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Abstract

One of the goals of smart environments is to improve the quality of human life in terms of comfort and efficiency. The

Internet of Things (IoT) paradigm has recently evolved into a technology for building smart environments. Security

and privacy are considered key issues in any real-world smart environment based on the IoT model. The security

vulnerabilities in IoT-based systems create security threats that affect smart environment applications. Thus, there is a

crucial need for intrusion detection systems (IDSs) designed for IoT environments to mitigate IoT-related security

attacks that exploit some of these security vulnerabilities. Due to the limited computing and storage capabilities of IoT

devices and the specific protocols used, conventional IDSs may not be an option for IoT environments. This article

presents a comprehensive survey of the latest IDSs designed for the IoT model, with a focus on the corresponding

methods, features, and mechanisms. This article also provides deep insight into the IoT architecture, emerging

security vulnerabilities, and their relation to the layers of the IoT architecture. This work demonstrates that despite

previous studies regarding the design and implementation of IDSs for the IoT paradigm, developing efficient, reliable

and robust IDSs for IoT-based smart environments is still a crucial task. Key considerations for the development of such

IDSs are introduced as a future outlook at the end of this survey.
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Introduction
Incredible developments in the routine use of electronic

services and applications have led to massive advances

in telecommunications networks and the emergence of

the concept of the Internet of Things (IoT). The IoT is

an emerging communications paradigm in which devices

serve as objects or “things” that have the ability to sense

their environment, connect with each other, and exchange

data over the Internet [1, 2]. By 2022, one trillion IP

addresses or objects will be connected to the Internet

through IoT networks [3].

The IoT paradigm has recently been used in creat-

ing smart environments, such as smart cities and smart

homes, with various application domains and related ser-

vices. The goal of developing such smart environments

is to make human life more productive and comfortable

by solving challenges related to the living environment,
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energy consumption, and industrial needs [4]. This goal

is directly reflected in the substantial growth in the avail-

able IoT-based services and applications across different

networks. For example, the Padova Smart City in Italy

is a successful example of a smart city based on an IoT

system [5].

Smart environments consist of sensors that work

together to execute operations. Wireless sensors, wire-

less communication techniques, and IPv6 assist in the

expansion of smart environments. Such environments are

wide ranging, from smart cities and smart homes to smart

healthcare and smart services. The integration of IoT sys-

tems and smart environments makes smart objects more

effective. However, IoT systems are susceptible to various

security attacks, such as denial-of-service (DoS) attacks

and distributed denial-of-service (DDoS) attacks. Such

attacks can cause considerable damage to the IoT services

and smart environment applications in an IoT network.

Consequently, securing IoT systems has become a major

concern [1]. For example, on Friday, October 21, 2016, a

series of DDoS attacks were launched across the US that

exploited the security vulnerabilities in IoT systems [6].
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These attacks affected IoT devices, websites and online

services such as Twitter, Netflix, and PayPal.

An intrusion detection system (IDS) is a security mech-

anism that works mainly in the network layer of an IoT

system. An IDS deployed for an IoT system should be

able to analyze packets of data and generate responses

in real time, analyze data packets in different layers of

the IoT network with different protocol stacks, and adapt

to different technologies in the IoT environment [3]. An

IDS that is designed for IoT-based smart environments

should operate under stringent conditions of low pro-

cessing capability, fast response, and high-volume data

processing. Therefore, conventional IDSs may not be fully

suitable for IoT environments. IoT security is a continu-

ous and serious issue; thus, an up-to-date understanding

of the security vulnerabilities of IoT systems and the

development of corresponding mitigation approaches are

required.

This article offers a comprehensive review of IDSs as a

security solution for IoT-based smart environments. The

primary goal of this study is to present the most recent

designs and approaches for IDSs operating in IoT-based

environments. Although related surveys have been pub-

lished in the literature [3, 7], this article focuses on the

important factors that affect IDS performance in smart

environments, such as the detection accuracy, false posi-

tive rate, energy consumption, processing time, and per-

formance overhead. In addition, this article introduces a

solid foundation for the development of IDSs for IoT-

based smart environments.

This study offers multiple key contributions. First, a full

preliminary analysis of IoT systems, smart environments,

and IDSs is presented. Second, the study confirms that

traditional IDSs cannot satisfy IoT security requirements

due to the large diversity of IoT networks and proto-

cols. For instance, IPv6 over low-power wireless personal

area networks (6LoWPAN) is not a protocol that is used

in traditional telecommunications networks. Third, the

common features that can be ported from traditional IDSs

to IoT-based IDSs are emphasized. This third contribution

emerges from the integration of the previous surveys [3, 7]

to summarize the features, advantages and disadvantages

of all IDSs designed for IoT-based systems. Fourth, this

work introduces a future outlook on IDSs for IoT environ-

ments with a focus on the strengths and weaknesses of the

current IDSs. Additionally, this study presents new rec-

ommendations for designing IDSs that satisfy the security

requirements of IoT-based smart environments.

This survey focuses on IDSs for the IoT paradigm, inde-

pendent of any specific technology or protocol; however,

readers who are interested in learning more about IoT

enabling technologies and protocols such as low-power

wide-area network (LPWAN) technologies, long range

(LoRa) technology, the low power WAN protocol for

Internet of Things (LoRaWAN), the 6LoWPAN protocol,

or the constrained application protocol (CoAP) may refer

to [8–11] for further details.

The remainder of this paper is organized as follows.

“The IoT paradigm” section discusses various definitions

and architectures relevant to the IoT context. This section

also highlights the importance of cloud computing sys-

tems for IoT-based smart environments and the chal-

lenges of applying this combination of systems in the real

world. Definitions, goals and challenges related to smart

environments, with a focus on smart cities, are discussed

in “IoT and smart environments” section. “Security chal-

lenges in IoT-based smart environments” section reviews

the security challenges in IoT-based smart environments

in relation to the various layers of the IoT architecture

and highlights some practical open challenges facing real-

world IoT networks. “Intrusion detection systems (IDSs)”

section provides preliminary information about the defi-

nitions relevant to IDSs, the different types of IDSs and

the detection techniques used in these systems. A sur-

vey of IoT-oriented IDSs that either can be applied in

or are specifically designed for smart environments is

presented in “IDSs designed for IoT systems” section.

“Discussion and future outlook” section discusses recom-

mendations concerning IDSs implemented for IoT-based

smart environments. Finally, conclusions and plans for

future work are reported in “Concluding remarks” section.

The organization of this paper is presented visually in

Fig. 1.

The IoT paradigm
The IoT concept has been established since the found-

ing of the Auto-ID Center at the Massachusetts Institute

of Technology (MIT) in 1999. The Auto-ID Center cre-

ated the electronic product code (EPC) number, which

depends on radio frequency identification (RFID), in 2003.

This idea is the crucial technology of the IoT [12].

However, the IoT is a well-established paradigm, and

it is defined in several ways from various perspectives.

Thiesse et al. [13] defined the IoT as consisting of hard-

ware items and digital information flows based on RFID

tags. The IoT definitions and architectures provided by

various standards and industrial organizations will be

described in the following.

The Institute of Electrical and Electronics Engineers

(IEEE) defines the IoT as a collection of items with

sensors that form a network connected to the Inter-

net [12, 14]. The International Telecommunication Union

(ITU) defines the IoT through three dimensions, as a

network that is available anywhere, anytime, and by any-

thing and anyone [15]. The European Telecommunica-

tions Standards Institute (ETSI), rather than using the

expression “Internet of Things (IoT)”, defines machine-

to-machine (M2M) communications as an automated
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Fig. 1 The flow of this article, separated into two levels; level 1 describes the main topics, and level 2 describes the detailed points

communications systemthatmakesdecisions and processes

data operations without direct human intervention [16].

