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ABSTRACT

In this paper we extend the work presented in [1], [2]

by quantifying the effects of in-band wormhole attacks on

Intrusion Detection Systems. More specifically, we pro-

pose a mathematical framework for obtaining performance

bounds of Byzantine attackers and the Intrusion Detection

System (IDS) in terms of detection delay. We formulate the

problem of distributed collaborative defense against coor-

dinated attacks in MANET as a dynamic game problem.

In our formulation we have on the one hand a group of

attackers that observe what is going on in the network

and coordinate their attack in an adaptive manner. On

the other side, we have a group of defending nodes (the

IDS nodes) that collaboratively observe the network and

coordinate their actions against the attackers. Using exten-

sions of the game theoretic framework of [3] we provide a

mathematical framework for efficient identification of the

worst attacks and damages that the attackers can achieve,

as well as the best response of the defenders. This approach

leads to quantifying resiliency of the routing-attack IDS

with respect to Byzantine attacks.

INTRODUCTION

In physics, a wormhole is a hypothetical shortcut through

space and time that connects two distant regions. In cyber

security, the term wormhole was recently adopted [4] to

describe an attack on Mobile Ad-hoc Network (MANET)

routing protocols in which colluding nodes create the

illusion that two remote regions of a MANET are directly

1Research supported by the U.S. Army Research Laboratory under

the Collaborative Technology Alliance Program, Cooperative Agreement

DAAD19-01-2-0011.

connected through nodes that appear to be neighbors,

but are actually distant from one another. The illusory

shortcut is created by connecting the purported neighbors

using a covert communication mechanism. The wormhole

undermines shortest path routing calculations, allowing the

attacking nodes to attract traffic from other parts of the

network so that it is routed through them. The wormhole

thus creates two artificial traffic choke points that are

under the control of the attacker and can be utilized at

an opportune future time to degrade or analyze the traffic

stream.

Prior research on wormholes in MANETs has concen-

trated primarily on out-of-band wormholes, which covertly

connect purported neighbors via a separate communication

mechanism, such as a wireline network or additional RF

channel that is not generally available throughout the

network [4], [5]. This paper deals with in-band wormholes,

which covertly connect the purported neighbors via multi-

hop tunnels through the primary link layer. In-band worm-

holes are important for several reasons. First, because they

do not require additional specialized hardware, they can

be launched from any node in the network; as a result,

they may be more likely to be used by real adversaries.

Second, unlike out-of-band wormholes, which actually add

channel capacity to the network, in-band wormholes con-

tinually consume network capacity (i.e., waste bandwidth)

thereby inherently causing service degradation. Third, al-

though countermeasures for out-of-band wormholes seem

to depend on out-of-band mechanisms such as geographic

position information or highly synchronized clocks, coun-

termeasures for in-band wormholes may not.

In this paper we extend the work presented in [1], [2] by

quantifying the effects of in-band wormhole attacks on In-
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trusion Detection Systems. More specifically, we propose a

mathematical framework for obtaining performance bounds

of Byzantine attackers and the IDS in terms of detection

delay. We formulate the problem of distributed collabora-

tive defense against coordinated attacks in MANET as a

dynamic game problem. In our formulation we have on

the one hand a group of attackers that observe what is

going on in the network and coordinate their attack in

an adaptive manner. On the other side, we have a group

of defending nodes (the IDS nodes) that collaboratively

observe the network and coordinate their actions against the

attackers. Using the game theoretic framework [3] we will

identify worst attacks and damages that the attackers can

achieve, as well as the best response of the defenders. This

approach leads to quantifying resiliency of the routing-

attack IDS with respect to Byzantine attacks. Due to the

nature of wireless networks, where no notion of trust can

be assumed, we propose a voting mechanism for ensuring

robustness of our detection scheme.

IN-BAND WORMHOLE PHENOMENON

An adversary launching a wormhole attack may have

multiple objectives. By attracting traffic that would not

ordinarily flow through nodes controlled by the adversary,

the wormhole creates artificial traffic choke points that

can be utilized at an opportune future time, e.g., to delay,

damage, discard, or misroute packets. The choke points

also increase opportunities to analyze network traffic flows

and eavesdrop on any unprotected packet contents. In

addition, unlike out-of-band wormholes, which actually

improve the efficiency of the network by adding capacity,

in-band wormholes impose continuing costs, even while

“dormant”. This is because packets drawn into the in-

band wormhole are not routed along the shortest path.

