Intrusion Detection in Virtual Machine Environments

Marcos Laureano, Carlos Maziero, Edgard Jamhour
Graduate Program in Applied Computer Science
Pontifical Catholic University of Parana - Brazil
{laureano, maziero, jamhour}@ppgia.pucpr.br

Abstract

A virtual machine is a software replica of an
underlying real machine. Multiple virtual machinean
operate on the same host machine concurrently,owith
interfere each other. Such concept is becomingaiddu
in production computing systems, due to its benadfit
terms of costs and portability. As they providetrarg
isolation between the virtual environment and the
underlying real system, virtual machines can alsaibed
to improve the security of a computer system i faic
attacks to its network services. This paper presariew
approach to achieve this goal, by applying intrusio
detection techniques to virtual machine based syste
thus keeping the intrusion detection system outath
from intruders. The results obtained from a propaty
implementation confirm the usefulness of this aapho

1. Introduction

A central problem in system security is the difftg in
getting reliable information from a compromisedtsys.

virtual machines host distinct
applications, and services.

This work presents a proposal to increase the
trustworthiness of computing systems using virtual-
machine technology. It proposes the application of
intrusion detection mechanisms in order to detent a
block attacks against services running on virtual
machines. The main benefit of this approach is daitor
the virtual machine from outside (from the real
underlying system), thus keeping the intrusion cl&ia
system safe, out of reach from intruders. Thisclartis
structured as follows: section 2 recalls virtualchiae
concepts used in this work; section 3 introduceseso
intrusion detection techniques used here; sectidatdils
the proposal, section 5 presents implementatioualtsgs
and section 6 discusses related work.

operating systems,

2. Virtual machines

A virtual machine (VM) is defined in [16] as an
efficient and isolated duplicate of a real machifhgpical
uses for virtual machine systems include the deretnt
and testing of new operating systems, simultangousl

Once an intrusion has occurred, the monitoring datarunning distinct operating systems on the samewene]
coming from such system is no more reliable, as theand server consolidation [17].

intruder can disable or modify the system monifgrin
tools in order to hide his/her presence.

Virtual machines can be used to improve the sgcurit
of a computing system against attacks to its sesv|6].
The virtual machine concept was defined in the $960
the IBM VM/370 environment, a virtual machine cesit
an exclusive environment for each user [11]. The afs
virtual machines is becoming interesting also indera
computing systems, because of their advantagesriimst
of cost and portability [5]. Examples of currentiged
virtual machines environments aMMware [18] and
UML — User-Mode LinuX7]. A frequent use of virtual
machine —based systems is the so-callserver
consolidation instead of using several physical

A virtual machine environment is created byigual
Machine Monitor (VMM), also called an “operating
system for operating systems” [13]. The monitoratee
one or more virtual machines on top of a singld rea
machine. Each VM provides facilities for an appiica
or a “guest system” that believes to be executingao
normal hardware environment.

There are two classical approaches to build Jirtua
machine systems. Itype | environments, the virtual
machine monitor is implemented between the hardware
and the guest systems, as shown in Figupeet;[2] and
VMware ESX Servefl8] are good examples of such
approach. On the other hand,type Il environments, the
monitor is implemented as a normal process of an

equipments, one can use a single (and more robustunderlying real operating system, called thast system

hardware equipment, in which several distinct, ated

(Figure 2). BothVMware Workstation[18] and User-

Mode Linux[7] fit in this category. This article considers 3. |ntrusion detection
the application of type Il virtual machine enviroants in

system security. An Intrusion Detection SysteniiDS) continuously

collects and analyzes data from a computing system,
user processes aiming to detect intrusive actions. With respectthe

origin of analyzed data, there are two main apgresdor
virtual machine N /rtual machine intrusion detection [1]:Network-based IDNIDS) —
/ based on watching the network traffic flowing thgbuhe
O O O systems to monitor, andost-based IDEHIDS) — based
O O Q O on watching local activity on a host, like processe
network connections, system calls, logs, etc. Tkenm
[guest kernel] [guest kernel] weakness of host-based intrusion detection iseittive
fragility: in order to collect system activity data HIDS
agent should be installed in the machine to monikais

