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Abstract— Insufficiency of memory and battery power of
sensors makes the security of sensor networks a hard task to
do. This insufficiency also makes applying the existing methods
of securing other type of networks on the sensor networks
unsuitable. We propose a game theoretic framework for defensing
nodes in a sensor network. We apply three different schemes
for defense. Our main concern in all three schemes is finding
the most vulnerable node in a sensor network and protecting
it. In the first scheme we formulate attack-defense problem as
a two-player, nonzero-sum, non-cooperative game between an
attacker and a sensor network. We show that this game achieves
Nash equilibrium and thus leading to a defense strategy for the
network. In the second scheme we use Markov Decision Process
to predict the most vulnerable senor node. In the third scheme we
use an intuitive metric (node’s traffic) and protect the node with
the highest value of this metric. We evaluate the performance of
each of these three schemes, and show that the proposed game
framework significantly increases the chance of success in defense
strategy for sensor network.

I. INTRODUCTION

It is crucial that the security of sensor networks be moni-
tored and diagnosed to ensure correct behavior. However, this
is a challenging task in an environment where the network
is designed to be flexible. Due to resource scarcity (battery
power, memory, and processing power) of sensors, securing
sensor networks is quite different from traditional schemes
that generally involve management and safe keeping of a small
number of private and public keys [14]. Disclosing a key with
each packet requires too much energy [18]. Storing one-way
chain of secret keys along a message route requires consider-
able memory and computation of the nodes on that rout [19].
The key management using a trusted third party requires an
engineered solution that makes it unsuitable for sensor network
applications [7]. Although the asymmetric key cryptography
does not require a trusted server, key revocation becomes a
bottleneck [8] as it involves an authority maintaining a list of
revoked keys on a server or requesting the public key directly
from the owner.

Recently game theory has been used extensively to model
networking problems [15], where different players may have
different strategies for network usage. Game theory is a formal
way to analyze interaction among a group of rational players
who behave strategically. A game is the interactive situation,
specified by the set of players (sensor nodes), the possible
actions of each node, and the set of all possible payoffs. In
order to detect intrusions we introduce a scheme based on a
foundation of game theory, where we define a game between
an attacker and the sensor network. In this game each player
tries to maximize its own payoff. Attacker as a player decides
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to attack or to wait for a better time and attacks later. Sensor
network uses an intrusion detection system (IDS) to defend
the sensor nodes from intrusions. We formulate the attack-
defense game as a two-player, nonzero-sum, non-cooperative
game. We show that this game achieves Nash Equilibrium,
thus leading to a defense strategy for the IDS. Then in order
to defend the most vulnerable nodes, we elaborate two other
approaches. First approach is learning mechanism (MDP),
which predicts the most vulnerable node that can be attacked
in the future. IDS will incorporate this learning mechanism and
based on that, makes a decision to defend one node. Second
approach is an intuition based logic, where IDS defends the
sensor node with the maximum individual activity load. We
compare the performance of these three schemes while facing
attacks.

The rest of the paper is organized as follows. Section II talks
about related works. Section III is our proposed framework,
which discusses non-cooperative game scheme, the Markov
Decision Process (MDP) and intuitive metric. Section IV
represents simulation and performance evaluation. Section V
concludes the paper.

II. RELATED WORK

The pu TESLA protocol [17] uses a symmetric key mech-
anism. To generate one-way key chain, the sender chooses
the last key randomly and generates the remaining values
by successively applying a one-way function. The protocol
discloses the key once per time interval (rather than one
key per packet), and restricts the number of authenticated
senders. To bootstrap, each receiver needs one authentication
key of one-way function key chain. The base station can also
broadcast disclosed key and perform initial bootstrapping for
new receivers to conserve energy. The periodic key disclosure
of p TESLA ensures compromising a single sensor does not
reveal the keys of all the sensors in the network.

Authors in [5] proposed CONFIDANT protocol, which con-
sists of the following components: (i) monitor, (ii) reputation
system, (iii) path manager and (iv) trust manager. In this
approach neighborhood watch is proposed and nodes locally
look for deviating nodes. As a component within each node,
the monitor registers these deviations from normal behavior.
Reputation system provides a quality rating of participants of
transactions. Path manager ranks paths according to security
metric. A trust table managing trust levels for nodes to
determine the trustworthiness of paths will be managed by
the trust manager. It is obvious that this approach would not
fit sensor networks due to their limited memory.

