

If the action of ni is found to be normal by the heavyweight module

then the pi value of ni is reset to pi/2; otherwise, the pi value of ni

is retained.

The basic philosophy of the proposed hybrid IDS scheme is that,

data packets in MANETs can be dropped due to various reasons like

network congestion, depletion of node’s resources, presence of ma-

licious nodes etc. Nevertheless, excessive packet dropping is a strong

indication of presence of malicious node in the network. There-

fore, the calculation of node ni’s PFR value by the lightweight IDS

module provides a strong insight into ni being malicious or not. So,

if a node ni is ascertained to bemalicious by the lightweight module,

executing the heavyweight module is justified. However, a node can

be malicious but still maintain its PDR above the threshold value

by carrying out sniffing and probe types of attacks. Therefore, proba-

bilistic activation of the heavyweight IDS module ensures the

monitoring of such malicious nodes. Since the energy required for

operating the heavyweight IDSmodule is comparatively higher than

that required for operating the lightweight IDS module, using the

lightweight IDS module as a precursor before activating the heavy-

weight IDSmodule reduces the overall power consumption required

for operating the IDS. More elaborate details about the proposed

hybrid MANET IDS is provided in section 3.3.

In the next section, we introduce the preliminaries of the game

theory which is a prerequisite for developing monitoring strate-

gies of the proposed hybrid MANET IDS.

3.1. Bayesian game model for proposed MANET IDS

Game theory allows us to study events of conflict and cooper-

ation between two or more rational decision makers (players) with

different set of objectives and competing for the same set of re-

sources. Therefore, game theory is concerned with finding the best

actions for individual decision makers in such situations and rec-

ognizing stable outcomes.

The interaction between the monitoring node and the poten-

tial malicious node in a MANET can be represented as a two player

static Bayesian game in which one of the player Pi is a potential at-

tacker and the other player Pj is a defender. The private information

of player Pi is its type θi (normal or malicious). The type θi = 1 if the

player Pi is normal and θi = 0 if it is malicious. This private infor-

mation regarding the type of player Pi is unknown to the defender

player Pj. The type of the defender player is always normal and

denoted by θj = 1, which is a common knowledge known to both the

players. The attacker player of type θi = 0 has two pure strategies:

{Attack, Not attack} while the normal player of type θi = 1 has only

one pure strategy: {Not attack}. Similarly, the defender player Pj has

two pure strategies: {Monitor, Not monitor}.
Both the players simultaneously choose their strategies at the

beginning of the game with prior knowledge about the costs in-

volved in monitoring and attacking any given node in the network

along with the beliefs about the types of their opponents. This non-

cooperative incomplete information game between the two players

Pi and Pj can be represented as a triplet G N S U= , , , where

• N = {Pi, Pj} are the two players of the game.

• S = Si × Sj is the strategy space of the game with Si and Sj being

the strategy space of players Pi and Pj, respectively.

• U = Ui × Uj is the payoff utility corresponding to the strategy space

S. Ui and Uj are the payoffs of players Pi and Pj corresponding to

their strategy spaces Si and Sj, respectively.

In the subsequent sections, the terms player and node refer to

the same entity and we use them interchangeably. Let C = {n1, n2, . . .,

nt} be a set of t nodes in a given MANET cluster. Consider any given

node nk ∈ C, where k (1 ≤ k ≤ t) is the index of nk and the asset value

of nk is wk. Therefore, the symbol k in nk refers to the index number

of the kth node in the given cluster and wk refers to the associated

asset value of the node nk. The loss of asset when the attacker player

Pi successfully exploits the node nk represents a loss, whose value

is equivalent to degree of damage such as loss of reputation, com-

promise of data integrity, cost of controlling damages etc. The

defender player Pj is the cluster leader node. Pj is equipped with an

IDS and is entrusted with the responsibility of providing intrusion

detecting services to all other cluster nodes. Let the detection rate

and the false alarm rate (FP rate) of Pj’s IDS be denoted by α and γ,
respectively where α, γ ∈ [0, 1]. Let the cost involved in attacking

the node nk by Pi be denoted by Cak and the cost involved in moni-

toring the node nk by Pj be denoted by Cmk .

Tables 1 and 2 show the payoff matrices corresponding to the

interaction between players Pi and Pj over the node nk whose asset

value is worth wk, when the type of Pi is malicious and normal, re-

spectively. These tables define various payoffs obtained by the

defender and the attacker/normal players when interacting over a

node nk. The following conclusions can be drawn from Table 1, when

the type of player Pi is malicious.

• When the malicious player Pi attacks and the defender player

Pj monitors, i.e., for strategy combination S1 = (Attack, Not Monitor),
the defender player Pj gets a payoff

U S wj k1( ) = −

which represents the loss of asset worth wk. On the other hand,

for this strategy, the malicious player Pi receives a payoff which

is its gain from the successful exploitation of node nk minus the

cost involved in attacking the node nk (Cak ). Therefore, the payoff

utility of player Pi with strategy S1 is

U S w Ci k ak1( ) = −

• For strategy combination S2 = (Attack, Monitor), the defender player
Pj’s payoff is the gain from successful attack detection against node

nk minus the monitoring cost Cmk . However, successful attack de-

tection against node nk depends on the detection rate (α) of the
IDS monitoring the node nk. Therefore, the payoff utility of de-

fender player Pj playing strategy S2 is

Table 1

Payoff matrix when player Pi is malicious.

Monitor Not Monitor

Attack 1 2− −( )α w Ck ak , 2 1α − −( )w Ck mk
w Ck ak− , −wk

Not Attack 0, − −γw Ck mk 0, 0

Table 2

Payoff matrix when player Pi is normal.

Monitor Not Monitor

Not Attack 0, − −γw Ck mk 0, 0
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U S w w C

w C

j k k m

k m

k

k

2 1

2 1

( ) = − −( ) −

= −( ) −

α α

α

where (1 − α) represents the false negative rate of the IDS. On

the other hand, the malicious player Pi’s loss after being caught

is equal to player Pj’s gain minus the attacking cost Cak . There-

fore, player Pi’s payoff utility with strategy S2 is

U S w Ci k ak2 1 2( ) = −( ) −α

• For the strategy S3 = (Not Attack, Monitor), the defender Pj’s ex-

pected loss is −γwk due to false alarm of IDS plus the monitoring

cost Cmk , while the payoff of malicious player Pi is 0. Therefore,

the payoff utilities of players Pj and Pi with strategy S3 are

U S w C

U S

j k m

i

k3

3 0

( ) = − −

( ) =

γ

• For the strategy S4 = (Not Attack, Not Monitor) the payoffs of both

the players are 0, i.e., Uj(S4) = Ui(S4) = 0.

Similarly from Table 2, we observe that when the type of player

Pi is normal, the payoff of player Pi is always 0. The payoff of de-

fender player Pj is 0 if it plays its pure strategy (Not Monitor). On
the other hand, if it plays its pure strategy (Monitor) its payoff utility
is − −γw Ck mk

, which is the cost incurred due to false IDS alarms and

the monitoring cost.

