
Citation: Musleh, D.; Alotaibi, M.;

Alhaidari, F.; Rahman, A.;

Mohammad, R.M. Intrusion

Detection System Using Feature

Extraction with Machine Learning

Algorithms in IoT. J. Sens. Actuator

Netw. 2023, 12, 29. https://

doi.org/10.3390/jsan12020029

Academic Editors: Mohamed

Amine Ferrag, Leandros Maglaras

and Mohamed Benbouzid

Received: 6 March 2023

Revised: 21 March 2023

Accepted: 27 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of 

Actuator Networks
Sensor and

Article

Intrusion Detection System Using Feature Extraction with
Machine Learning Algorithms in IoT
Dhiaa Musleh 1, Meera Alotaibi 1, Fahd Alhaidari 2 , Atta Rahman 1,* and Rami M. Mohammad 3

1 Department of Computer Science, College of Computer Science and Information Technology,
Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

2 SAUDI ARAMCO Cybersecurity Chair, Department of Networks and Communications, College of Computer
Science and Information Technology, Imam Abdulrahman Bin Faisal University,
P.O. Box 1982, Dammam 31441, Saudi Arabia

3 SAUDI ARAMCO Cybersecurity Chair, Department of Computer Information Systems, College of Computer
Science and Information Technology, Imam Abdulrahman Bin Faisal University,
P.O. Box 1982, Dammam 31441, Saudi Arabia

* Correspondence: aaurrahman@iau.edu.sa

Abstract: With the continuous increase in Internet of Things (IoT) device usage, more interest has
been shown in internet security, specifically focusing on protecting these vulnerable devices from
malicious traffic. Such threats are difficult to distinguish, so an advanced intrusion detection system
(IDS) is becoming necessary. Machine learning (ML) is one of the promising techniques as a smart
IDS in different areas, including IoT. However, the input to ML models should be extracted from
the IoT environment by feature extraction models, which play a significant role in the detection
rate and accuracy. Therefore, this research aims to introduce a study on ML-based IDS in IoT,
considering different feature extraction algorithms with several ML models. This study evaluated
several feature extractors, including image filters and transfer learning models, such as VGG-16 and
DenseNet. Additionally, several machine learning algorithms, including random forest, K-nearest
neighbors, SVM, and different stacked models were assessed considering all the explored feature
extraction algorithms. The study presented a detailed evaluation of all combined models using the
IEEE Dataport dataset. Results showed that VGG-16 combined with stacking resulted in the highest
accuracy of 98.3%.

Keywords: intrusion detection system; Internet of Things; feature extractors; machine learning

1. Introduction

The Internet of Things has recently been one of the most important research topics. The
IoT is a new technological paradigm defined as a global network of connected electronic
devices. It aims to improve daily life by automating normal daily operations in all aspects
of life without human intervention. The number of devices connected to IoT has been raised
significantly, and an increase in attacks against IoT devices has accompanied this growth.
Security concerns about the impact of these attacks on connected devices have naturally
increased. In addition to the sensitivity of the information available on IoT devices, it was
necessary to find solutions to detect and respond to these attacks [1].

Because of its weaknesses, the Internet of Things is vulnerable to assaults and security
threats [2–11]. Researchers attempted to categorize attacks, vulnerabilities, and security
concerns on the Internet of Things so that researchers could more easily identify answers.
For example, according to the layers of the IoT architecture, the researchers categorized
the vulnerabilities, and physical security hardening is lacking. Unconfident data storage
and transfer, shortage of clarity and device management, botnets, insecure passcodes,
ecosystem interfaces, and AI-based assaults have all been concerns for devices on the IoT.
While some academics emphasized IoT’s vulnerabilities and security risks, others did not.
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Among these issues, the researchers pointed out that because IoT employs traditional
network architecture, it inherits its flaws [6]. In addition, the rise in terminal devices (end
nodes) with limited processing capabilities was one of the most significant and powerful
vulnerabilities exploited by attackers [7]. End node manufacturers design them to work
without paying attention to security concerns. As a result, these devices must be monitored
and managed to protect networks from threats and reach a higher degree of IoT security [2].
The Open Web Application Security Project (OWASP) produced a comprehensive record
of IoT attack areas and locations in IoT systems as a section of its Internet of Things
plan. In addition, it recorded applications where alleged unauthorized actions could be
encountered [12]. Following is a summary of the IoT attack areas:

a. Devices are probably the principal mechanism from which attacks could be launched,
such as memory, firmware, physical interface, web interface, or network services. In
addition, weak settings, out-of-date components, and insufficient update procedures
are critical parts of any device attackers could utilize.

b. Communication channels could also be points of attack in IoT systems. Usually,
protocols contain security failings that impact the whole system, such as denial of
service (DoS) attacks and spoofing.

c. Applications and software, generally, could be hacked due to a shortcoming in web
applications or software systems. This approach is usually utilized to steal user
passwords or spread malware files or programs.

