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Inspired by the biological immune system, many researchers apply artificial immune principles to intrusion detection in
wireless sensor networks, such as negative selection algorithms, danger theory, and dendritic cell algorithms. When applying
the negative selection algorithm to wireless sensor networks, the characteristics of wireless sensor networks, such as frequent
changes in network topology and limited resources, are not considered too much, which makes the detection effect to need
improvement. In this paper, a negative selection algorithm based on spatial partition is proposed and applied to hierarchical
wireless sensor networks. The algorithm first analyzes the distribution of self-set in the real-valued space then divides the
real-valued space, and several subspaces are obtained. Selves are filled into different subspaces. We implement the negative
selection algorithm in the subspace. The randomly generated candidate detector only needs to be tolerated with selves in the
subspace where the detector is located, not all the selves. This operation reduces the time cost of distance calculation. In the
detection process of detectors, the antigen which is to be detected only needs to match the mature detectors in the subspace
where the antigen is located, rather than all the detectors. This operation speeds up the antigen detection process.
Theoretical analysis and experimental results show that the algorithm has better time efficiency and quality of detectors,
saves sensor node resources and reduces the energy consumption, and is an effective algorithm for wireless sensor network
intrusion detection.

1. Introduction

With the progress and development of wireless communica-
tion, the microcomputer electrical system, microelectronics,
signal processing, computer network and other technologies,
and wireless sensor networks (WSN) with intelligent charac-
teristics emerge [1]. At present, wireless sensor networks have
been widely used in aerospace, defense military, environmen-
tal monitoring, medical and health care, industrial facilities,
and other fields [2–5]. Due to the small size, monitoring dis-
tribution, resource-constrained sensor nodes, dynamically
changeable routing, and no gateways or switches monitoring
the information flow, how to effectively solve the problem of
the safety of sensor networks is the key of wireless sensor net-
work applications. Now, researches on sensor network secu-
rity mainly focus on the following aspects: (1) various attack

models and defense strategies, (2) encryption algorithms,
(3) key managements, and (4) network security architecture
and intrusion detection and response models [3]. Different
security defense and detection methods can be used in differ-
ent network layers, and they complement each other. This
paper mainly studies the intrusion detection system (IDS)
in wireless sensor networks.

The main challenges of wireless sensor network intrusion
detection are as follows.

(1) Attack form is varied, and the means and character-
istics of attacks in wireless sensor networks have a
bigger difference with traditional computer net-
works, such as most of attacks in the link layer
and network layer which are peculiar to wireless
sensor networks [2]. Traditional computer network
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resources such as networks, files, system logs, and
processes cannot be used in wireless sensor net-
works, and we need to consider the feature informa-
tion which can be applied to the wireless sensor
network intrusion detection

(2) There are many new attacks in wireless sensor
networks, which are different from traditional net-
works [3, 6]. How to improve the ability of the intru-
sion detection system to detect unknown attacks and
select appropriate algorithms is a problem to be
solved. Some algorithms are suitable for detecting
known attacks, while others are suitable for detecting
unknown attacks. Some algorithms are suitable for a
flat surface network structure, and some algorithms
are suitable for a hierarchical network structure. We
should select or design the appropriate algorithm
according to requirements of the network

(3) Wireless sensor networks have limited resources,
including storage space, computing power, band-
width, and energy [2–5]. Limited storage space
means that it is impossible to store large amounts of
system logs on sensor nodes. The intrusion detection
system based on knowledge is required to store large
amounts of defined intrusion patterns. The system
detects intrusion by means of pattern matching, and
invasion behavior characteristics need to be stored
in libraries. With the increase in invasion types, the
scale of feature library will also increase. Limited
computing power means that the node is not suitable
for running the intrusion detection algorithm which
requires a lot of computation. The current wireless
sensor network adopts the communication technol-
ogy of low speed and low power consumption, and
the node has the characteristic of having limited
energy. It is requested that intrusion detection sys-
tems cannot bring too much communication over-
head, which is less considered in the traditional
computer network

Inspired by a negative selection algorithm in the bio-
logical immune system, this paper proposes a wireless sen-
sor network intrusion detection model based on the spatial
division negative selection algorithm (SD-RNSA). The
main contributions of this model are as follows. (1) The
algorithm analyzes the distribution of self-set in the real-
valued space and divides the real-valued space. (2) The
negative selection algorithm is implemented in the sub-
space, which reduces the tolerance range of the candidate
detector and saves resources of sensor nodes. (3) In the
detection process of detectors, the antigen to be detected
only needs to match with mature detectors in the subspace
where the antigen is located, thus accelerating the detection
process. In this paper, the performance of the model is
analyzed in theory; experimental results show that the
model has better time efficiency and detector quality, saves
sensor node resources, reduces the energy consumption,
and is an effective algorithm for wireless sensor network
intrusion detection.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the current research of intrusion detection
in wireless sensor networks. Section 3 discusses preliminaries
and shortcomings of NSA. Section 4 describes the algorithm,
including the algorithm flow, space division approach, detec-
tor coverage of non-self-space, and complexity analysis.
Experiments are performed in Section 5, including Iris data
set and applications in WSN. In Section 6, some conclusions
are added.

2. Related Work

In wireless sensor networks, there are several methods
which are in the following for the research of intrusion
detection [2, 3].

2.1. Research on Specification-Based Detection Technology.
The technology first defines several specifications and then
monitors activities in the network according to those specifi-
cations. Any deviation from the normal behavior is abnor-
mal. These normal behaviors are defined manually, not by
machine learning or training data. Therefore, the definition
and update of specifications will be a time-consuming task.
Bhuse et al. [7] proposed an intrusion detection system for
detecting witch attacks. Two techniques are used in the test-
ing process. One is mutual protection. When the sensor node
receives the packet, the source ID of the packet is checked.
The second is SRP, which verifies the number of packets
received and sent by a node. Simulation results show that
the mutual protection technology is expensive and cannot
be applied to the case where the communication range of
attackers is small. da Silva et al. [8] proposed a distributed
IDS based on predefined rules. The system is divided into
three stages: data acquisition, rule application, and intrusion
detection. Some monitoring nodes are set up in the system.
They are in hybrid mode, collecting packets, and performing
intrusion detection tasks by detecting the characteristics of
known attacks. The distribution of monitoring nodes and
the selection of rules affect the performance of the algorithm,
and resource consumption of monitoring nodes is large.
Singh et al. [9] proposed a new method for wireless sensor
network intrusion detection based on clusters. In the pro-
posed method, an effective MAC address-based intruder
tracking system is developed for early intrusion detection
and prevention. Jadidoleslamy [10] proposed a complete
intrusion detection architecture with combinatorial hierar-
chy. The architecture designs the intrusion detection system
based on sensors and deploys it on sensor nodes, designs
the intrusion detection system based on cluster heads and
deploys it on cluster heads, and designs the intrusion detec-
tion system of the network level and deploys it on a central
server. All three types of intrusion detection systems use a
specification-based approach to distinguish exceptions.

