
Intrusion-Resilient Secret Sharing

Stefan Dziembowski∗

Department of Computer Science,
University of Rome La Sapienza

Krzysztof Pietrzak
CWI Amsterdam

Abstract

We introduce a new primitive called Intrusion-Resilient
Secret Sharing (IRSS), whose security proof exploits the
fact that there exist functions which can be efficiently com-
puted interactively using low communication complexity
in k, but not in k − 1 rounds.

IRSS is a means of sharing a secret message amongst a
set of players which comes with a very strong security guar-
antee. The shares in an IRSS are made artificially large
so that it is hard to retrieve them completely, and the re-
construction procedure is interactive requiring the players
to exchange k short messages. The adversaries considered
can attack the scheme in rounds, where in each round the
adversary chooses some player to corrupt and some func-
tion, and retrieves the output of that function applied to
the share of the corrupted player. This model captures for
example computers connected to a network which can oc-
casionally be infected by malicious software like viruses,
which can compute any function on the infected machine,
but cannot sent out a huge amount of data.

Using methods from the Bounded-Retrieval Model, we
construct an IRSS scheme which is secure against any
computationally unbounded adversary as long as the total
amount of information retrieved by the adversary is some-
what less than the length of the shares, and the adversary
makes at most k−1 corruption rounds (as described above,
where k rounds are necessary for reconstruction). We ex-
tend our basic scheme in several ways in order to allow the
shares sent by the dealer to be short (the players then blow
them up locally) and to handle even stronger adversaries
who can learn some of the shares completely.

As mentioned, there is an obvious connection between
IRSS schemes and the fact that there exist functions with
an exponential gap in their communication complexity for
k and k − 1 rounds. Our scheme implies such a separa-
tion which is in several aspects stronger than the previously
known ones.

∗Supported by the EU Marie-Curie Fellowship MEIF-CT-2006-
024300-Cryptosensors.

1 Introduction

Cryptography can be seen as the art of using the in-
tractability of a certain tasks in order to prove security prop-
erties of some schemes. Shannon proved one-time pad
encryption to be secure based on an information-theoretic
impossibility result. Practical symmetric encryption was
later based on the hardness of inverting functions [18], and
asymmetric encryption was proven possible based on the
(conjectured) hardness of number theoretical problems [9].
Other intractability assumptions that were used include the
Heisenberg uncertainty principle [25], or the impossibil-
ity of errorless measurement of some physical phenomena
[20], to mention just a few. Therefore what is bad news
in other areas (i.e. the hardness of some problems) can be
good news for cryptographers. In this paper we exploit the
intractability of a type of problems which for now have not
been used in cryptography, namely the fact that there exist
multiparty functions whose communication complexity has
an exponential gap for k versus k − 1 round protocols. We
do so by introducing a new primitive that we call Intrusion-
Resilient Secret Sharing (IRSS), and which can be described
as a “secret-sharing scheme that is secure in the Bounded-
Retrieval Model (BRM)”, which is a model that was recently
introduced in [7, 13].

Bounded-Retrieval Model The main idea of BRM is to
make cryptographic protocols resilient against attacks of
malicious software like viruses by assuming that the secrets
stored on the infected machines are too large to be retrieved
completely. The motivation for this model is as follows:
traditional cryptographic protocols are designed with the as-
sumption that (at least some of) the machines on which they
are executed are beyond the control of the adversary. In
the BRM one makes a more pessimistic (and more realistic)
assumption that the machines of the users may fall under
the control of the adversary (since he may install malicious
software on them). Of course as long as the adversary is
actually controlling the machine there is not much hope for
security. Therefore the first assumption that one makes in
this model is that the adversary controls the machine only

48th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/07 $25.00 © 2007 IEEE
DOI 10.1109/FOCS.2007.63

227

48th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/07 $25.00 © 2007 IEEE
DOI 10.1109/FOCS.2007.63

227

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 09:36 from IEEE Xplore. Restrictions apply.

occasionally. In other words, there exists periods when the
machine is virus-free.

The key assumption is the second one. It comes from
an observation that if the secrets stored on the infected ma-
chine M are short, then the adversary can easily retrieve
them, create his own copy of M, and run this copy even
when he lost access to the originalM. To prevent this type
of an attack one makes the secrets stored on users’ machines
so large (10 GB, say), that it is infeasible to download them
entirely (the virus can download up to 5 GB, say). We will
use the strongest variant [13] of the BRM where it is as-
sumed that the virus can perform any computation on the
victim’s machine before deciding what to transfer (a weaker
notion [8, 7] only allows the adversary to access some lim-
ited number of bits of the secrets stored on the machine).

It was shown in [13] how to construct intrusion-resilient
protocols for session-key agreement and entity authentica-
tion in this model (the construction of [13] was later im-
proved in [5]). Schemes for secret data storage in this model
were considered in [14].1

2 Informal description of IRSS

Notation For a finite set A let A∗ denote the set
of all finite sequences whose entries belong to A,
i.e. A∗ =

⋃∞
i=0Ai. Let “||” denote concatena-

tion of finite sequences. We will overload this sym-
bol and, for sets α0, α1 ⊆ A∗, write α0||α1 to
denote the set {a0||a1 : a0 ∈ α0 and a1 ∈ α1}. Se-
quence (a1, . . . , an) ∈ A∗ is a subsequence of B ∈
A∗ if there exists sequences B1, . . . , Bn+1 such that
B = B1||(a1)|| · · · ||Bn||(an)||Bn+1. For ` ∈ N let
(a1, . . . , an)` denote the sequence of length n` consisting
of (a1, . . . , an) repeated ` times. For a sequence A ∈
{0, 1}m, we denote with A[1, . . . , n] (where n ≤ m) the
n-bit prefix of A.

2.1 The two-party case

We start with the two-party case, as it is simpler but al-
ready explains the main idea. Then, we describe the gen-
eral case which we are going to work with in this paper. A
formal definition is given in Sect. 6. Recall the definition
of a standard 2-out-of-2 secret sharing (SS) scheme: we
have two players Alice and Bob, and a dealer. The dealer
holds a secret message M ∈ {0, 1}n and wants to share
it among Alice and Bob in such a way that (1) Alice and
Bob together can reconstruct M by computing some effi-
cient function reconstruct on their respective shares TA

and TB , and (2) each of the players separately has no infor-
mation about M . A trivial example of such a scheme is the

1In [14] this model was called a Limited Communication Model.

one in which the dealer chooses TA randomly from {0, 1}n
and sets TB = M ⊕ TA.

