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Abstract

A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to

enhance the security of in-vehicular network. The parameters building the DNN structure

are trained with probability-based feature vectors that are extracted from the in-vehicular

network packets. For a given packet, the DNN provides the probability of each class dis-

criminating normal and attack packets, and, thus the sensor can identify any malicious

attack to the vehicle. As compared to the traditional artificial neural network applied to the

IDS, the proposed technique adopts recent advances in deep learning studies such as ini-

tializing the parameters through the unsupervised pre-training of deep belief networks

(DBN), therefore improving the detection accuracy. It is demonstrated with experimental

results that the proposed technique can provide a real-time response to the attack with a

significantly improved detection ratio in controller area network (CAN) bus.

Introduction

Recently, a major advance in an automotive system has been made with integrating a number

of computing devices called Electronics Control Unit (ECU). ECU is used for controlling and

monitoring a subsystem of a vehicle for energy efficiency enhancement, and noise and vibra-

tion reduction. The ECU replaces conventional mechanical controlling parts [1]. More

recently, automotive networking services such as Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) require computing devices to perform intra-vehicular communication [2]

and inter-vehicular communication [3, 4]. The vehicular communications can be applied to

many practical traffic systems [5, 6]. Tang et al. propose to use the communications to under-

stand driving behaviors such as each vehicle’s speed and fuel consumptions [7, 8]. Jin et al.

show the robust V2V communications depending on a traffic stream [9]. Kesting et al. devel-

oped a novel message passing scheme in the communication [10]. In [11–13] efficient fuel con-

sumptions are considered with estimating the speeds of the connected cars or their distances.

Cooperative platooning enabled by the wireless communications can also improve traffic flow

[14]. In the Grand Cooperative Driving Challenge (GCDC) the best performing results show
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the recent innovations in the fields of realistic cooperative driving [15–17]. Accordingly the

ability of the computing devices in a vehicle dramatically increases.

Different communication protocols are developed to support the communication [4].

Among the protocols, Controller Area Network (CAN) [18] as the de factor standard of in-

vehicle network communication is such a simple communication protocol supporting to con-

nect sensors and actuators with ECUs, and the adoption of CAN facilitates emerging automo-

tive applications [19]. Quite often important information such as diagnostic, informative, and

controlling data is delivered through a CAN bus to serve the automotive services such as self-

driving and advanced driver assistance systems (ADAS). The information must be secured for

the safety of a driver. However, the growth of networking capability is accompanied with sig-

nificant security concerns, and unfortunately the in-vehicular network includes several security

flaws [20–23]. ECUs can obtain any ECU-to-ECU broadcasting messages in the same bus, and

they are unable to identify a sender [20]. It is shown in how faked packets can confuse critical

components securing driver’s safety by malicious attacks such as a packet injection and data

manipulation [21–23].

There have been several research works considering safety problems in inter and intra

vehicular communications [24–29]. In particular, an intrusion detection sensor (IDS) gains

much attention due to the efficiency and simplicity in detecting the attacks [24–27]. Hoppe

et al. propose an intrusion detection method by using several representative attack patterns

predefined in a database [25]. Larson et al. develop a specification-based approach, comparing

the behavior of the current specification system to the designated patterns [26]. In [27], a sen-

sor-based detection method recognize a malicious intrusion by using several sensors designed

for the attack scenarios. Secured protocols in accordance with the conventional specifications

are proposed in [28, 29].

The previous intrusion detection methods may be effective only for specific threat models

that have been already considered in design stages [30, 31]. To cope with the problem machine

learning based IDS techniques are employed, mainly, for conventional communication net-

works [32]. The idea is to capture underlying statistical features of data and use them to detect

any malicious attack [33]. Intrusion detection methods using artificial neural network (ANN)

[34, 35] and support vector machine [36] are developed for classifying attack types. The

advanced machine learning algorithms are barely used for a vehicular network because the

computing power of the conventional ECU is limited to process the complex process. However,

the computing power of ECU has been notably increasing to process enormous real-time tasks

in the most recent vehicular system [19].