Intrusion detection systems (IDSs) are essential security techniques to conserve net-
work security, and they are installed at a fatal location in the network [12,13]. Traditional
systems contain source and preliminary processing of data and a decision-making tech-
nique. This process contains the collection of raw data from host or network traffic. By
analyzing the network data traffic, an intrusion detection system can classify the net-
work behavior as normal or abnormal [12] and then process the features passed by the
decision-making method to recognize threats [13]. Three main ways to detect intrusions are
signature-based IDS, anomaly-based IDS, and a hybrid of signature- and anomaly-based
IDS [13]. Dynamic anomaly-based network detection systems are flexible and superior
to static signature-based network intrusion systems because the former can detect new
attacks [14]. They use artificial intelligence (AI) algorithms that are made of both machine
learning (ML) and deep learning (DL) architectures. On the other hand, IDSs detect signa-
tures and patterns and then match them with the predefined signature of misuses, which
could be worthless with unknown attacks [13]. The three significant categories of intrusion
detection systems are host intrusion detection systems (HIDSs), network intrusion detection
systems (NIDSs), and network node intrusion detection systems (NNIDSs) [13]. The HIDS
is installed on the entire network of machines and other parts of the physical and virtual
networks and protocols. The NIDS protects vulnerable network parts where the attack
opportunities are high. IDSs consider network or host-based methods to recognize and
distract attacks. These methods search for attack signatures with patterns that indicate
malignant action or suspicious activity. Based on where an IDS is searching for the pattern,
either in network traffic or log files, it is classified as network- or host-based [15].

Machine learning methods are extensively used to build network intrusion detection
systems because of their capability to grasp new intrusions [16]. To develop accurate
algorithms that can cluster, classify, and predict, it is vital to utilize considerable-size data
sets using supervised machine learning techniques such as SVM and naïve Bayes. In
addition, decision trees demonstrate their simplicity, rapid adaptability, and accuracy. In
addition, neural networks have been widely used to characterize anomaly and misuse
patterns [12,16]. Accuracy and interpretability are essential factors of artificial intelligence
models. To achieve accuracy and interpretability, machine learning and deep learning
techniques must be considered. For example, black-box algorithms provide higher accuracy,
while white-box algorithms provide feature engineering [14].
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Significance of the Study and Contributions

Threats are overwhelmingly increasing in several fields, such as IoT, online banking,
industries, and healthcare. Further, IoT usage has been widely accepted due to its suc-
cess in wearables, smart homes, and smart cities around the world. Unfortunately, IoT
devices work on public networks with bounded computing power and limited storage
and bandwidth. As a result, they are more vulnerable to assaults than other end-point
devices. Several techniques have been proposed in the literature, yet there is great room for
improvement, especially when it comes to intrusion detection.

To overcome the issues, the contributions of the undergoing study are as follows:

1- A comprehensive review of literature on the applications of machine learning and deep
learning models in intrusion detection using numerical and image-based datasets.

2- Dataset preprocessing and balancing with SMOTE technique.
3- Feature extraction using various approaches with stacked machine learning models

such as kNN, sequential minimal optimization (SMO), and random forest to distin-
guish between malicious and normal network traffic patterns.

4- Experiment for the validation of the proposed models.

The experimental results on the IEEE Dataport image dataset reveal that the proposed
techniques are promising in terms of accuracy.

The rest of the article is sectioned as follows: A comprehensive review of the related
work is presented in Section 2. Section 3 describes the methodological steps, Section 4
provides the experimental results, and Section 5 concludes the paper.

2. Related Work

This section discusses the work done in the field of primary machine learning tech-
niques used in IoT traffic.

Rose et al. [17] generated a dataset and developed a model to detect and investigate
the possibilities of utilizing network profiling and machine learning to protect IoT against
cyber-attacks. The authors suggested anomaly-based intrusion detection system profiles
and monitoring all networked devices constantly and aggressively to identify IoT device
tampering attempts and suspicious network transactions. They evaluated the suggested
methodology’s performance using regular and malicious network traffic on the Cyber-Trust
testbed. The experimental findings reveal that the suggested anomaly detection system
produces good results, with a 98.35% accuracy and 98.35% false-positive alerts.

Ali et al. [18] present a general machine learning strategy for identifying IoT devices
and evaluating the trained models against four publicly available datasets. NFStream
extracted 85 attributes from packet capture (.pcap) files to better identify IoT devices
in the network using machine learning models. The authors used the information gain
approach to choose 20 characteristics and trained six machine learning models in the tests.
In the training phase, the authors achieved high accuracy, reaching 99% for IoT device
identification using random forest and naïve Bayes classifiers.

El-Sayed et al. [19] examined and compared seven different supervised learning
algorithms with various difficulty levels to pick the best one. The seven algorithms were
separated into two groups: The category of CNN classifiers included two-layer CNN,
four-layer CNN, VGG16 and logistic regression, support vector machine, and K-nearest
neighbors, and the category of ordinary classifiers included logistic regression, support
vector machine, and K-nearest neighbors. Experimental findings reveal that the SVM
algorithm obtains the maximum performance of 94% on MobileNetv2 features because
of its rapid and steady training performance with fewer resources compared with other
models. Le K-H et al. [20] present IMIDS, an intelligent intrusion detection system (IDS)
for IoT devices. IMIDS’s core is a lightweight convolutional neural network model that
can categorize numerous cyber threats and surpasses its competitors with an average
F-measure of 97.22%. Furthermore, after being further educated by the data supplied by
the assault data generator, IMIDS’s detection performance significantly increased. These
findings show that IMIDS may be used as an IDS in IoT.
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Joo et al. [21] proposed a deep learning-based IoT intrusion detection system. The
categorization was performed with a CNN; the best score was 86.2%. Second, machine
learning classifiers were employed for the hybrid technique instead of ultimately linked
layers from the vanilla CNN, which delivered roughly 87% with the additional tree classifier.
Finally, the Xception model was merged with the bidirectional GRU, yielding the best
accuracy at 95.6%. For quicker identification and classification of new malware, Bendiab
et al. [22] propose a unique IoT technique that analyzes malware traffic based on DL and
visual representation (zero-day malware). The suggested technique detects fraudulent
network traffic at the package level, lowering detection time and optimistic outcomes
thanks to the deployed deep learning. To test the efficacy of the proposed technique, the
authors created a dataset of 1000 .pcap files of benign and virus traffic obtained from several
network traffic sources. The Residual Neural Network (ResNet50) trial findings are quite
encouraging, with a detection rate of 94.50% for malware traffic.