The motivation for our work comes from the follow-
ing observation. Suppose the dealer uses any standard SS
scheme (like e.g. the one described above) to share a short
secret M , and the players store their secrets TA and TB on
their machines. Then, an adversary that got temporary ac-
cess to the machine of Alice and then to the machine of
Bob, can reconstruct M (assuming that he downloaded TA

and TB). Our idea is to make the task of such an adversary
significantly harder, by using the methods of the Bounded-
Retrieval Model, i.e. the shares TA and TB will be so large
that it is infeasible for the adversary to retrieve them com-
pletely. Even though the shares are large, our scheme will
have a quite efficient reconstruction phase, where Alice and
Bob will exchange 2` short messages (i.e. they make `
“loops”, where a loop is a message sent from Alice to Bob
followed by a message sent from Bob to Alice. Here ` is a
parameter that can initially be chosen by the dealer). The
messages will be rather short (linear in the length of the
shared secret) and the computational cost for Alice and Bob
will be reasonable, in particular both will only have to ac-
cess a small fraction of their shares.

Roughly speaking, we construct a scheme as above with
the security property that the only way to reconstruct the
secret M is to actually make ` loops as in the reconstruct
procedure. The adversary we consider is computationally
unbounded and can corrupt Alice and Bob, but never both at
the same time. So he can “hop” between Alice and Bob, and
in each round retrieve some information about the share of
the corrupted player. We put two restrictions on the power
of the adversary: (1) a bound on the amount of information
the adversary can retrieve, and (2) a bound on the number
of “hops” the adversary can make.

More precisely, we assume that time is divided into
rounds and in the ith round the adversary can issue a “cor-
ruption” request. As a result of such a request the adver-
sary gets access to either TA (in which case we say that he
corrupted Alice) or to TB (we say then that he corrupted
Bob). The adversary cannot retrieve the share T of the cor-
rupted player completely, but he can choose any function
hi : {0, 1}t → {0, 1}si and retrieve Hi = hi(T). We say
that an adversary is s-bounded if the total length of the Hi’s
retrieved from TA is at most s, and the same holds for the
Hi’s retrieved from TB .

Our secret sharing scheme guarantees that unless an s-
bounded (where s is huge) adversary “hops” at least ` times
Alice to Bob and back, he does not learn any significant
information about M . We call an adversary which never
hops ` times back and forth an `-admissible adversary.

228228

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 09:36 from IEEE Xplore. Restrictions apply.

2.2 The multi-party case

We now extend the idea from the previous section to the
multi-party case. Let P = {P0, . . . , Pa−1} be the set of
players. We define an a-out-of-a-secret sharing scheme, in
which a dealer (holding a secret M ∈ {0, 1}n) gives to each
Pi a share Ti ∈ {0, 1}t (where t is a large number). The
reconstruction of the secret M requires players to make `
“loops”, where a loop is a sequence of a short messages, the
first sent from player P0 to P1, the second message (which
is computed as a function of the message received from P0

and the share of P1) from player P1 to P2, and so on until
the ath message which is sent from player Pa−1 back to P0.
The adversary can adaptively issue corruption requests: in
round i the adversary chooses a player Pci and a function
hi : {0, 1}t → {0, 1}si in order to learn Hi = hi(Tci).
We now must extend the notion of “`-admissible” and “s-
bounded” adversaries to the case of more than two players.

Let σ := (Pc1 , . . . , Pcw
) denote the sequence of play-

ers the adversary chooses to corrupt in consecutive rounds
and let h1, . . . , hw be the retrieval functions. We say that
the adversary is s-bounded, if for every player Pj , the to-
tal length of the Hi’s where Pci

= Pj is at most s. We
say that the adversary is `-admissible, if he never chooses a
corruption sequence σ such that (P0, . . . , Pa−1)`||(P0) is a
subsequence of σ. Observe that any adversary which is not
`-admissible can easily learn the secret by evaluating the re-
construction procedure (thus retrieving only very few bits).
An example of a possible corruption sequence produced by
a 3-admissible (but not by a 2-admissible) adversary is de-
picted below (what the last row in the table means will be
explained later):

i = 1 2 3 4 5 6 7 8 9 10 11
Pci

= P1 P0 P2 P1 P2 P2 P0 P1 P0 P2 P0

cpl i = 0 1 1 2 3 3 4 5 5 6 7
(1)

2.3 Extensions

Our “basic” construction of an IRSS scheme is given
in Sect.7. We also propose some variations of the basic
scheme which are more efficient or achieve security against
even stronger adversaries.

Local Share Expansion The size of the shares
T0, . . . , Ta−1 of an IRSS must be large as it directly
implies the retrieval-bound of the adversaries we want to
tolerate. Having to store such large shares (say, 10GB) on a
local computer is, given the extremely low price of storage,
not a big issue (see Sect. 2.4), but getting such large shares
from the dealer to the players might be a problem. In Sect. 8
we show how to construct schemes in which the dealer
sends to the players quite short messages τ0, . . . , τa−1.
Then, each player Pi after receiving τi computes his share

Ti using a long locally generated random string ρi. Of
course for this to work we need to assume that τi can be
reliably erased and that during the distribution phase (more
precisely: until the τi’s get erased) the adversary does not
corrupt any of the players.

Complete Leaks Our basic IRSS scheme is based on a
so called BSM-secure function (BSM for Bounded Storage
Model), which is a special kind of extractor. We cannot
prove this scheme secure against adversaries which can re-
trieve some of the shares completely, but in Sect.9 we ob-
serve that if the BSM-secure function has the special prop-
erty of being a permutation, then the scheme can be proven
secure even against such adversaries. We give a generic
construction (a two round Feistel network) to construct a
BSM-secure permutation from any BSM-secure function
(in fact, this construction works for any kind of extractors).

Computational power of the adversary In general
the schemes considered in this paper are information-
theoretically secure. The only exception is Sect. 11, where
we introduce a computationally-secure variant of IRSS. The
advantage of the scheme constructed in Sect. 11 is that it
is significantly more efficient (in terms of communication
complexity) than the other schemes in the paper, especially
if the shared secret M is large.

2.4 Practical aspects

In this section we describe possible scenarios in which
our schemes may be used in practice. Although our initial
motivation was presented in the context of PCs connected
to the Internet, our schemes can also be used in other en-
vironments, where highly-sensitive data needs to be shared
among a group of users. Clearly, feasibility of our assump-
tions depends on the relation between the costs of storing
and downloading data. Let us note, that currently the price
of storing 10GB is extremely low (a 500GB hard disc costs
around 100e), while downloading several GBs in an unno-
ticeable way can be considered infeasible in many settings.