In this paper, an intrusion detection system using the deep neural network (DNN) structure

[37] is proposed to secure the in-vehicular network, e.g. CAN network. The proposed tech-

nique trains high-dimensional CAN packet data after the dimension reduction to figure out

the underlying statistical properties of normal and attack packets, and, in defense, it extracts

the corresponding features to identify the attack. DNN has been shown to be effective for clas-

sifying statistical patterns and mapping complex non-linear input-to-output relations in vari-

ous research fields such as artificial intelligence, multimedia processing, security [37–40] as

well as in intelligent vehicular systems [41–44]. Our work is the first to employ the deep learn-

ing structure in the IDS of in-vehicular networks, which differs from earlier ANN-based intru-

sion detection methods [34, 35]. Specifically, we use unsupervised deep belief network (DBN)

pre-training methods [45] to efficiently train the parameters initializing the deep neural net-

work. The parameters are tuned later to achieve a better classification result with the supervised

learning. Experimental results demonstrate that the proposed method yields a superior perfor-

mance in terms of a classification error with little computation complexity in the decision.

Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security
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RelatedWork

CAN

CAN is designed for half-duplex and high-speed broadcast bus in-vehicular network, providing

the communication rate up to 1Mbps [18]. The CAN protocol is widely used in automotive

manufactures as the de factor standard. In the protocol, each ECU broadcasts a message to the

network using a data packet. A sender ECU may include its unique ID number in the packet,

and a receiver ECU retrieves the packet by identifying the ID of the sender. Thus CAN packet

has no explicit destination field.

Fig 1 shows the syntax of the CAN data packet. The arbitration field includes an 11 bit ID

field where each ID corresponds to a specific ECU. The arbitration field offers two functions:

(1) prioritizing a message by the ID in the decreasing order and (2) enabling each ECU to filter

an interesting message. The ID field is used for a collision avoidance algorithm in the bus,

which is extended to 29 bits later. The data field contains maximum 8 bytes information to be

transmitted in a message, for example, the value of the steering wheel angle and the on/off sta-

tus of components in display panel. The control field contains the size of the data field. The

cyclic redundancy check (CRC) field detects any error in the data packet. The acknowledge-

ment field confirms the receipt of a valid CAN packet.

Intrusion Detection with Machine Learning

Intrusion detection techniques have been actively studied to help the conventional network

resist malicious attacks. In literature quite a number of the intrusion detection techniques are

developed based on machine learning techniques, based on the assumption that the patterns of

the attack packets differ from those of the normal packets. In [34–36] artificial neural networks

(ANN) and support vector machine (SVM) are applied to the intrusion detection, using a sta-

tistical modeling on a packet data. In [46] a frequency-based encoding method is used for a

packet feature in ANN and SVM. The aforementioned works are based on supervised machine

learning techniques, and, thus a number of labeled data sets are required in the training. As

compared to the approach, Kayacik et al. employ an unsupervised machine learning technique

such as a self-organized feature map (SOM) for network intrusion detection.

Fig 2 shows a common architecture of the IDS based on machine learning. The IDS includes

various modules for gathering and analyzing a large amount of data packets. Typically, the

monitoring module detects a type of an incoming packet after feature extraction. The profiling

module contains the features trained off-line. If the monitoring module identifies a new attack

type, the profiling module may update the database of the profiling module for upcoming

packets.

Deep Learning for Classification

Deep learning refers to a machine learning technique using an architecture comprising a num-

ber of hierarchical layers of non-linear processing stages. The architecture can be categorized

Fig 1. CAN packet syntax.

doi:10.1371/journal.pone.0155781.g001
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into two types, i.e., a discriminative deep architecture and a generative deep architecture,

depending on how the architectures are exploited [47]. The discriminative deep architecture

provides abilities for pattern classification with the supervised learning as in the conventional

feed-forward artificial neural networks (ANN). The deep structure, namely, deep neural net-

work (DNN) can be augmented with multiple hidden layers from the ANN structure.

However, the augmented neural networks are inefficiently trained using the back-propaga-

tion learning with a gradient descent optimization due to the vanishing gradient problem [48].

In the backpropagation, the gradient of the error surface is computed in each layer while the

gradient exponentially decreases with the number of the layers, thus causing a extremely slow

convergent speed. To prevent the problem, the generative deep architecture characterizing the

correlation of the observed data and the associated classes is used for initializing parameters of

the discriminative architecture [49], called the unsupervised pre-training scheme. In [49], the

weight parameters interconnecting nodes in adjacent layers are efficiently trained using a top-

down approach by considering the nodes as restricted Boltzmann Machines (RBM). After the

pre-training, fine-tuning is performed using the gradient descent method with the supervised

learning as in the conventional feed-forward ANN [50]. The deep belief networks (DBN) [45]

as a probabilistic generative model include several layers of stochastic hidden units on top of a

single bottom layer of observed data to efficiently solve the vanishing gradient problem [49,

50]. The DBN structure is shown in Fig 3(a) where the top-two layers contain undirected con-

nections, and the lower layers contain directed connections to the layers below. In this top-

down manner, the weight vector wn is generated to form the visible data vector v, and the set of

wn is used for initializing the parameters of the proposed classifiers later. The solution is used

similarly for many practical applications [41, 43, 51] using the DBN learning structures, and,

therefore adopted in the proposed technique to pretrain the parameter as well.

