

Intrusion Detection in Virtual Machine Environments

Marcos Laureano, Carlos Maziero, Edgard Jamhour
Graduate Program in Applied Computer Science
Pontifical Catholic University of Paraná - Brazil
{laureano, maziero, jamhour}@ppgia.pucpr.br

Abstract

 A virtual machine is a software replica of an
underlying real machine. Multiple virtual machines can
operate on the same host machine concurrently, without
interfere each other. Such concept is becoming valuable
in production computing systems, due to its benefits in
terms of costs and portability. As they provide a strong
isolation between the virtual environment and the
underlying real system, virtual machines can also be used
to improve the security of a computer system in face of
attacks to its network services. This paper presents a new
approach to achieve this goal, by applying intrusion
detection techniques to virtual machine based systems,
thus keeping the intrusion detection system out of reach
from intruders. The results obtained from a prototype
implementation confirm the usefulness of this approach.

1. Introduction

 A central problem in system security is the difficulty in
getting reliable information from a compromised system.
Once an intrusion has occurred, the monitoring data
coming from such system is no more reliable, as the
intruder can disable or modify the system monitoring
tools in order to hide his/her presence.

Virtual machines can be used to improve the security
of a computing system against attacks to its services [6].
The virtual machine concept was defined in the 1960s: in
the IBM VM/370 environment, a virtual machine created
an exclusive environment for each user [11]. The use of
virtual machines is becoming interesting also in modern
computing systems, because of their advantages in terms
of cost and portability [5]. Examples of currently used
virtual machines environments are VMware [18] and
UML – User-Mode Linux [7]. A frequent use of virtual
machine –based systems is the so-called server
consolidation: instead of using several physical
equipments, one can use a single (and more robust)
hardware equipment, in which several distinct, isolated

virtual machines host distinct operating systems,
applications, and services.
 This work presents a proposal to increase the
trustworthiness of computing systems using virtual-
machine technology. It proposes the application of
intrusion detection mechanisms in order to detect and
block attacks against services running on virtual
machines. The main benefit of this approach is to monitor
the virtual machine from outside (from the real
underlying system), thus keeping the intrusion detection
system safe, out of reach from intruders. This article is
structured as follows: section 2 recalls virtual machine
concepts used in this work; section 3 introduces some
intrusion detection techniques used here; section 4 details
the proposal, section 5 presents implementation results,
and section 6 discusses related work.

2. Virtual machines

 A virtual machine (VM) is defined in [16] as an
efficient and isolated duplicate of a real machine. Typical
uses for virtual machine systems include the development
and testing of new operating systems, simultaneously
running distinct operating systems on the same hardware,
and server consolidation [17].

A virtual machine environment is created by a Virtual
Machine Monitor (VMM), also called an “operating
system for operating systems” [13]. The monitor creates
one or more virtual machines on top of a single real
machine. Each VM provides facilities for an application
or a “guest system” that believes to be executing on a
normal hardware environment.
 There are two classical approaches to build virtual
machine systems. In type I environments, the virtual
machine monitor is implemented between the hardware
and the guest systems, as shown in Figure 1; Xen [2] and
VMware ESX Server [18] are good examples of such
approach. On the other hand, in type II environments, the
monitor is implemented as a normal process of an
underlying real operating system, called the host system
(Figure 2). Both VMware Workstation [18] and User-

Mode Linux [7] fit in this category. This article considers
the application of type II virtual machine environments in
system security.

Figure 1. Type I virtual machine environment

Figure 2. Type II virtual machine environment

 Common Intel-like PC processors provide no adequate
support for virtualization. Consequently, virtualization
overhead can be as high as 50% of total computing time
[5, 7, 18]. However, recent research significantly reduced
this cost, achieving overhead levels under 10%, as shown
in [14, 15, 19]. For instance, VMware [18] adopts a
technique of code rewriting that consists of dynamically
rewriting parts of the code being loaded by the guest
kernel, in order to adapt it to the virtual machine
environment and thus obtain a better performance.
Recently, the Xen project [2] proposed and built a type I
virtual machine environment in which average costs
remain under 3% for virtualizing Linux, FreeBSD, and
Windows XP. These works open many perspectives on
the effective use of virtual machines in production
environments.