Distribution phase We imagine two ways in which the
shares can be distributed. The first is to use the basic scheme
and have the players obtain their large shares directly from
the dealer on some physical device like a DVD disc. The
other possibility is to use the “local-share-expansion” trick,
where the players only abtain small amounts of data from
the dealer. These short messages can for example be trans-
mitted by trusted links over the Internet. The drawback of
this solution is that we must assume that the players reliably
erase the τi’s (in particular, in the sharing phase all the play-
ers need to be trusted). One also must be careful about how
the channels that transmit τi’s are secured. It is not enough

229229

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 09:36 from IEEE Xplore. Restrictions apply.

to use any standard encryption method, since if the adver-
sary eavesdrops the ciphertext and later corrupts Pi then he
may simply retrieve the key and decrypt τi. Hence, we need
to use a forward-secure encryption scheme (see e.g. [10]).
Or, if we also want to be secure against corruptions that oc-
curred before the τi’s were sent, we can use the intrusion-
resilient scheme of [13, 5].

Reconstruction phase Also the reconstruction can be
done in two different ways. In the first one the players bring
their shares to a trusted center that reconstructs the secret.
The trusted center can be some machine with a freshly in-
stalled operating system, which was never connected to the
Internet. This method has a high communication complex-
ity (since the entire shares need to be sent).

The other method is to let the players reconstruct the se-
cret interactively, say at a given time they all switch their
machines on, connect them to the Internet, and run the re-
construction procedure. The players have to exchange a`
messages, but the communication complexity is low.

3 Related Work

Secret-sharing schemes were introduced in [23, 3]. We
have already discussed other work done in the Bounded Re-
trieval Model in Sect. 1. In this section we discuss the rela-
tion to communication complexity and proactive security.

Proactive security An alternative way to protect against
the attacks of viruses is to construct protocols that are
proactively secure (for an overview of this area see [4]).
These methods require that the secrets stored by the ma-
chines of the users are periodically refreshed and the adver-
sary must not corrupt too many machines between two such
refresh phases. We do not require such interactive refresh-
ments, but instead a bound on the amount of data retrieved
by the adversary.

Rounds in communication complexity The (two-party)
communication complexity of a function f(., .) is the num-
ber of bits that two players must exchange in order to com-
pute f(X, Y), where X and Y are held by the players re-
spectively [26]. Papadimitriou and Sipser [22] asked how
the communication complexity is affected if the players are
restricted to exchange at most k messages. They conjec-
tured that there is an exponential gap between the k and
k−1 round communication complexity for a problem called
pointer-jumping. This conjecture has been proven by Duris,
Galil and Schnitger [12], with a subsequent tight bound by
Nisan and Wigderson [21].

Our Intrusion-Resilient Secret-Sharing scheme directly
implies an exponential gap for k and k − 1 round commu-
nication complexity, and this separation is stronger than the

separations achieved for pointer-jumping or any other prob-
lem we are aware of, as (1) we get an exponential gap for
k and k − 1 round protocol even if we allow the communi-
cation complexity in the k − 1 round case to be a constant
fraction of the size of the inputs (in previous separations the
communication always was o(n), where n is the input size);
and (2) not only can the value f(X, Y) not be computed by
the k−1 round protocol with some constant probability, but
in fact f(X, Y) will be statistically close to uniform given
the view after k−1 rounds (assuming that the inputs X and
Y are chosen uniformly at random).

4 Further Work and Open Problems

Simultaneous Corruptions In this paper we focus on ad-
versaries which can corrupt only one player at the time: in
round i, the adversary chooses a function hi and a player
Pci ∈ P to retrieve Hi = hi(Tci). A natural and much
stronger adversarial model is to allow the adversary to cor-
rupt subsets of players: the adversary chooses hi and Pi ⊂
P , and retrieves Hi = hi(TPi

), where TPi
denotes all the

shares hold by players in Pi.
We can generalize the definition of `-admissible adver-

saries (as sketched in Section 2.2) to this stronger model:
let us call an adversary (as just described) `-set admissible,
if he never chooses a corruption sequence P1, . . . ,Pw, such
that (P0, . . . , Pa−1)`‖P0 is a subsequence of P∗1 || . . . ||P∗w.
We leave it as an open problem to prove our (or another)
protocol secure against such adversaries.

When making an additional assumption on either the cor-
ruption sequence or on the communication complexity of
the hi’s, we can prove our protocol secure against `-set-
admissible adversaries as we will sketch now:

• The version of our protocol which is secure against
complete leaks, is also secure against `-set-admissible
adversaries if for any corrupted sets of players Pi,Pj

we either have Pi = Pj or Pi ∩ Pj = ∅. The reason
is that for any set Pi of corrupted players, we can give
to the adversary the shares of all but one (say the lex-
icographically first) player for free. The condition on
the Pi’s just described then guarantees that the corrup-
tion sequence on the remaining players does not make
` loops.

• A (normal) `-admissible adversary A′ can simulate a
`-set-admissible adversary A: if A requests hi(Pci

),
A′ corrupts the players in Pci

one at a time (possibly
several times) until it learns hi(Pci

). A′ can do so by
retrieving a total of s′i := si + cc(hi) bits, where si is
the output length of hi and cc(hi) is the communica-
tion complexity of hi, i.e. an upper bound on the total
length of the messages the players inPi must exchange

230230

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 09:36 from IEEE Xplore. Restrictions apply.

in order to jointly compute hi(TPi) (recall that TPi de-
notes the shares hold by the players in Pi). Thus an
IRSS which is secure against s-bounded `-admissible
adversaries, is also secure against `-set-admissible ad-
versaries, as long as the total communication complex-
ity plus the output length of the hi’s chosen by the ad-
versary is at most s.

Very Short Messages The length of the messages ex-
changed during reconstruction is linear in the length of the
shared secret. It would be nice to have a protocol where
the length of (most of) the messages is independent of the
length of the shared secret (i.e. only depends on some secu-
rity parameter). In the full version of the paper we propose
a scheme where the length of all but the last a messages (a
being the number of players) is very small. Unfortunately,
we do not yet have a security proof for that scheme.

General Access Structures In this paper we only con-
sider a-out-of-a secret sharing schemes, i.e. all a players
must cooperate in order to reconstruct the secret. It is
straightforward to generalize the scheme to work for any ac-
cess structure Π = {S1,S2, . . .}, each Si ⊆ P (the meaning
being that any set of players S ∈ Π can reconstruct the se-
cret), at the cost of increasing one of the shares by the size of
|Π| ·n, where n is the size of the message shared. Of course
the scheme is then only secure against adversaries which
are `-admissible for every S ∈ Π. It is an open question if
we can do better than that for simple access structures like
threshold secret sharing (where for some threshold b, each
player sets S, |S| ≥ b is able to reconstruct).