A game theoretic approach for detecting network intrusions
via sampling is presented in [13], in which an intrusion
detection game is played between two players: the service
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provider and the intruder. The intruder minimizes chances of
detection and the provider maximizes it. This is a min-max
approach, where the solution is a max-flow problem from
which the stable points will be obtained. But in real life,
sampling can be expensive. The authors have considered that
adversary has considerable information about the network and
is able to pick a path that minimizes chances of detection.
The user cooperation in ad hoc networks has been studied in
[23], in which an acceptance algorithm that each node uses, to
decide whether to accept or reject a relay request is proposed.
The system is proved to converge to an equilibrium point.
The authors assume each user has sufficient information about
the system, like number of users in each energy class, and
hence users exchange their view of the system. However, they
do not consider malicious users. A framework to study the
existence of cooperation in packet forwarding in a wireless
network is proposed in [10], in which a model is defined and
the conditions under which cooperative strategies can form
an equilibrium are identified. This approach does not require
each node to keep track of the behavior of other nodes, but it
is assumed all routes are static.

III. PROPOSED FRAMEWORK

In this paper we present three different schemes to detect
intrusions. In all three schemes we refer to IDS. IDS is an
intrusion detection system, where its task is protecting sensor
nodes. Due to system limitations, IDS would not be able to
protect all sensor nodes, and so based on one of the three
schemes, it will choose one sensor node for protection, later on
we will refer to these sensor nodes as clusterheads. In the first
scheme we define one non-cooperative game between attacker
and sensor nodes. By using game theory framework we show
that the game achieves Nash equilibrium for both attacker and
IDS, thus leading to the defense strategy for IDS. In the second
scheme we introduce an intrusion detection system based
on MDP, which incorporates a learning mechanism. In the
beginning IDS observes the system and learns the behavior of
the attacker, and tries to decide which node needs protection.
If it protects the same node that attacker wanted to attack, the
attack is unsuccessful, which has a large reward for IDS. But
if attacker attacks different node than the the sensor node that
IDS is protecting then attack is successful. In the third scheme
we use an intuitive metric. Traffic load is our metric and IDS
chooses to protect the node which has the highest amount of
traffic load. At the end we compare the performance of each
of these approaches.
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As sensor network nodes are very limited in memory and
power, we do not want to waste these limited resources. We

need a way that sensor nodes can communicate with each
other but would not consume too much energy. Also as nodes
are memory limited, it would be infeasible for each node
to remember all of its neighboring nodes. It is also very
possible that sensor nodes do not have global identification
(ID) because of the large amount of overhead and large
number of sensors. So we divide all sensor nodes into clusters,
in each cluster we choose one node as the cluster head.
A positive point of this approach is that as IDS can not
control all the nodes simultaneously it only has to monitor
the chosen nodes which will be known as cluster heads,
instead of monitoring all the nodes in the network. So one
node in each cluster will be chosen as the cluster head, this
choice can be random or based on some known clustering
approaches like weight clustering approach (WCA) [9], Low-
Energy Adaptive clustering Hierarchy (LEACH) [11], etc. We
used WCA protocol, because cluster head election procedure is
not periodic and is invoked as rarely as possible, which reduces
system updates and hence computation and communication
costs.

In the second scheme we use a learning mechanism, which
is based on Markov Decision Process (MDP) [4]. The advan-
tage of using MDP is the reward concept. IDS gains the
reward for choosing the right cluster to protect. And IDS
tries to predict as correct as possible to maximize its own
reward. In the third scheme we use an intuitive metric. At
each time slot IDS should decide to protect one cluster, either
the one that it was protecting during previous time slot or
finding a more vulnerable one to protect. IDS will consider the
activity load or traffic of each cluster and chooses a cluster for
protection. At the end we compare the performance of these
three schemes. Fig.1 depicts a high level view of the intrusion
detection schemes.

A. Game Formulation

With respect to one fixed cluster, say k, the attacker has
three strategies: (ASy) attack cluster k, (AS2) do not attack at
all, (AS3) attack a different cluster. The IDS has two strategies
as well: (SS1) defend cluster k, or (SS3) defend a different
cluster. We are considering the fact that at each time slot, IDS
is defending one cluster. The payoffs of these two players are
expressed in the form of 2 x 3 matrices, A and B where a;j
and b;; denote IDS’s and the attacker’s payoff respectively.
We define some notations:

U(t): the utility of sensor network’s on-going sessions.
ALj: the average loss by loosing cluster k.

Cy: the average cost of defending cluster k.

Nj,: the number of nodes in a cluster k.