They instead take unnecessarily long routes through a

covert tunnel, consuming network bandwidth (which may

be scarce) and delaying packet arrivals, while increas-

ing the likelihood of bit errors and congestion. MANET

routing protocols are vulnerable to wormhole attacks [4],

[6]. In OLSR, a proactive link state routing protocol for

MANETs, the status of 1-hop links is gathered through

the exchange of OLSR HELLO messages among 1-hop

neighbors. Topology Control (TC) messages are then used

to propagate link-state information to all other nodes.

From this information, nodes formulate next-hop routing

decisions based on the shortest-path computations using

symmetric links.

The attacker creates the wormhole illusion by forwarding

OLSR control messages (e.g., HELLO and TC messages)

between remote nodes through a wormhole tunnel, or

more simply, the two remote colluding nodes can falsely

Fig. 1. In-band wormhole collapse

advertise a 1-hop symmetric link between them without

exchanging OLSR control messages. The false link infor-

mation is propagated to other nodes across the network via

the broadcast of TC messages, broadening the impact of the

false information. The result is the creation of two routing

“black holes”, one at each endpoint of the tunnel. Other

packets are then attracted by each black holes “gravity” and

are forwarded by the attackers through the tunnel, creating

the wormhole. An in-band wormhole can fall victim to

its own success, as the disruption in network routing

caused by the attack can also affect the routing of tunneled

wormhole traffic, causing the wormhole to collapse upon

itself. An in-band wormhole collapses when its tunnel

endpoints cannot continue to forward control messages

between remote network regions. Fig. 1 shows the collapse

of the in-band wormhole tunnel. In this example, attackers

180 and 183 establish an in-band wormhole by forwarding

and rebroadcasting the OLSR control messages from nodes

189 and 186 creating the illusion that nodes 189 and 186

are 1-hop neighbors. TC message broadcasts propagate the

false link information beyond 1 hop. The result affects the

shortest path routing computations of other nodes in the

wormhole path, such as node 178. Normally, wormhole

traffic should be tunneled between attackers 180 and 183.

However, node 178 computes the shortest path for traffic

to node 183 as going back through node 180. As a result,

the wormhole collapses upon itself.

One way to avoid tunnel collapse is by using one or

more additional colluding nodes along the tunnel path as

application layer relays. For example, if node 185 in Fig. 1

were a colluding node, node 180 would address tunneled

traffic to 185 rather than 183. As a result, when node 178

attempted to forward tunneled traffic to its (now closer)

destination, it would determine that 179 should be the next

hop, rather than 180, thereby avoiding the routing loopback

and consequent tunnel collapse. When the tunneled traffic
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arrived at node 185, it would readdress the packets to the

tunnel endpoint, node 183.

MOTIVATION

As it has been pointed out, in-band wormholes represent

a significant threat to the functionality of wireless networks

due to the fact that packets drawn into the in-band worm-

hole are not routed through the advertised shortest path.

Consequently, if no detection mechanism is present, it’s in

the interest of the adversaries to create longer tunnels and

cause greater delays in the network. On the other hand, if a

detection mechanism is present, the adversary faces a trade-

off. If he decides to create a long tunnel, he causes greater

damage to the network, but on the other hand, the risk

of detection increases. We now see that the most suitable

approach to this problem is utilization of game-theoretic

tools.

On the other hand, the IDS needs to choose a detection

test that enables misbehavior detection with minimum

delay (on-line detection is desirable). This gives rise to the

sequential detection problem. A sequential decision rule

consists of a stopping time, which indicates when to stop

observing, and a final decision rule that indicates which

hypothesis (i.e, occurrence or not of misbehavior) should

be selected. A sequential decision rule is efficient if it can

provide reliable decision as fast as possible. It has been

shown by Wald [7] that the decision rule that minimizes

the expected number of required observations to reach a

decision over all sequential and non-sequential decision

rules is the Sequential Probability Ratio Test (SPRT).

The basic feature of attack and misbehavior strategies

is that they are entirely unpredictable. In the presence

of such uncertainty, it is meaningful to seek models and

decision rules that are robust, namely they perform well for

a wide range of uncertainty conditions. One useful design

philosophy is to apply a min-max formulation and identify

the rule that optimizes worst-case performance over the

class of allowed uncertainty conditions.

In a wireless network, information about the behavior of

nodes can become readily available to immediate neighbors

through direct observation measurements. If these measure-

ments are compared with their counterparts for normal pro-

tocol operation, it is then contingent upon the detection rule

to decide whether the protocol is normally executed or not.