5 Tools and Notation

We will use the concept of Markov chains and Shan-
non entropy whose description can be found e.g. in [6].
Moreover, additionally to the notation introduced at the
beginning of Sect. 2 we need the following. Let ran-
dom variables X0, X1 be distributed over some set X ,
and let Y be a random variable distributed over Y .
Define the statistical distance between X0 and X1 as
∆(X0 ; X1) = 1

2

∑
x∈X | PX0(x) −PX1(x)|. More-

over let ∆(X0 ; X1 | Y) := ∆(X0, Y ; X1, Y) be the
statistical distance between X0 and X1 conditioned on
Y . If X1 has uniform distribution over X and is inde-
pendent from Y then define d(X0) := ∆(X0 ; X1) and
d(X0 | Y) := ∆(X0 ; X1 | Y) as the (conditional) dis-
tance of X0 from uniform.2 It is a straightforward calcu-
lation that ∆(X0 ; X1 | Y) is equal to the following ex-
pected value

∑
y∈Y P(y = Y) · ∆(PX0|y=Y ; PX1|y=Y),

2We will overload the symbols ∆ and d and sometimes apply them to
the probability distributions instead of the random variables.

and similarly d(X0 | Y) =
∑

y∈Y P(y = Y) · d(PX0|y=Y).
It is also straightforward to verify that the following trian-
gle inequality holds for ∆: for any X0,X1, and X2 we have
∆(X0 ; X1) ≤ ∆(X0 ; X1) + ∆(X1 ; X2), and the same
holds when the conditional statistical distance is used. The
proofs of the following lemmas about statistical distance ap-
pear in [16].

Lemma 1 Let K, K̃,R, T be random variables such that
K is uniformly random, and let φ be any function. Then
d(φ(K̃,R) | K̃, T) ≤ d(φ(K, R) |K, T) + d(K̃ | T).

Lemma 2 Let T,E, F be random variables where T →
E → F is a Markov chain (i.e. PF |ET = PF |E), then
d(F | E, T) = d(F | E).

Lemma 3 Let A,B be random variables where A ∈ A.
Then P(B = A) ≤ d(A | B) + 1/ |A| .

Lemma 4 Let A,B be independent random variables and
consider a sequence V1, . . . , Vi of random variables, where
for some function φ, Vi = φ(V1, . . . , Vi−1, Ci), where each
Ci is either A or B, then B → (V1, . . . , Vi) → A is a
Markov chain.

Bounded-Storage Model One of our tools is a method
for secure key-expansion in the Bounded-Storage Model
(BSM), a model introduced by Maurer [19]. Because
of the lack of space we do not discuss this model in de-
tail here (the reader may consult e.g. [1, 15, 24]). We say
that a function f : {0, 1}m × {0, 1}t → {0, 1}n is (ε, s)-
BSM secure if for every h : {0, 1}t → {0, 1}s we have
d(f(K, R) | h(R),K) ≤ ε, where K and R are indepen-
dent and distributed uniformly over {0, 1}m and {0, 1}t re-
spectively (R will often be called a randomizer) . In this pa-
per we do not use the Bounded-Storage Model itself, but we
just apply some of the theorems proved in this area, which
state that for large t and small m and n there exist (ε, s)-
BSM secure functions where ε is negligible, s is a constant
fraction of t and which (on any input) access only a small
part of R (see Sect. 10 for details)

6 Definition of IRSS

The definitions in this section were already discussed in-
formally in Sect. 2.2. Let P = {P0, . . . , Pa−1} be a set
of players. We start with the functional definition (the se-
curity definition is given in Sect. 6.1) of Intrusion-Resilient
Secret-Sharing (the meaning of the frames in the defini-
tion below will be explained later).

Definition 1 (IRSS, functional definition) An Intrusion-
Resilient Secret Sharing (IRSS) scheme Ξa,` is a protocol
between a dealer and a players P = {P0, . . . , Pa−1}. It

231231

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 09:36 from IEEE Xplore. Restrictions apply.

consists of the following two algorithms, indexed by the
number of players a ∈ N and a parameter ` ∈ N.

• sharea,` is a randomized algorithm
that takes as input a message M ∈ {0, 1}n. It

returns a sequence T0, . . . , Ta−1 of bit-strings, where
each Ti is of length t.3 The algorithm is executed by
the dealer that later sends each Ti to a player Pi.

• reconstructa,` is a deterministic algorithm that takes
as input a sequence (T0, . . . , Ta−1) (as produced
by the share algorithm) We require that always

reconstructa,`(sharea,`(M)) = M . The output of
reconstructa,`(T0, . . . , Ta−1) can be computed by a
protocol between players P0, . . . , Pa−1 (player Pi

holding Ti) in a` rounds, where in round j (0 ≤ j ≤
a` − 1) a short message Kj is sent from from player
Pj mod a to Pj+1 mod a. Finally P0 outputs the shared
value.

It will be convenient to define a (weak) variant of IRSS,
which we call Intrusion-Resilient Random-Secret Sharing
(IRRSS). Here the share algorithm does not take any in-
put, but the shared message (i.e. the message output by
reconstruct) will be random. Def. 1 is also a definition for
IRRSS when ignoring the text in frames.

6.1 Adversarial Model

Let Ξa,` = (sharea,`, reconstructa,`) be an IRSS
scheme as in Def. 1. Consider an adversary A that plays
the following game against an oracle Ω. At the beginning,
the adversary sends to the oracle a pair (M0,M1). The or-
acle chooses a random bit b and runs sharea,`(Mb) to ob-
tain the values T0, . . . , Ta−1. Now, the adversary can issue
an (adaptively chosen) sequence corrupt1, . . . , corrupte

of corruption requests. Each request corrupt i is a pair
(Pci

, hi), where Pci
∈ P , and hi : {0, 1}t → {0, 1}si is

an arbitrary function. On input corrupt i the oracle replies
with Hi := h(Tci

). We will say that the adversary chooses
a corruption sequence C = (Pc1 , . . . , Pce). Finally A out-
puts a bit guessA ∈ {0, 1}, we say thatA breaks the scheme
with an advantage ε if ε = 2 ·

∣∣P(guessA = b)− 1
2

∣∣ .

Definition 2 (Corruption Path Length/Loops) Let C =
(Pc1 , . . . , Pcw) ∈ P∗ be a corruption sequence. The cor-
ruption path length of C, denoted cpl(C) is defined as the
length of the maximal prefix of (P0, . . . , Pa−1)∗, that is
a subsequence of C. We say that C makes ` loops, if

3In fact, in our schemes the Ti’s may slightly differ in length: the share
T0 will be a little bit longer than the other shares. For simplicity we as-
sume that all the lengths are equal, since the shorter shares can always be
artificially “padded” to have length equal to t.

cpl(C)/a > `. An example of a corruption sequence that
makes 2 loops is given in (1), the underlined Pi’s denoting
the subsequence (of length 7) which is the longest prefix of
(P0, P1, P2)∗.