2.2. Research on Misuse Detection Technology. The misuse
detection system detects known attacks based on the intru-
sion mode. According to the propagation characteristics of
wireless communication and the assumption that nodes are
densely distributed, gatekeeper technology can be used in
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wireless sensor networks. Roman et al. designed a framework
for applying IDS to wireless sensor networks [11]. This archi-
tecture consists of local and global agents. The local agent
exists on each node and checks the local data flow. The global
agent exists on some nodes of the network and checks the
data flow of the neighbor nodes. In hierarchical network
topology, cluster heads can be global agents. In planar topol-
ogies, the architecture uses a technique called spontaneous
watchdog to select global agents to ensure that the minimum
number of global agents cover the entire network. There are
two drawbacks to this approach. One is that, due to the ran-
domness of global proxy selection, it cannot guarantee that
all nodes are monitored. The second is that packet collisions
are not considered.

2.3. Research on Abnormal Detection Technology. Abnormal
detection determines whether an intrusion occurs by learning
the normal behavior of sensor nodes. Abnormal detection is
easier to be used than misuse detection and specification-
based detection. Therefore, most researchers use this method
as the main means of intrusion detection, and the techniques
are in the following.

(1) Methods Based on Statistical Models. Onat and Miri [12]
proposed an intrusion detection system for resource deple-
tion attacks. Each node monitors the average receiving rate
and average arrival rate of packets from neighboring nodes
to build a statistical model. Only the nearest n packets of
neighbor nodes are used for statistical analysis. When the
next packet conforms to the statistical model of this neighbor
node, it is considered as normal. The statistical model is
relatively simple; cannot detect selecting forward attack,
worm hole attack, etc.; and does not analyze computational
cost and resource consumption.

(2) Methods Based on Clustering Algorithm. Loo et al. [13]
proposed an intrusion detection model for routing attacks.
The model uses a fixed-width clustering algorithm to model
normal behaviors. In the training stage, the clustering algo-
rithm is used to generate a set of several clusters in the feature
space. When the number of samples in the cluster is less than
a specific threshold, it is considered as an exception. During
the detection phase, each sample is compared to the cluster
in the collection to determine if it is abnormal. The intrusion
detection model is deployed on each sensor node, which con-
sumes a lot of computing resources. The model proposed in
literature [14] is similar to [13]. The difference lies in the
input of the clustering algorithm. The model also has the
problem of resource consumption. When the sensor network
size is large, it is not feasible to collect and train data on each
sensor node.

(3) Isolation Table. Chen et al. [15] proposed an intrusion
detection model based on isolation table for three-layer
WSN (base station-main cluster head-secondary cluster
head). In this model, the isolation table records the excep-
tion information and is used by the detection agent to
segregate suspect nodes. All cluster heads can generate iso-
lation tables. The secondary cluster head is responsible for

monitoring the main cluster head and sensor nodes, and
the main cluster head is responsible for monitoring the
secondary cluster head. The isolation table is eventually
passed to the base station, which can distribute the isola-
tion table to any node. Simulation results show that when
there are more sensor nodes, the energy consumption of
the model is also larger. In addition, the model does not
consider the case of node failure or node capture. In liter-
ature [16, 17], the authors expanded their work and pro-
posed a lightweight intrusion detection model based on
ontology, but still failed to solve the problem of excessive
energy consumption.

(4) Methods Based on Machine-Learning. Misra et al. [18]
used the learning automata (LA) method for intrusion detec-
tion. This method is used to sample data packets in the net-
work and determine whether the nodes are malicious based
on whether the feedback from the environment is favorable
or not. In literature [19], Misra et al. extended their approach
and proposed a simple low-complexity energy-sensing
protocol. This protocol combines the concept of random
learning automata and sampling mechanism to implement
an energy-sensing intrusion detection system. Rajasegarar
et al. [20] used a class support vector machine (SVM) to
detect network exceptions. This paper proposes two methods
based on support vector machines, namely, centered hyper-
ellipsoidal support vector machine (CESVM) and quarter-
sphere support vector machine (QSSVM). CESVM has
advantages in parameter selection flexibility and computa-
tional complexity. However, in distributed WSNs, it faces
certain limitations because it adopts a centralized approach.
QSSVM works well in a distributed environment. Gunase-
karan and Periakaruppan [21] proposed an intrusion detec-
tion model based on genetic algorithms to solve sleep denial
attacks in wireless sensor networks. The model implements
a modified RSA (MRSA) algorithm in a base station to gener-
ate and distribute key pairs between sensor nodes. Before sen-
ding/receiving packets, sensor nodes determine the optimal
routing through ad hoc on-demand distance vector routing
(AODV) and then use fitness calculation to ensure the reli-
ability of relay nodes. Cross and mutation operations detect
and analyze the methods which are used by attackers. When
determining the attacker nodes, base station broadcasts
blocked messages to the network. Shi et al. [22] proposed
a state transition model based on the continuous time Mar-
kov chain (CTMC), studied the sensor’s behavior under
internal attacks, and positioned attacks. The model linked
the detection model for internal attack with the epidemio-
logical model and considered the current state, viability,
availability, and energy consumption of WSN to balance
network features and security. The above four factors need
to be quantified.

(5) Approaches Based on Game Theory. Reddy [23] proposed
the zero-sum game method to detect malicious nodes in the
positive data path. In this paper, the game model of the
energy probability required for packet transmission is
studied, and the model of using the confirmation probability
of the message source to detect malicious nodes is given.
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Cheng [24] proposed a differential game model between an
intrusion detection system and an attacker for wireless sensor
networks. The model calculates the Nash equilibrium and
implements a solution that balances security mechanism
overhead and risk, providing the best defense. However,
the application of the model in a wireless sensor network,
the energy consumption, and the communication cost are
not given in the simulation experiments. When the scale
of the sensor network increases, the performance of the
model will decrease.