Proposed Technique

Proposed Intrusion Detection System with Deep Neural Network
Structure

The proposed intrusion detection system considers a general type of an attack scenario where

malicious data packets are injected into an in-vehicle CAN bus. In-vehicular networks are

accessed from the mobile communication links [20] such as 3G, 4G, and WIFI or a self-diag-

nostic tool such as OBD paired with the driver’s mobile device [29]. The proposed intrusion

Fig 2. Architecture of IDS based onmachine learning techniques.

doi:10.1371/journal.pone.0155781.g002
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detection system monitors broadcasting CAN packets in the bus and determines an attack, as

shown in Fig 4.

Our IDS design consists of two main phases, i.e., the training phase and the detection phase

as in the conventional machine-learning based IDS, as shown in Fig 5. The training phase is

performed off-line as the training is time-consuming. In the training phase a CAN packet is

processed to extract a feature that represents a statistical behavior of the network. Each training

CAN packet has its binary label, i.e., either a normal packet or an attack packet in supervised

learning. Thus the corresponding features are expected to represent the label information. We

adopt the DNN structure to train the features, in which the weight parameters on the edges

connecting the nodes are obtained. The detection phase is also shown in Fig 5. The same fea-

ture is extracted from an incoming packet through a CAN bus, and the DNN structure com-

putes with the trained parameters to make the binary decision.

The learning structure should be configured for the supervised learning as the DBN model

in Fig 3(a) provides unsupervised learning mechanism. To this aim, the final classification

layer including label information is added to the top layer of the DBN model to construct the

discriminative deep learning structure. Fig 3(b) shows the modified structure into the deep

feed-forward ANN structure where the structure is trained with the bottom-up supervised

learning manner, owing to the label information y. It is highlighted that the weights wi in the

hidden nodes of the DBN structure are obtained from the unsupervised pre-training at first.

However, the parameters are used only for initializing the weights, and, they are fine-tuned by

using the gradient descent method in the deep feed-forward ANN structure later.

Fig 3. (a) DBN structure with n hidden layers built with a top-downmanner and (b) DNN structure involving the pre-
trained wight parameters in n hidden layers built with a bottom-upmanner.

doi:10.1371/journal.pone.0155781.g003
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CAN Packet Feature

CAN feature is an abstract representation of a CAN packet. The feature is designed by consid-

ering computational efficiency. In other words, the feature is extracted directly from a bit-

stream of a CAN packet so that the decoding is not necessary during the extraction. The

occurrences of bit-symbols in a data packet are taken into an account. In particular We choose

the DATA field that includes 64 bit positions (= 8 Bytes) in the CAN syntax and investigate the

probability distributions of the bit-symbols. Mathematically the data vector po 2 R
64 is given

as,

po ¼ fPðb0Þ; Pðb0Þ; . . . ; Pðb63Þg; ð1Þ

where P(bi) is the probability of a bit-symbol “1” observed in the i-th bit position, and

p ¼ LðpoÞ; ð2Þ

where the function L : R64 ! R
64 is the logistic function: if P(bi) is greater than a half, the

probability is mapped to 1. Otherwise, it is mapped to 0.

All the bit positions in the DATA field may be used for generating the feature. However, the

dimension can be reduced by considering specific semantics in the corresponding syntax ele-

ment. The proposed technique regards mode information and value information according to

the semantics. The mode information represents a command state of an ECU, for example,

controlling wheels, and the value information represents the value of the mode, for example,

the wheel angle or the speed, as shown in Fig 6. The mode information is constant in a short

period, while the value information may change with some noises. In the proposed technique

the value information is only used for the training phase. The usage of the mode information

will be shown in the detection phase.

Fig 4. Attack scenario in the connected car.

doi:10.1371/journal.pone.0155781.g004
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Denote pv is the data vector reduced from p. Then the feature vector v at time instance n is

generated as,

vðnÞ ¼ pvðnÞ � pvðn� 1Þ; ð3Þ

where� is an exclusive-or operator applied to each position of bits in the vector.