[virtual machine monitor agent can be deactivated or tampered by a suctessfu
intruder, in order to mask his/her presence, tgrime
detection system useless.
hardware

Techniques used for analyzing collected data deior
to detect intrusions can be classified isignature
detection when collected data is compared to a base of
previously known attacks patterns (signatures), and
anomaly detectignwhen collected data are compared to
user processes previously collected data representing the norrtvisy
of the system. Normality deviations are then sigdas

O
O 4 threats.
O Several papers describe techniques for anomalgbas

O \ intrusion detection which uses the sequences dkmys
O calls generated by processes. In the proposal iesb

Figure 1. Type | virtual machine environment

virtual machine

[9, 12], the system calls issued by a processeuerded
in sequence, without their parameters. Thigecution
historyis then transformed in sequences of system chlls o

virtual machine

monitor
—— length k. The collection of all possible sequences of
lengthk defines the normal behavior of that process. Any
host kernel .
sequence ok system calls issued by that process and not

present in its normal behavior is considered anreahp,
or a threat.

To illustrate that technique, let us consider acpss
which issued the following system calls during its

. . execution:
Common Intel-like PC processors provide no adequat

support for virtualization. Consequently, virtualiion
overhead can be as high as 50% of total compuiting t
[5, 7, 18]. However, recent research significandgiuced
this cost, achieving overhead levels under 10%shasvn

in [14, 15, 19]. For instance, VMware [18] adopts a
technique of code rewriting that consists of dyreaity
rewriting parts of the code being loaded by thesgue
kernel, in order to adapt it to the virtual machine
environment and thus obtain a better performance. . .)
Recently, theXen project2] proposed and built a type | If the process issues a different sequence, bier(
virtual machine environment in which average costsOPen read), it should be placed under suspicion.
remain under 3% for virtualizing Linux, FreeBSD,dan Despite the set ofystem callso be system-dependent
Windows XP. These works open many perspectives onand the capture of the complete behavior of a s=¢e

the effective use of virtual machines in production be potentially laborious, this method presents good
environments. detection efficiency, as shown by their authors.

hardware

Figure 2. Type Il virtual machine environment

[open read mmap mmap open read mmap]

Adopting k=3, the following set of sequences is
obtained:

(openread mmap) (read mmap mmap)
(mmap mmap open) (mmap openread)

The papers [3, 4] present a secure operatingrayste The interaction of guest system processes with the
proposal, calledRemus which is based in classifying outside world is done only through the networkngsa
system call&nd controlling access to them by processes.softwarefirewall managed by the host system. Under the
The authors classify the UND§ystem callsin some guest system’s viewpoint, it is an exterrfaewall,
functionality groups (communication, file systemdan therefore inaccessible to intruders. The interactio
memory management are some examples) and fouslevelbetween the guest system and the intrusion deteatid
of threat. $stem callsclassified in threat level 1 can be response system is done through the virtual machine
used to get full access to the operating systewel |2 monitor. Two kinds of interactions are defined: a)
containssystem callshat can be used for denial of service monitoring in which guest system data is extracted from
attacks;system callsable to compromise processes are the guest system (through the virtual machine roonit
classed in threat level 3; finallgystem call$n level 4 are for external analysis (for example, the system scall
harmless for system security. This classificatiorbéing generated by guest processes), andelponse as the

used in this work. intrusion detection system can act on the guesesys
through the monitor, in order to respond to inuasi
4. Intrusion detection in virtual machines Beyond actions on the guest system, the resporssensy

can also interact with the software firewall usedthe
guest system, blocking ports and connections adedee

The architecture presented here keeps the deteantit
response system out of reach of intruders. Howeteer,
guarantee the system security it is important teeole
that interactions with the guest system always niest
done through the virtual machine monitor, the ‘ttu
machine monitor must be inaccessible to guest yste
processes, and all the network services must badem
by guest system processes. Network access to the
underlying host system should be avoided.

Our current implementation adopted an anomaly-
based approach for intrusion detection. It usesyis¢em
call sequence analysis algorithm described in @ec3i
The detection and response program implementetein t
Most system is responsible for recording and airajythe
information sent by the VM monitor.