(6) Approaches Based on Artificial Immune. Drozda et al.
proposed an intrusion detection model based on artificial
immunity [25]. The model simulates the negative selection
algorithm (NSA) and detects the intrusion by deploying
detectors on sensor nodes. Sensor node resources are lim-
ited, and it is impossible to store a large number of detec-
tors. At the same time, this model is in the hybrid mode,
which can provide global knowledge, but this mode pre-
vents the nodes from entering the sleep state and consumes
a lot of energy. Liu and Yu proposed a wireless sensor net-
work intrusion detection system based on the immune
principle [26]. The system also deploys the intrusion detec-
tion module on each sensor node, simulating the principle
of negation selection and cloning selection in the biological
immune system. Experiments show that the system has
high detection rate, but also a high false alarm rate, which
reaches 92.3% in the jamming attacks. Although the false
alarm rate can be reduced through artificial collaborative
stimulation, it is unattended and manual collaborative stim-
ulation is not convenient most of the time for wireless sen-
sor networks. Fu et al. [27] proposed a wireless sensor
network intrusion detection model based on danger theory.
The model adopted the distributed mechanism. It is not
necessary to run a complete intrusion detection system on
each node. The general node just perceives danger, and
the center node maintains an antibody set and receptor
library for intrusion detection. The model computes statis-
tical specific deviation on the characteristics of the data link
layer and network layer, considers them as risk perception
information for local nodes, and does not think of the link
between the heterogeneous network and multiple features,
making the risk information not comprehensive enough.
Salmon et al. [28] proposed a wireless sensor network
intrusion detection model inspired by danger theory. The
model introduces danger theory and a customized dendritic
cell (DC) algorithm. The model includes the following
modules: monitoring module, intrusion detection manage-
ment module, environment module, decision module,
parameter library module, rule library module, and opera-
tion library module. These modules are classified as four
subsystems: monitoring environment subsystem (environ-
ment module), intrusion detection subsystem (monitoring
module, intrusion detection system management module,
and decision module), storage subsystem (parameter data-
base, rule database), and response subsystem (operation
database). Experiments show that the model has good
detection rate and low energy consumption. However, this
model uses a time window to calculate the MCAV index

of antigens on a regular basis. The signal setting and
parameter setting are complex, and the real-time perfor-
mance of intrusion detection needs to be improved. Xiao
and Zhang [29] proposed a real-time distributed intrusion
detection model based on the differentiation mechanism
of DC cells. The model abstracts the information fusion
process of DC cells, defines the meaning and function of
external signals applied to wireless sensor networks, and
defines the mathematical evolution model of DC cells.
Finally, the performance analysis is carried out, including
scalability analysis, robustness analysis, and complexity
analysis. Similarly, the signal and parameter settings of this
model are complex. Guo et al. [30] proposed a negative
selection algorithm based on the differential evolution con-
straint multiobjective optimization problem and applied
this algorithm to the intrusion detection system of wireless
sensor networks. The algorithm first combines constraint
processing and multiobjective optimization techniques to
generate detector sets with maximum non-self-space cover-
age and minimize overlaps between detectors. Then, black
holes in the non-self-space are reduced by differential evolu-
tion. In the experiments, the effectiveness of the algorithm is
verified through network simulation. The communication
cost, computational cost, and energy consumption of the
system are not analyzed.

Through the analysis of the existing intrusion detection
schemes of wireless sensor networks, it can be seen that
the research on the intrusion detection technology of
wireless sensor networks is not mature. A lot of detection
systems are based on the traditional network transplanta-
tion of intrusion detection technologies, which consider
the characteristics of wireless sensor networks not enough
and to need to make improvements according to the
characteristics of wireless sensor networks. In addition,
although the simulation experiments were carried out, the
intrusion detection system was not applied to the real
wireless sensor networks. Analysis and simulation experi-
ments are important, but the practical application is very
important to verify the availability of the intrusion detec-
tion system.

3. Details of Negative Selection Algorithm

This section introduces the definitions of the negative selec-
tion algorithm and shortcomings of the negative selection
algorithm.

3.1. Definitions of NSA. The negative selection algorithm first
proposed by American scholar Forrest [31] is the most
important anomaly detection algorithm in the field of artifi-
cial immunity. The idea of the negative selection algorithm
is derived from the negative selection behavior of T lympho-
cytes in thymus during immune tolerance. An immune
explanation for this behavior is that in the thymus tolerance
issue, T lymphocytes which can identify self-antigen will be
of apoptosis or inactivation, and T lymphocytes which can-
not identify self-antigen after a period of tolerance will be
mature and exercise their immune function in peripheral
lymphoid tissue. The development of the negative selection
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algorithm has greatly promoted the research and application
of the artificial immune system in the field of abnormal
detection. Specifically, the idea of the negative selection
algorithm is often used in fault detection, virus detection,
network intrusion detection, machine learning, and other
directions [32]. The following is a brief introduction to
the concepts of the negative selection algorithm.

The state of the system can be defined as the eigenvector
x = x1, x2,… , xn , and n is the system dimension. Conve-
nient for processing, each feature of the vector is normalized
to the real-valued interval [0, 1], and the state space of the

entire system can be expressed as Ω = 0, 1 n. The system
state space can be further divided into self-space Self and
non-self-space Nonself. In abnormal detection, self-space Self
is composed of the states when the system is normal, and
non-self-space Nonself is composed of the states when the
system is abnormal.

In the artificial immune system, antigens represent the
whole states of the system, the self-set represents the system’s
own space, and the non-self-set represents the system’s non-
self-space, as defined below.

Definition 1. Antigen. Ag = ag ag = <x, rs> = <x1, x2,… ,
xn, rs>,xi ∈ 0, 1 , 1 ≤ i ≤ n, rs ∈ 0, 1 is the entire samples of
the problem space. ag is an antigen in the set, including
two parts, x and rs. x represents the position of sample ag
in the real-valued space, and rs is the radius of ag, represent-
ing the changing threshold of ag. Then, ag is a hypersphere
in space.

Definition 2. Self-set. Self ⊂ Ag represents all the normal sam-
ples in the antigen set, Self = ag ∣ ag ⊂ Ag ∩ ag is normal .

Definition 3. Non-self-set. Nonself ⊂ Ag represents all the
abnormal samples in the antigen set, Nonself = ag ∣ ag ⊂
Ag ∩ ag is abnormal . Self and non-self have different
meanings in different fields. For network intrusion detec-
tion, non-self represents network abnormality, and self
represents normal network activity. For virus detection,
non-self represents virus signature code, and self represents
legal code.

Self ∩Nonself =∅, Self ∪Nonself = Ag 1

Definition 4. Training set. Train ⊂ Self is a subset of selves
and is priori knowledge of detection.

Definition 5. Detector set. D = d ∣ d = <y, rd> = <y1, y2,… ,

yn, rd>,y j ∈ 0, 1 , 1 ≤ j ≤ n, rd ∈ 0, 1 . d is a detector in the

set. The detector has the same structure as the antigen and
consists of two parts, y and rd . y represents the position of
detector d, and rd is the radius of detector d.