3.1.1. Bayesian Nash Equilibrium (BNE) analysis
Fig. 2 shows the extensive form of the Bayesian Game de-

scribed in the preceding section. This game is also an imperfect

information game since the defender player Pj is not aware about

the type (Normal, Malicious) and action (Attack, Not Attack) of the
player Pi while choosing its own action (Monitor, Not Monitor). In
Fig. 2, N is the nature node that determines the type of player Pi.

Let po be the prior probability of player Pi being malicious. Wemake

an implicit assumption that both players are rational and their main

objective is to maximize their respective payoffs. The attacker would

want to play a strategy that minimizes its probability of being de-

tected by the IDS while the defender would like to play a strategy

that maximizes its probability of successfully detecting the

attack.

In the subsequent section, we analyze the BNE of the game as-

suming that player Pj’s prior belief (po) about player Pi beingmalicious

is a common prior, i.e., player Pi (attacker) knows player Pj’s (de-

fender) belief about player Pi beingmalicious.Wemake the following

observations about the Bayesian game described by Tables 1 and

2 and Fig. 2.

• If the type of player Pi is malicious and if it plays its pure strat-

egy Attack then the expected payoff of player Pj playing its pure

strategy Monitor is:

U Monitor p w C p w Cj o k m o k mk k( ) = −( ) −( ) − −( ) +( )2 1 1α γ

andwhen it plays its pure strategy Not Monitor, its expected payoff

is:

U Not Monitor p wj o k( ) = −

• When the defender player Pj plays its pure strategy Monitor, the
expected payoffs of malicious player Pi playing its pure strate-

gies Attack and Not Attack are:

U Attack p w C and

U Not Attack respectively

i o k a

i

k( ) = −( ) −( )
( ) =

1 2

0

α
, ..

• Therefore, if Uj(Monitor) > Uj(Not Monitor), i.e., if po
w C

w
k mk

k
> +

+( )
γ

α γ2 , the

best response of the player Pj is to play its pure strategy Monitor.
However, when player Pj plays its pure strategy Monitor, the best

response of player Pi would be to play its pure strategy Not Attack.
Hence the strategy ((Attack if malicious, Not Attack if normal),

Monitor, po) is not a BNE, when po
w C

w
k mk

k
> +

+( )
γ

α γ2 . Similarly, if

Uj(Monitor) < Uj(Not Monitor) i.e., if po
w C

w
k mk

k
< +

+( )
γ

α γ2 , the best re-

sponse of player Pj is to play Not Monitor, since in this case the

payoff obtained by playing strategy Monitor is less than the payoff

obtained by playing strategy Not Monitor. Therefore, ((Attack if

Fig. 2. Extensive form of the Bayesian game.
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malicious, Not Attack if normal), Not Monitor, po) is a pure strat-

egy BNE, when po
w C

w
k mk

k
< +

+( )
γ

α γ2 .

• If the player Pi plays its pure strategy Not Attack, then the player

Pj’s dominant strategy is to play Not Monitor regardless of the

value of po. However, if the player Pj plays Not Monitor, the best

response of player Pi if its type is malicious is to play Attack. There-
fore, the strategy ((Not Attack if malicious, Not Attack if normal),

Not Monitor) is not a BNE.

From our previous discussions we have shown that when

po
w C

w
k mk

k
> +

+( )
γ

α γ2 , then there does not exist any pure-strategy BNE. But

any game with a finite set of players and finite set of strategies has

a Nash equilibrium of mixed strategies. Therefore, in such case where

no pure strategy BNE exists, we derive a mixed strategy BNE for the

game.

Let the player Pi play its strategy Attack with probability p if its

type is malicious and play its pure strategy Not Attack if its type is

Normal. In this case, the expected payoff of the defender player Pj

playing its pure strategy Monitor is:

U Monitor pp w C p p w C

p w C

j o k m o k m

o k

k k( ) = −( ) −( ) − −( ) +( )
− −( ) +

2 1 1

1

α γ

γ mmk( )

and the expected payoff of the defender player Pj playing its pure

strategy Not Monitor is:

U Not Monitor pp wj o k( ) = −

Similarly, the expected payoffs of attacker player Pi playing its

pure strategies Attack and Not Attack when the defender player Pj

plays its strategy Monitor with probability q and Not Monitor with

probability (1 − q) are:

U Attack p q w C q w C and

U Not Attack

i o k a k a

i

k k( ) = −( ) −( ) + −( ) −( )( )1 2 1α

(( ) = 0, .respectively

By equating Uj(Monitor) = Uj(Not Monitor), we get p
w C

w p
k mk

k o
= +

+( )
γ
α γ2 ,

which is the equilibrium strategy probability of malicious player

Pi to play its pure strategy Attack. Similarly, by equating

Ui(Attack) = Ui(Not Attack), the player Pj’s equilibrium strategy prob-

ability to play Monitor is q
w C

w
k ak

k
= −

2α . Therefore, when the prior

probability of player Pi beingmalicious i.e., po
w C

w
k mk

k
> +

+( )
γ

α γ2 , no pure strat-

egy BNE exists. But there exists a mixed-strategy BNE which

corresponds to the strategy pair ((Attack with probability p if ma-

licious, Not Attack if normal), Monitor with probability q, po), where

p
w C

w p
k mk

k o
= +

+( )
γ
α γ2 and q

w C

w
k ak

k
= −

2α .

From the BNE strategy obtained above, we observe that themoni-

toring probability (q) of the defender does not depend on the current

maliciousness belief of the opponent (attacker) player, but rather

influences the attacker’s behavior, as the probability of attack (p)
is inversely proportional to the defender’s maliciousness belief about

the attacker player. A high maliciousness belief of the defender on

its opponent results in the attacker drastically reducing its attack.

This is a result of the fact that both the attacker and the defender

are rational players and the cost and maliciousness beliefs are

common knowledge known to both players.

The static Bayesian game approach described above can be used

tomodelmost types of attacks inMANETs like Denial of Service (DoS)

attacks, network routing protocol disruption attacks like blackhole

attack [42] and wormhole attack [43] etc. The proposed Bayesian

gamemodel enables the defender to implement its monitoring strat-

egy based on its BNE solution that maximizes its expected payoff

without requiring the IDS to be running all the time. However, the

drawback of the scheme is that it is not always easy to determine

the prior malicious belief (po) about the type of the opponent player

in dynamic and distributed networks. Therefore, depending on the

nature of the environment it is operating in, the defender may assign

an appropriate value for po. If the environment is hostile, a high value

of po should be assigned.

3.2. Energy efficient MANET IDS leader election mechanism

MANET nodes are essentially selfish in nature to preserve their

energies. Taking this fact into account, Mohammed et al. [44] pro-

posed a secure leader election mechanism for MANET. They simply

treated IDS as a service and developed a computational cost metric

for electing the leader node without considering metrics such as

detection rate and false positive rate. In this section, we build on

their work and develop a secure MANET leader election mecha-

nism. We then integrate this mechanism with the dynamic hybrid

IDS model proposed in section 3.3 and eventually evaluate the per-

formance of the overall IDS scheme.