Fig 5. Overview of the proposed intrusion detection system.

doi:10.1371/journal.pone.0155781.g005
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Training the Deep Neural Network Structure

The learning mechanism of the proposed DNN structure to classify a normal packet and an

attack packet is explained. Fig 7 shows an input layer, multiple hidden layers, and an output

layer. The feature vector is inputted to the input nodes of the structure. Each node in Fig 7

computes an output with an activation function using rectified linear unit (ReLU), and the lin-

ear combinations of the outputs are linked to the next hidden layers.

Considering a supervised learning, there is a training set {(v1, y1), (v2, y2),. . ., (vK, yK)} of K

samples. The data vector v is the feature vector consisting of the probability of the bit-symbol

“1”, and y is the binary label information, assigned to each training sample. In the learning

phase, the input feature v goes through the visible nodes at the bottom of the neural network

structure, in which initial weights are given by the DBN learning. Then, the weight vectors are

fine-tuned in sequel. For this, we minimize a cost function C given as the mean squared error

function between the prediction value and the output:

Cðw; v; yÞ ¼
1

2
k hwðvÞ � yk2; ð4Þ

where w is the set of the weights in the network to be trained, y is the label, and hw(v) is a

Fig 6. The occurrences of a bit-symbol “1” in theDATA field of 8 Bytes, consisting of mode
information and value information, at time t.

doi:10.1371/journal.pone.0155781.g006
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hypothesis function yielding an estimated output. The overall cost function for a batch training

is defined as

CðwÞ ¼
1

K

X

k

Cðw; vk; ykÞ þ
l

2

XN

n

XMl

i

XMlþ1

j

ðwn
jiÞ

2
; ð5Þ

where N is the depth of the neural network,Ml is the number of the nodes in the l-th layer, and

wn
ji 2 w is the weight of the edges between a node i in the layer n − 1 and a node j in the layer n.

We want to obtain the optimal parameter set w� to achieve the minimization of the objective

function as follows:

w� ¼ argmin
w

CðwÞ; ð6Þ

which can be achieved by the back propagation algorithm. In the back propagation algorithm

the weight vectors are updated from the top layer to the bottom layer by using the stochastic

gradient method,

wn
ji ¼ wn�1

ji þ z
@

@wn�1
ji

CðwÞ; ð7Þ

where z is an adaptation parameter.

Attack Detection

The class of a testing CAN packet is predicted in the detection phase. The output is computed

with the trained weight parameters and the feature set extracted from the testing CAN packet

as in the training. The classifier provides the logistic value 0 or 1, telling if the sample is normal

packet or the attack packet, respectively.

Fig 7. Deep neural network structure in the proposed technique.

doi:10.1371/journal.pone.0155781.g007
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There can be a number of attack scenarios considered in an ECU, and the weight vectors

can be trained fitted to each scenario. The mode information is used for identifying the sce-

nario in the proposed method, so that the appropriate training set can be applied. For this, tem-

plate matching is developed in the proposed method. The template comprising the mode

information refers to the information along with the training samples used for the specific sce-

nario. Fig 8 shows an example of the template matching where the template is colored with yel-

low. As shown, if the template is matched between in the training sample and in the CAN

packet to be tested, the detector uses the corresponding trained parameters obtained from the

value information.

Experimental Results

Data Set

We simulate the in-vehicular network communicating with several ECUs and the packets in

the CAN bus as shown in Fig 9. The packets are created by the packet generator named Open

Car Test-bed and Network Experiments (OCTANE) [52] in the simulation, and they are sent

to the CAN bus. Our IDS monitors the network packets. The number of the generated packets

is about 200,000 in a simulation. To avoid the over-fitting problem, we assign 70% packets to

the training data and 30% packets to the testing data. In the attack scenario some of the packets

are injected and are manipulated to deceive the system. Note the attack packets are inserted

with some time intervals, so that they are not burst in the in-vehicle network.

Table 1 shows the CAN data packets including the identifiers (ID) and DATA fields to con-

trol ECUs, considered in the experiment. Because each ECU has a unique ID, the data packet

can be generated for the corresponding ECU. The constant bit fields in the packet syntax are

used for the mode information while the variables denoted by αi βi are used for the time-varying

Fig 8. Template matchingmethod to find the proper trained parameters.

doi:10.1371/journal.pone.0155781.g008
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value information. Furthermore we add a Gaussian noise into the value information to give

randomness.