Definition 6. Match rules. f ag, d denotes the affinity
between antigen ag and detector d, i.e., the matching degree
between data structures. In real-valued space, the affinity can

be measured by calculating the Euclidean distance between
two eigenvectors in the state space.

f ag, d = 〠
n

i=1

ag xi − d yi
2 2

During the generation of detectors, if f ag, d ≤ rs + rd ,
detector d causes immune self-reaction and fails to become
a mature detector. Table 1 describes the process of the nega-
tive selection algorithm.

In the detection process of detectors, if f ag, d ≤ rd ,
antigen ag is denoted as non-self by detector d. When the
detection system is working, TP is set as the correct affirma-
tion, indicating the number of non-selves correctly identified
by detectors. TN is the correct negation, indicating the num-
ber of selves correctly identified by detectors. Two kinds of
errors can occur. False-positive FP occurs when a sample that
was originally self is identified as a non-self. False negation
FN occurs when an original non-self-sample is identified as
a self. Table 2 describes the detection process.

Definition 7.Detection rate. DR is the proportion of the num-
ber of non-self-samples correctly identified by detectors to all
the non-self-samples, as shown below.

DR =
TP

TP + FN
3

Definition 8. False alarm rate. FAR is the proportion of the
number of self-samples wrongly identified by detectors to
all the self-samples, as shown below.

FAR =
FP

FP + TN
4

3.2. Shortcomings about NSA. The negative selection
algorithm proposed by Forrest et al. [31] is based on binary
representation. However, binary representation is insuffi-
cient in dealing with numerical data and multidimensional
space problems. Gonzalez and Dasgupta et al. [33] proposed
the real-valued negation selection algorithm (RNSA) that the
detector position can evolve. Ji [34] and Ji and Dasgupta [35]
proposed a real-valued negative selection algorithm with
variable detector radius (V-Detector). This algorithm
dynamically determines the radius of a mature detector by
calculating the closest distance between the center of the can-
didate detector and all selves. Figure 1 shows the comparison
between RNSA and V-Detector. Self-set is the first 30 ele-
ments in the Iris data set which are classified as “setosa”
[36]. In order to display conveniently in 2D space, feature
“sepalL” and “sepalW” of elements were taken as attributes
of selves. In the figure, circles filled with blue are the self-ele-
ments, circles filled with cyan are the mature detectors, and
the unfilled part is the vulnerability area.

It can be seen that compared to RNSA, in V-Detector,
detectors with a large radius cover most of the non-self-
space, and detectors with a small radius cover “holes,” which
reduces the number of detectors and the number of “holes.”
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But there are still some problems to be solved. The first is the
vulnerability problem, that is, there is always some non-self-
space that is not covered by detectors. The characteristics of
intrusion behavior always develop towards the direction of
vulnerability, which affects the detection rate. Moreover, it
is very difficult to effectively cover the vulnerability in the
boundary area between self and non-self, so it is difficult to
determine whether it belongs to self or not. Secondly, too
many candidate detectors are required to pass the tolerance
to become mature. Assuming that Ns is the size of the self-

training set, P′ is the matching probability between any anti-
gen and antibody, and Pf is the failure rate (i.e., the probabil-
ity that any non-self cannot be matched by antibodies). The

number of candidate detectors Nc = − ln Pf / P′ 1 − P′
Ns ,

and the time complexity of the algorithm is O Nc∙Ns [31].
It can be seen that with the increase of the self-training
set, the number of candidate detectors increases exponen-
tially, so the storage cost and calculation cost of the algo-
rithm are very high. The third point is that there is a large
amount of redundant coverage between mature detectors,
which leads to a large time cost of detection. Because of
these problems, it is not realistic to apply the negative selec-
tion algorithm directly to the wireless sensor networks with
limited resources.

In order to solve the above problems, researchers also
proposed many improved algorithms. Literature [37] pro-
posed a negative selection algorithm based on hierarchical
clustering of self-set. By pretreatment of self-set, the coverage
of detectors to non-self-space increased. In literature [38],

detectors are divided into self-detector and non-self-detector,
covering self-space and non-self-space, respectively. Self-
detector is used to replace self-elements, thus reducing calcu-
lation costs. Literature [39] proposed a negative selection
algorithm based on the genetic principle to solve the problem
of spam detection. Literature [40] combines the particle
swarm optimization strategy with the negative selection algo-
rithm. Literature [41] introduced the wavelet transform into
the negative selection algorithm and made the diagnosis of
voltage interference in the power distribution system.

Through the analysis of the improved algorithms, they
adopt the following methods. They randomly generate candi-
date detectors in non-self-space, then determine whether
candidate detectors are effective, and finally do optimization
to these detectors, which improve the non-self-space cover-
age. Although the quality of mature detectors is excellent,
which can reduce the testing time in the test phase, afore-
mentioned problems still exist in the detector generation
phase, such as loopholes and too many candidate detectors.
This makes the storage cost and time cost of these algorithms
large, and it is overburden for wireless sensor nodes with lim-
ited resources.

4. The Algorithm Theory

This section describes the algorithm in detail, including
the algorithm flow, space division approach, detector cov-
erage computation approach of non-self-space, and com-
plexity analysis.

4.1. Flow of the Algorithm. In the literature [25, 26], they
directly applied the negative selection algorithm to intrusion
detection in wireless sensor networks. Although certain
achievements have been obtained, they did not consider draw-
backs of the negative selection algorithm and communication
cost, computation cost, and energy consumption in wireless
sensor networks. Intrusion detection systems in wireless sen-
sor networks should have the following characteristics [2, 5].

(1) After the intrusion detection system is introduced,
the overall performance of the network should not
be decreased

(2) After the introduction of the intrusion detection sys-
tem, additional weakness should not be introduced

(3) The intrusion detection system should be transparent
and sustainable for network

(4) The intrusion detection system should have a higher
detection rate and lower false alarm rate

(5) The intrusion detection system should be open,
cooperative, easy to deploy, and easy to integrate

The infrastructure of the wireless sensor network is
divided into flat structure and hierarchical structure. In this
paper, the intrusion detection system is applied to the hierar-
chical model of wireless sensor networks. That is, the net-
work is divided into clusters; each cluster contains several
member nodes, one of which is selected as the cluster head.

Table 1: The process of the negative selection algorithm.

Input: training set Train, The default number of required detectors
maxNum
Output: detector set D

Step 1. Initialize the self-training set Train
Step 2. A candidate detector dnew is generated at random, and

the Euclidean distance between dnew and all selves in the training
set Train is calculated. If f ag, dnew ≤ rs + rd exists, execute step 2.
Otherwise, perform step 3.