Wemodel MANET as a set of clusters. Nodes in each cluster elect

a leader node which carry out intrusion detection services for the

entire set of cluster nodes for a predefined period of time (one slot

period). Re-election is conducted to elect a new leader node after

the timer expires. In most conventional schemes, the IDS operates

in a promiscuous mode in all cluster nodes with a predefined sam-

pling rate. This can have an adverse impact on the overall lifetime

of the network as most of the node’s energy is consumed for op-

erating the IDS irrespective of whether intrusions take place or not.

Contrary to this, in our proposed scheme, only the elected leader

node operates the IDS and provides intrusion detection services to

all other cluster nodes. This ensures that the power consumption

required for operating the IDS in each individual cluster node is mini-

mized through distribution of intrusion detection task among various

MANET nodes.

The mechanism that elects a random node as a cluster leader

[22] without considering energy level of nodes causes faster death

of nodes with low energy levels. Therefore, the election mecha-

nism must take into consideration the energy level of nodes while

electing the leader node. Moreover, there are some selfish nodes

in the cluster that are unwilling to participate in the intrusion de-

tection process to preserve their resources (CPU time, energy etc).

To address these issues, we propose a reputation based leader node

election mechanism to encourage all cluster nodes including the

selfish ones to participate in the leader node election process by

truthfully revealing their energy levels. The elected leader node is

provided with a payment in the form of reputation gain. Nodes with

higher reputations are considered as more trusted nodes and given

higher priorities in the cluster’s services.

The sampling budget allotted by the leader node to any given

node in the cluster is proportional to its reputation. The sampling

budget ( SBni ) of the ith node (ni) in the cluster denotes the amount

of service it is entitled to receive from the leader node at the current

game stage and is given as:

SB R Rn i j

j

N

i
= ( )

=
∑

1

where N is the total number of nodes in the cluster under consid-

eration and Ri is the reputation value of node ni.

Every time a given node is elected as a leader its reputation value

increases. This motivates the cluster nodes to truthfully reveal their

private information (energy levels) during the leader-node elec-

tion process. A default reputation value of Ro is assigned to all nodes

during the cluster formation period, which gets updated when the

node is elected as a cluster leader.

Let the energy required by the cluster leader node to operate

the IDS for the elected period of time be denoted by Eids and its

cost for intrusion detection analysis during this period be denoted

by Csti. We divide the N nodes in the cluster into k energy classes

{Class1, Class2, . . ., Classk} based on their power factor denoted by
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PFi = Ei/NTi, where 1 ≤ i ≤ k, Ei is the energy level of node ni and Ti is

the user defined scaling factor.

Class of n

Class PF

Class PF

Class

i

i

d d i d

k

=
<
≤ <−

1 1

1

,

,

,

if

if

if

  

  

ρ
ρ ρ
PPFi k≥

⎧
⎨
⎪

⎩⎪ −ρ 1

where ρ = {ρ1, ρ2, . . ., ρk−1} is a set of (k − 1) threshold values. The

cost analysis value of node ni ∈ Classi for analyzing data packets for

specified period of time is given as:

Cst
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R

R
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E
E

i
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i
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E
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where λ ∈ [0,1] is the sampling budget weighing factor. If the energy

level of any node nj is less than the threshold energy required for

carrying out intrusion detection analysis i.e., if E En idsj
< , then node

nj cannot be elected as a cluster leader since its cost of analysis would

be infinite.

To motivate all nodes in the cluster including the selfish ones

for cooperation, we model the leader node election problem as a

game with mobile nodes as its players. Each node ni holds a con-

fidential information θi about its type. The type of θi can be either

Normal or Selfish. The payoff utility function of player (node) ni is

given by:

U P W Oi i i i i i i iθ θ θ θ θ, , ,− −( ) = − ( )( ) (1)

where

• θ−i represents the types of all other cluster nodes except node

ni

• O(θi, θ−i ) = O(θ1,. . .,θi,. . .,θN) is the output corresponding to the

types chosen by the players of the game.

• Wi is the cost of analysis (Csti) incurred by node ni for provid-

ing intrusion detection services. However, if ni is not elected as

a leader, then Wi is 0 since no cost will be incurred to run the

IDS.

• Pi ∈R is the payment provided in the form of reputation to the

elected leader node.

Each node ni seeks to maximize its utility Ui. It signifies the

amount of gain obtained by the player ni if it follows the type θi.

Player ni might deviate from revealing its true cost analysis value

Csti by either under-valuing or exaggerating its Csti value if doing

so leads to better payoff. Therefore, we need to develop a mecha-

nism with truth-telling as its dominant strategy.

The game begins with every node selecting its type θi and evalu-

ating its cost of analysis value Wi. The objective of our mechanism

design is to elect a node ni with the least cost analysis value (Csti)

as a cluster leader. Since Csti ∝ 1/Ei, electing node with least cost

analysis value is equivalent to electing a node with highest energy

level. We refer to this objective as a Social Choice Function (SCF)

and is defined as:

SCF Min W O i Ni i i i= ( )( ) ={ }−θ θ θ, , , , .,1 2… (2)

If two or more nodes in the cluster have the same cost analysis

value, then the node having the highest reputation among themwill

be elected as the cluster leader by the SCF. Payment in the form of

reputation is made to the elected leader node using a VCG mech-

anism [24]. The amount of service provided by the elected leader

node to any given node nk is proportional to its reputation (Rk). The

payment Pi received by the leader node ni in the form of reputation

(Ri) is equal to the second least cost analysis value Cj excluding

the cost analysis value of the leader node ni and is given by Equa-

tion (3).

P R Min W O j ii i j j j j= = ( )( ≠{ }−θ θ θ, , (3)

We model MANET as a set of clusters as shown in Fig. 3. Based

on the cost analysis value of different nodes, the leader election

mechanism computes the SCF in a distributedmanner which ensures

that all nodes in the cluster elects the same leader. Algorithm 1 il-

lustrates our proposed distributed leader election algorithm in a

MANET cluster. Initially, a random node ni initiates the election

process by sending a Begin_Election message to all the other nodes

in the cluster. The Begin_Election message contains the hash value

H() corresponding to Election message to be sent by the leader node

ni later on. The receiving nodes use this hash value to authenticate

and verify the Election messages received from node ni. The time

T1 specifies the duration of the election process. All the participat-

ing nodes should interchange the Begin_Election messages within

time T1 after the node ni has started the election process. Those nodes

that do not participate in the exchange of Begin_Election messages

are excluded from cluster’s services.

After the completion of exchanges of Begin_Election messages the

node ni broadcasts the Election message containing its identity IDni ,

its cost analysis value (Csti), and the time stamp TSi to other nodes

in its cluster. The receiver nodes then verify that the Election message

indeed came from node ni by generating a hash value H*() of the

received Election message. This generated hash value is then com-

pared with the hash value H() received in Begin_Election message

earlier. Upon successful verification, each node in the cluster com-

putes the SCF, which is the least cost analysis value as defined in

Equation (2).

After the completion of exchanges of Begin_Election messages

between the nodes, if the elected leader node as per the SCF is dif-

ferent from node ni, then the node ni sends an Elected message to

the chosen leader node. The elected leader node on receiving the

Elected message sends back the Confirmation message to node ni.