The Coordination and Support Action for Global RFID-

related Activities and Standardisation (CASAGRAS)

project has created a new concept of the IoT that encom-

passes two viewpoints: the connection of physical objects

with virtual objects over a global network without any

human intervention to the greatest extent possible [17]

and the incredible increase in IoT applications within

traditional networksdue to the extent of IoTmarketing [17].

Moreover, Cisco, an industrial organization, works on

IoT technology under the title of the Internet of Every-

thing (IoE). Cisco has summarized the IoE concept as a

network that consists of people, data, things, and pro-

cesses. Thus, information and actions are created in and

moved through this network [18].

IoT system architectures

Regarding IoT design, IEEE is working on a project (IEEE

P2413) to determine the IoT architectural framework. The

scope of this project is to describe the IoT domains and the

various applications in these domains [19]. This IoT archi-

tecture is divided into three layers: the application layer,

the networking and data communications layer, and the

sensing layer.

According to [20–22], the general architecture of the

IoT is divided into five layers that span three domains,

namely, the application domain, the network domain, and

the physical domain; thus, the IoT can be customized to

fit the needs of different smart environments. The appli-

cation domain encompasses management and utilization.

The network domain is responsible for data transmis-

sion. The physical domain is responsible for information

collection. The layers of the general IoT architecture are

shown in Fig. 2. The functionality of the different layers is

discussed in the following.

The perception layer is a hardware layer that con-

sists of sensors and physical objects in different forms.

These hardware elements provide identification, infor-

mation storage, information collection, and information

Fig. 2 The general architecture for the IoT. The general architecture for the IoT, which consists of five layers according to [22]
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processing. The information output from this layer is sent

to the next layer (the network layer) to be transmitted to

the processing system [22].

The network layer is a transmission layer that trans-

fers the information from physical objects or sensors to

the processing system over secure lines using a com-

munication system. This communication system can be

either wired or wireless and can be based on different

technologies, depending on the physical object or sensor

components. The information output from this layer is

sent to the next layer (the middleware layer) [22].

The middleware layer is responsible for service man-

agement over IoT devices to create connections between

IoT devices that provide the same service. Moreover,

the middleware layer stores the information coming

from the network layer in a database to facilitate

decision-making on the basis of information processing

operations [22].

The application layer is responsible for the global

management of IoT applications. The application layer

depends on the information processed in the middle-

ware layer. Moreover, the application layer depends on

the specifics of the different implemented IoT applica-

tions, such as smart industry, building, city, and health

applications [22].

The business layer is also responsible for the global

management of IoT applications as well as service man-

agement over IoT devices. The business layer creates a

business model that depends on the information pro-

cessed in the application layer and on the analysis of the

results of these information processing operations [22].

Cloud computing and the IoT

IoT systems connect an enormous number of devices and

sensors exchanging an enormous amount of data and sup-

porting a massive number of services. The management

and analysis of these data pose certain special require-

ments, such as powerful processing, massive storage and

high-speed networking capabilities [23].

Cloud computing offers high computational power,

a massive storage capacity, and configurable resources

with virtualization capabilities for manipulating the large

amounts of data collected from IoT-based smart environ-

ments. With the integration of cloud computing systems

and IoT-based smart environments, smart things can be

easily accessed and managed at any time and place, and

better services can be provided through the IoT model

[23, 24].

According to [25], one of the important challenges in

employing a cloud computing system for the IoT is the

synchronization between different cloud vendors. A sec-

ond challenge is achieving compatibility between general

cloud service environments and IoT requirements. Secu-

rity challenges are the main factor hindering the adoption

of cloud computing by businesses and government orga-

nizations [26]. Thus, the ability to respect the necessary

security constraints to fulfill the needs of the IoT in a

cloud computing platform is a vital requirement. A robust

and efficient security solution such as an IDS is one possi-

ble option. Moreover, standardization, enhancement, and

management for the deployment of IoT systems and their

connection to the cloud are additional challenges that

should be taken into consideration.

IoT and smart environments
The objective of smart environments is to make human

life more comfortable and more efficient by using sen-

sors. IoT-based smart environments enable the effective

realization of smart objects. By means of an IoT net-

work, sensors can be monitored and controlled remotely.

According to Navigant Research, the global smart city

services market is expected to increase from 93.5 bil-

lion US dollars in 2017 to 225.5 billion US dollars

by 2026 [27].

Ahmed et al. [28] state that “The term smart refers to the

ability to autonomously obtain and apply knowledge, and

the term environment refers to the surroundings”. A smart

city is one type of smart environment. The core element of

a smart city is an integrated information center operated

by the IoT service provider, which provides information

on services such as electricity, water, and gas.

Smart health, smart industry, smart buildings and smart

homes are other types of smart environments. The objec-

tive of such smart environments is to provide services via

smart methods based on the information collected by IoT-

enabled sensors. The architecture of such IoT-based smart

environments is shown in Fig. 3.

Smart environments based on the IoT paradigm have

certain special characteristics, and hence, special needs

arise in the deployment of such environments. For

instance, remote monitoring and remote control capabili-

ties are required to allow smart objects to collect and pro-

cess data and to execute operations remotely. Moreover,

the ability to make decisions is an important characteristic

in such a system. A smart object should be able to make

intelligent decisions without human intervention by using

data mining and other techniques for extracting useful

data.

By virtue of these characteristics, smart environments

offer certain features that can be used to enhance the

quality of service (QoS) of user applications. Real-time

information is one of these features. Smart objects can

collect and analyze data and make intelligent decisions

in real time. Moreover, the cost-effectiveness of cloud

applications can be used to increase the QoS of smart

environment applications. The integration of smart and

IoT environments offers new opportunities with respect

to the QoS of services and applications.
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Fig. 3 IoT-based smart environments. The architecture of the IoT and the extent of the IoT market according to [14]

IoT technology for developing smart cities

Many national governments are working on the informa-

tion and communication technology (ICT) infrastructure

to solve the problems arising in traditional public man-

agement affairs. One of the most modern and effective

solutions is to establish a smart city [5]. The smart city

concept is one facet of the idea of smart environments.

There are many benefits of converting traditional public

services and resources into a form that takes advantage of

the smart city concept, including increasing the quality of

public services and reducing the operating costs of public

administration [29]. However, the management and exe-

cution of public services in a smart city require a powerful

network, such as an IoT network.

Additionally, there are many barriers to the establish-

ment of an IoT-based smart city. The novelty, complex-

ity and technical challenges of IoT systems present the

greatest difficulty. Furthermore, in the absence of widely

accepted definitions for smart city operations, political

and financial barriers prevent the smart city concept from

being effectively applied.

The Padova Smart City in Italy is a successful exam-

ple of a smart city that has overcome these barriers. The

main goal of establishing the Padova Smart City is to

develop ICT solutions for public administration systems

using different types of data and technology [5].

The implementation of the IoT paradigm for creat-

ing smart environments, particularly smart cities, faces

several technical challenges. Among these, precision,

latency and available bandwidth have important effects in

many smart environments, such as industrial and health-

care environments. Because of the need to support an

increasing number of users and smart objects in IoT

networks and the corresponding generation of increas-

ingly large amounts of data, scalable computing platforms,

such as cloud computing, are necessary. Such platforms

can improve the performance of data management ser-

vices in IoT systems and the QoS of smart environment

applications [30].