Definition 3 (`-admissible adversary) An adversary A is
`-admissible, if any corruption sequence C chosen by A
makes less than ` loops, i.e. cpl(C) ≤ a · `.

Definition 4 (s-bounded adversary) An adversaryA is s-
bounded, if the corruption sequence C = (Pc1 , . . . , Pcw)
chosen by A satisfies the following: for every Pj ∈ P we
have

∑
si ≤ s, where the summation is over all i such that

Pci
= Pj , and si := |Hi| is the length of the output of hi.

To simplify the statements and the proofs of our results
we assume that for any prefix Ci = (Pc1 , . . . , Pci

) of the
corruption sequence chosen by A the message Kcpl(Ci)−1

(see Def. 1) is contained in (H1, . . . ,Hi). In other words,
the adversary always computes all Ki’s that he can trivially
calculate by simulating the reconstructa,` procedure.4

Definition 5 (Security of IRSS) An IRSS scheme Ξa,` is
(ε, s)-secure if every `-admissible s-bounded adversary A
breaks Ξa,` with an advantage at most ε.

To define security for Intrusion-Resilient Random Secret
Sharing (IRRSS), we consider the same adversary model
as for IRSS, except that now the adversary does not initially
send to the oracle a pair (M0,M1) of messages. Moreover
the final output is not just a bit, but can be an arbitrary string
out

eA. Let M̃ denote the random string shared by the shar-
ing algorithm, then we say that Ã breaks the IRRSS scheme
with an advantage ε if given the output of Ã, the distribution
of M̃ is ε far from uniform, i.e. ε = d(M̃ | out

eA).

Definition 6 (Security of IRRSS) an IRRSS scheme Ξ̃a,`

is (ε, s)-secure if every `-admissible s-bounded adversary
Ã breaks Ξ̃a,` with an advantage at most ε.

IRRSS is a much weaker primitive than IRSS, and seems
much easier to construct. By the following Lemma we can
turn an IRRSS into an IRSS by using the shared random
secret M̃ as a one time pad to encrypt M . The security loss
in this reduction is exponential in the length of the shared
message.

Lemma 5 Let Ξ̃a,` = (share ′a,`, reconstruct ′a,`) be an
(ε, s)-secure IRRSS. Consider an IRSS Ξa,` = (sharea,`,

reconstructa,`) constructed from Ξ̃a,` as follows: algo-
rithm sharea,`(M) simply executes share ′a,` (let T de-
note the resulting shares); P0 additionally gets C =

4The Ki’s will be short compared with s, hence the adversary needs
very little memory to retrieve them, and therefore we essentially do not
loose generality by making this assumption.

232232

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 09:36 from IEEE Xplore. Restrictions apply.

M ⊕ M̃ where M̃ ← reconstructa,`(T). The procedure
reconstructa,`(T , C) runs M̃ ← reconstruct ′a,`(T) and

output M = C ⊕ M̃ . Then Ξa,` is an (ε · 2n, s) secure
IRSS.

Proof Consider an s-bounded `-admissible adversary A
that breaks Ξa,` with an advantage ζ. We construct an
s-bounded `-admissible adversary Ã that attacks Ξ̃a,`, by
simulating A in a black-box manner. Initially Ã stores the
messages M0 and M1 output by A. Then Ã simply lets
A attack Ξ̃a,` by forwarding his corruption requests to the
oracle. The only nontrivial problem is how to handle the
corruptions of P0. This is because unlike in Ξa,`, in Ξ̃a,`

the player P0 does not hold a value C = Mb⊕M̃ . We let Ã
simply set C to be some random value Z ∈ {0, 1}n (mean-
ing that Ã replaces hi he gets from A with an h′i which
does exactly the same thing as hi, but uses Z instead of
C). Finally, A outputs his guess guessA, and we let Ã
output out

eA := Z ⊕MguessA . By Lemma 3 we get that
P(out

eA = M̃) is at most

2−n + d(M̃ | out
eA) ≤ 2−n + ε, (2)

where (2) comes from (ε, s)-security of Ξ̃. Now, suppose
that for some d ∈ {0, 1} the following event Ed occurred:
Z = Md ⊕ M̃ . In this case Ã simply simulated the execu-
tion ofA against an oracle Ω with b = d. Since Z is chosen
uniformly thus P(E0) = P(E1) = 2−n. Therefore condi-
tioned on the event E0 ∪E1 the probability that guessA = d

is at least 1
2 + 1

2 · ζ. Thus we have that P(out
eA = M̃) is at

least equal to P(out
eA = M̃ | E0 ∪ E1) · P(E0 ∪ E1), which

is at least
(

1
2 + 1

2 · ζ
)
· 2−n+1 = (1 + ζ) · 2−n. Combining

it with (2) we get 2−n + ε ≥ (1 + ζ) · 2−n, which implies
that ζ ≤ ε · 2n as claimed. 2

The following simple observation (whose proof appears in
[16]) will also be useful.

Observation 1 In the definition of IRRSS we can restrict
ourselves to adversaries that are (1) deterministic, and (2)
output out

eA = (H1, . . . ,Hw).

7 The Basic IRRSS/IRSS Schemes Ξ̃f
a,`/Ξ

f
a,`

In this section we construct a (2n · a`ε, s)-secure
Intrusion-Resilient Secret Sharing scheme from any (ε, s)-
BSM secure function f : {0, 1}m × {0, 1}t → {0, 1}m
for a set P = {P0, . . . , Pa−1} of players. We follow
the approach outlined in Lemma 5, i.e. we first construct
an IRRSS, from which we then get an IRSS by using the
shared random secret as a one-time pad to encrypt the mes-
sage to be shared. The schemes are extremely simple, in

round i of the reconstruction procedure, player Pi mod a

gets a (short) message Ki and uses it as a key to extract the
next message Ki+1 from his (large) randomizer Ri mod a

with the BSM-secure function f . The shared random mes-
sage in the IRRSS is simply Ka`, the figure below illustrates
the reconstruction procedure for a = 3 and ` = 2.