Step 3. Add dnew to the detector set.
Step 4. If the detector set size Nd >maxNum, return D and the

procedure exit. Otherwise, skip to step 2.

Table 2: The detection procedure.

Input: detector set D, antigen set to be detected Ag′

Output: TP, FN, FP, TN

Step 1. TP = 0, FN = 0, FP = 0, TN = 0.
Step 2. An antigen ag is sequentially extracted from the antigen

set to be detected Ag′.
Step 3. Calculate the Euclidean distance between ag and all

detectors in detector setD. When f ag, d ≤ rd exists, if the antigen
ag is non-self, TP++; if ag is self, FP++. When f ag, d ≤ rd does
not exist, if the antigen ag is self, TN++; if the antigen is non-self,
FN++.

Step 4. If all the antigens in Ag′ have been detected, the program
ends, output TP, FN, FP, TN. Otherwise, go to step 2.
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The member node only communicates with the cluster head
of its cluster, and only the cluster head needs to communicate
with the base station. This structure disperses the energy
consumption on all the network nodes and reduces the com-
munication burden. The intrusion detection system can be
deployed on the cluster heads to reduce the energy consump-
tion of general nodes and extend the network life by taking
advantage of the hierarchical structure. Therefore, the local
system of sensor nodes is divided into three layers: applica-
tion layer, immune layer, and wireless sensor network layer,
where the node selected as cluster head starts the immune
layer, while the member node does not start the immune
layer, as shown in Figure 2. The immune layer of the cluster
head is responsible for monitoring the flow changes of mem-
ber nodes in the cluster and neighboring cluster heads to
intrusion detection.

In the immune layer, intrusion detection is realized by the
improved negative selection algorithm (SD-RNSA). The algo-
rithm first analyzes the distribution of self-set in the real-
valued space, then divides the real-valued space and obtains
several subspaces. The selves are then filled into different
subspaces. We implement the negative selection algorithm
in the subspaces, respectively. The randomly generated candi-
date detector only needs to be tolerated with selves in the sub-
space where the detector is located, not all the selves. This
operation reduces the time cost of distance calculation. A
mature detector is got when a candidate detector passes
through tolerance. In the detection process of detectors, the
antigen to be detected only needs to match the mature detec-
tors in the subspace where the antigen is located, rather than
all the detectors. This operation speeds up the antigen detec-
tion process. According to the main ideas of the algorithm,
the detector generation process is shown in Figure 3, and
the detector detection process is shown in Figure 4.

In the proposed algorithm, the key step is to divide the
real-valued space. Only the real-valued space is divided

correctly, the cost of distance calculation be saved in the
detector generation stage and the detection stage, the
resource consumption can be reduced, and the algorithm
efficiency can be improved. In Section 3.2, how to partition
a real-valued space in detail is introduced. The proposed
algorithm uses variable-radius detectors and takes the cover-
age of detectors to non-self-space as the end condition of the
detector generation process. The detailed steps of the detec-
tor generation process are shown in Table 3.

The Iris data set is one of the classic machine learning
data sets released by the university of California Irvine and
widely used in pattern recognition, data mining, exception
detection, etc. [36] We choose the type “setosa” as self-set,
take feature “sepalL” and “sepalW” of elements as attributes
of selves, and select the top 30 elements of “setosa” as the
training set. In order to display conveniently in 2D space,
we take two features of records, which does not affect the
comparisons. Figure 5 shows comparisons between SD-
RNSA and the classic negative selection algorithms, RNSA
and V-Detector. In the figures, circles filled with blue are
the self-elements, circles filled with cyan are the mature
detectors, and the unfilled part is the vulnerability area.
RNSA generates fixed radius detectors. Figure 5(a) is a sche-
matic diagram of three detectors generated by the three algo-
rithms, and Figure 5(b) is a schematic diagram of detectors
generated by the three algorithms for achieving 90% of the
expected coverage. V-detector generates a variable radius
detector by calculating the closest distance between the cen-
ter of the candidate detector and the selves. SD-RNSA gener-
ates subspaces according to certain rules. Then, the randomly
generated candidate detector is only tolerated with the selves
in the subspace where the detector is located. The detectors
generated by RNSA and V-Detector need to be resistant to
all the selves. With the increase in coverage, the redundant
coverage between mature detectors and the number of detec-
tors will be excessive. In SD-RNSA, the introduction of
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Figure 1: Comparisons of RNSA and V-Detector in generating detectors.
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spatial division reduces unnecessary self-tolerance and the
number of detectors.

4.2. Space Division. We divide the n-dimension [0, 1] real-
valued space. First, determine whether there are selves in
space. If there is any self in this space, the space is divided
into two subspaces according to the first dimension. Then,
we determine whether there are selves in the subspace. If
there is any self in the subspace, the subspace continues
to be divided into two subspaces according to the second
dimension. Then, we determine whether the newly gener-
ated subspace has any self. If there is still self in the sub-
space, the space is further divided. If n dimensions are
divided, we continue to divide the space by the first
dimension. This process is an iterative process until the
diameter of the subspace is minimized or the subspace
contains no self. At this point, the spatial partitioning
operation is completed.

In the process of space division, selves are filled into the cor-
responding subspaces. Selves in the subspace sub are divided
into two categories, containing self and half-contained self.

Definition 9. Subspace set SubSpaces. All the subspaces con-

sist of the entire space. SubSpaces = sub ∣ sub = < dli, d
h
i ,

Half − contained Selves, Contained Selves, detectors>,1 ≤ i ≤

n, dli, d
h
i ∈ 0, 1 , where dli is the lower boundary of the ith

dimension in the subspace sub, and dhi is the upper boundary

of the ith dimension in the subspace sub.

Definition 10. Selves completely contained in the subspace

[dli, d
h
i ] Contained Selves represent the total selves whose

central point x is within the scope of the subspace. Cont

ained Selves = ag ∣ dli ≤ ag xi ≤ dhi , 1 ≤ i ≤ n .

Definition 11. Selves not completely contained in the sub-

space dli, d
h
i Half-contained Selves represent the total selves

Sink node

Cluster member

Fused
information

Cluster memberCluster head

Cluster head

Fused
information

Cluster member

Cluster head

Cluster member

Cluster member

Cluster member

Application layer

Immune layer –not activated

Wireless sensor network

Application layer

Immune layer–intrusion
detection system

Wireless sensor network

Figure 2: Schematic diagram of wireless sensor networks.
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Partition the real valued
space

�e candidate detector
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Calculate the subspace
where the candidate
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Add the candidate
detector to the detector set 
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Finish and move to
the test procedure 

Yes

Yes

No

No

Figure 3: The generation process of detectors.
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whose central point x is not within the scope of the subspace,

but the changing threshold of x is within the scope. Half −

contained Selves = ag ∣ ┐ dli ≤ ag xi ≤ dhi ⋀∃i ∣ag xi − dli∣<

rs⋁∣ag xi − dhi ∣<rs , 1 ≤ i ≤ n .