The node ni then calculates the payment Payment( RLeaderIDS
) for leader

node using the VCG mechanism as described in Equation (3). The

node ni increases the reputation of the elected leader node ( LeaderIDS)

by value Payment( RLeaderIDS
) in its reputation table. However, if the

node ni finds itself to be the elected leader after calculating the

SCF, then it sets the timer T2 and starts verifying all the Elected
messages from other nodes. If the timer T2 expires without receiv-

ing Elected messages from all the nodes, then those nodes that

did not participate in the leader election process are debarred from

cluster’s services. The node ni then sends the Confirmation mes-

sages back to the nodes fromwhich it received the Elected messages.

Upon receiving the Confirmation message, other cluster nodes

calculate the payment for node ni and update their reputation

tables.
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The election process is repeated after every Telect time interval.

If the cluster has not changed after the time interval Telect , then the

cluster formation step is skipped and only the leader election process

is carried out. Re-election is also conducted when the elected leader

node quits the cluster before the completion of Telect time interval.

We illustrate the proposed leader election scheme with an

example as shown in Table 3. The reputations of different nodes at

ith round are shown in the 1st row of table with node N1 elected as

a leader node. The 2nd row gives the energy level of different nodes

at the ith round. The leader node’s sampling budget for different

nodes (in terms of percentage) is shown in the 3rd row.

The election of new leader node for the i
th+( )1 round involves

every node to compute its corresponding cost analysis value Csti as

shown in 4th row using the following Equation:

Cst
SB
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R

R

NT

E
i

n

i

i

i

i
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i

i
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= ∗
( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

×

=
∑

λ
λ

1

For Table 3 the value of N is 6. The values of λ and Ti are assumed

to be 0.1 and 10, respectively. Similarly, the energy required for

operating the IDS is assumed to be 0.2 units. Since node N6 has the

least cost analysis value (0.09), it is elected as a new leader node.

Nodes then calculate the payment for the new elected node N6, which

is equal to the 2nd least cost analysis value i.e., Pi = 0.1 unit. All the

nodes increase the reputation of the elected node N6 by 0.1. The new

reputations of different nodes at i
th+( )1 round are shown in the

5th row. The payoff utility of node N6 calculated using Equation (1)

is 0.1 − 0.09 = 0.01, which represents the benefit gained by the

node N6.

3.2.1. Mechanism analysis
The primary objective of our mechanism design is to encour-

age players (nodes) into truthfully revealing their private information

by providing them incentives for doing so. In this section, we val-

idate our mechanism design to ensure that our proposed model

meets the cost-efficiency and truthfulness properties even in the

presence of malicious and selfish nodes in the cluster. This is vali-

dated by demonstrating that truth-telling is the dominant strategy

of our mechanism.

We consider two untruthful revelations of selfish node ni viz.
under-declaration and over-declaration of its cost analysis value Csti,

and show that in both cases it is never better off compared to when

it truthfully reveals its cost analysis value.

Node ni may under-declare its cost analysis value by revealing

a false value Wi* , where W Wi i* < . By declaring a false cheaper

cost analysis value, node ni wins the cluster leader election. However,

under-declaring its cost analysis value will not benefit the node ni

for the following two reasons. In the 1st case, if the real cost

analysis value Wi of the node is already least among all the nodes,

then under-valuing its cost analysis value to Wi* does not in-

crease its payment, since payments are made on the basis of

second least cost analysis value. Therefore, its utility function Ui

remains unchanged since it is calculated with respect to its real

cost analysis value Wi. On the other hand, if the node ni does not

have the least cost analysis value but wins the election by declar-

ing a fake under-valued cost analysis value Wi* then it leads to

negative utility function Ui. This is because the payment Pi re-

ceived by node ni is less than the real cost analysis value Wi.

Therefore, in this case, the work done by node ni exceeds the

amount of payment Pi that it receives.

Similarly, in case of over-declaration, if a node ni over-declares

its cost analysis value by declaring a fake Wi*, where W Wi i* > , then

such a strategy would never increase the payoff utility Ui for the fol-

lowing two reasons. First, if node ni indeed has the least cost analysis

value Wi, then pursuing this strategy leads to node ni not being

elected as the leader node and hence it loses the payment. Second,

Fig. 3. MANET topology with leader IDS.

Table 3

Leader IDS election example.

Nodes N1 N2 N3 N4 N5 N6

ith round reputation 7 9 2 4 5 3

ith round energy 5 6 4 5 10 7

ith round sampling (%) 23.33 30 6.66 13.33 16.66 10

ith round cost valuation (Csti) 0.28 0.30 0.1 0.16 0.1 0.09

i
th+( )1 round reputation 7 9 2 4 5 3.1

i
th+( )1 round energy 5 6 4 5 10 6.8
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if the real cost analysis value Wi of node ni is not the least among

all the nodes, then this strategywould never increase its payoff utility

Ui as the node ni would not be chosen as a leader node.

3.2.2. Cooperative catch and punish model
The leader node may misbehave after being elected. Therefore,

we need a mechanism to detect misbehaving leader node and take

appropriate measures. A leader node is said to be misbehaving if

it does not provide intrusion detection services to cluster nodes pro-

portional to their reputations. Checker nodes are employed to

monitor the misbehaving leader node. The checker nodes perform

a small part of the computation executed by the leader node to de-

termine the misbehavior of the leader node. Let Chkcost be the cost

incurred by any given checker to monitor the leader node for elected

period of time. Incentives in the form of checker reputation pay-

ments Pchk are provided to the checker nodes for monitoring the

leader node such that P Chkchk cost− > 0.

Algorithm 2 illustrates the proposed mechanism for election of

checker nodes. Initially, k nodes in the cluster with least cost anal-

ysis Csti excluding the leader node are chosen as checkers. Each node

ni in a cluster then verifies whether it is one of the k checkers. If it

is not a checker then it sends a Chkele message to all the k check-

ers to inform them that they have been elected as a checker. The k
checkers then send back a checker confirmation message Chkconf to

node ni. Upon receiving the confirmationmessages from the checker,

the node ni increments the reputation of the k checker nodes in its

reputation table by Pchk reputation units. After time interval T2, if

the checker node ni has not yet received a Chkele message from any

of the non-checker nodes then it sends Chkconf messages to all the

non-checker nodes from which it has not yet received the Chkele

message. Upon receiving the Chkconf message from the checker node

ni, the non-checker node nj verifies that the Chkconf message indeed

came from one of the checkers by referring to its cost analysis table.

Upon successful verification, the receiver node updates its reputa-

tion table by incrementing the reputation of checker node by Pchk
reputation units.

If the leader node ni is found to be misbehaving by the checker

nodes, the mechanism punishes the leader node by lowering its rep-

utation and paying it a negative payment value −pj i.e., the

mechanism instructs all the cluster nodes to decrement the repu-

tation of leader node in their reputation table by value Ri as calculated

in Equation (3). Leader node election is then conducted to elect a

new leader.