K0 // K1=f(K0,R1) //
BCEDGF K2=f(K1,R2)

@A
//

P0 P1 P2

K3=f(K2,R0) // K4=f(K3,R1) //
BC

EDGF K5=f(K4,R2)

@A
// K6=f(K5,R0) // output

The pair (sharea,`, reconstructa,`) below is an IRRSS
scheme when ignoring the text in frames , we will refer
to this IRRSS scheme as Ξ̃f

a,`. By adding the text in frames
we get an IRSS (as outlined in Lemma 5), we will refer to
this IRSS scheme as Ξf

a,`.

sharea,` (M) : Choose K0 ∈ {0, 1}m and
R0, . . . , Ra−1 ∈ {0, 1}t uniformly at random.
The share of each player Pi ∈ P is Ri. Player P0

additionally gets K0 and C which is computed as:

1. For i = 1, . . . , a` let Ki := f(Ki−1, Ri mod a)

2. Set C := M ⊕Ka`[1, . . . , n]

reconstructa,`(K0, R0, . . . , Ra−1 , C) : The players exe-
cute the following procedure

1. Player P0 sends K0 to P1.
2. For i = 1, . . . , a`−1 player Pi mod a sends Ki =

f(Ki−1, Ri mod a) to player Pi+1 mod a.
3. P0 computes Ka` = f(Ka`−1, R0) and outputs

Ka`[1, . . . , n] ⊕C .

7.1 Security

Theorem 1 The IRSS scheme Ξf
a,` for messages of

length n, based on a (ε, s)-BSM secure function f :
{0, 1}m × {0, 1}t → {0, 1}m, is (2n · a`ε, s)-secure.

Proof The security follows from the (a`ε, s)-security of the
IRRSS Ξ̃a` (as proven in Lemma 7 below) by applying the
IRRSS-to-IRSS reduction from Lemma 5. 2

Before stating and proving Lemma 7 we present the follow-
ing intuitive lemma (whose proof appears in [16]), which
essentially states that an s-bounded adversary learns no
more than s bits of each share as required by the definition
of a BSM secure function.

233233

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 09:36 from IEEE Xplore. Restrictions apply.

Lemma 6 Consider any player Px holding the share Rx

and let (H1, . . . ,Hi) be the information retrieved by an
s-bounded adversary in the first i rounds. If f is an (ε, s)-
secure BSM function then d(f(K, Rx) | H1, . . . ,Hi,K) ≤
ε, where K is uniformly random (and independent of the
other variables).

Lemma 7 The IRRSS scheme Ξ̃f
a,` is (a`ε, s)-secure.

Proof Consider any adversary Ã which attacks Ξ̃f
a,`. Let

Pc1 , Pc2 , . . . denote the corruption sequence, and let cpli =
cpl(Pc1 , . . . , Pci). Note that cpli = cpli−1 + 1 iff
cpli−1 mod a = ci, which implies that always cpli mod
a 6= ci. Recall that Hi = hi(Rci

) is the information that Ã
learns in round i. To save on notation let Hi = H1, . . . ,Hi,
and let H0 denote the empty sequence. Recall that in Def. 4
we assumed that Kcpli−1 is known after the ith round, thus
(using the convention that K−1 is empty)5

H(Kcpli−1 | Hi) = 0. (3)

We will prove by induction over i that Kcpli is close to uni-
form after the first i corruptions:

d(Kcpli | Hi) = d(Kcpli | Hi,Kcpli−1) ≤ cpli · ε. (4)

After showing this we will be done since clearly
d(Kcpli [1, . . . , n] | Hi) ≤ d(Kcpli | Hi). For the in-
duction basis, note that (4) is true for i = 0: we have
d(K0 | H0) = d(K0) = 0. We now prove that (4) holds
for any i > 0 assuming it holds for i − 1. We make a case
distinction, and first prove it for the rounds i where the cpl
increases, i.e. for i’s where cpli−1 + 1 = cpli. The steps
used in the following calculation are explained in detail be-
low (the variable K in (8) is uniformly random).

d(Kcpli | Hi)

= d(

F︷ ︸︸ ︷
Kcpli |

E︷ ︸︸ ︷
Hi−1,Kcpli−1,

T︷︸︸︷
Hi) (5)

= d(Kcpli | Hi−1,Kcpli−1) (6)
= d(f(Kcpli−1, Rcpli) | Hi−1,Kcpli−1) (7)
≤ d(f(K, Rcpli)|Hi−1,K) + d(Kcpli−1|Hi−1) (8)
≤ ε + d(Kcpli−1 | Hi−1) (9)
= ε + d(Kcpli−1 | Hi−1) (10)
≤ ε + cpli−1 · ε ≤ cpli · ε (11)

Step (5) just uses the definition of our scheme and (3).
The next step (6) uses Lemma 2. To apply this Lemma one
must show that T → E → F is a Markov chain. Basi-
cally, this follows from Lemma 4 by identifying A from
the lemma with Rci

, further B with all the other Rj’s,

5Recall that the symbol H denotes Shannon entropy.

and Vi = φ(V1, . . . , Vi−1, A) with Hi = hi(Rci), noting
that the (adaptive) adversary computes hi as a function of
H1, . . . ,Hi−1 (for space reasons, a detailed proof is only
given in the full version [16]). Step (7) follows by defini-
tion and step (8) follows from Lemma 1. Step (9) follows
from Lemma 6. Step (10) follows by the assumption that
cpli−1 +1 = cpli. The last step (11) follow from the induc-
tion hypothesis (4) for i − 1. It remains to prove (4) for i’s
such that cpl i−1 = cpl i:

d(Kcpli |Hi) = d(

F︷ ︸︸ ︷
Kcpli |

E︷ ︸︸ ︷
Hi−1,Kcpli−1,

T︷︸︸︷
Hi)(12)

= d(Kcpli | Hi−1,Kcpli−1) (13)
= d(Kcpli−1 | Hi−1,Kcpli−1−1) (14)

= d(Kcpli−1 | Hi−1) (15)
= cpli−1 · ε = cpli · ε (16)

Step (13) uses Lemma 2 (again, to apply this lemma one
must show that T → E → F is a Markov chain, which
follows from Lemma 4 as explained in detail in [16]). In
step (14) and the very last step we use the assumption that
cpl i−1 = cpl i. Step (15) uses (3). Step (16) uses the induc-
tion hypothesis (4) for i− 1. 2

8 Local Share Expansion

In this section we show a modified IRSS scheme where
the shares each player receives from the dealer are very
small, and where each player, after receiving the share from
the dealer, blows up it up locally (this was informally dis-
cussed in Sect. 2). After the players have deleted their short
shares that they have received from the dealer, we are ba-
sically in the same situation as in our original scheme Ξf

a,`

(except that now the players additionally have some Yi val-
ues which they have to store), and we have exactly the same
security guarantee (cf. Thm. 1) as our original scheme. The
scheme is defined below and its security is proven in [16].
Besides the usual share and reconstruct procedure, now
for i = 0, . . . , a−1 there also is a procedure expand i which
is run locally by player Pi after receiving the share.

sharea,`(M) : Choose K0, . . . ,Ka·` ∈ {0, 1}m uniformly
at random (below we use the convention that Ki

is empty for i 6∈ {0, . . . , a`}). Set C := M ⊕
K`·a[1, . . . , n]. For i = −1, . . . , a ·`, send (Ki,Ki+1)
to player Pi+1 mod a. Send C to player P0.

expand i
a,`({(Ki+ad−1,Ki+ad)}`d=0) Choose a random-

izer Ri ∈ {0, 1}t uniformly at random, and save it.
For each (Kj−1,Kj) in the input (where both Kj−1

and Kj are nonempty, i.e. j ∈ {1, . . . , a`}) compute
and save Yj = f(Kj−1, Ri) ⊕Kj . If i = 0, save K0.
Delete all other Ki’s.