The system has two operation modekeagning mode
and amonitoring mode When executing the learning

As shown, host-based IDS are vulnerable to local
attacks, because the intruder can disable or tathpen.
Thus, monitoring data coming from a compromised
system cannot be considered reliable [1]. The use o
virtual machines provides a solution to this prahldhe
proposal presented here allows building more rkdiab
host-based intrusion detection systems.

The proposal’'s main idea is to encapsulate theesyst
to monitor inside a virtual machine, which is mon&d
from outside. The intrusion detection and response
mechanisms are implemented outside the virtual mach
i.e. out of reach of intruders. The proposal comsida
type Il virtual machine monitor, so the detectionda
response system can be implemented as host syste
processes. Figure 3 illustrates the main comporadrite
proposed architecture.

frewall : : mode, all the processes executing in the guestrsyahd
virtual machine their respective users are recorded as authorizedgses
[]pc’” B F’°”[] < E process and users, thus generating an access-controlABLY
H The system also stores the sequences of systesnfaall
ﬂ syscalls specific processes. The learning mode allows, fbere
Hactions recording the “normal behavior” of the system, edling
guest kernel
:. essential data for intrusion detection.
| ESEEE : When in monitoring mode, the system receives data
IDS |<<—===| type !l monitor from the virtual machine monitor and compares ithe
21 - monitoring previously stored “normal” data. The current prppet
— ¥ analyzes sequences of system calls issued by guest
behavior host system processes, using a window of leng8. If a system call
data sequence issued by a given process is not fouritlein
stored data, an anomalous situation is signaledtlaaid
[host kernel] process is declareslispectAlso, users and processes not
found in the generated ACL are also declaespect
hardware Suspect processes are restricted in their acoedset

guest system, to prevent harmful actions. Thusthel
system calls which can be used to gain full acteske
guest operating system (classified as threat Igviel [3,
4] and shown in Table 1) are denied for suspeatguges.

Figure 3. Architecture proposal

Using this, the guest operating system can isotate
suspect process without causing severe impacs tathier
processes.

Table 1. System calls denied to suspect
processes

System Calls

open link unlink chmod
Ichown rename fchown
chown mknod mount
symlink fchmod
execve setgid setreuid
setregid setgroups
setfsuid setfsgid
setresuid setresgid
setuid

init_module

Group

file system and
devices

Process mgmt

Module mgmt

5. Implementation and results

A prototype was implemented in a Linux platform,
using the virtual User-Mode Linux (UML) monitor [7]
under kernel 2.4.20. Although UML does not have an
acceptable performance for production systemspitsce
code is open and publicly available, allowing us to
implement the prototype. The UML code was modified
order to allow extracting detailed data from theegu
system, like the system calls issued by guest psase
The communication between the UML monitor and the
monitoring process is done througlamed pipesThis
way, the host operating system synchronizes thefttat
between them.

Some time measurements were carried out on thqlwnttp'//

execution of basic user commands, in order to etalu
the performance impact of the proposal. The hardwar

used in the experiments was a standard PC syst&id (A
Athlon XP 1600 CPU, 512 MBytes RAM). The host
operating system w&use Linux Professional 8.2nd as
guest operating system we udédux Debian 2.2

The execution time of commandiad , Is andps
were measured in four situations: a) in the hostesy, b)
in the original guest system, c) in the guest syste
(learning mode), and d) in the guest system (madnio
mode). One should notice that such programssgséem
utilities, and that their execution life cycle consists of
mainly to execute system calls. User applicati@ygpmms
use system calls less intensively, so performaimgees
are expected to be better than those got from myste
utilities.

Table 2 presents the average execution timesaftin e
command (average execution time for 10 executions;
observed variances are under 5% in all measurenents
Execution times observed in the guest system are fa
superior to those observed in the host system. i§hdsie
to the high virtualization overhead presented bg th
current version of UML, as discussed in section. 2.1
Table 3 presents the overhead imposed by modiisiti
in the virtual machine monitor to interact with the
external learning, detection, and response system.