The IDS’s payoff matrix A = [a;;]2x3 is defined as follows:

L ais
wos o i

Here a1; = U(t) — Cy represents (AS;, SS1), which is
when attacker and the IDS choose the same cluster (k) to
attack and to defend respectively, so for IDS, its original utility
value of U(t) will be deducted by the cost of defense. a2 =

U (t) — C}, represents (AS3, SS1), which is when attacker does
not attack at all, but IDS defends one cluster k, so we have

to deduct the cost of defense. a13 = U(t) — C, — Zﬁ“{ AL,
represents (AS3,.551), which is when attacker attacks cluster
k!, but IDS defends cluster k. In this case we subtract the
average cost of defending one cluster, from original utility, as
well as deducting the average loss of losing another cluster.
an =U(t)-Cy — ngﬁ ALy, represents (ASy,SS52), which
is when attacker and the IDS choose two different clusters to

a2
as2

ai1
a1
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attack and to defend. axs = U(t)—C)- represents (ASs,SS2),
which is when attacker does not attack at all, but IDS defends
one cluster k', so we ha\I/Ve to deduct the cost of defense.
azs = U(t) — Cp — 3;4 AL,n represents (AS3,SSs),
which is when IDS defends cluster &', but attacker attacks
to a different cluster. In this case we subtract the average
cost of defending one cluster, from original utility, as well
as deducting the average loss of losing another cluster.

We define the attacker’s payoff matrix B = [b;;] as follows:

B — PI(t)-CI CW PI(t)-CI
@ = | PI()-CI CW PI(t)-CI
where,
o CW: the cost of waiting and deciding to attack in the
future.

o C1I: the cost of intrusion for attacker.

o PI(t): the average profit of each attack.
Here b11 and by are representing attacks to cluster k, by3 and
bas are representing attacks to different clusters than cluster
k. We subtract average cost of attack from average profit of
concurring a cluster. Also bjo and bgs represent non attack
mode, and as attacker in these two modes decides to attack in
future CW is the price to pay for waiting. We refer interested
reader to our previous work [3] for more detailed definitions
and descriptions of the above parameters. Now, we study the
equilibrium solution for this game. Let us first introduce the
concept of dominant strategy in the game theory. Given a
bimatrix game defined by two m xn matrices, A and B, which
are the payoffs of player p; and p, respectively. We say that
“row 4”dominates “row k” if a;; > ay;, for j = 1,...,n. “row
17 is called a dominant strategy for player p;. For p1, selecting
the dominating “row 4 is at least as good as selecting the
dominated “row k£”. So “row k” actually can be removed from
the game because p; as a rational player would not consider
this strategy at all.

THEOREM 1: The game has Nash equilibrium at strategy
pair (AS1,SS1).

Proof: Due to the limited space, we refer intrested reader

to our previous work [3]. |

The intuition behind the above discussion is that for IDS the
best strategy is finding the best cluster to defend, which is the
one with maximum value of U(t) — Cy, and for attacker the
best strategy is finding the right cluster to attack, and as PI—C'
is always more than CW, so attacker is always encouraged to
attack.

B. MDP

Consider a stochastic process {X,,n = 0,1,2,...} that
takes on a finite number of possible values. If X,, = 4, then
the process is said to be in state ¢ at time n. We suppose that
whenever the process is in state ¢, there is a fixed probability
P;; that it will next be in state j. Such a stochastic process
is known as a Markov chain [21]. It basically states that
the conditional distribution of any future state given the past
states and the present state is independent of the past states and
depends only on the present state. IDS’s ability in choosing
the right cluster to defend is a key factor in formulation this
learning algorithm. We need to have a reward concept for IDS
that only if it chooses the right cluster for protection, it will
gain that reward. Basically in this section, we want to predict
the future behavior of the attacker. We suppose that we know
the past behavior of the attacker and so past states of the
system, and now our task is predicting the most vulnerable
node, which attacker most probably will attack.