234234

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 09:36 from IEEE Xplore. Restrictions apply.

reconstructa,`(K0, R0, . . . , Ra−1, C) : The players exe-
cute the following procedure

1. Player P0 sends K0 to P1

2. For i = 1, . . . , a`−1 player Pi mod a sends Ki =
Yi ⊕ f(Ki−1, Ri mod a) to player Pi+1 mod a.

3. P0 computes Ka` = Ya` ⊕ f(Ka`−1, R0) and
outputs M = C ⊕ (Ka·`[1, . . . , n]).

9 Complete Leaks

Although security against adversaries as considered in
Def. 5 is already quite strong, we did not consider so far the
case when the adversary is able to learn one or more shares
completely. In this section we show that for some particular
class of BSM-secure functions (that we construct) the IRSS
scheme from Sect. 7 is secure against such complete leaks.
We don’t actually know if already our basic IRSS scheme
Ξf

a,` is secure against full leaks if any BSM-secure function
f is used. Our security proof of the IRSS Ξf

a,`, relying on

the security of the IRRSS Ξ̃f
a,`, breaks down completely in

this case as Ξ̃f
a,` is not a secure IRRSS when the adversary

is allowed to learn the complete share R0 of player P0. This
is because d(Ka·` | R0) can be large (so the shared secret
Ka` is far from uniform given R0). To see this recall that
Ka` = f(Ka`−1, R0), and let us assume for the moment
that f(·, R0) : {0, 1}m → {0, 1}m behaves like a uniformly
random function. It is a simple calculation that in this case
the size of the range of f(·, R0) is roughly 2m(1 − 1/e),
where e = 2.71 . . . is Euler’s number. But then, for any dis-
tribution of Ka`−1, the value of f(Ka`−1, R0) is far from
uniformly random as it will avoid a 1/e fraction of all pos-
sible outputs (and an adversary who knows R0 completely,
will know what this 1/e fraction is). Our idea therefore
is to limit ourselves to a special class of the BSM-secure
functions that makes the above problem disappear, namely
to functions f(·, R) : {0, 1}m → {0, 1}m whose range is
equal to {0, 1}m, or, equivalently, functions f(·, R) which
are permutation (we will simply call such f BSM permu-
tations). To formalize what it means to “leak a share com-
pletely”, we define the following adversaries.

Definition 7 ((adaptive) strong `-admissible adversary)
A strong `-admissible adversary can initially choose a
subset of completely corrupted players P ′ ⊂ P , and then
gets the shares of all those players. Then he can attack
according to any corruption sequence which does not make
` loops on the remaining players P \P ′ = {Pr1 , . . . , Prx

},
i.e. if Pc1 , . . . , Pcw

is the corruption sequence then
(r1, . . . , rx)` must not be a subsequence of c1, . . . , cw. An
adaptive strong `-admissible adversary is defined similarly,
but he can choose the shares he wants to learn completely
adaptively during the attack.

We will say that an IRSS (IRRSS, resp.) scheme is (ε, s)∗-
secure, if it is (ε, s)-secure as in Def. 5 (Def. 6, resp.), with
the only difference that in the definition “`-admissible ad-
versary” is replaced with “strong `-admissible adversary”.
Analogously, we say that an IRSS scheme is (ε, s)∗∗-secure
if we instead consider “adaptive strong `-admissible adver-
saries”.

Observation 2 Every IRSS or IRRSS scheme that is (ε, s)∗-
secure is also (ε2a, s)∗∗-secure. This is because a non-
adaptive adversary can always simulate the adaptive one,
by guessing the set P ′ of players whose shares the adaptive
adversary will choose to learn. This guess will be correct
with probability 2−a, hence the 2a loss in security.

Lemma 5 extends easily to the “∗” and “∗∗” security no-
tions. Therefore it is enough to show how to construct an
(ε, s)∗-secure IRRSS. Such a scheme can be constructed
by replacing an arbitrary BSM secure function f with a
BSM permutation. Observe that if we base our IRRSS
scheme Ξπ

a,` on a BSM secure permutation π, then we can
write Ki = Πi mod a(Ki−1) where Πi is the permutation
π(., Ri). The effect of leaking a complete share Ri is thus
the same as giving Πi to the adversary. Consider an ad-
versary which attacks Ξπ

a,`, and let P ′ be the set of the
completely corrupted players. From the viewpoint of the
adversary the scheme now looks almost like the original
one with the players being P \ P ′, where occasionally the
intermediate keys Ki get permuted. Say if the adversary
knows Πi, then Kj−1 (where i = j mod a) is mapped to
Kj = Πi(Kj−1), but as the Πi’s are bijections, there is no
entropy loss due to this mappings. Using this fact we can
adapt (the proof of) Lemma 7 to the “∗” notion, i.e.

Lemma 8 The IRRSS Ξ̃π
a,` scheme from Sect. 7, if based

on a (ε, s)-BSM secure permutation, is (a`ε, s)∗-secure and
thus also (2aa`ε, s)∗∗-secure.

And further by the reduction from Lemma 5 we get:

Theorem 2 The IRSS scheme Ξπ
a,` for messages of length

n, based on a (ε, s)-BSM secure permutation π : {0, 1}m×
{0, 1}t → {0, 1}m, is (2n · a`ε, s)∗-secure (and thus also
(2a+n · a`ε, s)∗∗-secure)

Of course the above theorem is only interesting if we can
come up with a BSM secure permutation. Below we show
how to get such an object from any “normal” BSM secure
function (the proof appears in [16]).

Theorem 3 Let f : {0, 1}m × {0, 1}t → {0, 1}m be
an (ε, s)-BSM secure function, then F : {0, 1}2m ×
{0, 1}t → {0, 1}2m defined as a two-round Feistel-network
with f as round functions, i.e. F (K`‖Kr, R) := Kr ⊕
f(K`, R)‖K` ⊕ f(Kr ⊕ f(K`, R), R) is (2ε, s−m)-BSM
secure . Moreover, as the Feistel-network is a permutation,
F (·, R) is a permutation on {0, 1}2m for any R ∈ {0, 1}t.