To detect a misbehaving leader node, we propose a set of de-

tection level given by DL = {dl1, dl2, . . ., dlj}. The proposed catch and

punish model comprises j detection-levels with each level repre-

senting the severity of the misbehaving leader node. We define a

threshold set T = {t1, t2, . . ., t j−1} to categorize the misbehaving de-

tection levels. Setting the threshold value above which the leader

node is considered to be misbehaving is crucial. Setting this thresh-

old value too high increases the false positive (FP) rate wherein even

the sincere leader nodes are penalized whereas setting it too low

increases the false negative (FN) rate wherein the mechanism fails

to catch the misbehaving leader node. Therefore, this value must

be set appropriately so as to balance and maintain a good trade-

off between the FP and the FN rates.

Let Chk Chk Chk Chkset x= ( )1 2, , ,… be the set of checker nodes and

S n n nset a b x= ( ), , ,… be the set of nodes monitored by the checkers

such that Chk Sset set= . Each Chk Chki set∈ monitors one of the nodes

n Sj set∈ . We then define an aggregate function of checkers as:

T n R f ji

i Chk j Sset set

( ) = ( )∗ ( )
∈ ∈

∑
&

(4)

where Ri is the reputation of the checker node Chki and f(j) is the

catch function defined as the ratio of actual number of data packets

analyzed by the leader node for node nj ( n Sj set∈ ) to the actual sam-

pling budget allocation of node nj as observed by the checker node

Chki. We then classify the detection-levels as follows:
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Grouping the severity of misbehaving leader node into j differ-
ent levels minimizes the FP rate while determining the misbehaving

leader node. The leader node foundmisbehavingwith detection level

(DL) lower than the threshold level ( dlth) is penalized by comput-

ing its payment in negative and temporarily debarring it from cluster

services. This acts as a deterrence and discourages the leader node

from misbehaving. Hence a malicious node has no valid motiva-

tion to become a leader node since it has a high probability of being

caught and punished by checker nodes.

3.3. Hybrid MANET IDS

In section 3.1, we discussed about static Bayesian game where

the player Pj (defender) has a fixed prior belief (po) about the op-

ponent player Pi being malicious. However, determining this prior

belief is usually difficult and depends on the nature of the envi-

ronment the IDS is operating on. Nodes inMANETs are usually energy

constrained and may become less responsive as their energy levels

drain out. In addition, some trustworthy nodes may be compro-

mised over a period of time and made to act maliciously. Taking all

these factors into account, the IDS needs to re-evaluate the mali-

cious beliefs of MANET nodes at regular intervals. In this section,

we extend the static Bayesian game to a multi-stage dynamic Bayes-

ian game, wherein the defender player updates its maliciousness

belief about the opponent player as the game evolves.

In the multi-stage Bayesian game, the game is played repeat-

edly after every time interval tk. However, the payoffs of the game

and the identities of the players remain the same throughout each

iteration of the game. The strategies of players in the dynamic game

depends on the history profile of the game. At any stage tk of the

game, the optimal strategy of the attacker player Pi depends on the

maliciousness belief of the defender player Pj about Pi. The defend-

er player Pj’s initial belief about player Pi being malicious at the first

stage (t0) of the game is given by the prior probability po. The de-

fender player Pj then updates its malicious belief about the opponent

player Pi at the kth stage of the game by evaluating its posterior belief

pj(θi|ai(tk), ai( tk−1)), where ai(tk) and ai( tk−1) represent the actions taken

by the player Pi at the kth and k
th−( )1 stage of the game. The player

Pj evaluates its posterior belief about player Pi using the following

Bayes’ rule.

p a t a t
p a t P a t a t

p
j i i k i k

j i i k i k i i k

j

θ
θ θ( ) ( )( ) =

( )( ) ( ) ( )( )
−

− −
,

,
1

1 1

ɶɶ ɶ

ɶ

θ θ
θ

i i k i k i i ka t P a t a t
i

− −( )( ) ( ) ( )( )∑ 1 1,
(5)
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where P(ai(tk)|θi, ai( tk−1)) is the probability that the player Pi plays

the action ai(tk) at the kth stage, given the type of player Pi is θi and

its action at the k
th−( )1 stage was ai( tk−1).

From Equation (5), it can be observed that the defender player

needs to continuously monitor the opponent player at every game

stage to update its belief. However, operating IDS in an always-on

promiscuous mode is not an energy-efficient monitoring strategy.

Therefore, to minimize the energy spent on operating the IDS, we

propose a two layered hybrid IDS detection model. The proposed

hybrid model consists of one lightweight module and one heavy-

weight module. The former module is less powerful but requires

less energy for its operation, while the latter module is more pow-

erful but requires more energy to operate. By default, only the

lightweight module is activated.

In Fig. 1, we have shown the proposed two layered hybrid IDS

framework. Themalicious belief of node ni is updated using the input

from the lightweight IDS module and the history profile of ni’s

actions. The lightweight module calculates two parameters of ni viz.
its packet reception rate (PRR) and the packet forwarding rate (PFR).

(However, in Fig. 1 only the PFR calculation is shown.) The details

about these parameters are discussed in section 3.3.2. The light-

weight IDS module updates the malicious belief of ni using the

observed behavior of ni in the current and previous stage of the game

by employing the Bayes rule. If the PRR or PFR values of ni exceeds

or falls below the threshold value, then the action of ni is assumed

to be attack and the heavyweight module is activated in the next

stage of the game formore rigorous analysis. Themaliciousness value

of ni can be unilaterally reset to a lower value by the heavyweight

IDS module if ni has not acted maliciously for a pre-defined period

of time. After the maliciousness value of ni is reset to lower value,

the heavyweight IDS module is turned off and the lightweight IDS

module is turned on. This process is repeated over the period of time

and only one of the IDS module is activated at any given time.

3.3.1. Heavyweight intrusion detection system (HIDS)
The HIDS uses an unsupervised association-rule mining tech-

nique [45,46] on a set of packet-level transmission events to find

the association patterns. The extracted association rules are then

used to build the normal profile of the network. There is a trade-

off between effectiveness and efficiency while selecting the feature

set for IDS analysis. A higher number of features can help the IDS

to detect various types of attacks; however, it also results in a higher

power consumption and computational overhead. Considering the

energy constrained MANET nodes, we select a minimum number

of features for developing HIDS normal profile. The transmission

events consist of features listed in Table 4 that are extracted from

the MAC and network layer at a pre-defined sampling rate. A brief

description about each of these features is provided below:

• Packet event type: This feature represents the type of the trans-

mission event taking place.

• Sender Address: This feature represents the MAC address of the

sender node.

• Destination Address: This feature represents the MAC address of

the destination node.

• MACFrameType: This feature represents the type of MAC frame

observed in the transmission event.

• RoutPktType: This feature represents routing control packets

(routingCtrlPkt) like Route Request, Route Reply, Route Error etc.

and data packets (routingDataPkt) from network layer.

• Route change percentage: It is defined as (|S2 − S1| + |S1 − S2|)/|S1|),

where (S2 − S1) indicates the newly increased routing entries and

(S1 − S2) indicates the deleted routing entries during the time in-

terval (t2 − t1).