3. Intrusion detection

 An Intrusion Detection System (IDS) continuously
collects and analyzes data from a computing system,
aiming to detect intrusive actions. With respect to the
origin of analyzed data, there are two main approaches for
intrusion detection [1]: Network-based IDS (NIDS) –
based on watching the network traffic flowing through the
systems to monitor, and Host-based IDS (HIDS) – based
on watching local activity on a host, like processes,
network connections, system calls, logs, etc. The main
weakness of host-based intrusion detection is its relative
fragility: in order to collect system activity data, a HIDS
agent should be installed in the machine to monitor. This
agent can be deactivated or tampered by a successful
intruder, in order to mask his/her presence, turning the
detection system useless.
 Techniques used for analyzing collected data in order
to detect intrusions can be classified in: signature
detection, when collected data is compared to a base of
previously known attacks patterns (signatures), and
anomaly detection, when collected data are compared to
previously collected data representing the normal activity
of the system. Normality deviations are then signaled as
threats.
 Several papers describe techniques for anomaly-based
intrusion detection which uses the sequences of system
calls generated by processes. In the proposal presented in
[9, 12], the system calls issued by a process are recorded
in sequence, without their parameters. This execution
history is then transformed in sequences of system calls of
length k. The collection of all possible sequences of
length k defines the normal behavior of that process. Any
sequence of k system calls issued by that process and not
present in its normal behavior is considered an anomaly,
or a threat.
 To illustrate that technique, let us consider a process
which issued the following system calls during its
execution:

[open read mmap mmap open read mmap]

 Adopting k=3, the following set of sequences is
obtained:

 (open read mmap) (read mmap mmap)
 (mmap mmap open) (mmap open read)

 If the process issues a different sequence, like (open
open read), it should be placed under suspicion.
Despite the set of system calls to be system-dependent
and the capture of the complete behavior of a process to
be potentially laborious, this method presents good
detection efficiency, as shown by their authors.

hardware

virtual machine monitor

guest kernel

virtual machine

user processes

guest kernel

virtual machine

hardware

virtual machine
monitor

guest kernel

virtual machine
user processes

host kernel

 The papers [3, 4] present a secure operating system
proposal, called Remus, which is based in classifying
system calls and controlling access to them by processes.
The authors classify the UNIX system calls in some
functionality groups (communication, file system and
memory management are some examples) and four levels
of threat. System calls classified in threat level 1 can be
used to get full access to the operating system; level 2
contains system calls that can be used for denial of service
attacks; system calls able to compromise processes are
classed in threat level 3; finally, system calls in level 4 are
harmless for system security. This classification is being
used in this work.

4. Intrusion detection in virtual machines

 As shown, host-based IDS are vulnerable to local
attacks, because the intruder can disable or tamper them.
Thus, monitoring data coming from a compromised
system cannot be considered reliable [1]. The use of
virtual machines provides a solution to this problem. The
proposal presented here allows building more reliable
host-based intrusion detection systems.
 The proposal’s main idea is to encapsulate the system
to monitor inside a virtual machine, which is monitored
from outside. The intrusion detection and response
mechanisms are implemented outside the virtual machine,
i.e. out of reach of intruders. The proposal considers a
type II virtual machine monitor, so the detection and
response system can be implemented as host system
processes. Figure 3 illustrates the main components of the
proposed architecture.

Figure 3. Architecture proposal

 The interaction of guest system processes with the
outside world is done only through the network, using a
software firewall managed by the host system. Under the
guest system’s viewpoint, it is an external firewall,
therefore inaccessible to intruders. The interaction
between the guest system and the intrusion detection and
response system is done through the virtual machine
monitor. Two kinds of interactions are defined: a)
monitoring, in which guest system data is extracted from
the guest system (through the virtual machine monitor)
for external analysis (for example, the system calls
generated by guest processes), and b) response, as the
intrusion detection system can act on the guest system
through the monitor, in order to respond to intrusions.
Beyond actions on the guest system, the response system
can also interact with the software firewall used by the
guest system, blocking ports and connections as needed.
 The architecture presented here keeps the detection and
response system out of reach of intruders. However, to
guarantee the system security it is important to observe
that interactions with the guest system always must be
done through the virtual machine monitor, the virtual
machine monitor must be inaccessible to guest system
processes, and all the network services must be provided
by guest system processes. Network access to the
underlying host system should be avoided.