Six machine learning (ML) approaches were tested for their ability to identify MQTT-
based attacks [23]. Packet-based, unidirectional, and bidirectional flow characteristics were
evaluated at three abstraction levels. An MQTT simulated dataset was created and used
for the training and assessment operations. The experimental findings showed that the
suggested ML models were sufficient for the IDS needs of MQTT-based networks. Further-
more, the findings highlight the significance of employing flow-based characteristics to
distinguish MQTT-based attacks from innocuous traffic, whereas packet-based features
are sufficient for typical networking assaults. The results reveal that the model has the
highest accuracy of 99.04%. Sapre et al. [24] employed the KDDCup99 and the NSLKDD,
two widely used intrusion detection datasets, in their study. Their major objective was
to thoroughly compare both datasets by analyzing the performance of multiple machine
learning (ML) classifiers trained on them using a more extensive range of classification
criteria than prior studies. Because the classifiers trained on the KDDCup99 dataset were
20.18% less accurate on average, the authors concluded that the NSL-KDD dataset is of
better quality than the KDDCup99 dataset. This is because classifiers trained on the KDD-
Cup99 dataset were biased toward redundancy, allowing them to attain a higher accuracy
of 96.83%. Liu et al. [25] looked at assaults that might affect sensors and networks in IoT
scenarios using the NSL-KDD dataset. Moreover, the authors investigated eleven machine
learning techniques and provided the findings to identify the introduced assaults. They
showed that tree-based approaches and ensemble methods surpass the other machine learn-
ing methods evaluated through numerical analysis. With 97% accuracy, 90.5% Matthews
correlation coefficient (MCC), and 99.6% area under the curve (AUC), XGBoost is the best
of the supervised algorithms. Furthermore, the expectation-maximization (EM) technique,
which is an unsupervised approach, performs exceptionally well in identifying assaults in
the NSL-KDD dataset and beats the naïve Bayes classifier by 22.0% in terms of accuracy.

To distinguish benign from malicious nodes, Amouri et al. [26] used a methodology
that consists of two stages: in the first stage, the data are collected by dedicated sniffers
(DSs), and then the CCI is generated and is regularly sent to the super node (SN). After
that, in the second stage, the SN processes a linear regression method on the collected
CCIs from different DSs to distinguish benign from malicious nodes. Using two mobility
models, namely random waypoint (RWP) and Gauss Markov, the detection characterization
is shown for several extreme cases in the network (GM). The black hole and distributed
denial of service (DDoS) assaults are two harmful activities utilized at work. Nodes with
high-velocity situations showed detection rates of over 98%, while nodes with low-velocity
scenarios showed detection rates of approximately 90%. Fenanir et al. [27] created a
lightweight intrusion detection system (IDS) using two machine learning techniques: the
filter-based method was used to pick features due to its cheap computational cost. A
comparison of logistic regression (LR), naïve Bayes (NB), decision tree (DT), random forest
(RF), k-nearest neighbor (KNN), support vector machine (SVM), and multilayer perceptron
yielded the feature classification approach to the system (MLP). Finally, the DT method
was chosen for the system due to its excellent performance across various datasets. The
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study’s outcomes might help choose the optimum feature selection approach for machine
learning; the data suggest that the best results are 98% accuracy.