The HIDS uses multiple segments of training data set to extract

the association rules. These rules are then aggregated to build the

normal profile. The association rule describes the association of at-

tributes within transaction records of an audit data set. Let T = {T1,

T2, . . ., Tn} be the set of n transaction records and F = {F1, F2, . . ., Fk}

be a k feature set defined over T. A transaction record Ti is a col-

lection of k-tuple features i.e., Ti = {f1, f2, . . ., fk}, where fk represents

a value from the kth feature Fk.

Let A and B denote two disjointed item subsets in Ti. The support

of item subset A denoted by sup(A) represents the percentage of

transactions containing A in T and the support of A and B denoted

by sup A B∪( ) represents the percentage of transactions contain-

ing both A and B. The association rule between A and B is given as

A B s c⇒ ( ), , , where s sup A B= ∪( ) and c sup A B

sup A= ∪( )
( ) are defined as the

support value and confidence value of the association rule, respec-

tively. The rule holds good if s ≥ minsup and c ≥ minconf, where minsup
and minconf denote the predefinedminimum support threshold and

minimum confidence threshold values, respectively.

Apriori algorithm [45]was used to build the association rules for the

normal profile. The algorithm mines the frequent itemsets from the

transactional dataset and uses an iterative approach to find itemsets

of larger size at each iteration. The algorithm works on the principle

that any subset of a frequent itemset must also be a frequent itemset.

Therefore, the algorithm reduces the number of item candidates being

considered by only exploring the itemsets whose support count is

greater than theminimumsupport count. For our analysis,wehaveused

minsup and minconf values as 15% and 70%, respectively.

A transaction record is a packet level event with the following

format Event SA DA MACFrameType RoutPktType, , , , . An example as-

sociation rule is (SrcMAC6, routingCtrlPkt → DestMAC15 , RECV),(0.35,1),
which describes an event pattern related to the RECV flows of the

monitoring node i.e., 35% of transaction records match the event

of “node 6 sends data packets to node 15”, and when node 15 re-

ceives data packets, they are 100% of the time from node 6. Another

example is (SrcMAC3, routingCtrlPkt → DestMAC7, PCR),(0.20,0.80),
which indicates that route change between node 3 and node 7 con-

stitutes 20% of total route change in the network, and 80% of changes

in node 7’s route is related with change in node 3’s route.

The association rules extracted from the test data (real time data)

are then correlated with the normal profile and any deviation of

the test association rules from the normal profile is considered as

an anomaly by the HIDS.

3.3.2. Lightweight intrusion detection system (LIDS)
It is not efficient to operate the association-rule based HIDS in an

always-on mode since it uses massive packet-level transmissions of

network andMAC layers to detect intrusions. Therefore, we propose

an alternative lightweight monitoring system (LIDS) to update the

malicious belief of the defender node about the opponent node ni

on every stage of the game. The LIDS being a lightweightmodule uses

simple rules and methods to detect intrusions. It uses two different

approaches for detecting the inbound and outbound attacks. The fol-

lowing inbound attacks are considered in our study: Sleep deprivation,
Flooding, DoS and Forging attack. The outbound attacks considered

are Black hole attack and packet dropping attack. Let Nj represent the

set of neighboring nodes of defender node Pj and let the potential

Table 4

HIDS feature set.

Features Values

Packet event type (Event) SEND, RECV, DROP, FWD

Sender Address (SA) SrcMACi

Destination Address (DA) DestMACi

MACFrameType RTS, CTS, DATA, ACK

RoutPktType routingCtrlPkt, routingDataPkt

Route change percentage PCR
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attacker node Pi ∈ Nj. Let R tj
i

k( ) denote the number of data packets

received by node Pj from node Pi during the game stage tk.

We define the following two terminologies to determine the out-

bound and inbound attacks: Packet Reception Rate (PRR) and Packet

Forwarding Rate (PFR). The PRR of node Pj from node Pi for game

stage tk is defined as the rate of inbound data traffic from node Pi

to node Pj with respect to the total data traffic rate in the vicinity

of node Pj. It is given as:

φ j
i

k
j
i

k

a N

b N
ka b j

b N
k

t
R t

R t R t
j

j j
( ) =

( )
( ) + ( )∈

∈

≠

∈∑
(6)

If the value of PRR is greater than the threshold value τ, the action
of the player Pi is assumed to be an inbound attack. Therefore, the

action of node Pi i.e., ai(tk) = inbound attack, if φ τj
i

kt( ) > .

The PFR of node Pi for game stage tk is defined as the ratio of

number of packets received by the node Pi from its neighboring nodes

to the number of packets forwarded by node Pi to its neighboring

nodes (Ni) and is given by:

ψ i k
i
j N

k

k N
i

k

t
R t

R t

i

i

( ) =
( )
( )

∈

∈

(7)

The action of node Pi is implied to be an outbound attack if the

value of ψi(tk) is less than the threshold value Θ. In other words,

the action of node Pi i.e., ai(tk) = outbound attack if ψi(tk) < Θ.

The choices of PRR and PFR threshold values τ and Θ influence

the performance of the LIDS. These threshold values can be calcu-

lated experimentally from the normal data traffic patterns. Employing

this simple analysis rule of LIDS as a precursor before applying the

association-rules of the HIDS can significantly lower the FP rate of

the overall IDS.

Let the detection rate and FP rate of LIDS be αL and γL, respec-

tively. Let P(ai(tk)|θi, ai( tk−1)) be the conditional probability of player

Pi playing action ai(tk) at kth stage of game, given its type θi and its

action at the k
th−( )1 stage was ai( tk−1). This conditional probability

can be updated as follows:

P a t Attack a t

p p

i k i i k

L L

( )( = = ( ))
= + −( )

−θ
α γ

1

1

1,

(8)

P a t Not Attack a t

p p

i k i i k

L L

( )( = = ( ))
= −( ) + −( ) −( )

−θ
α γ

1

1 1 1

1,

(9)

P a t Attack a ti k i i k L( )( = = ( )) =−θ γ0 1, (10)

P a t Not Attack a ti k i i k L( )( = = ( )) = −−θ γ0 11, (11)

In above equations, p represents the probability of the mali-

cious player Pi to play its strategy Attack under Nash Equilibrium

(NE). Similarly, (1 − αL) and (1 − γL) represent the false negative (FN)

rate and the true negative (TN) rate of the LIDS, respectively. The

LIDS can determine the action of the node Pi using Equation (6) and

Equation (7). It then updates the maliciousness value of the player

Pi using Equation (5) along with Equation (8) through Equation (11).

3.4. Numerical Example

Continuing with our standard notation, let α and γ be the de-

tection rate and FP rate of the heavyweight IDS, respectively.

Similarly, let αL and γL be the detection rate and FP rate of the light-

weight IDS, respectively. Consider a defender attacker game

interacting over a node nk. Let Cmk and Cak be the cost associated

with monitoring and attacking node nk. Let the asset value of nk be

wk. In previous sections, we have developed the BNE of the game,

which corresponds to the strategy combination (p*, q*, p(θi)), where

p
w C

w p
k mk

k i
* = +

+( ) ( )
γ
α γ θ2 is the attacking probability of the attacker player

(Pi), q
w C

w
k ak

k
* = −

2α is the monitoring probability of the defender player

Pj and p(θi) is the maliciousness belief of Pj about Pi, which is given

by Equation (5). Consider a heavyweight and a lightweight module

with the following values, α = 0.9178, γ = 0.0025, αL = 0.833 and

γL = 0.0029. Let wk = 9.45 and C C wa m kk k
= = 1000. Assume that the

initial belief of Pj about Pi being malicious is 0.5, i.e. initial value of

p(θi) = 0.5. Therefore, the probability of player Pi playing its strat-

egy attack for the 1st stage of the game is p p i
* = = =( )

0 0019 0 0019
0 5 0 0038. .
. .θ .