Our current implementation adopted an anomaly-
based approach for intrusion detection. It uses the system
call sequence analysis algorithm described in section 3.
The detection and response program implemented in the
host system is responsible for recording and analyzing the
information sent by the VM monitor.
 The system has two operation modes: a learning mode
and a monitoring mode. When executing the learning
mode, all the processes executing in the guest system and
their respective users are recorded as authorized processes
and users, thus generating an access-control list (ACL).
The system also stores the sequences of system calls for
specific processes. The learning mode allows, therefore,
recording the “normal behavior” of the system, collecting
essential data for intrusion detection.
 When in monitoring mode, the system receives data
from the virtual machine monitor and compares it to the
previously stored “normal” data. The current prototype
analyzes sequences of system calls issued by guest
processes, using a window of length k=3. If a system call
sequence issued by a given process is not found in the
stored data, an anomalous situation is signaled and that
process is declared suspect. Also, users and processes not
found in the generated ACL are also declared suspect.
 Suspect processes are restricted in their access to the
guest system, to prevent harmful actions. Thus, all the
system calls which can be used to gain full access to the
guest operating system (classified as threat level 1 in [3,
4] and shown in Table 1) are denied for suspect processes.

hardware

guest kernel

virtual machine
port

host kernel

IDS

port

firewall

behavior
data

process

syscalls

actions

response

monitoring
type II monitor

host system

Using this, the guest operating system can isolate a
suspect process without causing severe impact to its other
processes.

Table 1. System calls denied to suspect
processes

Group System Calls

file system and
devices

open link unlink chmod
lchown rename fchown
chown mknod mount
symlink fchmod

Process mgmt

execve setgid setreuid
setregid setgroups
setfsuid setfsgid
setresuid setresgid
setuid

Module mgmt init_module

5. Implementation and results

 A prototype was implemented in a Linux platform,
using the virtual User-Mode Linux (UML) monitor [7],
under kernel 2.4.20. Although UML does not have an
acceptable performance for production systems, its source
code is open and publicly available, allowing us to
implement the prototype. The UML code was modified in
order to allow extracting detailed data from the guest
system, like the system calls issued by guest processes.
The communication between the UML monitor and the
monitoring process is done through named pipes. This
way, the host operating system synchronizes the data flow
between them.
 Some time measurements were carried out on the
execution of basic user commands, in order to evaluate
the performance impact of the proposal. The hardware

used in the experiments was a standard PC system (AMD
Athlon XP 1600 CPU, 512 MBytes RAM). The host
operating system was Suse Linux Professional 8.2, and as
guest operating system we used Linux Debian 2.2.
 The execution time of commands find , ls and ps
were measured in four situations: a) in the host system, b)
in the original guest system, c) in the guest system
(learning mode), and d) in the guest system (monitoring
mode). One should notice that such programs are system
utilities, and that their execution life cycle consists of
mainly to execute system calls. User application programs
use system calls less intensively, so performance figures
are expected to be better than those got from system
utilities.
 Table 2 presents the average execution times for each
command (average execution time for 10 executions;
observed variances are under 5% in all measurements).
Execution times observed in the guest system are far
superior to those observed in the host system. This is due
to the high virtualization overhead presented by the
current version of UML, as discussed in section 2.1.
Table 3 presents the overhead imposed by modifications
in the virtual machine monitor to interact with the
external learning, detection, and response system.
 Some intrusion detection tests have been carried out,
using popular rootkits (described in table 4). These
rootkits modify commands of the original operating
system to prevent their detection (occulting the intruder’s
processes, files, network connections and so) and to steal
typed information like logins and passwords (through
modifications in commands like telnet , sshd and
login). The modifications inserted by those rootkits
were detected in all the performed tests. The rootkits used
in this work are available in
http://www.antiserver.it/Backdoor-Rootkit/.