Islam et al. [28] pointed out numerous types of IoT threats and discussed shallow IDSs
in the IoT environment (such as decision tree (DT), random forest (RF), and support vector
machine (SVM)), as well as DL (deep neural network (DNN), deep belief network (DBN),
long short-term memory (LSTM), stacked LSTM, and bidirectional LSTM (Bi-LSTM))-
based IDSs. The models’ execution was assessed using five standard datasets: NSL-KDD,
IoTDevNet, DS2OS, IoTID20, and the IoT Botnet dataset. The performance of shallow/deep
machine learning-based IDSs was evaluated using several performance indicators such as
accuracy, precision, recall, and F1-score. According to the research, a machine learning IDS
surpasses shallow machine learning in detecting IoT threats; the most remarkable outcome
of the studies is the accuracy of 98.79%. Using characteristics from the UNSW-NB15 dataset,
Ahmad et al. [29] suggest feature clusters regarding its flow, Message Queuing Telemetry
Transport (MQTT), and Transmission Control Protocol (TCP). Overfitting, the curse of
dimensionality, and an unbalanced dataset are no longer issues. The proposed method
used supervised machine learning (ML) methods such as random forest (RF), support vector
machine, and artificial neural networks on the clusters. The model reaches 98.67% and
97.37% accuracy using RF in binary and multiclass classification. Utilizing RF on flow and
MQTT features, TCP features, and top features from both clusters, classification accuracies
of 96.96%, 91.4%, and 97.54% were obtained using cluster-based approaches. A two-stage
hybrid technique was proposed by Saba et al. in [30]. To increase the accuracy of the
suggested system, the genetic algorithm (GA) is first used to pick acceptable characteristics.
The support vector machine (SVM), ensemble classifier, decision tree, and other well-known
machine learning (ML) algorithms are then used. Using the NSL-KDD database, they
attained a 99.8% accuracy using 10-fold cross-validation. Based on a hybrid convolutional
neural network model, Smys et al. [31] suggested an intrusion detection system for IoT
networks that can identify many forms of assaults. The proposed paradigm may be used
in a variety of IoT scenarios. The proposed study is validated and compared to machine
learning and deep learning models. The suggested hybrid model is more sensitive to threats
in the IoT network, with a 98.6% accuracy rate. Papafotikas et al. [32] propose a digital
system incorporating a machine learning (ML)-based clustering method for identifying
suspected activities while using current supply characteristic dissipation. The K-means
clustering algorithm accompanied by supervised training is used in this prototype system.
This research demonstrated the successful identification of suspicious activity in intelligent
IoT devices. Similarly, a study in [33] proposed an IDS approach using a fused machine
learning model. Three datasets, namely KDD, CUP-99, and NetML-2020, were fused under
a novel-built machine learning-based architecture. The trained model was promising in
terms of accuracy of 95.18%.

Further, several researchers in the literature have comprehensively surveyed and
emphasized the significance of machine learning and deep learning models in the IDSs
involving IoT networks [34–37], especially in conjunction with cloud computing, namely
the Cloud of Things security aspect [38]. This is mainly because it involves several inter-
mediate public networks and stakeholders, making it more vulnerable to attacks. Table 1
summarizes related work approaches, including the techniques used, dataset type, and the
respective study’s advantages and disadvantages.
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Table 1. Summary of the literature review.

Ref. Year Dataset Type Algorithms Key Results Advantages Disadvantages

[17] 2021 Image dataset A novel IDS in the
ML framework 98.35%

A new approach to detect
malware and intrusion
using image processing

for IoT

Need resources and computing
time to achieve results and to

understand what each
image means

[18] 2021 Numerical
dataset

Random forest and
naïve Bayes

algorithms in the ML
model

99%
Using different types of

machine learning to
understand the problem

Too expensive in terms of
resources and computing time,

and the authors did not propose
any base model for the future

[19] 2021 Image dataset

Two-layer CNN,
four-layer CNN,

VGG16, CNN
classifiers,

SVM, and K-NN in
the ML model

94%

Using a hybrid technique
to extract the best features

from the images using
VGG and CNN

Too heavy classification network
and no improvement in key results

[20] 2021 Numerical
dataset

Novel convolutional
neural network in ML

model
97.22% A faster IDS

Despite the fast performance, the
model is light with the heavy

traffic amount

[21] 2021 Image dataset Convolutional neural
network (CNN) 95.6% Connected layers and

faster learning

The model uses heavy resources
and without achieving

higher accuracy

[22] 2021 Image dataset Residual Neural
Network (ResNet50) 94.50%

The model used a hybrid
approach to

detect intrusions

The authors used a small amount
of the data to achieve the findings

without testing on the
larger networks

[23] 2020 Numerical
dataset

LR, NB, k-NN, SVM,
DT, and RF 99.04% Using different

ML algorithms

The model was focused on
flow-based detection, not

packet-based detection

[24] 2019 Numerical
dataset

ANN, SVM, NBC,
and random forest 91.5% The authors used different

dataset types

The model was trained separately
on the dataset, and without

finding a model that is trained on
different intrusion features

[25] 2020 Numerical
dataset

Tree-based XGBoost,
MCC, AUC, ME,
and naïve Bayes

classifier

97% The model used an
XGBoost algorithm

The model was applied to a
couple of scenarios without

generating a model that could
handle several scenarios

[26] 2020 Numerical
dataset

Tree-based; among
the supervised

algorithms,
XGBoost ranks first,

followed by
Matthew’s correlation

coefficient (MCC),
area under the curve

(AUC),
expectation-

maximization (EM)
algorithm,

naïve Bayes classifier

90%
The model used different
approaches to tackle the

IDS problems

The model was focused on DDOS
and DOS attacks.

[27] 2019 Numerical
dataset

LR, NB, DT, RF, KNN,
SVM, and MLP 98% Applied different machine

learning algorithms

More feature selection processes
are needed to achieve

better findings

[28] 2021 Numerical
dataset

DT, RF, SVM, (DNN),
deep belief network

(DBN), long
short-term memory

(LSTM), stacked
LSTM, bidirectional
LSTM (Bi-LSTM))

98.2%
Applied different machine
learning algorithms using

different datasets

The proposed model did not
recommend specific datasets or

algorithms to be used as a
base model

[29] 2021 Numerical
dataset RF, SVM, and ANN 96.96% Applied different machine

learning algorithms

More feature selection processes
are needed to achieve

better findings

[30] 2021 Numerical
dataset

GA, SVM, ensemble
classifier, and DT 99.8% Applied hyperparameter

and K-fold

The model proposed a multiclass
without presenting the features or

the class features
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Table 1. Cont.