A min-max formulation translates to finding the detection

rule with the minimum required number of observations

to reach a decision for the worst instance of misbehavior.

Clearly, such a scheme would guarantee a minimum level

of performance which is the best minimum level possible

over all classes of attacks.

The nature of wireless networks does not assume exis-

tence of trust mechanisms, i.e. each protocol participant is

equally likely to be good or bad. The approach proposed in

[1], [2] suggests a mechanism based on voting by majority

rule. If the voting is implemented by majority rule, all votes

are treated equally, which makes it clear what the attackers

strategy should be: They should always vote the opposite

of the truth. In other words, whether they are seen to be

outliers in the voting process or not, there is no difference.

They can attempt to swing the vote without any fear of

repercussions. As a consequence, whenever the malicious

voters happen to be in the majority, they would definitely

win the vote.

Motivated by this observation, we extend the voting

model with a mechanism to punish users who often vote

in the minority, and reward those often in the majority by

reducing or increasing the weight of their votes, respec-

tively. Assuming that the legitimate users are in general,

but not always, the majority of the voters, they will be

rewarded more often than the malicious ones. So, even if

many malicious voters happen to be in a neighborhood,

they will not necessarily outvote the legitimate users.

MIN-MAX ROBUST MISBEHAVIOR DETECTION

In this section we present our approach for misbehavior

detection in the presence of a single wormhole in the OLSR

routing protocol.

Problem motivation and sequential detection

The basis of our proposed detection scheme is a sequen-

tial detection test that is implemented at an observer node.

The objective of the detection test is to derive a decision as

to whether or not a misbehavior occurs as fast as possible

(with the least possible number of observation samples).

The probability of false alarm PFA and the probability

of missed detection PM constitute inherent tradeoffs in a

detection scheme, in the sense that a faster decision un-

avoidably leads to higher values of these probabilities while

lower values are attained with the expense of detection

delay. For given values of PFA and PM , the detection test

that minimizes average number of required observations

(and thus the average delay) to reach a decision among

all sequential and non-sequential tests for which PFA and

PM do not exceed the predefined values above is Wald’s

Sequential Probability Ratio Test (SPRT) [7]. When SPRT

is used for sequential testing between two hypotheses

concerning two probability distributions SPRT is optimal

in that sense as well [3].

SPRT collects observations until significant evidence in

favor of one of the two hypotheses is accumulated. After
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each observation at the k-th stage, we choose between

the following options: accept one or the other hypothesis

and stop collecting observations, or defer decision for the

moment and obtain observation k+1. In SPRT, there exist

two thresholds a and b that aid the decision. The figure

of merit at each step is the logarithm of the likelihood

ratio of the accumulated sample vector until that stage.

For the case of testing between hypotheses H0 and H1

that involve continuous probability density functions f0

and f1, the logarithm of likelihood ratio at stage k with

accumulated samples x1, . . . , xk is

Sk = ln
f1(x1, . . . , xk)

f0(x1, . . . , xk)
, (1)

where fi(x1, . . . , xk) is the joint probability density func-

tion of data (x1, . . . , xk) based on hypothesis Hi, i = 0, 1.

If the observation samples are statistically independent

Sk =

k
∑

j=1

Λj =

k
∑

j=1

ln
f1(xj)

f0(xj)
, (2)

with fi(·) the probability density function of hypothesis

Hi, i = 0, 1. The decision is made based on the following

criteria. If Sk ≥ a, H1 is accepted. If Sk < b, H0 is

accepted. Otherwise, if b ≤ Sk < a the decision making

is postponed until another observation sample is collected.

Thresholds a and b depend on the specified values of PFA

and PM .

We can now see that the main idea of our approach

is to place emphasis on the class of attacks that incur

larger gain for the attacker (attacks that have the most

devastating effect on the network performance). Besides,

if we assume that the detection of an attack is followed by

communication of the attack event further in the network

so as to launch a network response, it would be inefficient

for the algorithm to consider less significant attacks and

initiate responses for them. Instead, it is meaningful for

the detection system to focus on countering the most

significant attacks.

Min-max robust detection approach : Definition of uncer-

tainty class

Previously, we stressed the sequential nature of our

approach and the implicit need to consider most significant

attacks. The approach should also cope with the encoun-

tered (statistically) uncertain operational environment of a

wireless network, namely the random nature of protocols

and the unpredictable misbehavior or attack instances.