Similarly, the monitoring probability q* = 0.5442. Next, we update

the malicious belief of player Pi under following conditions:

Case 1: The observed action of Pi by the lightweight module of

Pj is Attack:

p t
p t P a t Attack a t

p t
i

i i i i

i
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θ θ
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1 1
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0 6756

Case 2: The observed action of Pi by the lightweight module of

Pj is Not Attack:

p t
p t P a t Not Attack a t

p
i

i i i i

i

θ
θ θ

θ
=( )( ) =

=( )( ) ( )( = = ( ))
(1
1 1

1
0 1 0,

ɶ ))( ) ( )( = ( ))
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∑ t P a t Not Attack a ti k i i0 0

0 49920

ɶ

ɶ

θ

θ ,

.

From the above results, it can be observed that when the action

of Pi is detected as an Attack by Pj (defender) then the malicious-

ness belief of Pj about Pi increases, which in turn decreases the

probability of Pi to play its strategy Attack in the next game stage. On

the other hand, when the action of Pi is detected as Not Attack by Pj,

then Pj’s malicious belief about Pi decreases, which increases the prob-

ability of Pi to play its strategy Attack in the next stage of the game.

It can also be observed that the proposed hybrid MANET IDS reduces

the power consumption by activating the heavyweight IDS module

54.42% of the time instead of turning it on 100% of the time.

Summarizing the above results and discussion, we conclude that

themonitoring probability of the Pj does not depend on its currentma-

liciousness belief about Pi, but rather influences the Pi’s behavior. A high

maliciousness belief results in Pi drastically reducing its attack. This is

result of the fact that both Pi and Pj are rational players, and the cost

andmaliciousness beliefs are common knowledge for both the players.

4. Experimental results

Since our work comprises two different components, we clas-

sify our analysis into following two subsections:

• Analysis of MANET leader election mechanism.

• Analysis of the hybrid MANET IDS.

1. Evaluate the detection rate and the FP rates of the light-

weight module and the heavyweight module of the proposed

hybrid MANET IDS.

2. Evaluate the payoff utilities of the attacker and defender nodes

under different BNE strategies.

3. Analysis of reduction in IDS traffic generation achieved by the

proposed MANET IDS scheme.

4. Performance analysis comparison of the proposedMANET IDS

scheme with other well known schemes.

We have implemented our proposed model in the network simu-

lator NS2 [25] on Ubuntu 12.04 running gcc version 4.6.3. We restrict

the movements of the mobile nodes to a predefined flat-grid area of

15 × 15m2. Table 5 lists the various parameters used in our simulation.
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4.1. MANET leader election mechanism analysis

We analyze our proposed model to study the impact of our

scheme (leader IDS election) on the average life span of nodes. Ini-

tially, nodes in the cluster are assigned energy levels between 5 and

50 Joules. The energy consumed by the leader IDS for elected period

of time (15 s) is assumed to be 4 Joules. The energy required by nodes

for their normal operations and transmissions has been ignored to

simplify the analysis.

We analyze our proposed model in a cluster consisting of 12

nodes, with 25% i.e., 3 malicious nodes. Figs. 4 and 5 show the energy

levels of different nodes using the random leader election model

and the VCG leader election model, respectively. It can be ob-

served that in the random model some of the nodes die out over a

period of time, while the energy levels of other nodes remain con-

stant or decreasemarginally. On the other hand, the VCGmechanism

based leader election model balances the energy levels of all nodes

by always electing the most cost-efficient node (high-energy level

node) as cluster leader. In general, it was found that the proposed

leader election model increases the average lifetime of the cluster

node by 15–20% compared to a randommodel that does not employ

leader election mechanism.

Fig. 6 shows the percentage of normal alive nodes versus per-

centage of malicious nodes in a cluster consisting of 20 nodes after

2400 s. A malicious node avoids being elected as a leader node by

exaggerating its cost analysis value. It can be observed from the figure
that as the number of malicious node increases in the network, the

number of alive normal nodes decreases. This shows that the normal

nodes carry out more intrusion detection services and die out faster

as the number of selfish nodes increase in the cluster.

4.2. Hybrid MANET IDS analysis

For analyzing the proposed hybrid MANET IDS, the Packet Re-
ception Rate (PRR) threshold (τ) and Packet Forwarding Rate (PFR)
threshold (Θ) values of the lightweight module are taken as 0.5 and

0.3, respectively. The observed detection rate (αL) and false posi-

tive rate (γL) of the lightweight module against different types of

attacks like DoS, Packet dropping, Packet distortion, Route compro-
mise, Black-hole etc. using the above (PRR) and (PFR) threshold values

were found to be 81.33% and 0.61%, respectively.

The features listed in Table 4 are used to build the association

rules for the heavyweight IDSmodule. We considered different sam-

pling intervals for creating a training dataset, with each training

instance containing a summary statistics of network activities for

the specified time interval. The values of minimum support thresh-

old (minsup) andminimum confidence threshold (minconf) are taken
as 15% and 65%, respectively.

The performance analysis of association-rule based HIDS is carried

out under different traffic conditions and against different types of

Table 5

Parameters used for simulation.

Parameters Value

Simulation time 900–3000 s

Number of nodes 12–30

Simulation area 600 × 600 m2

Transmission range 150 m

Mobility Random way point

Routing protocol DSR

MAC layer DCF of IEEE 802.11

Max. node movement speed 20 m/s

Pause time 500 s

Traffic type CBR/UDP

Election period 60 s

Data rate 20k bps

Packet size 512 Bytes

MAC protocol IEEE 802.11b

Sampling interval 3 s
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attacks. Two different test scripts are used to generate training traces.

8k Trace and 5k Trace are normal training traces without any in-

trusions and with running time of 8000 s and 5000 s, respectively.

The sampling rate of 3 s is used to record the feature values. The

association rules extracted from these traces are then used to build

the normal profile of the network.

Larger test traces with execution time from 10,000 (10k) seconds

to 15,000 (15k) seconds were then generated. The association rules

extracted from the test data (real-time monitoring data) were then

compared against the normal profile. Any deviation of test associa-

tion rules from the normal profile are considered as an anomaly, which

triggers an intrusion alert. These test traces contain various types of

attacks like Route compromise, Traffic distortion and Black-hole attacks.
A brief description of these attack types is provided below:

• Route compromise: This type of attack involves either forward-

ing a packet to an incorrect node or propagating false route

updates.

• Traffic distortion: These attacks change the normal traffic behav-

ior by randomly dropping packets, generating packets with faked

source address, reporting false misbehavior against normal node,

corrupting the packet contents and denial of service.