Ref. Year Dataset Type Algorithms Key Results Advantages Disadvantages

[31] 2020 Numerical
dataset

Different ML
algorithms in hybrid
convolutional neural

network module

98%
The model takes

advantage of deep
learning feature extraction

The model was applied to a
couple of scenarios without

generating a model that could
handle several scenarios

[32] 2019 Numerical
dataset K-means algorithms - Using clustering to tackle

the problem

The model still needs to be trained
from supervised algorithms to

achieve findings

[33] 2023 Numerical
dataset

Fused machine
learning 95.18%

Used machine learning
fusion with three datasets

(KDD, CUP-99,
NetML-2020)

Accuracy can be further fine-tuned

3. Methodology

This section includes the methodology, an overview of the dataset, data preprocessing,
and a brief description of the algorithms and techniques used for feature extractions. The
parameters used to evaluate the models are then presented. The objective of the modeling
presented in this work is to distinguish regular traffic from malicious traffic. Therefore,
several models are developed on the obtained dataset, in image format, and compared.
Figure 1 illustrates an example of a stacked model with multiple feature extractors. Firstly,
the data are pre-processed to improve model accuracy as further discussed in the subse-
quent section. Different feature extractors are then applied to extract relevant features;
individual and multiple feature extractors are used to facilitate this. Finally, different
machine learning algorithms are trained to classify the traffic.
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Figure 1. An Example of a Stacked Model.

3.1. Dataset Description

The dataset utilized in this research was obtained from IEEE Dataport [39]. The dataset
contains more than 800 samples of normal and malicious traffic in binary visualization
format for model training. It is a benchmark dataset for intrusion detection systems in the
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image format. Due to the rich visual features, it has more significance than a numerical
dataset. Furthermore, additional data are also provided in image format, generated from
the five attack scenarios presented in [39].

Figure 2 provides examples of normal and malicious traffic packages in image format.
It is clear from the examples provided that two images of normal or malicious traffic can be
significantly different and, in certain instances, maybe like the other category. Therefore, by
adopting machine learning techniques, there is an opportunity to differentiate between the
two categories with high accuracy.
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3.2. Data Preprocessing

Data preprocessing is a crucial element before applying any machine learning model.
It is required to address any inconsistency, errors, or noise in the data [40]. The model’s
performance can be significantly impacted if the data are poorly preprocessed. Data
preprocessing consists of several steps: cleaning, transformation, and feature selection. For
image preprocessing, filters are deployed to denoise the dataset. Several filters have been
developed and are widely used. In this research, the performance of the models utilizing
different filters is considered as discussed in the following sections.

3.2.1. Synthetic Minority Oversampling Technique Filter

Once the dataset is cleaned, it is essential to ensure that it is balanced. Imbalanced
datasets might have a significant impact on the performance of the overall model. One
way to balance the dataset is to reduce the number of instances of all classes to match the
number of instances of the class with the lowest number of instances. However, this will
reduce the number of training data, affecting the training process. Another approach is
using the synthetic minority oversampling technique (SMOTE) approach to handle the
imbalanced dataset [41].
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SMOTE is a technique widely used to oversample the minority class. The oversampling
is performed by generating more synthetic examples of the minority class throughout the
length of the line segments connecting some/all the minority class nearest neighbors.
Figure 3 illustrates how the newly generated samples w1 . . . w4 are generated between the
existing data under the minority class y1 . . . y4 [41].
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The SMOTE algorithm is employed using the following steps:

• For each sample, find the k-nearest neighbors.
• Then, select a random sample from the k-nearest neighbor.
• Then define the new samples as original samples plus the difference between the near-

est neighbor multiplied by a random number between 0 and 1 (new sample = original
samples + difference × random (0–1)).

• Add the newly generated samples to the minority.

3.2.2. Feature Extraction

Feature extraction in image processing reduces data dimensions while obtaining the
relevant information from the original data to improve the classification model accuracy
and maximize the recognition rate. Feature extraction is performed by extracting relevant
data, characterizing classes, and storing them in feature vectors to be inputted into the
machine learning algorithm [42].

Transfer learning models are pre-trained models on a vast dataset image dataset and
utilized as a feature extraction method, allowing the transfer of pre-gained knowledge.
For a small dataset, training a model from scratch will result in low performance due to
overfitting. Several pre-trained models based on convolutional neural network (CNN)
architectures were developed to resolve this issue, such as VGG-16, VGG-19, DenseNet,
and multilayer perceptron (MLP). These pre-trained models can be fine-tuned and used as
feature extractors [42].

Moreover, Visual Geometry Group (VGG) models can extract features from images.
Two VGG models were developed at Oxford based on two CNNs with 16 and 19 lay-
ers, widely known as VGG-16 and VGG-19. These CNN models accept input of 224 by
224 pixels in RGP format. The first layer consists of 64 neurons, and the number of neurons
increases by a factor of 2, reaching 512 neurons at the last layers [43].