Hence, it is desirable to rely on robust detection rules that

would perform well regardless of uncertain conditions. In

this work, we adopt the minimax robust detection approach

where the goal is to optimize performance for the worst-

case instance of uncertainty. More specifically, the goal is

to identify the least favorable operating point of a system

in the presence of uncertainty and subsequently find the

strategy that optimizes system performance when operating

at that point. In our case, the least favorable operating point

corresponds to the worst-case instance of an attack and

the optimal strategy amounts to the optimal detection rule.

System performance is measured in terms of number of

required observation samples to derive a decision.

A basic notion in minimax approaches is that of a saddle

point. A strategy (detection rule) d∗ and an operating point

(attack) f∗ in the uncertainty class form a saddle point if:

1) For the attack f∗, any detection rule d other than

d∗ has worse performance. Namely d∗ is the optimal

detection rule for attack f∗ in terms of the minimum

number of required observations.

2) For the detection rule d∗, any attack f other than f∗

gives better performance. Namely, detection rule d∗

has its worst performance for attack f∗.

Implicit in the minimax approach is the assumption

that the attacker has full knowledge of the employed

detection rule. Thus, it can create a misbehavior strat-

egy that maximizes the number of required samples for

misbehavior detection delaying the detection as much as

possible. Therefore, our approach refers to the case of an

intelligent attacker that can adapt its misbehavior policy so

as to avoid detection. One issue that needs to be clarified

is the structure of this attack strategy. Subsequently, by

deriving the detection rule and the performance for that

case, we can obtain an upper bound on performance over

all possible attacks.

Minimax robust detection approach: Derivation of the

worst-case attack

The objective of a detection rule is to minimize the

number of the required observation samples N so as

to derive a decision regarding the existence or not of

misbehavior. The performance of a detection scheme is

quantified by the average number of samples E[N ] needed

until a decision is reached, where the average is taken with

respect to the distribution of the observations. This number

is a function of the adopted decision rule d and the attack

p.d.f f , that is

E[N ] = φ(d, f). (3)

Let D denote the class of all (sequential and non-

sequential) statistical hypothesis tests for which the false

alarm and missed detection probabilities do not exceed

some specified levels PFA and PM respectively. In the

context of the min-max robust detection framework, the

4 of 7



problem is to optimize performance in the presence of a

worst-case attack, that is find

E[N ]∗ = min
d∈D

max
f∈Fǫ

φ(d, f) , (4)

assuming that finite number of samples are needed (other-

wise the “min-max” notation should change to “inf-sup”).

We proceed to a formal definition of a saddle point.

Definition 1: A pair (d∗, f∗) is called a saddle point of

the function φ if

φ(d∗, f) ≤ φ(d∗, f∗) ≤ φ(d, f∗) ∀d ∈ D, ∀f ∈ Fǫ. (5)

A saddle point (d∗, f∗) of φ consists of a detection test

d∗ and an attack distribution f∗. Equation (5) is a formal

statement of properties 1 and 2 that were mentioned in the

previous section. In order to facilitate solution of problem

(4), we find the saddle point of φ. First, recall that the

optimal detection test in the sense of minimizing expected

number of samples needed for detection is SPRT. This

means that SPRT is the test d∗ ∈ D, such that for a fixed

(but unknown) attack f we have φ(d∗, f) ≤ φ(d, f) for

all other tests d ∈ D. The inequality above also holds for

f = f∗, and hence the second inequality in (5) has been

established.

We now prove the first inequality. Assuming that SPRT

is used, we seek an attack distribution f∗ such that

φ(d∗, f∗) ≥ φ(d∗, f) for all other attacks f ∈ Fǫ. In

order to find f∗, we need an expression for the required

average sample number (ASN) E[SN ] of SPRT. From

Wald’s identity [7] and [3] the following expression for

E[SN ] is obtained:

E[N ] =
E[SN ]

E[Λ]
=

aPD + b(1 − PD)

E

[

ln f(X)
f0(X)

] (6)

where a and b are the thresholds of SPRT, a =
ln 1−PM

PF A

and b = ln PM

1−PF A

and f0(x) denotes the distri-

bution of normal operation and the expectation of denomi-

nator is with respect to the unknown attack distribution f .

Since aPD +b(1−PD) is a constant for the given IDS, the

problem of finding the attack that maximizes the required

number of observations reduces to the problem:

min
f

∫

f(x) ln
f(x)

f0(x)
dx (7)

subject to the constraints,
∫

f(x)dx = 1 and

∫

xf(x)dx ≤ M. (8)

The first constraint exists since f is a pdf and the second

one is because f ∈ FM . By applying the Karush-Kuhn-

Tucker (KKT) conditions, we find that the function f∗ has

the form

f∗(x) = f0(x)e−λ−1e−µx, µ > 0, (9)

where λ and µ are the Lagrange multipliers that correspond

to the constraints.