• Black-hole attack: In this attack, a malicious node advertises spu-

rious routing information, thus receiving packets and dropping

them instead of forwarding them.

Table 6 shows the performance of the proposed unsupervised

association-rule based HIDS against different types of attacks. It can

be seen that the HIDS effectively detects the simulated attacks with

relatively low FP rate. Table 7 shows the detection rate and FP rate

of the HIDS on the test traces. The average detection rate and false

alarm rate of the HIDS on these test traces are 91.78% and 0.5%,

respectively.

Fig. 7 shows the defender’s payoff playing its pure strategies

Monitor and Not Monitor when the defender’s maliciousness belief

about opponent player is less than the malicious threshold ( pth),

i.e., p po th< . It can be observed from the figure that the defender

is always better of playing its pure strategy Not Monitor when p po th< .

The game under consideration is strictly non-cooperative. There-

fore, each player tries tominimize the opponent’s payoff. Fig. 8 shows

the attacker’s payoff corresponding to two different pure strate-

gies of the defender. Similarly, Fig. 9 shows the defender’s payoff

corresponding to two different pure strategies of the attacker. It can

be observed from these figures that the payoff of the opponent player

increases when the player deviates from its BNE strategy. Fig. 10

shows the attacker’s payoff under static and dynamic Bayesian games.

It can be observed from the figure that in the static Bayesian game,

the attacker gets a higher payoff.

Table 6

Performance of association-rule based heavyweight IDS for different classes of attacks.

Attack Type Detection rate False alarm rate

Route compromise 91.4% 0.45%

Traffic distortion 95.3% 0.87%

Black-hole 99.5% 0.35%

Table 7

Performance of association-rule based heavyweight IDS.

Test trace Detection rate False alarm rate

10k 92.39% 0.45%

12k 91.68% 0.52%

15k 91.28% 0.53%
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4.2.1. Comparison of proposed MANET IDS scheme with other
methods

We have evaluated the performance of our proposed hybrid

MANET IDS scheme with various other models like SRPDBG [47],

CrossLayer [48], SPF [49], Watchdog [32], TWOACK [17] and EAACK

[18]. These models were chosen for comparison since they repre-

sent a spectrum of MANET IDS schemes based on game theory

(SRPDBG), data mining (CrossLayer), specification (SPF) and rules

(Watchdog, TWOACK and EAACK). The following metrics were used

for evaluation of the proposed hybridMANET IDS schemewith other

IDS schemes:

• Packet delivery ratio (PDR) refers to the ratio of the number of

packets delivered to the destination node against the number

of packets generated by the source node.

• Routing overhead (RO) refers to the overhead involved in trans-

mission due to introduction of additional routing control packets

like Route Request (RREQ), Route Reply (RREP), Route Error

(RERR), ACK etc.

Figs. 11 and 12 show the PDR and RO of the various IDS schemes

under varying percentage of malicious nodes. It can be observed

from these figures that all the four schemes (TWOACK, EAACK,

SRPDBG and proposed IDS) have higher PDR than the simple

WatchDog scheme. The PDR of our proposed IDS scheme is com-

parable to that of EAACK and CrossLayer schemes, while it

outperforms the TWOACK and SRPDBG schemes. On the other hand,

the Watchdog scheme has the least RO, as it does not use any ac-

knowledgment scheme to detect misbehaving nodes. The RO of the

proposed IDS is less than the TWOACK, EAACK and CrossLayer

schemes but higher than the SRPDBG scheme. The RO of the pro-

posed IDS scheme is primarily due to exchanges of electionmessages

for electing the MANET leader node and checker nodes.

Table 8 shows the detection rate and false alarm rate of various

IDS models on different classes of attacks. It can be observed from

the table that our proposed HYB_IDS achieves high detection rate

against all categories of attacks while producing a minimal amount

of false alarms. The performance analysis comparison of various IDS

models has been provided in Table 9.

From Tables 8 and 9, it can be summarized that the proposed

hybrid scheme achieves high detection rate against different classes

of attacks, while at the same time minimizes the overall false alarm

rate and the computational overhead required for operating the IDS.

However, the drawback of the proposed scheme is that it incurs a

marginal overhead due to its cluster leader election process.

5. Conclusion and future work

In this paper, we proposed a new IDS scheme for MANETs which

comprises a cluster leader node election mechanism and a hybrid
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Table 8

Performance comparison of various IDS models.

IDS Models Attack Type Detection Rate False Alarm rate

SPF Route Compromise 47.56% 0.57%

Traffic Distortion 43.24% 0.49%

Black Hole 81.23% 0.51%

CrossLayer Route Compromise 92.36% 0.38%

Traffic Distortion 97.33% 0.93%

Black Hole 99.7% 0.53%

SRPDGB Route Compromise 65.43% 0.36%

Traffic Distortion 51.56% 0.55%

Black Hole 99.42% 0.37%

HYB_IDS Route Compromise 91.4% 0.45%

Traffic Distortion 95.3% 0.87%

Black Hole 99.5% 0.35%
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IDS. The main contributions of our proposed hybrid IDS scheme to

the field of intrusion detection in MANETs is development of an IDS

model that minimizes the power consumption and achieves a high

detection rate across a wide range of attacks along with reduced

false alarm rate. The proposed scheme minimizes the power con-

sumption required for operating the IDS in MANETs through

distribution of intrusion detection task among various nodes by em-

ploying a VCGmechanism based cluster leader election process. On

the other hand, high detection rate and reduced false alarm rate are

achieved by the hybrid IDS which comprises a threshold based

lightweight module and a powerful anomaly based heavyweight

module.

Our future work will be focused on improving the detection rate

and decreasing the false positive rate of both the lightweight and

the heavyweight modules of the hybrid MANET IDS. At present, the

detection rate of the lightweight and the heavyweight modules are

91.78% and 81.33%, respectively. We also plan to investigate appli-

cation of other equilibrium concepts like Pareto Equilibrium,

Subgame Perfect Nash Equilibrium and Correlated Equilibrium in

our future work. The refinement of theMANET leader electionmech-

anism to address various issues like identification of selfish nodes

in MANETs with greater accuracy, minimizing the computational

overhead involved in execution of cluster leader node electionmech-

anism, etc. are other possible potential research directions.
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Table 9

Comparison of various MANET IDS models.

IDS Models Proposed HYB_IDS CrossLayer [48] SRPDGB [47] SPF [49]

Detection rate High High Low Low

False alarm Low Low High High

Detection method Game theory based hybrid approach Data mining anomaly based Game theory and trust based Specification based

Attack types

addressed

Routing attacks, DoS attacks,

Packet dropping, Packet spoofing

Routing attacks, Packet dropping,

Packet spoofing

Routing attacks, Packet dropping Routing attacks, Packet dropping,

Packet spoofing

Advantage High detection rate, Low false alarm

rate, Low power consumption

High detection rate, Low false

alarm rate

Low power consumption Detect routing attacks with high

accuracy

Disadvantage Marginal overhead incurred in

cluster leader node election

High power consumption,

Overhead in training the IDS model

Low detection rate, High false

alarm rate

Low detection rate, High false alarm

rate, High power consumption
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