Security challenges in IoT-based smart
environments
The security of IoT systems is a serious issue due to

the increasing numbers of services and users in IoT

networks. The integration of IoT systems and smart

environments makes smart objects more effective. How-

ever, the impacts of IoT security vulnerabilities are very

dangerous in critical smart environments used in fields

such as medicine and industry. In IoT-based smart envi-

ronments without robust security systems, applications

and services will be at risk. Confidentiality, integrity,

and availability are three important security concepts

of applications and services in IoT-based smart envi-

ronments; thus, to address these concerns, information

security in IoT systems requires greater research focus

[2]. For example, IoT-based smart homes face security
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and privacy challenges that span all layers of the IoT

architecture [31].

The creation of smart environments in the real world

faces two notable barriers: the security of IoT systems and

the complexity and compatibility of IoT environments.

Attacks such as DoS or DDoS attacks on IoT networks

affect IoT services and thus affect the services provided by

smart environments.

Researchers study the security challenges of the IoT

from many different points of view, one of which is the

security vulnerability of IoT communication protocols

[32]. This survey focuses on IDSs for the IoT paradigm,

independent of any specific protocol; thus, this study

focuses on the security challenges facing IoT systems

on the basis of the IEEE definition and the general IoT

architecture.

The security challenges in IoT systems are related to

security issues arising in the different IoT layers. Physical

damage, hardware failure, and power limitations are chal-

lenges faced in the physical layer. DoS attacks, sniffing,

gateway attacks, and unauthorized access are challenges

relevant to the network layer. Malicious code attacks,

application vulnerabilities, and software bugs are chal-

lenges faced in the application layer [33].

According to [34], the security-related problems of

any IoT system can be categorized into four types:

authentication and physical threats, confidentiality risks,

data integrity issues and privacy problems. The relations

between these groups are shown in Fig. 4. The security

problems arising in the different IoT layers are concisely

discussed below.

• The authentication-related problem and physical

threats are the first challenges that affect an IoT sys-

tem. The perception layer includes many IoT devices,

such as sensors, that depend on their own security

systems; thus, they are susceptible to physical attacks.
• Confidentiality-related risks arise between IoT devices

and the gateways in the network layer. The resource-

constrained nature of the low-level devices in IoT

systems poses an indirect challenge with regard to the

confidentiality of data transmission in IoT networks

[35].
• The third class of security challenges concerns the

data integrity between services and applications. Data

integrity problems emerge when spoofing attacks or

noise affect an IoT system. DoS, DDoS, and probe

attacks are arbitrary attacks that can harm IoT appli-

cations and services.
• The challenges of the fourth type are related to pri-

vacy. Information privacy is an important aspect of

security in IoT systems [36]. Different IoT compo-

nents use different types of object identification tech-

nologies; thus, every object has its own identification

Fig. 4 The security challenges in the different IoT layers. The four

types of security problems arising in the IoT model are associated

with the different layers of the IoT architecture

tag, which carries personal, location and movement

information. Managing and monitoring the applica-

tions and services in an IoT system mean placing

information privacy at risk; for example, using a sys-

tem based on a deep packet inspection technique for

trusted operations within an IoT system is consid-

ered to be a violation of information privacy [37]. Any

intrusive accesses to the management system with-

out permission threaten the information privacy of the

IoT users [34].

Real-world applications of IoT systems face many open

challenges. The open security challenges affecting IDS

operations identified by [20, 22, 33, 38] are discussed

below.
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• A smart environment that integrates IoT technol-

ogy is considered to be a complex system because

it consists of different products from different com-

panies based on different technologies that do not

share a universal language. Therefore, standardization

is another important aspect of security in IoT systems.

Creating a standard IoT architecture based on one

standard technology for all vendors and manufactur-

ers would enhance the interoperability of the security

functionalities of all objects and sensors in an IoT sys-

tem. The success of this integration will depend on

collaboration among companies to create a universal

standard. Such standardization will greatly facilitate

IoT network security.
• A single successful penetration of one or more end

devices can threaten the security of an entire IoT sys-

tem and cause harm to its applications and services,

especially from an industrial point of view [39]. Thus,

the implementation of a strong security mechanism in

an IoT system depends on the strength of the secu-

rity for individual IoT devices, which in turn depends

on power and memory factors. Consequently, power

and memory limitations are considered to pose indi-

rect security challenges in IoT systems. To address

these challenges, lightweight security solutions and

lightweight encryption and decryption methods are

required. These solutions and methods must be appli-

cable in different IoT domains and must satisfy the

security requirements without affecting the QoS.

Intrusion detection systems (IDSs)
IDSs: a historical overview

Monitoring and analyzing user information, networks,

and services through passive traffic collection and analy-

sis are useful tools for managing networks and discovering

security vulnerabilities in a timely manner [40, 41]. An

IDS is a tool for monitoring traffic data to identify and

protect against intrusions that threaten the confidentiality,

integrity, and availability of an information system [42].

The operations of an IDS are schematically illustrated in

Fig. 5.

The operations of an IDS can be divided into three

stages. The first stage is the monitoring stage, which relies

on network-based or host-based sensors. The second

stage is the analysis stage, which relies on feature extrac-

tion methods or pattern identification methods. The final

stage is the detection stage, which relies on anomaly or

misuse intrusion detection. An IDS captures a copy of the

data traffic in an information system and then analyzes

this copy to detect potentially harmful activities [43].

The concept of an IDS as an information security sys-

tem has evolved considerably over the past 30 years.

During these years, researchers have proposed various

methods and techniques for protecting different types

of systems using IDSs. In 1987, Denning presented an

intrusion detection model that could compare malicious

attack behavior against the normal model for the system

of interest [44].

In 2000, Axelsson [45] surveyed 20 research projects

on IDSs. He listed fourteen IDSs relying on host-based

methods, two IDSs relying on network-based methods

and three IDSs relying on both host-based and network-

based methods. However, the IDS model used in those

studies was out of date and depended on the local machine

more than on the network traffic during the analysis

stage.

In 2013, Ganapathy et al. [46] presented a sur-

vey on intelligent techniques for feature selection and

classification-based intrusion detection in networks. This

survey considered fuzzy techniques, neural networks,

genetic algorithms, neuro-genetic algorithms, particle

swarm intelligence and rough sets for Internet secu-

rity protection and QoS enhancement. Moreover, these

authors proposed new feature selection and classification

Fig. 5 IDS operations. IDS operations can be divided into the monitoring stage, the analysis stage and the detection stage



Elrawy et al. Journal of Cloud Computing: Advances, Systems and Applications            (2018) 7:21 Page 8 of 20

algorithms. In their experiment, they used 19 flow-based

features comprising basic features, packet content features

and traffic features.

In 2014, Mitchell and Chen [47] surveyed 60 papers

on IDSs designed for wireless environments. Their survey

revealed the strengths and weaknesses of IDS tech-

niques for wireless local area networks (WLANs), wire-

less mesh networks (WMNs), wireless personal area

networks (WPANs), wireless sensor networks (WSNs),

cyber-physical systems (CPSs), ad hoc networks and

mobile telephony.

Mitchell and Chen [47] proved that an anomaly-based

IDS is the most suitable design for mobile telephony sys-

tems. However, such IDSs face challenges in terms of their

high false positive rate and computational complexity [47].

High false positive and false negative rates reduce the QoS

of a mobile network system. If any user packet is dropped

by mistake, the user will suffer a billing error, and the user

packet will be delayed [47]. Anomaly-based IDSs also face

challenges with regard to illegal analysis methods, such as

packet-based methods, that infringe on user privacy [47].

This survey proposed the detection latency as a critical

metric for use in future research.

Also in 2014, Butun et al. [48] surveyed 18 papers focus-

ing on mobile ad hoc networks (MANETs) and 17 papers

focusing on WSNs in their survey on IDSs in WSNs.