Table 2. Average execution time (in seconds)

guest system
Command host system

original learning monitoring
ps –ef 0.020 0.110 0.126 0.166
find / >/dev/null 2>&1 0.016 0.360 0.541 0.960
ls -laR / >/dev/null 2>&1 0.058 0.659 0.974 1.361

Table 3. Time overhead

Command Original guest wrt.
host system

Learning mode wrt.
original guest system

Monitoring mode wrt.
original guest system

ps –ef 450.0% 14.5% 3.2%
find / >/dev/null 2>&1 2150.0% 50.3% 77.4%
ls -laR / >/dev/null 2>&1 1036.2% 47.8% 39.7%

 Table 4. Rootkits used to test the prototype

Name Description

FK 0.4
Linux Kernel Module rootkit and Trojan
SSH.

Adore
Hides files, directories, processes, network
traffic. It installs a backdoor and a control
program.

ARK 1.0

Ambient's Rootkit for Linux. It includes
backdoor versions of commands
syslogd , login , sshd , ls , du , ps ,
pstree , killall , and netstat .

Knark v.2.4.3
Hides files, network traffic, processes and
redirects program execution.

hhp-trosniff

Complete set of modifications of ssh ,
ssh2m, sshd2 , and openssh , to extract
and to register connection origin,
destination, host name, user name, and
password.

ulogin.c
Universal login Trojan - Used to record
login names and passwords.

 The tests evidenced the effectiveness and
complementarity of both mechanisms implemented in
the system: the IDS mechanism detects and hinders the
execution of known but tampered binary files, while the
access control list hinders the execution of unknown
binary files.

6. Related work

 The paper [6] cited some benefits the use of virtual
machines can bring to the security and compatibility of
systems, as the capture and processing of log messages,
intrusion detection through the control of virtual
machine internal state) or system migration easiness.
However, the article does not demonstrate how these
situations should be structured and implemented, nor
analyzes their impact on system performance.
 The article [8] describes an experience of use of
virtual machines for the security of systems. The
proposal defines an intermediate layer between the
monitor and the host system, called Revirt. This layer
captures the data sent through the syslog process (the
standard UNIX logging daemon) of the virtual machine
and sends it to the host system for recording and later
analysis. However, if the virtual system is
compromised, the log messages can be manipulated by
the invader and consequently are no more reliable.
 The work described in [10] is close to our approach.
It defines an architecture for intrusion detection in
virtual machines called VMI-IDS (Virtual Machine
Introspection Intrusion Detection System). Their
approach considers the use of a type I VMM, executing
directly on top of the hardware. The IDS executes in a
privileged virtual machine and scans data extracted from

the other VMs, searching for intrusion evidences. Only
the low-level internal state of each virtual machine is
analyzed, without taking in account the activities carried
out by its guest processes. Also, the system response
ability is limited: in case of intrusion suspicion, the
suspect virtual machine is suspended for deeper
analysis. If the intrusion is confirmed, the virtual
machine should be restarted from a (previously stored)
safe state.
 That approach differs from our proposal in several
aspects, like collected data granularity, intrusion
detection methods, access control, and intrusion
response. Our proposal allows analyzing processes
separately, detecting anomalous activities and hindering
intrusions from compromised processes. This way,
perturbations on valid guest processes are minimized.
Moreover, there is no need to suspend the virtual
machine for intrusion confirmation. Another unique
feature in our proposal is the use of an authorization
model for users and processes, automatically generated
during the learning phase.

7. Conclusion

 This paper describes a proposal to increase the
security of computing systems using virtual machines.
The basis of the proposal is to monitor guest processes
actions through an intrusion detection system, external
to the virtual machine. The data used in intrusion
detection is obtained from the virtual machine monitor
and analyzed by an IDS process in the underlying real
machine. The detection system is inaccessible to virtual
machine processes and cannot be subverted by
intruders.
 The main objective of the project, to hinder the
execution of suspect process in the virtual machine and
consequently avoid the system compromise, was
reached with the current prototype. However,
complementary work must be done to diminish the
virtualization overhead and to improve the performance
of the current intrusion detection and response
mechanism. We are also studying more flexible ways to
interact with the guest kernel, allowing killing or
suspending specific suspect processes. Also, the
interactions between the IDS and the host system
firewall, to block suspect network traffic, need to be
refined. Other questions to be studied include to
implement monitoring mechanisms based on other
relevant data, like the network traffic generated by the
virtual machine, and the behavior of guest users on their
processes. More sophisticated algorithms for intrusion
detection can be implemented based of such
information, helping to reduce the occurrence of false
results (both positive and negative).