DenseNet is a CNN pre-trained model like the Visual Geometry Group (VGG) models.
However, it requires fewer parameters to remove unnecessary feature maps due to feature
reuse. In DenseNet, as shown in Figure 4, all layers are connected, not only adjacent layers,
as in other CNN architectures. This allows features to be mapped to other layers without
the need for replications, reducing the number of parameters. Moreover, connecting all
layers resolves the vanishing-gradient problem, resulting in higher performance [44].
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3.2.3. Image Filter

Image filters are also widely used to map image features into feature space for input
to the training model while ensuring that the features are sufficiently descriptive of the
class. In this work, we use two filters: auto-color correlogram filter and fuzzy color and
texture histogram (FcTH) Filter. The auto-color correlogram filter, unlike color histograms,
which only describe the color distribution of an image, expresses how spatial correlation
among colors varies with distance. However, the absence of spatial information might lead
to false predictions. It is difficult for a histogram to distinguish the difference between both
images since they have similar color contexts. However, a correlogram will distinguish the
difference clearly due to the spatial information [45]. The fuzzy color and texture histogram
(FcTH) filter aims to map the visual features of an image to feature space while ensuring
that the features are sufficiently descriptive of the class. Like the auto-color correlogram
filter, the FcTH filter uses and combines color and texture information of images. A fuzzy
system produces a fuzzy linking histogram which forms several pins representing different
image colors [46]. FcTH consists of three fuzzy units. The first fuzzy unit produces a hue
saturation value (HSV) color space in 10 bins. The second fuzzy unit expands the 10 bins to
24 bins and then to 192 bins in the third unit. Then the 192-bin histogram is mapped into
eight regions in the interval 0–7 using the Gustafson–Kessel fuzzy classifier [47].

4. Experimental Results

In this section, the developed models are presented, analyzed, and compared based
on the following evaluation metrics: accuracy, precision, recall, and F1-score, given in
Equations (1)–(4), respectively [48–52].

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePostive + FalseNegative
(1)

Recall =
TruePositive

TruePositive + FalseNegative
(2)

Percision =
TruePositive

TruePositive + FalsePositive
(3)
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F − measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

4.1. Auto-Color Correlogram Filters

Several models were tested using different filters, individual algorithms, and stacked
models to obtain the most accurate results. The first four models were developed using
the auto-correlogram filter. Three models were based on individual learning algorithms,
namely KNN, SMO, and random forest, and a stacked model of both KNN and SMO was
also developed, as shown in Figure 5.
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Figure 5. Four Models with Auto-Color Correlogram Filter.

Table 2 below shows these four models’ accuracy, precision, recall, and F1-score. As
shown in the table, KNN with k = 1 has the highest accuracy of 97.5% with a precision of
98.0% when data are split 90% for training and 10% for testing. When the training set is
smaller, 70% to 30%, the random forest has the highest accuracy of 92.2% with a precision
of 94.0%.

Table 2. Comparison of Four models with Auto-Color Correlogram Filter.

Data Split Metric KNN Neighbors (K) Random
Forest SMO

Stacking (KNN + SMO),
Meta (KNN) with

Neighbors (K)

Cross-validation 10

Accuracy

K = 1

93.0% 93.3% 84.8%

K = 1

91.5%
Precision 91.4% 92.0% 76.6% 89.1%

Recall 92.5% 92.7% 93.6% 91.7%
F1-Score 0.92 0.92 0.84 0.90

70:30

Accuracy

K = 1

92.0% 92.2% 82.7%

K = 1

89.1%
Precision 92.9% 94.0% 75.4% 94.2%

Recall 88.8% 88.2% 91.3% 80.7%
F1-Score 0.91 0.91 0.83 0.87

90:10

Accuracy

K = 1

97.5% 96.6% 84.9%

K = 1

95.0%
Precision 98.0% 94.4% 75.0% 91.1%

Recall 96.2% 98.1% 98.1% 98.1%
F1-Score 0.97 0.96 0.85 0.94
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4.2. Auto-Color Correlogram and FcTH Filters

An additional five models were developed using auto-correlogram and FcTH filters.
Three models were based on individual learning algorithms, like the first four models
mentioned above, in addition to two stacked models, as shown in Figure 6.
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Table 3 presents the accuracy of these five models. As shown in the table, both random
forest and the stacked model with Jrip and random forest as base-level classifiers and SMO
as meta classifiers have the highest accuracy of 97.5% and precision of 96.2% when data are
split 90% for training and 10% for testing. However, the RF model has a higher recall of
100% compared to the stacked model, with 98.1%. When the training set is smaller, 70% to
30%, the random forest has the highest accuracy of 95%.

Table 3. Comparison of Five models with Auto-Color Correlogram and FcTH Filters.