These authors discussed the feasibility of using systems

designed for MANETs in WSNs. The possible security

attacks against WSNs were divided into two categories:

passive attacks and active attacks. These authors proved

that IDSs are very important for the security of WSNs

and that an IDS designed for a WSN must have certain

special characteristics, including low power consumption.

A WSN is a resource-constrained environment, so the

effectiveness of an IDS in a WSN depends on its effect on

the energy consumption of the network.

Butun et al. [48] recommended the use of a hierar-

chical IDS model to solve the energy consumption issue

in WSNs. In accordance with the relevant application

requirements, Butun et al. [48] recommended using a dis-

tributed IDS scheme for mobile applications, a centralized

IDS scheme for stationary applications and a hierarchical

IDS scheme for cluster-based applications.

IDSs: types andmethods

The implementation of an IDS depends on the environ-

ment. A host-based intrusion detection system (HIDS) is

designed to be implemented on a single system and to pro-

tect that system from intrusions or malicious attacks that

will harm its operating system or data [49].

A HIDS generally depends on metrics in the host envi-

ronment, such as the log files in a computer system [50].

These metrics or features are used as input to the decision

engine of the HIDS. Thus, feature extraction from the host

environment serves as the basis for any HIDS. The opera-

tional structure of a HIDS and its location in the network

are shown in Fig. 6.

A network-based intrusion detection system (NIDS)

sniffs network traffic packets to detect intrusions and

malicious attacks [50]. A NIDS can be either a software-

based system or a hardware-based system. For example,

Snort NIDS is a software-based NIDS [51]. The opera-

tional structure of a NIDS and its location in the network

are shown in Fig. 7.

Network expansion and increasing traffic volumes

necessitate the implementation of IDSs as hardware

Fig. 6 Generic architecture of a host-based IDS (HIDS). The operational structure of a HIDS and its location in the network



Elrawy et al. Journal of Cloud Computing: Advances, Systems and Applications            (2018) 7:21 Page 9 of 20

Fig. 7 Generic architecture of a network-based IDS (NIDS). The operational structure of a NIDS and its location in the network

systems, such as a smart sensor architecture [52]. For

example, field programmable gate arrays (FPGAs) can be

used as the basis of a hardware-based NIDS. The special

characteristics of FPGAs, such as their ability to support

high-speed interfaces, dynamic reprogramming and very

high-volume data processing, make FPGAs very suitable

for use in NIDSs [53].

IDSs: detection techniques

An IDS depends on algorithms for implementing the vari-

ous stages of intrusion detection. There are a vast number

of algorithms for all IDS types andmethods. Some of these

IDS algorithms will be discussed briefly in the section

titled ‘IDSs Designed for IoT Systems’.

Additionally, some of these IDS algorithms can be

used for multiple different detection techniques. Thus,

this section focuses on lightweight anomaly-based IDS

algorithms that can be used in IoT-based environments

depending on the complexity, execution time and detec-

tion time requirements. Principal component analysis

(PCA) is a lightweight algorithm that can be used for

various detection techniques in IDSs; thus, the PCA algo-

rithm will be discussed as a representative example in the

following.

Mori et al. [54] have stated that “principal component

analysis (PCA) is a commonly used descriptive multivari-

ate method for handling quantitative data and can be

extended to deal with mixed measurement level data.”

Thus, PCA has been widely applied in various fields.

As described by [55], PCA generates a set of variables

depending on the variance-covariance structure of the

original variables. These new variables are linear combi-

nations of the original variables and are fewer in number

than the original variables.

In IDSs, PCA is used as a dimensionality reduction

and detection technique. Elrawy et al. [56] used the PCA

approach to create an anomaly-based statistical and data

mining IDS that depends on the division of the principal

components into the most and least significant princi-

pal components. In this system, the detection stage relies

on the major principal component score and the minor

principal component score. In addition, PCA has been

used in intrusion detection techniques based on payload

modeling, statistical modeling, data mining and machine

learning [56–58].

Misuse-based intrusion detection

A misuse-based intrusion detection technique uses a

database of known signatures and patterns of malicious

codes and intrusions to detect well-known attacks [59].

Network packet overload, the high cost of signature

matching, and the large number of false alarms are three

disadvantages of misuse-based IDSs [60]. In addition, the

severe memory constraints in some types of networks,

such asWSNs, result in low performance of misuse-based

IDSs because of their need to store a large database of

attack signatures [61].

Moreover, the signature and pattern databases in

signature-based IDSs and pattern-matching IDSs need to

be continuously updated. Such misuse-based IDSs are

designed to detect malicious attacks and intrusions based

on previous knowledge.

Anomaly-based intrusion detection

In an anomaly-based intrusion detection technique, a nor-

mal data pattern is created based on data from normal

users and is then compared against current data pat-

terns in an online manner to detect anomalies [62]. Such
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anomalies arise due to noise or other phenomena that

have some probability of being created by hacking tools.

Thus, anomalies are unusual behaviors caused by

intruders that leave footprints in the computing envi-

ronment [63]. These footprints are detected in order to

identify attacks, particularly unknown attacks.

An anomaly-based IDS operates by creating a model

of the normal behavior in the computing environment,

which is continuously updated, based on data from nor-

mal users and using this model to detect any deviation

from normal behavior [64]. The advantages and disad-

vantages of various anomaly-based intrusion detection

techniques are shown in Table 1. These techniques will be

discussed in the following.

Table 1 A short comparison between anomaly IDS techniques

with a focus on the advantages and disadvantages of each

technique

Technique Advantages Disadvantages

Data mining 1- Models are created
automatically

1- Based on historical
data

2- Applicable in
different
environments

2- Depends on
complex algorithms

3- Suitable for online
datasets

Machine learning 1- High detection
accuracy

1- Requires training
data

2- Suitable for
massive data volumes

2- Long training time

Statistical model 1- Suitable for online
datasets

1- Based on historical
behavior

2- System simplicity 2- Detection accuracy
depends on statistical
and mathematical
operations

Rule model 1- Suitable for online
datasets

1- Based on a set of
rules

2- System simplicity 2- High false positive
rate

Payload model 1- High detection
accuracy for known
attacks

1- Privacy issues

2- Long processing
time

Protocol model 1- High detection
accuracy for a specific
type of attack

1- Designed for a
specific type of
protocol

Signal processing
model

1- High detection
accuracy

1- Depends on
complex
pattern-recognition
methods

2- Low false positive
rate

• A data mining approach is a means for extracting

knowledge from a large amount of data, analogous to

extracting gold from numerous rocks and sand [65].

The extracted knowledge is defined as interesting pat-

terns in the data [66]. Such a pattern can describe

the behavior of data from users or networks in a

computing environment. The ability to automatically

generate models that depend on the traffic description

is one of the advantages of the data mining approach.

Moreover, this approach can be applied in generalized

IDSs and in any computing environment [67]. The

data mining approach works perfectly for an online

data stream that is unbounded, continuous and rapidly

increasing in volume [68]. A procedure consisting of

a rule learning stage, a clustering stage, a classification

stage, and a regression stage is applied in the design of

an IDS based on this approach [68].
• Machine learning is a technique that depends on two

stages: the training or learning stage and the detection

or testing stage [69]. The training stage depends on

mathematical algorithms or functions that use normal

data as a reference input to learn the characteristics

of the computing environment. Then, in the detection

stage, these characteristics are used for detection and

classification [70]. Supervised learning is one type of

machine learning technique in which the character-

istics of the training dataset are used in the learning

phase to create a classification model, which is then

used to classify new unseen instances [71]. Unsuper-

vised learning is a type of machine learning technique

that depends on the features of the data without using

clustered training data [71].