Interestingly, the result above shows that the worst-case

attack distribution f∗ in terms of maximizing number of re-

quired samples has exponential density. Since φ(d∗, f∗) ≥
φ(d∗, f) for all f ∈ FM , we proved the left inequality in

(5). We have now shown that the pair (d∗, f∗), where d∗

is SPRT and f∗(x) is the exponential density constitute a

saddle point of φ. This means that the so-called min-max

equality holds and we can interchange the order of min
and sup in the optimization problem above [8]. Then, the

problem

max
f∈Fǫ

min
d∈D

φ(d, f) (10)

has the same solution with (4). As a side remark, note

that the derived exponential pdf has maximum differential

entropy over all pdf’s in the class FM . This result is

expected since the adversary’s goal is to maximize the

uncertainty under given settings so as to prolong detection.

Application for detection of wormholes

In OLSR, or any other routing protocol, the distributions

of hop count or end-to-end delay during the legitimate pro-

tocol operation are not known a priori. In order to be able

to apply the proposed framework, we need to empirically

estimate the legitimate hop count and corresponding end-

to-end delay distributions in the setting when no adversary

is present. It is important to emphasize that the obtained

distributions are not universal, i.e. they need to be obtained

separately for each network. Furthermore, if significant

topology changes happen after a certain period of time, a

new legitimate distribution needs to be obtained. For now

we assume that no significant topology and traffic changes

occur in a pre-specified time interval. In addition to that, we

assume the existence of a central authority that constantly

monitors the network and decides whether a new legitimate

distribution needs to be obtained. In order to illustrate

the proposed detection mechanism we refer to Fig. 2. In

this scenario, nodes A and D are chosen as monitoring

nodes that obtain the end-to-end delay distributions (and

perform the SPRT) and ensure the fairness of the voting

process. We assume that an intelligent attacker avoids the

brute force strategy. The initial problem formulation in [2]

assumed that the adversaries randomly choose the tunnel

length (in this case B-E-F-G-C) although the advertised

length is always 1 hop (B-C). SPRT detects this type of

misbehavior very efficiently due to the fact that nodes A

and D observe significant difference in end-to-end delay

in the presence of the wormhole. We then assume that the

adversary plays a game with the detection system. The

adversary’s goal is to maximize his gain, i.e. to attract as
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Fig. 2. Example of an in-band wormhole

much traffic as possible, which is done by advertising the

shortest route and then creating long wormhole tunnels in

order to cause significant performance degradation in the

network. On the other hand, he wants to avoid detection

for as long as possible in the light of the min-max robust

approach. For that reason the adversary may delay creation

of the wormhole for a certain period of time until he is able

to form a tunnel of desirable length. In our case, we per-

formed a simple experiment, where the monitoring nodes

expected end-to-end delay that corresponded to 3 hops

(monitoring node 1 - wormhole start point - wormhole end

point - monitoring node 2). Instead the adversary created

a 12-hop tunnel. Consequently, the corresponding end-to-

end delay distributions for legitimate protocol operation (3

hops) and adversarial setting (12 hops) were significantly

different, which resulted in SPRT detection after only 1

sample. Hence, the adversary may want to wait until he is

able to create a tunnel that is, for example, 3-hops long.

In this setting, the adversary gains in terms of delayed

detection, but loses in terms of attracted traffic and duration

of the attack (since the wormhole of optimal length may

not always be created).

Due to the nature of collaborative attacks, the detection

of Byzantine attacks needs to be performed in a distributed

manner. We assume that the central authority decides on a

set of nodes that are used for monitoring and detection. All

chosen nodes perform the SPRT as the measurements are

obtained and detect changes in end-to-end delay between

them (and hop count). The outcomes of these tests are

reports on the status of the network, that is, whether a

wormhole has been detected or not. If a wormhole is

detected, the report includes the other endpoint of the path

which is affected by the wormhole. These reports are sent

to a global or regional center, which can then perform

correlation analysis between the reports in order to localize

the wormhole. For example, if the paths between all the

endpoints that report a wormhole share an edge, then that

edge is likely to be a wormhole.

VOTING

The Model

We assume that time is discrete, and progresses in

rounds. At each round, a wormhole either exists or not.