We also take Iris data set as an example. Figure 6 shows
the schematic diagram of complete contained selves and
half-contained selves in the subspace, where the blue-filled
circles are selves, the green-filled rectangle is a subspace,
red-filled circles are contained selves, and cyan-filled circles
are half-contained selves.

Figure 7 is a schematic diagram of the space division pro-
cess. For the first time, the first dimension of space is divided,
and Figure 7(b) is obtained. If there is self in the subspace and
the space diameter is greater than the qualified value, the sec-
ond dimension of space is divided, and Figure 7(c) is obtained.
After all dimensions have been divided, continue to divide
the space from the first dimension. Finally, Figure 7(d) is
obtained. The resulting subspaces do not contain any self
or the diameter satisfies the limit.

Tables 4 and5 show thedetailed stepsof spatial partitioning.
In the process of detector generation, a candidate detector

only needs to be tolerated with the contained selves and half-
contained selves in the subspace where the candidate detector
locates and does not need to be tolerated with selves from
other subspaces.When calculating the radius of the candidate
detector, there are two conditions. Figure 8 shows the radius
of the candidate detector, where blue-filled circles are selves,
green-filled rectangles are subspaces, red-filled circles are
completely contained selves, cyan-filled circles are half-
contained selves, and black-filled circles are detectors. If sub
contains selves, as shown inFigure 8(a), the detector’s position
is [0.15, 0.22], belonging to the [0, 0.25, 0.25, 0.5] subspace. At
this point, only the nearest distance between the center of the
candidate detector and the contained selves and half-
contained selves in the subspace is calculated, without con-
sidering selves in other subspaces. If sub does not contain
any self, as shown in Figure 8(b), the position of the detector
is [0.3, 0.2], belonging to the [0.25, 0.5, 0, 0.5] subspace. At
this point, the farthest distance between the center of the can-
didate detector and the vertex of the subspace is calculated,
i.e., the distance from [0.5, 0.5]. The formula is as follows.

Every subspace that the algorithm generates is com-
pleted. The contained selves and half-contained selves in
the subspace represent the self-space, and the area not cov-
ered by selves is non-self-space. Mature detectors in the
subspace cover most of the non-self-regions within the
subspace and may cover areas outside the subspace. But
the regions outside the subspace are outside our scope for
this time and may belong to another subspace. When con-
sidering another subspace, only mature detectors in the

other subspace will be considered, and detectors in this
subspace will not be considered. So, we do not care if
detectors in the subspace cover the area outside the sub-
space. In intrusion detection, we first determine the sub-
space where the antigen to be detected locates. For the
antigen to be detected, the subspace where it is located is
the problem space, including the self-set and the detector
set. Conditions of other subspaces are independent of the
state of this antigen.

Initialize

An antigen was sequentially
taken from the antigen set to

be examined

�e antigen was
identi�ed by a

detector?

Determine the subspace of
the antigen 

Calculate the distance
between the antigen and all

detectors in the subspace

It was determined that the
antigen was non-self 

Satisfy the stop
condition?

Finish

It was determined that the
antigen was self

Yes No

Yes

No

Figure 4: The detection process of detectors.

rd =

min f ag, d − rs, ag ∈Half − contained Selves∨ ag ∈ Contained Selves

subspace contains selves,

max f ag, d , ag ∈ ag ∣ ag xi = dli ∨ ag xi = dhi , 1 ≤ i ≤ n

subspace contains no selves

5

9Journal of Sensors



Table 3: The detector generation process.

SD-RNSA(Train, cexp, D)

Input: training set Train, expected coverage cexp
Output: detector set D
N0: sampling times in non-self-space, N0 >max 5/cexp, 5/ 1 − cexp

i: number of non-self-samples
x: number of non-self-samples covered by detectors

CD: candidate detector set CD = d ∣ d = <y1, y2,… , yn, rd>,y j ∈ 0, 1 , 1 ≤ j ≤ n, rd ∈ 0, 1

SubSpaces: subspace set

Step 1. Initialize the self-training set, i = 0, x = 0, CD =∅, N0 = ceiling max 5/cexp, 5/ 1 − cexp .

Step 2. Invoke GenerateSpaces(Train, SubSpaces) to divide the space, and several subspaces SubSpaces are got.
Step 3. A candidate detector dnew is randomly generated, and find the subspace sub where dnew is located.
Step 4. The Euclidean distance between dnew and both contained-selves and half-contained-selves in the subspace sub is calculated. If dnew

can be identified by a self f ag, dnew − rs ≤ 0, discard it and perform step 3. Otherwise, increase i.
Step 5. The Euclidean distance between dnew and detectors in the subspace sub is calculated. If dnew is not be identified by any detector

f d, dnew − rd > 0, add it to the candidate detector set CD. Otherwise, increase x and determine whether the algorithm reaches the expected

coverage cexp. If it is, return D and the procedure ends.

Step 6. Determine whether i reaches the sampling timesN0. if i =N0, add the detector in the candidate detector set CD to the collection D,
and reset i, x, and CD. Otherwise, perform step 3.
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Figure 5: Comparisons between SD-RNSA, RNSA, and V-Detector.
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4.3. Detector Coverage of Non-Self-Space. The algorithm
takes the coverage of detectors to non-self-space as the
end condition of the detector generation process. Non-self-
space coverage P is equal to the ratio of the space covered
by detectors Vcovered to all non-self-space Vnonself , as shown
in (6).

P =
Vcovered

Vnonself

= covered
dx

nonself
dx

6

The total space occupied by non-selves can be calculated
by the total space occupied by selves, as shown in (7).

P =
Vcovered

V space −V self

= covered
dx

1 −
self

dx
7

Redundant coverage exists between detectors and
among selves. We can use the estimation method to calcu-
late [42]. For example, the redundancy between detector i
and detector j can be estimated by (8).