A pattern classification method in machine learning

depends on pattern recognition, whereas a single clas-

sifier method depends on a single machine learning

algorithm [72, 73].
• The statistical model approach depends on statistical

mathematical operations [74]. The statistics of histor-

ical user behavior are used to create a normal model,

and any deviations from this model are then detected.

These deviations are considered abnormal data. The

statistical model approach uses statistical mathemat-

ical operations applied to a training dataset to detect

abnormal traffic from the observed traffic patterns

[75].
• The rule model approach depends on the creation

of rules for the computing environment. These rules

are extracted from data traffic patterns. A rule-model-

based IDS detects any anomalous data traffic that

breaks these rules and considers any such anomaly as

an attack [76]. The rule creation process depends on

the historical system behavior. Thus, the system must

be monitored for a long time to avoid an excessively

high false positive rate.
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• The payload model approach depends on the packet

traffic of a specific port or user for a given application.

In a signature-based IDS, the payload model is based

on pattern matching to identify attack packets with

specific characteristics [77]. By contrast, an anomaly-

based IDS that uses the payload model approach cre-

ates a model that depends on bytes or calculations

from bytes that describe the normal characteristics of

the packet payload [57].
• The protocol model approach depends on moni-

toring protocols in different layers of the comput-

ing environment. An IDS based on this approach

detects anomalies associated with a specific proto-

col or a protocol that is not present in the normal

model. A specification-based approach, a parser-based

approach or an approach based on application proto-

col keywords can be used to analyze the protocols in a

computing environment [78].
• The signal processing model approach depends on

traffic analysis using signal processing methods. An

IDS based on this approach creates a normal pattern

by capturing the statistics of normal data traffic and

the data distribution over time, and any deviation from

this pattern is considered to be an anomaly [79].

Specification-based intrusion detection

The concept of a specification-based IDS was proposed

by Ko et al. [80] in 1997. They proposed a monitoring

and detection system based on security specifications that

determine the normal behavior of the system to be pro-

tected. These security specifications are created based on

the functions and security policies for this system. Thus,

operating sequences that are not included in the system

behavior are considered security violations [81].

The most important challenge in designing a robust

specification-based IDS is creating a formalism that cap-

tures the valid operating sequences of the system. There-

fore, the cost of defining the specification “trace policy”

and the difficulty of evaluating and verifying the specifi-

cations limit the real-world applicability of specification-

based IDSs. A specification-based IDS learns the root

characteristics of attacks and detects known attacks like a

misuse-based IDS, and it also has the ability of anomaly-

based IDSs to detect unknown attacks, such as operating

sequences that are not included in the normal behavior of

the system [82–84].

IDSs: performance evaluation

The measures used to assess IDS performance depend on

four factors, namely, the numbers of true positives (α),

true negatives (δ), false positives (γ ) and false negatives

(β), as described in Table 2. Following [85, 86], these fac-

tors and the performance metrics for IDSs are described

below.

Table 2 The two-dimensional confusion matrices that define the

main factors considered in IDS performance evaluation when

predicting the anomaly and normal classes

Predicting the anomaly class

Attack Normal

Actual Attack αA βA

Class Normal γA δA

Predicting the normal class

Normal Attack

Actual Normal αN βN

Class Attack γN δN

When predicting the anomaly class, a true positive (αA)

is a correct classification that indicates an intrusion. A

true negative (δA) is a correct classification that indicates

no intrusion. A false positive (γA) is an incorrect classifica-

tion that indicates an intrusion when there is no intrusion.

A false negative (βA) is an incorrect classification that

indicates no intrusion when there is an intrusion. The

true positive rate (TPR), which describes the probability

of detecting intrusions, is calculated as:

TPR =
αA

αA + βA

(1)

The false positive rate (FPR), which describes the prob-

ability of incorrectly identifying normal behavior as an

intrusion, is calculated as:

FPR =
γA

γA + δA
(2)

The recall (R), which describes the percentage of the

total relevant records in a database that are retrieved by

searching, is calculated in the same way as the TPR. The

precision (P), which describes the percentage of relevant

records among the records retrieved, is calculated as:

P =
αA

αA + γA
(3)

The F-score (F), which describes the balance between P

and R, is calculated as:

F =
2 ∗ P ∗ R

P + R
(4)

The overall success rate, which describes the percentage

of correct classifications, is calculated as:

SuccessRate =
αA + δA

αA + δA + γA + βA

(5)

ErrorRate = 1 − SuccessRate (6)

When predicting the normal class, the same definitions

and equations can be used, except with the parameters αN ,

βN , γN and δN .
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IDSs designed for IoT systems
Due to the security challenges facing IoT systems, meth-

ods that can proactively identify new attacks are most

suitable for protecting IoT networks. Thus, a robust IDS

that can detect new attacks in IoT-based smart environ-

ments is required. An overview of the IDSs that have been

proposed for IoT systems is shown in Table 3.

According to the recommendations in recent surveys of

IDSs for IoT systems [3, 7], this paper focuses on the fea-

tures of all IDS methods for the IoT that can be applied

in smart environments. IoT systems require special secu-

rity measures with particular characteristics that are not

offered by traditional IDSs.

Liu et al. [87] proposed an artificial immune IDS for

IoT networks. This system can adapt to the IoT environ-

ment and automatically learn new attacks. The system is

based on machine learning and a signature-based model.

The adopted machine learning approach is designed after

the mechanisms of artificial immune systems. The objec-

tive of the system is to increase the security of the IoT

network; thus, it is a network IDS. This system has two

main features: self-adaptation to new environments and

self-learning of new attacks.

Kasinathan et al. [88] proposed an IDS that detects DoS

attacks based on 6LoWPAN in IoT networks. They pro-

posed a DoS detection architecture that consists of an

IDS probe, a DoS protection manager and a Suricata IDS

[89]. They designed this system based on a study of the

vulnerabilities present in IP-based WSNs. The Suricata

[89] IDS runs on a host computer; thus, the advantage of

this system is that it can overcome the problem of power

consumption, thus conserving power resources in WSNs.

Moreover, Kasinathan et al. [90] proposed an enhanced

IDS for detecting DoS attacks based on 6LoWPAN in

IoT networks. This system depends on the DoS detection

architecture presented in [88]; its main new elements are

a frequency agility manager (FAM) and security incident

and event management system (SIEM). These elements

together create a monitoring system that can monitor

large networks.

Jun and Chi [91] proposed an IDS integrated with com-

plex event-processing (CEP) technology. The benefit of

CEP technology is the ability to identify complex patterns

via real-time data processing. The event-processing IDS

architecture consists of an event filtering unit, an event

database unit, a CEP unit and an action engine unit. The

system depends on an event-processing model that uses

the rule model approach to detect intrusions.

The main features of this system are that it operates

in real time and shows high performance in detecting

intrusions in an IoT system using an event-processing

mechanism.

Krimmling and Peter [92] proposed a NIDS that

depends on machine learning for anomaly-based and

signature-based intrusion detection. The system frame-

work is designed for smart public transport applications

that use CoAP. The main features of this system are its

applicability to CoAP applications and its reliance on a

lightweight algorithm.

Butun et al. [93] proposed a NIDS for WSNs that com-

bines the statistical model approach and the rule model

approach. The system is based on a downward-IDS and

an upward-IDS in accordance with the hierarchical WSN

structure. The downward-IDS detects abnormal behavior

of the member nodes, and the upward-IDS detects abnor-

mal behavior of the cluster heads. The main features of

this system are its applicability to hierarchical WSNs and

its dependence on WSN clustering.

Surendar and Umamakeswari [82] proposed a

constraint-based specification IDS for IoT networks using

6LoWPAN. This system maintains efficiency in terms

of QoS metrics while detecting sinkhole attacks. The

system isolates malicious nodes and reconstructs the

network without these nodes. This IDS is a specification-

based IDS that depends on behavioral rules and uses the

protocol model approach.