A Markov Decision Process (MDP) is a model for se-
quential stochastic decision problems [4]. It is a four tuple
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(S, A, R,tr), where S is a set of states, A is a set of actions,
R is a reward function, and ¢r is the state-transition function.
A state s € S encapsulates all the relevant information about
the state of the world. The actions change the states and the
effect of the actions on the states is captured by the tran-
sition function. The transition function assigns a probability
distribution to every (state, action) pair. Thus, tr(s,a,s’) is
the probability of making a transition from state s to state
s' when a is performed. Finally, the reward function assigns
a real value to each (state, action) pair, which describes the
immediate reward (or cost) of executing this action in that
state. The states of the MDP for our intrusion detection
system correspond to the states of the predictive model. For
example the state (z1,zs,23) denotes the intrusion on the
states x3 where {1, x>} have been attacked in the past. This
correspondence may not be optimal, and, in fact, it requires
a large amount of training data (i.e., time on-line) to gain
accuracy. Each action of the MDP corresponds to one intrusion
detection of a sensor node. One can consider multiple intrusion
detection systems based on MDP, but, to keep our model
simple and computationally tractable, we consider only one
intrusion detection. When we detect an intrusion on node
2, the MDP can either accept this detection and thus state
(1,22, x3) will be transfered to state (x1,x2, '), or it selects
another node. The rewards in our MDP encode the utilities
of detecting an intrusion. For example, the reward for state
(21, %2,23) can be the total benefit of keeping the node x3.
For simplicity we assign a constant value for the reward if
the intrusion is detected. The transition function for the MDP
model, tr((z1, T2, z3),2’, (22, 23,2")), is the probability that
intrusion on node z' is detected, given that node z' has been
attacked in past. For the purpose of learning we use a learning
method, which is known as @-learning [16]. The objective,
here, is to maximize the expected value of received reward
over time. This can be done by learning a (possibly stochastic)
mapping from states to actions, which is called a policy and
defined as IT : S — A, i.e. a mapping from states s € S
to actions a € A. The criterion used in selecting the action
in every state is the maximization of its future reward. More
precisely, the objective is to choose each action to maximize
the expected return, R = E (gz;?io /\’wi] , where A € [0,1) is
a discount-rate parameter and w; refers to the reward at step .
The expected discounted sum of future rewards if action a is
taken in state s is defined by the ()-function, @) : S x A — R,
as:

Q(st,at) + Q(st,at)+afwiy1+A max Q(8t4+1,a)—Q(s1,a)].

Hence @-function, once learned, allows the learner to maxi-
mize R by picking actions greedily with respect to (), such
that, II(s) = argmax,ca@Q(s,a). The Q-function is learned
on-line through experimentation.

C. Intuitive Metric: Traffic

For the third scheme we use an intuitive metric. At each
time slot IDS should decide to protect one cluster, either the
one that it was protecting during previous time slot or finding
a more vulnerable one to protect. We use activity load, which
indicates traffic of each cluster. IDS will use this parameter
and based on this value chooses a cluster for defending. So
at each time slot the cluster with the highest value of traffic
is the most vulnerable cluster and should be defended against
attacks.

IV. PERFORMANCE EVALUATION

We developed a simulation platform to evaluate the perfor-
mance of the three schemes. Assuming that there is only one
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attacker, one IDS, and the fact that at each time unit IDS is
protecting only one cluster. In our simulations N gets different
values ranging from 20 clusterhead nodes upto 200 clusterhead
nodes. Figures 2 and 3 depict the success rate for 50 and
200 cluster head nodes in all three schemes, game theoretic
framework, MDP and intuitive metric. Any learning approach
needs some time to learn the past behavior and gets ready to
predict the future behavior. Table 1. depicts the time that IDS
needs to spend in order to learn and be able to predict the next
most vulnerable node. This values are calculated based on the
performance of MDP approach on a Pentium III computer, cpu
model 1133 MHz. As the result indicate, by using the game
theoretic frame work, performance of IDS is almost two times
better than the overall performance of the MDP approach, also
it does not need extra time for learning.
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V. CONCLUSION

In this paper, we proposed a game theoretic framework
for intrusion detection in sensor networks. We formulated
the intrusion detection problem as a non-cooperative two-
player nonzero-sum game between the sensor network and the
attacker. We show that Nash equilibrium can be established.
We have considered many risk factors like reliability of a
sensor node, different type of attacks, and past behavior of the
attacker. We also implemented an MDP learning approach in
order to predict the future behavior of the attacker. Simulation
results show that by using game theoretic framework we can
significantly improve the chance of intrusion detection.

There are many directions this work can be extended in the
future. Finding a smart algorithm that knows when to use MDP

TABLE I
LEARNING TIME FOR MDP
[N [ 20 TS50 T 100 T200 ]

[ Time in ms [ 243 [ 590 [ 1434 ] 3245 |

algorithm and when to use game theoretic framework to have
the maximum possible rate of success in detecting intrusions,
is one of them that we plan to investigate.
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