Performance Evaluation

Wemeasure the false negative rate and the false positive rate to evaluate the classification per-

formance. RA and RN refer to the detection ratios of an attacking packet and a normal packet,

respectively, given as,

RAð%Þ ¼
DA

TA

� 100; ð8Þ

and

RNð%Þ ¼
DN

TN

� 100; ð9Þ

where TA and TN are the total number of the attack packets and normal packets, respectively,

and DA and DN are the number of the detected attack packets and normal packets, respectively.

False positive rate should be small because it is considered more important in the attack detec-

tion. To evaluate this, we show the Receiver Operating Characteristic (ROC). The curves can

be obtained by plotting pairs of the false positive rate and the hit rate with a given detection

threshold, so that it provides the means to measure the trade-off between the false positive

error and the correct detection. It is noted that a ROC curve shows a better detection perfor-

mance when the points are ploted more in the top-left corner. Fig 10 shows the ROC curve of

the proposed technique as compared to those of the artificial neural network (ANN) and the

Fig 9. Simulation configuration.

doi:10.1371/journal.pone.0155781.g009

Table 1. CAN packets used in the simulation.

CAN ID DATA field Target ECU

10F 02 α0β0 A0 B2 α1β1 α2β2 α3β3 α4β4 Engine

24F 44 α0β0 1B A5 α1β1 α2β2 α3β3 α4β4 Body control

400 00 α0β0 EF 01 α1β1 α2β2 α3β3 α4β4 Display panel

doi:10.1371/journal.pone.0155781.t001

Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security

PLOS ONE | DOI:10.1371/journal.pone.0155781 June 7, 2016 11 / 17



support vector machine (SVM) in the experiments. The curves clearly show that the proposed

technique outperforms the conventional works in the detection ratio. The detection ratio is

more than 99% when the false positive error is less than 1-2%. We also show confusion matri-

ces in Fig 11 to evaluate the quantitative detection performances. The performance of the pro-

posed method provides a significantly high detection ratio. The false positive error is only

about 1.6%, and the false negative error is about 2.8%. The total accuracy is about 97.8%

We compare the intrusion detection performances of two variations of the proposed deep

learning structure using the DNN structure to that of the conventional feed-forward artificial

Fig 10. Intrusion detection performance evaluations with ROC curves.

doi:10.1371/journal.pone.0155781.g010
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neural network with respect to the number of the layers. As shown in Fig 12, the proposed

technique yields more accurate and consist detection performance (RA + RN)/2 of the two sce-

narios than the feed-forward ANN. The ANN structure suffers from the vanishing gradient

problem, causing the unstable performances with the number of the layers. For example, the

Fig 11. Confusion Matrix Results.

doi:10.1371/journal.pone.0155781.g011
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lowest detection performances are observed when the number of the layer is 11. In contrast,

the performance of the proposed method is significantly higher than the conventional ANN

structure, but also the performance is monotonically increasing with the number of the layers.

Next we show the detection performances of two variations of the proposed method. In Fig 12,

DNN(ALL) presents the proposed method using a feature including all the bits (64 bits) in the

DATA field. DNN(M+V) uses the feature including only the value information, i.e. αi βi in

Table 1. As shown in Fig 12, DNN(M+V) is the best-performing method.

We also show the time complexity in the detection, depending on a different number of hid-

den layers in Table 2. The training time represents the measurement time needed in training

the DNN structure in a training phase, and the testing time represents the measurement time

in examining each packet over the network. The time complexity in a training is about 4-11

seconds, and, thus the training should be done off-line. However, the time complexity in a test-

ing time during the packet inspection is the only 8-9 μs for processing features per packet and

2-5ms for classifying the packets, which can be applied to a real-time application.

Fig 12. Intrusion detection performances with respect to the number of the layer.

doi:10.1371/journal.pone.0155781.g012
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Conclusion

We proposed an efficient intrusion detection system (IDS) based on a deep neural network

(DNN) for the security of in-vehicular network. We trained the parameters of DNN with prob-

ability-based feature vectors extracted from the in-vehicular network packets by using unsu-

pervised pre-training method of deep belief networks, followed by the conventional stochastic

gradient descent method. The DNN provides the probability of each class to discriminate nor-

mal and hacking packets, and, thus the system can identify any malicious attack to the vehicle

as a result. We also proposed a novel feature vector comprising the mode information and the

value information extracted from the network packets, and they are efficiently used in the

training and the testing. It was demonstrated with experimental results that the proposed tech-

nique could provide a real-time response to the attack with a significantly accurate detection

ratio about 98% on average when the computational complexity with the number of the layers

is modestly small.

Supporting Information

S1 File. CAN packets. CAN packets generated by the OCTANE software [52].
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