The main features of this system are that it detects

sinkhole attacks, preserves QoS and isolates malicious

nodes.

In addition, Le et al. [83] proposed a specification-based

IDS for IoT networks using 6LoWPAN for the detection of

several topology attacks against the IPv6 Routing Protocol

for Low-Power and Lossy Networks (RPL), such as sink-

hole, rank, local repair, neighbor, and destination oriented

directed acyclic graph (DODAG) information solicitation

(DIS) attacks. In a DIS attack, for example, the attacker

increases the overhead in the network by using malicious

nodes to send DIS messages [94] with fake IP addresses

to the malicious nodes’ neighbors, forcing these other

nodes to generate DODAG information objective (DIO)

messages [83, 94]. The proposed IDS depends on ana-

lyzing the protocol behavior from trace files to learn the

route establishment and maintenance procedures for a

stable topology. The main features of this system are its

high efficiency in detecting RPL topology attacks in an

energy-efficient manner and its applicability to large-scale

networks.

Moreover, Bostani and Sheikhan [84] proposed a hybrid

IDS for IoT networks using 6LoWPAN for the detec-

tion of several RPL attacks. This system depends on

specification-based intrusion detection modules, serving

as IDS agents, in the router nodes and an anomaly-based

intrusion detection module, serving as the main IDS, in

the root node. The main features of this system are a

reduction in the number of communication messages due

to the lack of additional control messages or monitor

nodes in the IDS design and its applicability to large-scale

networks.
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Table 3 A comparison of IDSs designed for IoT systems, with a focus on the types, techniques and features of these systems with

respect to their adaptability to IoT-based smart environments

Reference Type Technique Features

Liu et al. (2011) [87] NIDS Machine learning & Signature model 1- Self-adaption 2- Self-learning

Hybrid intrusion detection

Kasinathan et al. (2013) [88] NIDS Rule model & Signature model 1- Detection of DoS attacks in 6LoWPAN

Hybrid intrusion detection 2- Decreased false alarm rate

Kasinathan et al. (2013) [90] NIDS Rule model & Signature model 1- Monitoring of large networks 2- Light weight and scalability

Hybrid intrusion detection 3- Detection of DoS attacks in 6LoWPAN

Jun and Chi (2014) [91] NIDS Rule model 1- Real-time detection

Anomaly-based intrusion detection 2- High performance in real time

Krimmling and Peter (2014) [92] NIDS Machine learning & Signature model 1- Applicability to CoAP applications

Hybrid intrusion detection 2- Light weight

Butun et al. (2015) [93] NIDS Statistical model & Rule model 1- Applicability to hierarchical WSNs

Hybrid intrusion detection 2- Dependence on WSN clustering

Surendar and Umamakeswari (2016) [82] NIDS Protocol model 1- Detection of sinkhole attacks in 6LoWPAN

Specification-based intrusion
detection

2- QoS preservation 3- Isolation of malicious nodes

Le et al. (2016) [83] NIDS Protocol model 1- Energy efficiency 2- Detection of RPL attacks in 6LoWPAN

Specification-based intrusion
detection

3- Applicability to large-scale networks

Bostani and Sheikhan (2017) [84] NIDS Protocol model & Machine learning 1- Detection of RPL attacks in 6LoWPAN

Hybrid intrusion detection 2- Real-time detection 3- Reduced number of
communication messages

Garcia-Font et al. (2017) [95] NIDS Machine learning & Signature model 1- Applicability to WSNs

Hybrid intrusion detection 2- Applicability to large-scale networks

Fu et al. (2017) [96] NIDS Protocol model & Signature model 1- Classification of attacks into categories

Hybrid intrusion detection 2- Use of GUI tools

Deng et al. (2018) [97] NIDS Machine learning & Data mining 1- Light weight

Hybrid intrusion detection 2- Improved detection efficiency with a low FPR

Amouri et al. (2018) [99] NIDS Protocol model & Machine learning 1- Low computational complexity

Hybrid intrusion detection 2- Low resource requirements

Liu et al. (2018) [100] NIDS Machine learning & Data mining 1- Adaptability to high-dimensional spaces

Hybrid intrusion detection 2- Reduced detection time 3- High accuracy on
high-volume data

Abhishek et al. (2018) [101] NIDS Statistical model 1- Real-time detection

Anomaly-based intrusion detection 2- Based on theoretical foundations with no need for
training data

Oh et al. (2014) [102] HIDS Pattern matching 1- Reduced memory size requirements

Misuse-based intrusion detection 2- Reduced processing workload 3- Increased speed

4- Scalable performance for a large number of patterns

Summerville et al. (2015) [103] HIDS Payload model 1- Low latency 2- Ultralight weight

Anomaly-based intrusion detection 3- High throughput in hardware or software
implementation

Mohan et al. (2016) [37] HIDS Rule model & Signature model 1- Simplicity

Hybrid intrusion detection 2- Self-learning

Arrignton et al. (2016) [104] HIDS Machine learning 1- High-efficiency monitoring

Anomaly-based intrusion detection 2- Cancellation of environment noise

Gupta et al. (2013) [105] Hybrid IDS Machine learning 1- Real-time detection 2- Adaptability to wireless networks

Anomaly-based intrusion detection 3- Ability to operate as both a NIDS and a HIDS

Raza et al. (2013) [106] Hybrid IDS Protocol model & Machine learning 1- Detection of RPL attacks in 6LoWPAN

Hybrid intrusion detection 2- Real-time detection 3- Light weight 4- Energy efficiency

Khan and Herrmann (2017) [107] Hybrid IDS Protocol model 1- Light weight 2- Energy efficiency

Anomaly-based intrusion detection 3- Applicability in healthcare environments
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Garcia-Font et al. [95] proposed a NIDS for WSNs that

depends on a machine learning approach and a signature

model. They used a signature-based detection engine and

an anomaly-based detection engine to improve the detec-

tion rate and the FPR. The system is designed to help

smart city administrators detect intrusions using the IDS

and an attack classification schema. The objective of the

system is to detect intrusions in WSNs in different smart

city environments. The main feature of this system is its

applicability to large-scale WSNs.

Fu et al. [96] proposed a NIDS that depends on

signature-based and protocol-based anomaly detection.

The proposed IDS structure focuses on detecting attacks

on IoT networks without being affected by the hetero-

geneity of such a network. The detection method depends

on comparing the abstracted action flows in the data pack-

ets against three databases based on the protocol type

information for each packet. These databases are a stan-

dard protocol library, an abnormal action library and a

normal action library. The proposed approach consists of

an event monitor, an event database, an event analyzer,

and a response unit. This approach provides a uniform

intrusion detection method for IoT networks based on

automata theory. The main features of this system are

the classification of attacks into three categories and the

development of graphical user interface (GUI) tools to

graphically present the abstract action flows and detect

possible intrusions.

Deng et al. [97] proposed a NIDS that depends on

the fuzzy c-means clustering (FCM) algorithm and the

PCA algorithm. The system combines a machine learn-

ing approach with a data mining approach to improve

the accuracy of intrusion detection for IoT networks. The

PCA algorithm is used for feature selection and reduction.

The FCM algorithm is used as a clustering method. The

KDD-CUP99 dataset [98] was used to evaluate the pro-

posed system. Themain features of this system are its light

weight and its ability to improve the detection efficiency

by achieving a low FPR.