So (6) can be written as

P =
∑coveredV

i
d − ∑1∑joverlapping di, d j

1 − ∑selfV
i
ag −∑i∑joverlapping agi, agj

9

For wireless sensor networks, the resource of nodes is
limited, and the calculation amount of the above equation
is very large, which is not suitable for use. Therefore, we used
the method of hypothesis testing to make a statistical esti-
mate of non-self-space coverage P [34, 35]. Assuming that
Nexp is the theoretical value of required detectors, the maxi-

mum coverage Pmax can be calculated by

Pmax =
1 − 5

Nexp

10

In order to satisfy the De Moivre-Laplace theorem, the
number of sampling times in non-self-space N0 is required
to satisfy N0 > 5/P and N0 > 5/ 1 − P . Therefore, we chose
the sample size as N0 = ceiling max 5/P, 5/ 1 − P . x
was set as the number of times of detectors overlaid in
N0 sampling in non-self space, and x should satisfy the fol-
lowing formulas.

x −N0P

N0P 1 − P
=

x

N0P 1 − P
−

N0P

1 − P
, 11
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Figure 6: Contained selves and half-contained selves in the subspace.

overlapping di, d j =

0 if di y − d j y ≥ di rd + d j rd ,

exp
di rd + d j rd − di y − d j y

di rd + d j rd
− 1

n

if di y − d j y < di rd + d j rd

8
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x = N0P 1 − P Z
α
+

N0P

1 − P
12

α is the significance level, and Z
α
is the α quantile of

standard normal distribution.
Therefore, we can calculate the coverage of the existing

detector set to non-self-space through the following formula.

x′ is the number of times that detectors continuously overlay
the non-self-space during sampling.

Coverage D =
x′ · P

x
13

Although the algorithm divides [0, 1]n space into several
subspaces, we can sample each subspace separately to deter-
mine the non-self-space coverage of each subspace. In this
way, the idea is simple and the expected coverage rate of
cexp can be guaranteed. However, due to the limited resources

of sensor nodes, the algorithm should reduce the resource
consumption as much as possible, and sampling in the whole
non-self-space and calculating the overall coverage can work.
Only when determining whether the detector is overrid-
den should detectors contained in the subspace where
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Figure 7: The space division process.

Table 4: Spatial partitioning algorithm.

GenerateSpaces(Train, SubSpaces)
Input: training set Train
Output: subspace set SubSpaces

Step 1. Initialize the spatial attributes sub = < 0, 1 n,∅, Train,∅>.

Step 2. Call DivideSpace(sub, 1) to divide the real-valued space.
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the sampling point is located be selected for judgment,
rather than all detectors.

4.4. Complexity Analysis. For the sensor nodes running the
intrusion detection system, only the subspace set needs to

be stored. SubSpaces = sub ∣ sub = < dli, d
h
i ,Half − contain

ed Selves, Contained Selves, detectors > , where each sub-
space contains the scope of the subspace, the contained
self-set, the half-contained self-set, and the included detec-
tor set.

In the process of detector generating, time consumption
mainly includes determining the subspace where the candi-
date detector is, calculation distances between the candidate
and selves in the subspace, and calculation distances between
the candidate and detectors in the subspace.

In the process of generating a mature detector, the time
complexity of judging where the candidate detector is located
is O n · ln 1/rmin = O n . Suppose rmin is the minimum
radius of the subspace, this complexity is related to the space
dimension n. The time complexity of calculating the distance
between the candidate detector and all selves in the subspace
is no more than O ∣Self ∣ . ∣Self ∣ is set as the size of self-set,
and the average number of computation times of this opera-
tion is Self / SubSpaces , which is smaller than the number
∣Self ∣ of other algorithms. The time complexity of calculating

the distance between the candidate detector and all detectors
in the subspace is no more than O ∣D ∣ . ∣D∣ is set as the size
of the detector set, and the average number of computation
times of this operation is D / SubSpaces , which is much
smaller than the number ∣D∣ of other algorithms, saving sen-
sor node resources.

The time complexity of generating a mature detector is
O n + O ∣Self ∣ + O ∣D ∣ = O n+∣Self ∣+∣D ∣ . Let Nc be
the number of candidate detectors required to generate
detector set D, Nc ≈ D / 1 − P . Therefore, the time com-
plexity of detector generation is O n+∣Self ∣+∣D ∣ ·Nc = O
∣D∣· n+∣Self ∣+∣D ∣ / 1 − P .

In the detection process of detectors, the main time con-
sumption is to determine the subspace where the antigen to
be detected is and to calculate the distance between the anti-
gen and all detectors in the subspace.

The time complexity of determining the subspace where
the antigen to be detected is located is O n · ln 1/rmin = O
n . The time complexity of calculating the distance between
the antigen and all detectors in the subspace is no more than
O ∣D ∣ . The average number of computation times of this
operation is D /∣SubSpaces∣, which is much smaller than
the number |D| of other algorithms, saving sensor node
resources. Therefore, the time complexity of detector detec-
tion process is O n +O ∣D ∣ =O n+∣D ∣ .
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Figure 8: Radius of the candidate detector.

Table 5: Space division iteration process.

DivideSpace(sub, i)
Input: subspace to be divided sub
Input: dimension to be divided i

Step 1. Determine whether the subspace sub does not contain any self or has a minimum diameter. If it is, the subspace sub is added to the
SubSpaces and return. Otherwise, perform step 2.

Step 2. The ith dimension of the subspace sub is divided, and two subspaces are obtained. Compute the contained selves and half-contained
selves in the subspaces.

Step 3. i =mod i + 1, n . if i = 0, i = n.
Step 4. For every subspace, call DivideSpace(sub, i).
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5. Experiments

This section verifies the validity of the algorithm through
experiments. The Iris data set [36] in UCI and wireless
sensor environment are used to analyze the performance
of the algorithm.

5.1. Iris Data Set. This data set contains three types of data,
which are setosa, versicolor, and virginica [36]. Each type of
data has 50 samples. Each sample contains four attributes:
sepals width, sepals length, petal length, and petal width. In
this paper, setosa samples are considered as self-set, and the
top 30 samples are used as training set to generate mature
detectors. Samples of versicolor and virginica classes are con-
sidered as abnormal data, and together with the last 20 sam-
ples of the setosa class, they are used as the data to be checked
for anomaly detection.

Figure 9 shows comparisons of the consumption time of
RNSA, V-Detector, and SD-RNSA in the detector generation
stage. As can be seen from the figure, as the expected cover-
age rate rises, the time cost of RNSA rises very fast, while
the time costs of V-Detector and SD-RNSA rise slowly.
When the expected coverage rate is 99%, the time con-
sumption of RNSA is 875.03 seconds, and that of V-
Detector is 18.76 seconds, while that of SD-RNSA is 13.62
seconds, decreasing by 98.44% and 27.40%, respectively.
Therefore, compared with RNSA and V-Detector, the
detector generation efficiency of SD-RNSA has been greatly
improved, which is more suitable for sensor networks with
limited resources.