Data Split Metric KNN Neighbors
(K)

Random
Forest SMO

Stacking (KNN +
SMO),

Meta (KNN) with
Neighbors (K)

Stacking (Jrip, RF),
Meta (SMO)

cross-
validation

10

Accuracy

K = 1

94.6% 94.7% 92.0

K = 1

93.7% 95.0%
Precision 94.0% 93.5% 86.9% 93.7% 93.9%

Recall 93.6% 94.4% 96.1% 91.7% 94.6%
F1-Score 0.94 0.94 0.91 0.93 0.90

70:30

Accuracy

K = 1

94.0% 95.0% 90.8%

K = 1

93.6% 94.4%
Precision 92.6% 93.3% 85.2% 93.7% 94.3%

Recall 93.4% 96.0% 96.3% 91.9% 93.2%

F1-Score 0.93 0.95 0.90 0.93 0.94

90:10

Accuracy

K = 1

96.6% 97.5% 92.4%

K = 1

96.0% 97.5%
Precision 96.2% 94.5% 87.7% 96.1% 96.2%

Recall 96.2% 100 96.2% 94.2% 98.1%
F1-Score 0.96 0.98 0.92 0.95 0.97
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4.3. DenseNet Transfer Model

Four additional models were developed using the DenseNet transfer model. Three
of these models were based on individual learning algorithms, like the first four models
mentioned above, in addition to a stacked model, KNN and SMO, and KNN as the meta
classifier, as shown in Figure 7.
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Table 4 below shows the accuracy of these four models. As shown in the table, the
random forest model has the highest accuracy of 96.6% with a precision of 92.9% when
data are split 90% for training and 10% for testing. When the training set is smaller, 70% to
30%, KNN, with a k value is 5, has the highest accuracy of 94.4% with a precision of 91.7%.

Table 4. Comparison of Four Models with DenseNet Transfer Model.

Data Split Metric KNN Neighbors
(K)

Random
Forest SMO

Stacking (KNN + SMO),
Meta (KNN) with

Neighbors (K)

cross-validation 10

Accuracy

K = 3

94.6% 94.1% 94.1%

K = 3

94.2%
Precision 91.7% 91.0% 92.1% 92.1%

Recall 96.1% 95.9% 94.4% 94.8%
F1-Score 0.94 0.93 0.93 0.93

70:30

Accuracy

K = 5

94.4% 93.6% 93.9%

K = 5

93.9%
Precision 91.7% 91.1% 93.7% 91.6%

Recall 96.3% 95.0% 92.5% 95.0%

F1-Score 0.94 0.93 0.93 0.933

90:10

Accuracy

K = 5

95.0% 96.6% 93.3%

K = 5

92.4%
Precision 89.7% 92.9% 92.3% 89.1%

Recall 100 100 92.3% 94.2%
F1-Score 0.95 0.96 0.92 0.92
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4.4. VGG16 Transfer Model

Then four additional models were developed using VGG-16 as the transfer model.
These four models are like the DenseNet models regarding training algorithms, as shown
in Figure 8.
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Table 5 shows the accuracy of these four models. The table shows that the stacked
model has the highest accuracy of 98.3% with a precision of 96.3% when data are split 90%
for training and 10% for testing. When the training set is smaller, 70% to 30%, KNN, with a
k value of 5, has the highest accuracy of 95.8% with a precision of 95.1%.

Table 5. Comparison of Four Models with VGG-16 Transfer Model.

Data Split Metric KNN Neighbors
(K)

Random
Forest SMO

Stacking (KNN + SMO),
Meta (KNN) with

Neighbors (K)

cross-validation 10

Accuracy

K = 3

94.2% 94.1% 93.1%

K = 3

93.7%
Precision 91.3% 91.0% 90.8% 92.4%

Recall 95.8% 95.8% 93.6% 93.2%
F1-Score 0.94 0.93 0.92 0.93

70:30

Accuracy

K = 5

95.8% 94.4% 94.7%

K = 5

94.7%
Precision 95.1% 92.7% 92.8% 93.3%

Recall 95.7% 95.0% 95.7% 95.0%
F1-Score 0.95 0.94 0.94 0.94

90:10

Accuracy

K = 5

97.5% 97.5% 94.7%

K = 5

98.3%
Precision 94.5% 94.5% 94.5% 96.3%

Recall 100% 100% 100% 100%
F1-Score 97.2% 0.97 0.97 0.98

4.5. Comparison of Different Feature Extractors

This section will evaluate the proposed models based on the feature extractors. For
cross-validation of 10, auto-color correlogram and FcTH filters resulted in the highest
accuracy of 94.7% when combined with random forest, with a precision of 93.5%, as shown
in Table 6.
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Table 6. Comparison of Different Feature Extractors for Cross-Validation of 10.

Data Split Metric KNN Neighbors
(K)

Random
Forest SMO

Stacking (KNN +
SMO), Meta (KNN)
with Neighbors (K)

Stacking (Jrip, RF),
Meta (SMO)

Auto-Color
Correlogram

Filter

Accuracy

K = 1

93.0% 93.3% 84.8%

K = 1

91.5% Not appliable (NA)
Precision 91.4% 92.0% 76.6% 89.1% NA

Recall 92.5% 92.7% 93.6% 91.7% NA
F1-Score 0.92 0.92 0.84 0.90 NA

Auto-Color
and

FcTH

Accuracy

K = 1

94.6% 94.7% 92.0

K = 1

93.7% 95.0%
Precision 94.0% 93.5% 86.9% 93.7% 93.9%

Recall 93.6% 94.4% 96.1% 91.7% 94.6%
F1-Score 0.94 0.94 0.91 0.93 0.90

DenseNet

Accuracy

K = 3

94.6% 94.1% 94.1%

K = 3

94.2% NA
Precision 91.7% 91.0% 92.1% 92.1% NA

Recall 96.1% 95.9% 94.4% 94.8% NA
F1-Score 0.94 0.93 0.93 0.93 NA

VGG-16

Accuracy

K = 3

94.2% 94.1% 93.1%

K = 5

93.7% NA
Precision 91.3% 91.0% 90.8% 92.4% NA

Recall 95.8% 95.8% 93.6% 93.2% NA
F1-Score 0.94 0.93 0.92 0.93 NA

For a 70% to 30% split, VGG-16 has resulted in the highest accuracy, when combined
with KNN, of 95.8% with a precision of 95.1%, as shown in Table 7. VGG-16 has also
resulted in the highest accuracy for a 90% to 10% data split. VGG-16 has resulted in an
accuracy of 98.3% and precision of 96.3% when combined with the stacked model, as shown
in Table 8.