Amouri et al. [99] proposed a NIDS based on the pro-

tocol model approach and machine learning. This system

consists of two detection stages. In the first stage, namely,

local detection, network behavior data are collected by

dedicated sniffers to generate a set of correctly classified

instances (CCIs) using a supervised learning approach

based on decision trees. In the second stage, namely,

global detection, CCIs are collected by supernodes to gen-

erate time-based profiles called the accumulatedmeasures

of fluctuation (AMoFs) for malicious and normal nodes

separately.

The main features of this system are its low computa-

tional complexity and low resource requirements.

Liu et al. [100] proposed a NIDS that depends on the

suppressed fuzzy clustering (SFC) algorithm and the PCA

algorithm. This system combines machine learning and

data mining to improve the accuracy of intrusion detec-

tion in high-dimensional space. The PCA algorithm is

used for feature extraction. A novel prejudgment-based

intrusion detection method using PCA and SFC is applied

that divides the dimension-reduced data into high-risk

and low-risk data. The main feature of this system is

its adaptability to high-dimensional spaces, such as the

IoT space. Moreover, the efficiency and effectiveness of

the IDS are optimized by reducing the detection time

and increasing the accuracy by means of a frequency

self-adjustment algorithm.

Abhishek et al. [101] proposed a NIDS that depends

on the packet drop probability (PDP) in an IoT device

to monitor gateways and detect malicious gateways. The

system uses the statistical model approach for anomaly-

based intrusion detection using a likelihood ratio test to

detect malicious gateways, which corrupt the communi-

cations between IoT devices and access points. One of

the disadvantages of this system is that it can only detect

malicious getaways that affect downlink packets; it does

not consider malicious getaways that affect uplink packets

from IoT devices. Themain features of this system are that

it is based on theoretical foundations instead of requiring

training data and that it can detect malicious gateways in

real time.

Oh et al. [102] proposed a lightweight malicious-

pattern-matching IDS. They stressed that traditional IDSs

are not applicable for smart objects due to the limited

memory size and battery life of these objects. Thus, a

powerful and lightweight IDS is required because of these

restrictions. Oh et al. proposed the auxiliary skipping (AS)

algorithm, the early decision with boundary searching

(EBS) algorithm, and an approach that uses both AS and

EBS (AS-EBS).

These algorithms reduce the number of matching oper-

ations that must be performed [102]. The system depends

on a pattern-matching approach based on signature detec-

tion. The advantage of this system is that it can be applied

to smart objects with limitedmemory size and battery life.

The main features of this system are the reduced mem-

ory size required for matching operations, the reduced

workload for processing on smart objects, the increased

speed of processing, and its scalable performance for a

large number of patterns.

Summerville et al. [103] proposed an ultralightweight

deep packet anomaly detection approach that can be

implemented on small IoT devices. The system is designed

with a dependence on the bitwise AND operation and

uses a payload model approach for anomaly-based intru-

sion detection. Themain features of this system are its low

latency, high throughput and ultralight weight.

Mohan et al. [37] proposed a HIDS that depends on

signature-based and rule-based anomaly detection. The
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system uses the traditional signature-based technique in

combination with Snort-rule-based intrusion detection.

Thus, the system can detect known attacks using the sig-

nature database and unknown attacks using SNORT rules.

The main challenge of this system is privacy because the

system uses a deep packet inspection technique to detect

attacks. The main features of this system are its simplicity

and self-learning capability.

Arrignton et al. [104] proposed a HIDS that depends

on a machine learning approach for anomaly-based intru-

sion detection. The machine learning approach is based

on the mechanisms of artificial immune systems. The

main features of this system are its use of a behavioral

modeling IDS (BMIDS) to decide whether behavior is

acceptable and its increased detection sensitivity achieved

by canceling out environmental noise.

Gupta et al. [105] confirmed that the threat of attacks

in IoT systems affects not only the computational envi-

ronment but also human life and the economy. For this

reason, they proposed a computational-intelligence-based

IDS for wireless communications and IoT systems. They

proposed a three-tier architecture as the basis of an intel-

ligent IDS suitable for wireless networks; this architec-

ture consists of an information storage unit, a computa-

tional intelligence and optimization unit, and a clustering

and intrusion reporting unit. This system depends on a

machine learning approach for anomaly-based intrusion

detection.

The machine learning approach applied in this IDS is

based on the swarm intelligence (SI) paradigm, which is a

specific type of computational intelligence (CI) paradigm

[105]. The system targets IP addresses to detect attacks;

thus, it has the disadvantage that it cannot be applied in

regions ofWSNs that do not use the TCP/IP protocol. The

main feature of this system is its ability to operate as both

a NIDS and a HIDS.

Raza et al. [106] proposed a hybrid-based IDS for IoT

networks using 6LoWPAN for the detection of several

RPL attacks. They proposed the SVELTE IDS, which con-

sists of a 6LoWPAN mapper unit, an intrusion detection

unit and a mini-firewall unit. The 6LoWPANmapper unit

collects information about the RPL network. The intru-

sion detection unit analyzes the data from the 6LoWPAN

mapper unit to detect intrusions. The mini-firewall unit

filters unwanted traffic. This system is designed for dis-

tributed and centralized IDS placement strategies. The

main features of this system are its light weight and energy

efficiency.

Khan and Herrmann [107] proposed three algorithms

based on the protocol model approach using a trust man-

agement mechanism for IoT networks. One of these algo-

rithms is neighbor based trust dissemination (NBTD),

which can be used to implement a NIDS in a border router

using the centralized approach. The second algorithm is

tree based trust dissemination (TTD), which can be used

to implement a HIDS in a small network with extra-high

communication costs using the distributed approach. The

third algorithm is clustered neighbor based trust dissemi-

nation (CNTD), which can be used to implement a NIDS

using the distributed approach to reduce the number of

packet exchanges compared with the NBTD algorithm.

The main features of these algorithms are their light

weight, energy efficiency and applicability in healthcare

environments.

Performance analysis

In this section, a descriptive statistical analysis is applied

to the reviewed papers based on several performancemet-

rics: the TPR, FPR, energy consumption, processing time

and performance overhead. The suitability of an IDS for

IoT-based smart environments depends on these metrics;

thus, they are the focus of this study.

In a traditional communication network, the perfor-

mance of an IDS depends on the TPR and FPR only. In an

IoT-based smart environment, the energy consumption,

processing time and performance overhead of an IDS are

also of critical interest. Because of the power and memory

limitations of IoT devices, these metrics are very impor-

tant to the QoS of an IoT system. Therefore, they are

important performance metrics for an IDS designed for

IoT-based smart environments.

Table 4 summarizes the technical details of the surveyed

papers in terms of the important performance metrics of

the proposed IDSs and their effects on smart environ-

ments. In Table 4, the symbol - indicates that no exper-

imental result is available for the corresponding metric.

The symbol * indicates that no numerical result was deter-

mined for this metric. The terms MAX and MAX range

refer to the maximum result or maximum range result,

respectively, for this metric.

Table 4 merely summarizes the experimental results

from the surveyed papers; it is not intended as a com-

parison of these results. The experiments reported in

these papers were performed under different conditions

and using databases of different sizes. Thus, a standard

IoT workbench with a standard IoT database would be

required to conduct a fair comparison.

Tables 3 and 4 illustrate that the majority of researchers

focus on three parameters during the testing stage: the

TPR, FPR and processing time. Thus, IDSs are designed

based on four features. First, such a system should be

compatible with IoT systems. Second, it should be able

to detect attacks in real time. Third, it should depend on

lightweight algorithms. Fourth, it should be scalable.