Figure 10 shows comparisons of the consumption time of
RNSA, V-Detector, and SD-RNSA in the intrusion detection
stage. As can be seen from the figure, with the increase in the
expected coverage rate, the time costs of RNSA and V-
Detector increase very quickly, while that of SD-RNSA
increases slowly. This is because less detectors are required
by SD-RNSA to achieve the same coverage rate, and samples
for inspection do not need to match with all detectors, which
can reduce the time cost of the test phase and save the
resources of sensor nodes.

Figure 11 shows comparisons of detection rate and false
alarm rate of RNSA, V-Detector, and SD-RNSA. As can be
seen from the figures, detection rates of the three algorithms
are relatively close, among which RNSA is slightly lower. The
false alarm rates of the three algorithms is relatively close,
among which RNSA is slightly higher. It can be seen that
the detection efficiency of SD-RNSA has not been reduced
on the basis of saving time cost.

5.2. Applications in WSN. In order to test the efficiency of the
algorithm in WSN, TOSSIM was used as the simulator for
the simulation test. It is a component-based modular discrete
event simulation tool of TinyOS, which is suitable for wire-
less sensor network simulation. The network deployment
area is 1000m2. Sensor nodes are randomly distributed in
the network with 200 nodes, and the base station locates at
(0, 0). The MAC layer protocol is IEEE802.15.4. The routing
protocol is LEACH, and 10% of sensor nodes are selected as
cluster heads.

Experiments used jamming attack for testing, which is a
DoS attack of WSN. The attackers regularly broadcast
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generation stage.
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Figure 11: Comparisons of detection rate and false alarm rate.
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Figure 12: Comparisons of detection rate and false alarm rate in WSN (under jamming attack).
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Figure 13: Comparisons of the detection rate and false alarm rate in WSN 2 (under jamming attack).
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Figure 14: Comparisons of the detection time in WSN (under
jamming attack).
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meaningless packets to the network, affecting the communi-
cation between nodes and consuming node resources. In the
experiment, 10 times of simulation were carried out to take
the mean values, and the network changes within 2 hours
were collected each time. The first half hour is the training
time of algorithms, during which algorithms learn the nor-
mal behavior of the network and generate detectors. The
remaining time is the intrusion detection of algorithms.

In a wireless sensor network, changes of the node’s own
attributes reflect the current environment information.
When the network is in normal state, attributes of nodes such
as throughput, packet loss rate, node reception rate, average
node delay, etc., are in a relatively stable range. When
the network is under attack, these attributes will change
significantly. t can be seen that the algorithm should be
more sensitive to the attacks of the network layer. In this
paper, the packet sending rate, packet receiving ratio, and
node throughput are chosen as the detection characteris-
tics. If the attack has little influence on these attributes,
the effect of the algorithm is limited, for example, attacks
against the application layer, like location attacks and mali-
cious code.

First, the attack time interval was set to 1 s, and the num-
ber of attackers changed from 5 to 50. Figure 12 shows com-
parisons of the detection rate and false alarm rate of the three
algorithms. It can be seen from the figures, with more and
more attackers, more and more sensor nodes feel abnormal,
and the detection rates of all three algorithms are rising.

When there are few attackers, the detection rate of this
algorithm is slightly higher than those of the other two algo-
rithms. With more and more attackers, the false alarm rates
of the three algorithms are gradually reduced. When there
are few attackers, the error rate of this algorithm is slightly
lower than those of the other two algorithms. This is because
detectors generated by the algorithm in this paper better
cover the non-self-space and reduce the vulnerability.

The number of attackers was then set to 10, and the
attack time interval changed from 0.2 s to 2 s. Figure 13 shows
comparisons of the detection rate and false alarm rate of the
three algorithms. When the time interval between attacks is
larger and the attack behavior is less and less obvious, it is
more difficult for sensor nodes to feel abnormal. The attack
behavior is close to normal behavior, which represents the
non-self-space closest to self-space. This space is usually vul-
nerability, which is difficult to be covered by detectors. It can
be seen from the figures that the detection rate of all three
algorithms is decreasing and the false alarm rate is increasing
as the attack time interval is getting larger. This algorithm is
still superior to the other two algorithms.

The attack time interval was set to 1 s, and the number of
attackers changed from 5 to 50. Figure 14 shows comparisons
of the detection time of the three algorithms. The detection
time is the time cost for sensor nodes to process antigens to
be detected. With more and more attacking nodes and more
and more data traffic in the network, there are more and
more undetected antigens to be processed by nodes, and
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Figure 16: Comparisons of the detection rate and false alarm rate in WSN (under sinkhole attack).
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the detection time of the three algorithms is longer and lon-
ger. Because the time cost of this algorithm in detecting
nodes is low, the detection time of this algorithm is obviously
smaller than that of the other two algorithms.

The attack time interval was set to 1 s, and the number of
attackers changed from 5 to 50. Figure 15 shows the energy
consumption comparisons of the three algorithms. As can
be seen from the figure, with the increase of the number of
attack nodes, the energy consumptions of all three models
have increased, but this algorithm has obvious advantages.

Then, experiments adopted the selective forwarding
attack and sinkhole attack to test. Selective forwarding
attack refers to the process in which an attacker as a rout-
ing node chooses to discard or selectively forward data
packets in probability. In the sinkhole attack, the target of
the attacker is to attract the data flow in a region through
the attack node by broadcasting high-quality routing infor-
mation. Similarly, 10 simulations were carried out to take
the mean value. Figure 16 shows contrasts of detection
rates and false alarm rates of the three algorithms when
the number of attackers changes under sinkhole attack.
Figure 17 shows energy consumption comparisons of the
three algorithms under selective forwarding attack. As can
be seen from the diagrams, the effect of this algorithm is
better than the other two algorithms, which is similar to
the jamming attack.

6. Conclusions

This paper first analyzes the intrusion detection technology
in wireless sensor networks, including research on the
specification-based detection, research on misuse detection,
and research on anomaly detection. Many detection systems
are based on the traditional network intrusion detection
technology transplant transformation, which do not suffi-
ciently consider characteristics of wireless sensor networks
and are rarely applied to the real wireless sensor networks.
Inspired by the negative selection algorithm in the biological
immune system, this paper proposes a wireless sensor net-
work intrusion detection model based on the spatial partition
negative selection algorithm. In this paper, the model is
described comprehensively and its performance is analyzed
theoretically. Finally, the article applied the model to the
UCI data set and wireless sensor networks. Experimental
results show that the model has better time efficiency and
detector quality, saves sensor node resources, and reduces
the energy consumption. It is an effective algorithm for wire-
less sensor network intrusion detection.
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