Good and Bad users are required to vote on the existence

or otherwise of a wormhole. A vote can be either “T”

(truth) or “L” (lie), according to whether the user reports

truthfully or not. The vote of user i at round n is denoted

by xn
i . With each user, a trust value ti is associated, which

is the weight that its vote carries.

We focus on voting for a single link. Voting can be

done independently for multiple links. However, coupling

may occur through the trust values (which are bound to a

specific user, for all the links that he is voting on).

After all eligible users vote on the link (eligibility is

determined through the 3-hop path requirement [2]), the

outcome is decided by the procedure outlined by finding

independent paths, and weighing the votes by the trust

values. The result of the n-th round vote, “P” or “N”, is

denoted by Xn. If xn
i = Xn, then ti is increased, otherwise

it is decreased.

The payoffs of the Bad users are as follows: They receive

M > 0 if the decision of the intrusion detection system is

false (either false positive or false negative), and −M if the

decision is correct. This can change if they gain more from

hiding a wormhole than from successful false accusation

of Good users (or vice versa).

We assume that the Good users always vote correctly.

This assumption depends on the “first layer” detection

algorithm, the output of which could, in principle, be

erroneous. So, in future work we could lift this assumption.

Since the Good users always vote correctly, there is a total

quantity of trust that is placed on the correct decision. The

Bad users do not know this total trust; they only have

an estimate of it, in the form of a probability distribution

function, and it is changing at each round. Also, the Bad

users do not know how many more chances they will have

to vote, that is, how much longer the network will keep

operating. For this reason the current payoffs are more

important than payoffs expected in the future.

The Bad users’ dilemma is between risking voting

against a large sum of trust values versus waiting for future

rounds when it may be more convenient to try and swing

the vote. If they vote against a large sum of trust values and

lose, their own trust value will decrease, so the situation

may be worse for the Bad users next round. So, initially,

they will probably want to build up trust and use it when

the circumstances are more favorable.
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Solution Methodology

We can view the above game as a stochastic game, and

actually as stochastic dynamic programming. The control

(input) is the vote xn
i (“T” or “L”) of the Bad user (or the

collective votes of the Bad users) at round n, and the state

is (tni , Tn) which are the trust value of user i at round n

(or the sum of trust values of all Bad users eligible to vote

for that link), and the total trust value of the Good users

at round n. The output (reward) is the payoff of the Bad

user(s), which is deterministic given the state and the input.

The trust value tn+1
i is also a deterministic function of the

state and the input. However, Tn may change randomly to

a new value that captures the uncertainty of the Bad users

with respect to the sum of trust values that they will face.

We can introduce a drift which would be positive if the

Good users won the previous vote, and negative otherwise.

Mobility can also be captured within the random change of

Tn, since, if the users move, Tn+1 will be the sum of trust

values of a different set of users. That is, at each round, a

Bad user faces a different set of Good ones. The uncertainty

with respect to the duration of the network operation can

be captured with an appropriate discounting factor for the

payoffs.

Therefore, having a complete formulation of the problem

as stochastic dynamic programming, we can use the rele-

vant theory (e.g., [9]) to find the optimal Bad user policy.

CONCLUSIONS AND FUTURE WORK

This work represents the first step towards quantifying

resiliency of the IDS with respect to Byzantine attacks.

We provide a mathematical framework based on game

theory and statistics that: (i) forces an intelligent attacker

to apply less aggressive strategies in order to avoid being

detected; (ii) enables the IDS to determine the worst-case

scenario with respect to system losses and (iii) performs

detection with the SPRT, which has low complexity and

the smallest detection delay among all sequential tests.

We have presented a voting mechanism to improve the

reliability of the IDS against malicious users who try to

subvert the decisions of the IDS. The malicious users can

no longer blindly lie all the time, because they will be

quickly discredited, and their vote will no longer count.

Using well established theory, we can find the optimal

policy that they should follow, and their associated payoff.

In this work we illustrated the inefficiency of brute force

attacks in the presence of the SPRT-based IDS, which

provides motivation for further extension of this work. We

intend to investigate more complex scenarios in the future

and find the least favorable adversarial setting that still

incurs sufficient gain on the attacker’s side and estimate

the corresponding detection delay. In addition to that, we

intend to implement the voting mechanism in our testbed

for in-band wormhole detection, and incorporate actual

empirical mobility traces into the dynamic programming

algorithm. We also plan to make the user votes not just

binary (“T” or “L”), but real numbers from 0 to 1, in order

to include the possibility of partial detection (detection with

some uncertainty) on the part of Good users.
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