Tables 3 and 4 show that some previous IDS studies

did not present experimental results, whereas others pre-

sented only systemmethodologies that were not subjected

to real experiments. Only a few previous IDS studies
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Table 4 A descriptive statistical analysis of the surveyed IDSs in terms of the important performance metrics affecting IDS suitability in

IoT systems

Reference TPR (%) FPR (%) Energy (J) Processing time (s) Performance overhead

Liu et al. (2011) [87] - - - - -

Kasinathan et al. (2013) [88, 90] MAX range Zero - * -

TP = (20-25)

Jun and Chi (2014) [91] * * - MAX MAX memory = 730 MB

0.422 MAX CPU = 62%

Krimmling and Peter (2014) [92] * * - - -

Butun et al. (2015) [93] MAX range at MAX TPR - - -

(90-100) Zero

Surendar and Umamakeswari (2016) [82] * * MAX range - *

for one node

(0.09-0.1)

Le et al. (2016) [83] MAX at MAX TPR for one node 120 -

100 6.78 0.12

Bostani and Sheikhan (2017) [84] MAX at MAX TPR - -

100 2.98

Garcia-Font et al. (2017) [95] MAX range at MAX TPR - - -

(50-60) (25-30)

Fu et al. (2017) [96] * * - * -

Deng et al. (2018) [97] 96.8 1.6 - * -

Amouri et al. (2018) [99] 100 * - 3000 -

Liu et al. (2018) [100] MAX 1.5 - MAX range -

97.4 (0.5-0.6)

Abhishek et al. (2018) [101] MAX at MAX TPR - - -

100 5.5

Oh et al. (2014) [102] 100 Zero - MAX at best -

performance = 40

Summerville et al. (2015) [103] MAX * - - -

100

Mohan et al. (2016) [37] * * - - -

Arrignton et al. (2016) [104] * * - - -

Gupta et al. (2013) [105] - - - - -

Raza et al. (2013) [106] MAX range at MAX TPR for one node 120 Memory

(80-100) Zero 2.88 1.76 KB

Khan and Herrmann (2017) [107] MAX at MAX TPR * - *

100 1.1

The symbol (-) indicates that no experimental result is available for the corresponding metric. The symbol * indicates that no numerical result was determined for this metric.

The terms MAX and MAX range refer to the maximum result or maximum range result, respectively, for this metric. The terms CPU, memory, TP, TPR, and FPR denote the

utilization of the central processing unit (as a percentage), the memory consumption (in bytes), the number of anomalies correctly classified, the probability of detecting

intrusions (as a percentage) and the probability of incorrectly identifying normal data as an intrusion (as a percentage), respectively. The energy and processing time values

are measured in units of joules and seconds, respectively

have presented practical results for the performance met-

rics that characterize the suitability of IDSs for IoT-based

smart environments. Thus, the development of IDSs for

IoT-based smart environments is still in an incipient

phase.

Discussion and future outlook
Integrity, confidentiality, and availability are three

important factors in IoT systems. In most cases, applica-

tions that use the IoT model are considered to be vital,

such as industrial and medical applications. On the one
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hand, these applications can be real-time applications;

thus, network delay and latency directly affect their per-

formance. On the other hand, attacks such as DoS, DDoS,

probing, and RPL attacks can degrade the usability of

these applications. Thus, security issues can be consid-

ered a life-threatening concern in e-health systems, for

example [108]. Consequently, powerful security measures

are required in IoT networks. Such a security mechanism

must protect the IoT network and its resources without

impacting the system’s performance or user privacy.

Moreover, IoT-based smart environments consist of a

wide range of devices, sensors and IoT objects from differ-

ent vendors and based on different IoT platforms. Thus,

interoperability issues prevent the emergence of IoT tech-

nology at a large scale [109]. Interoperability and stan-

dardization issues must be considered in designing IDSs

for IoT-based smart environments.

IoT networks suffer from power efficiency problems;

thus, a lightweight IDS that requires only a small num-

ber of computational operations is needed. In a HIDS, the

IoT devices must simultaneously perform the necessary

computational operations for the IDS and for IoT services.

Thus, power resources and battery life must be consid-

ered in HIDS designs. Because of the power and memory

limitations of IoT systems, the energy consumption, pro-

cessing time and performance overhead of an IDS are

important performancemetrics. Thus, thesemetrics must

be considered when designing IDSs for IoT-based smart

environments. These issues should receive greater focus

in research on HIDSs for such environments.

Privacy is another important factor in IoT systems.

Deep packet inspection techniques are considered a vio-

lation of privacy. Such techniques and other techniques

with similar characteristics are therefore undesirable.

Moreover, the blocking of normal data packets affects

IoT applications and services. This effect is very harm-

ful, particularly for vital and real-time applications, such

as industrial and medical applications. Therefore, intro-

ducing a smart system without deep packet inspection

requires trusting that the operations in the IoT system

will prevent any unauthorized access to IoT objects, thus

helping to solve the user privacy problem. A new IDS

design with a very low FPR and a very high detection

accuracy is required for application in vital and real-time

applications because traditional IDSs cannot satisfy these

requirements.

An IDS based on a hybrid intrusion detection tech-

nique is required to detect different types of attacks

from different computational environments. The IDS

must be compatible with the 6LoWPAN protocol to

detect attacks in WSNs in IoT networks. Furthermore,

an autonomous IDS that can detect intrusions without

human intervention is required for application in the IoT

environment.

IDS placement is also a serious issue that must be con-

sidered when designing any type of IDS, whether it is a

NIDS or a HIDS. The placement of the IDS in the IoT net-

work will affect the overall efficiency of the IDS. There

are two general IDS placement strategies: centralized and

distributed. The centralized strategy offers the advantage

of centralized management but can also lead to system

processing overload, which may affect the QoS in IoT

networks. The distributed strategy has the advantages of

reducing the amount of monitored traffic and increasing

the processing capacity. However, implementing an IDS in

different regions of an IoT network is a challenge due to

the associated management issues.

Finally, there is a need for both normal and anomaly

databases that are up to date and integrated with IoT

applications and services. These databases will be very

useful for testing different IDS types and techniques

in IoT environments. The ability to perform successful

and meaningful IDS comparisons will depend on these

databases.

Concluding remarks
As the numbers of IoT users, services, and applications

increase, an urgent need for a robust and lightweight

security solution that is suitable for use in IoT environ-

ments is emerging. Furthermore, IoT networks are the

basis of smart environments; thus, any deficiencies in

the security of these IoT networks will directly influence

the smart environments on which they are based. Attacks

such as DoS, DDoS, probing, and RPL attacks affect the

services and applications offered in IoT-based smart envi-

ronments; thus, the security of IoT environments is a very

serious issue. An IDS is one possible solution for this issue.

This has paper presented a survey of IDSs designed for IoT

environments. Recommendations for designing a robust

and lightweight IDS were also discussed.

In this survey, several papers were investigated. These

papers mainly study the design and implementation of

IDSs for use in the IoT paradigm that can be applied

in smart environments. The features of all IDS methods

presented in these papers were summarized. Moreover,

this paper proposed some recommendations that must be

considered when designing an IDS for the IoT, such as the

need for a powerful and lightweight system with a suit-

able placement strategy that does not adversely affect the

integrity, confidentiality, and availability of the IoT envi-

ronment. This study showed that there is a need to design

an integrated IDS that can be applied in IoT-based smart

environments. This design will need to be tested on a uni-

fied IoT database. The question of the placement strategy

must be considered in this design.

Future work will investigate the design of a high-

performance hybrid IDS specifically designed for IoT-

based smart environments based on the recommendations
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of this study. Moreover, the security vulnerabilities of IoT

enabling technologies and protocols will be considered in

the IDS design. In addition, the IDS will be implemented

on programmable reconfigurable hardware devices, such

as FPGAs, to facilitate adaptation to IoT-based smart

environments. The design should be suitable for both dis-

tributed and centralized placement strategies and have the

ability to detect different types of attacks.
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