Some intrusion detection tests have been carngd o
using popularrootkits (described in table 4). These
rootkits modify commands of the original operating
system to prevent their detection (occulting theuiher’s
processes, files, network connections and so) austesl
typed information like logins and passwords (thitoug
modifications in commands likeelnet , sshd and
login). The modifications inserted by those rootkits
were detected in all the performed tests. fAdwkits used

this work are available in
www.antiserver.it/Backdoor-Rootkit/

Table 2. Average execution time (in seconds)

guest system
Command host system
original learning monitoring
ps —ef 0.020 0.110 0.126 0.166
find / >/dev/null 2>&1 0.016§ 0.360 0.541 0.960
Is -laR / >/dev/null 2>&1 0.058 0.659 0.974 1.361
Table 3. Time overhead
Command Original guest wrt. | Learning modewrt. | Monitoring mode wrt.
host system original guest system | original guest system
ps —ef 450.0% 14.5% 3.2%
find / >/dev/null 2>&1 2150.0% 50{3% 77(4%
Is -laR / >/dev/null 2>&1 1036}2% 47.8% 39.7%

Table 4. Rootkits used to test the prototype

Name Description

FK 0.4 Linux Kernel Modulerootkit and Trojan
SSH.
Hides files, directories, processes, network

Adore traffic. It installsa backdoorand a control
program.
Ambient's Rootkit for Linut includes
backdoor versions of commands

ARK 1.0 syslogd ,login ,sshd,ls ,du,ps,
pstree , killall , andnetstat

Knark v.2.4.3 Hides files, network traffic, processes and

redirects program execution.

Complete set of modifications s$h ,
ssh2m, sshd2 , andopenssh , to extract
and to register connection origin,
destination, host name, user name, and
password.

Universal login Trojan Used to record
login names and passwords.

hhp-trosniff

ulogin.c

The tests evidenced the effectiveness and
complementarity of both mechanisms implemented in
the system: the IDS mechanism detects and hinters t
execution of known but tampered binary files, whiie
access control list hinders the execution of unkmow
binary files.

6. Related work

The paper [6] cited some benefits the use of airtu
machines can bring to the security and compatjbdit
systems, as the capture and processing of log gessa
intrusion detection through the control of virtual
machine internal state) or system migration easines
However, the article does not demonstrate how these
situations should be structured and implemented, no
analyzes their impact on system performance.

The article [8] describes an experience of use of
virtual machines for the security of systems. The
proposal defines an intermediate layer between the
monitor and the host system, callBavirt This layer
captures the data sent through #yslogprocess(the
standard UNIX logginglaemoi of the virtual machine
and sends it to the host system for recording atef |
analysis. However, if the Vvirtual system s
compromised, the log messages can be manipulated by
the invader and consequently are no more reliable.

The work described in [10] is close to our apploac
It defines an architecture for intrusion detection
virtual machines called VMI-IDS Mirtual Machine
Introspection Intrusion Detection Sysfem Their
approach considers the use of a type | VMM, exaguti
directly on top of the hardware. The IDS executes i
privileged virtual machine and scans data extrafrtad

the other VMs, searching for intrusion evidenceslyO
the low-level internal state of each virtual maehis
analyzed, without taking in account the activitesried

out by its guest processes. Also, the system ragpon
ability is limited: in case of intrusion suspiciothe
suspect virtual machine is suspended for deeper
analysis. If the intrusion is confirmed, the vittua
machine should be restarted from a (previouslyestor
safe state.

That approach differs from our proposal in several
aspects, like collected data granularity, intrusion
detection methods, access control, and intrusion
response. Our proposal allows analyzing processes
separately, detecting anomalous activities andeming
intrusions from compromised processes. This way,
perturbations on valid guest processes are mininize
Moreover, there is no need to suspend the virtual
machine for intrusion confirmation. Another unique
feature in our proposal is the use of an authadmat
model for users and processes, automatically getera
during the learning phase.

7. Conclusion

This paper describes a proposal to increase the
security of computing systems using virtual mackine
The basis of the proposal is to monitor guest Eeee
actions through an intrusion detection system, ragte
to the virtual machine. The data used in intrusion
detection is obtained from the virtual machine rami
and analyzed by an IDS process in the underlyiad) re
machine. The detection system is inaccessiblertoali
machine processes and cannot be subverted by
intruders.