Table 7. Comparison of Different Feature Extractors for 70–30% Data Split.

Data Split Metric KNN Neighbors
(K)

Random
Forest SMO

Stacking (KNN +
SMO), Meta (KNN)

with Neighbors

Stacking (Jrip, RF),
Meta (SMO)

Auto-Color
Correlogram

Filter

Accuracy

K = 1

92.0% 92.2% 82.7%

K = 1

89.1% NA
Precision 92.9% 94.0% 75.4% 94.2% NA

Recall 88.8% 88.2% 91.3% 80.7% NA
F1-Score 0.91 0.91 0.83 0.87 NA

Auto-Color
and

FcTH

Accuracy

K = 1

94.0% 95.0% 90.8%

K = 1

93.6% 94.4%
Precision 92.6% 93.3% 85.2% 93.7% 94.3%

Recall 93.4% 96.0% 96.3% 91.9% 93.2%
F1-Score 0.93 0.95 0.90 0.93 0.94

DenseNet

Accuracy

K = 3

94.4% 93.6% 93.9%

K = 3

93.9% NA
Precision 91.7% 91.1% 93.7% 91.6% NA

Recall 96.3% 95.0% 92.5% 95.0% NA
F1-Score 0.94 0.93 0.93 0.93 NA

VGG-16

Accuracy

K = 3

95.8% 94.4% 94.7%

K = 5

94.7% NA
Precision 95.1% 92.7% 92.8% 93.3% NA

Recall 95.7% 95.0% 95.7% 95.0% NA
F1-Score 0.95 0.94 0.94 0.94 NA
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Table 8. Comparison of Different Feature Extractors for 90–10% Data Split.

Data Split Metric KNN Neighbors
(K)

Random
Forest SMO

Stacking (KNN +
SMO), Meta (KNN)
with Neighbors (K)

Stacking (Jrip, RF),
Meta (SMO)

Auto-Color
Correlogram

Filter

Accuracy

K = 1

97.5% 96.6% 84.9%

K = 1

95.0% NA
Precision 98.0% 94.4% 75.0% 91.1% NA

Recall 96.2% 98.1% 98.1% 98.1% NA
F1-Score 0.97 0.96 0.85 0.94 NA

Auto-Color
and

FcTH

Accuracy

K = 1

96.6% 97.5% 92.4%

K = 1

96.0% 97.5%
Precision 96.2% 94.5% 87.7% 96.1% 96.2%

Recall 96.2% 100 96.2% 94.2% 98.1%
F1-Score 0.96 0.98 0.92 0.95 0.97

DenseNet

Accuracy

K = 3

95.0% 96.6% 93.3%

K = 3

92.4% NA
Precision 89.7% 92.9% 92.3% 89.1% NA

Recall 100% 100% 92.3% 94.2% NA
F1-Score 0.95 0.96 0.92 0.92 NA

VGG-16

Accuracy

K = 3

97.5% 97.5% 94.7%

K = 5

98.3% NA
Precision 94.5% 94.5% 94.5% 96.3% NA

Recall 100% 100% 100% 100 NA
F1-Score 0.97 0.97 0.97 0.98 NA

4.6. Analysis of the Results

In this work, seventeen models have been evaluated with different feature extractors
and different classification algorithms. The models were evaluated based on accuracy,
precision, recall, and F1-score., with more emphasis on accuracy and precision. The
objective is to have the highest accuracy with the highest precision. The objective of having
the highest precision is to ensure that minimum malicious traffic is wrongly classified as
normal jeopardizing network security.

The highest precision and accuracy are achieved when VGG-16 combines the stacked
model, KNN and SMO, and KNN as the meta classifier with k = 3, for 90% to 10% data
split. Therefore, this model was selected as the best model.

5. Conclusions

The Internet of Things is a new technological paradigm that aims to improve daily life
by automating normal daily operations in all aspects of life without human intervention.
With the continuous increase in Internet of Things (IoT) device use, more interest is shown
in internet security, specifically focusing on protecting these vulnerable devices from
malicious traffic. Such threats are difficult to distinguish, so advanced detection systems
are becoming necessary.

This study aimed to develop a model with the highest performance in distinguishing
malicious from normal traffic. Various feature extraction techniques and machine learning
algorithms were used to achieve the study’s objectives. The experiments show that feature
extraction techniques are important for attaining high performance. Moreover, VGG-16
transfer proved to give the highest accuracy and precision. This study investigated the
effect of individual and stacked machine learning algorithms. It also investigated the
impact of the data split ratio on the execution of the models. The conducted experiments
showed that the stacked model achieved the highest accuracy when combined with the
VGG-16 transfer model, achieving an accuracy of 98.3%.
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