References

[1] Allen J., Christie A., Fithen W., McHugh J., Pickel J.,

Stoner E. (1999) “State of the Practice of Intrusion
Detection Technologies”, Technical Report CMU/SEI-
99-TR028. Carnegie Mellon University.

[2] Barham P., Dragovic B., Fraser K., Hand S., Harris T.,
Ho A., Neugebauer R., Pratt I., Warfield A. (2003) “Xen
and the Art of Virtualization”, 19th ACM Symposium on
Operating Systems Principles – SOSP 2003.

[3] Bernaschi, M., Grabrielli, E., Mancini, L. (2000)
“Operating System Enhancements to Prevent the Misuse
of System Calls”, Proceedings of the ACM Conference
on Computer and Communications Security. Pgs 174-
183.

[4] Bernaschi, M., Grabrielli, E., Mancini, L. (2002)
“REMUS: A Security-Enhanced Operating System”,
ACM Transactions on Information and System Security,
Vol 5, 01, pgs 36-61.

[5] Blunden, B. (2002) “Virtual Machine Design and
Implementation in C/C++”, Wordware Publ. Plano,
Texas – USA.

[6] Chen, P., Noble, B. (2001) “When Virtual Is Better Than
Real”, Proceedings of the 2001 Workshop on Hot Topics
in Operating Systems (HotOS).

[7] Dike, J. (2000) “A User-mode port of the Linux Kernel”,
Proceedings of the 4th Annual Linux Showcase &
Conference. Atlanta – USA.

[8] Dunlap, G., King, S., Cinar, S., Basrai, M., Chen, P.
(2002) “ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay”, Proceedings of
the 2002 Symposium on Operating Systems Design and
Implementation (OSDI).

[9] Forrest, S., Hofmeyr, S., Somayaji, A. (1996) “A sense of
self for Unix processes”, Proceedings IEEE Symposium
on Research in Security and Privacy.

[10] Garfinkel, T., Rosenblum, M. (2003) “A Virtual Machine
Introspection Based Architecture for Intrusion
Detection”, Proceedings of the Network and Distributed
System Security Symposium (NDSS).

[11] Goldberg, R. (1973) “Architecture of Virtual Machines”,
AFIPS National Computer Conference. New York – NY
– USA.

[12] Hofmeyr, S., Forrest, S., Somayaji, A. (1998) “Intrusion
Detection using Sequences of System Calls”, Journal of
Computer Security, 6:151–180.

[13] Kelem, N., Feiertag, R. (1991) “A Separation Model for
Virtual Machine Monitors”, Research in Security and
Privacy. IEEE Computer Society Symposium, pages 78-
86.

[14] King, S., Chen, P. (2002) “Operating System Extensions
to Support Host Based Virtual Machines”, Technical
Report CSE-TR-465-02, University of Michigan.

[15] King, S., Dunlap, G., Chen, P. (2003) “Operating System
Support for Virtual Machines”, Proceedings of the 2003
USENIX Technical Conference.

[16] Popek, G., Goldberg, R. (1974) “Formal Requirements
for Virtualizable Third Generation Architectures”,
Communications of the ACM. Volume 17, number 7,
pages 412-421.

[17] Sugerman, J., Ganesh, V., Beng-Hong L. (2001).
Virtualizing I/O Devices on VMware Workstation’s
Hosted Virtual Machine Monitor. Proceedings of the
2001 USENIX Annual Technical Conference.

[18] VMware Inc. (1999) “VMware Technical White Paper”,
Palo Alto – CA - USA.

[19] Whitaker, A., Shaw, M. e Gribble, S. (2002) “Denali: A
Scalable Isolation Kernel”, Proceedings of the 10th ACM
SIGOPS European Workshop, Saint-Emilion – France.