The main objective of the project, to hinder the
execution of suspect process in the virtual machim
consequently avoid the system compromise, was
reached with the current prototype. However,
complementary work must be done to diminish the
virtualization overhead and to improve the perfanoe
of the current intrusion detection and response
mechanism. We are also studying more flexible ways
interact with the guest kernel, allowing killing or
suspending specific suspect processes. Also, the
interactions between the IDS and the host system
firewall, to block suspect network traffic, need he
refined. Other questions to be studied include to
implement monitoring mechanisms based on other
relevant data, like the network traffic generatgdtloe
virtual machine, and the behavior of guest usertheim
processes. More sophisticated algorithms for imtrus
detection can be implemented based of such
information, helping to reduce the occurrence déefa
results (both positive and negative).

References

[1] Allen J., Christie A., Fithen W., McHugh J., Pick&l
Stoner E. (1999) “State of the Practice of Intrasio
Detection Technologies”, Technical Report CMU/SEI-
99-TR028. Carnegie Mellon University.

[2] Barham P., Dragovic B., Fraser K., Hand S., Halftis
Ho A., Neugebauer R., Pratt |., Warfield A. (2008gn
and the Art of Virtualization”, 19th ACM Symposiuam
Operating Systems Principles — SOSP 2003.

[3] Bernaschi, M., Grabrielli, E., Mancini, L. (2000)
“Operating System Enhancements to Prevent the Misus
of System Calls”, Proceedings of the ACM Conference
on Computer and Communications Security. Pgs 174-
183.

[4] Bernaschi, M., Grabriell, E., Mancini, L. (2002)
“REMUS: A Security-Enhanced Operating System”,
ACM Transactions on Information and System Security
Vol 5, 01, pgs 36-61.

[5] Blunden, B. (2002) “Virtual Machine Design and
Implementation in C/C++”, Wordware Publ. Plano,
Texas — USA.

[6] Chen, P., Noble, B. (2001) “When Virtual Is Betldran
Real”, Proceedings of the 2001 Workshop on Hot @®pi
in Operating Systems (HotOS).

[7] Dike, J. (2000) “A User-mode port of the Linux Kefh
Proceedings of the 4th Annual Linux Showcase &
Conference. Atlanta — USA.

[8] Dunlap, G., King, S., Cinar, S., Basrai, M., Chéh,
(2002) “ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay”, Proceedings of
the 2002 Symposium on Operating Systems Design and
Implementation (OSDI).

[9] Forrest, S., Hofmeyr, S., Somayaiji, A. (1996) “Ase of
self for Unix processes”, Proceedings IEEE Sympusiu
on Research in Security and Privacy.

[10] Garfinkel, T., Rosenblum, M. (2003) “A Virtual Maicte
Introspection Based Architecture for Intrusion
Detection”, Proceedings of the Network and Distiol
System Security Symposium (NDSS).

[11] Goldberg, R. (1973) “Architecture of Virtual Macleist’,
AFIPS National Computer Conference. New York — NY
— USA.

[12] Hofmeyr, S., Forrest, S., Somayaji, A. (1998) “Usion
Detection using Sequences of System Calls”, Jouwhal
Computer Security, 6:151-180.

[13] Kelem, N., Feiertag, R. (1991) “A Separation Moftel
Virtual Machine Monitors”, Research in Security and
Privacy. IEEE Computer Society Symposium, pages 78-
86.

[14] King, S., Chen, P. (2002) “Operating System Exi@msi
to Support Host Based Virtual Machines”, Technical
Report CSE-TR-465-02, University of Michigan.

[15] King, S., Dunlap, G., Chen, P. (2003) “Operatingt8;n
Support for Virtual Machines”, Proceedings of tHg02
USENIX Technical Conference.

[16] Popek, G., Goldberg, R. (1974) “Formal Requirements
for Virtualizable Third Generation Architectures”,
Communications of the ACM. Volume 17, number 7,
pages 412-421.

[17] Sugerman, J., Ganesh, V., Beng-Hong L. (2001).
Virtualizing 1/0 Devices on VMware Workstation's
Hosted Virtual Machine Monitor Proceedings of the
2001 USENIX Annual Technical Conference.

[18] VMware Inc. (1999) “VMware Technical White Paper”,
Palo Alto — CA - USA.

[19] Whitaker, A., Shaw, M. e Gribble, S. (2002) “Dendi
Scalable Isolation Kernel”, Proceedings of the 18GM
SIGOPS European Workshop, Saint-Emilion — France.