235235

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 09:36 from IEEE Xplore. Restrictions apply.

10 Concrete schemes

All the schemes that we constructed in this paper used
as building block a BSM-secure function f . In this section
we give examples of two concrete IRSS schemes based on
the BSM functions of [24, 15]. The proofs of the corollaries
below appear in [16].

Corrollary 1 (Scheme based on the function of [24])
For every β ∈ [0, 1), every n and t and every
ε > 2n−t/2O(log∗ t)

there exists an (a`ε, βt)-secure
IRSS scheme Ξf

a,` for sharing messages of length
n ≤ t(1 − β)/2 − O(log(1/ε)), such that (1) the
size of each share is t (except the share of P0 that has a size
t+O(log t+log(1/ε)+n)); (2) in the ith round the player
Pi mod a needs to access at most O(log t + log(1/ε) + n)
bits of his share (except of P0 that in the final round needs
to access additionally n bits of his share); (3) the length of
each message Ki communicated in the ith round of the re-
construction procedure is O(log t+log(1/ε)+n); (4) each
Ki is computable in time polynomial in log t+log(1/ε)+n.

Corrollary 2 (Scheme based on the function of [15])
For every n, v and L > 100 there exists an (a`ε, s)-secure
IRSS scheme Ξf

a,` for sharing messages of length n, such
that (1) the size of each share is t = v(L + n − 1)
(except the share of P0 that has a size t + dv log2 Le+ n);
(2) in the ith round the player Pi mod a needs to access
v dv log2 Le bits of his share (except of P0 that in the final
round needs additionally to access n bits of his share);
(3) the length of each message Ki (communicated in the
ith round of the reconstruction procedure) is v dv log2 Le;
(4) each Ki is computable in time linear in the number
of accessed bits; (5) ε = dv log2 Le · 2−v/2+n; (6)
s := 0.08t− 1.5v(dv log2 Le+ 1).

11 Computationally-secure IRSS
The scheme constructed in Sect. 7 has an obvious draw-

back that the messages Ki communicated in the reconstruc-
tion phase are longer than the shared secret M . We leave
it as an open problem to show information-theoretically se-
cure IRSS schemes with a smaller communication complex-
ity.6 One can make the messages very short (and indepen-
dent of the length of M) at the cost of trading information-
theoretic for computational security in a straightforward

6Observe that using the techniques from Sect. 7 it is impossible to make
the Ki’s shorter than M , since we have to pay the price of the 2|M| factor
in the advantage of the adversary, and hence to have |Ki| < |M |we would
need to construct an (ε, s)-BSM secure scheme with ε < 2|K|, which is
impossible as the adversary can always guess K with probability 2|K|.

We also note that in every IRRSS scheme at least the last message
Ka`−1 cannot be shorter than M , since the security of IRSS implies
that the function defined as E(Ka`−1, M) := (f(Ka`−1, R)⊕ M, R),
(where R is random) is an information-theoretically secure (randomized)
encryption scheme, and thus by Shannon’s theorem |M | ≥ |Ka`−1|.

way: instead of sharing the message M directly, one shares
a key k for a symmetric encryption (Enc,Dec) and gives
player P0 additionally the ciphertext C = Enc(k,M) of
M . Reconstruction is straightforward, P0 now outputs
M = Dec(k,C) instead of the shared k. Denote this new
computationally-secure scheme as Ξc1

a`.
This method is very similar to the one used to construct

a computationally-secure Forward-Secure Storage scheme
in [14]. We omit the formal proof that this construction is
computationally secure (as long as the scheme (Enc,Dec)
is semantically secure). This proof is similar to the proof
of Lemma 3 in [14]. The security definition in this case is
identical to the one in Sect. 6, except that now we must ad-
ditionally require that A is a probabilistic polynomial-time
machine and we must assume that the functions hi (that are
parts of the corrupt i requests, cf. Sec. 6.1) are efficiently
computable (e.g. representable by polynomial size circuits).

Reducing the communication complexity even further –
a connection with the theory of [17] We note that in gen-
eral one has to be careful when switching to computational
security in IRSS. The motivating question is as follows: can
we reduce the length of the Ki’s even further, assuming
that the adversary is computationally bounded? First, let
us look at the exact length of the Ki’s. Clearly, the length
depends on the scheme we use. Since in the scheme from
Cor. 1 the exact values are hidden behind the O-notation
let us concentrate on the scheme from Cor. 2. Here we have
|Ki| = v log2 L, where v is such that ε = v log2 L·2−v/2+n

is negligible (and hence v has to be larger than 2n), and L
is a parameter that in a practical scheme would be relatively
large: L ≈ 220, say. Thus, |Ki| is at least 2 log2 L ≈ 40
times larger than n. Therefore if we use the computa-
tionally secure IRSS presented above, then each Ki is at
least 40 times longer than the key for symmetric encryption
(Enc,Dec).

A natural way to reduce the communication complexity
of Ξc1

a,` even further, is to construct a new scheme Ξc2
a,` as

follows. Let G : {0, 1}n → {0, 1}m (for n < m) be a
cryptographic pseudorandom generator. The scheme Ξc2

a,`

is defined as Ξc1
a,` with the following difference. First, in-

stead of taking f : {0, 1}m × {0, 1}t → {0, 1}m, take
some BSM-secure function f ′ : {0, 1}m × {0, 1}t →
{0, 1}n. In the share procedure (see Sect. 7) replace
“Ki := f(Ki−1, Ri mod a)” with “Ki := G(K ′

i), where
K ′

i = f ′(Ki−1, Ri mod a)”. In the reconstruct procedure it
is enough that (in Step 2) each Pi mod a sends to Pi+1 mod a

the value K ′
i, and then Pi+1 mod a computes Ki = G(K ′

i)
himself. In other words, instead of sending Ki we send its
“compressed” version: K ′

i. Observe that now the message
communicated in each round is just a seed of G, and hence
we can assume that it is equal to the length n of the key in
the encryption scheme (Enc,Dec). Thus, it is significantly
shorter than the size of the message communicated in each

236236

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 09:36 from IEEE Xplore. Restrictions apply.

round in scheme Ξc1. At first sight it may seem that this
construction is secure (and it is of course secure if we model
G as a random oracle [2]), however, a naive proof the se-
curity fails for the following reason: one needs to show that
a (computationally bounded) adversary that sees R cannot
compress it to shorter value U = h(R), such that when he
later learns K ′, he can distinguish f(G(K ′), R) from ran-
dom. It is not clear how to show just from the assumption
that G is a PRG. This problem is very similar to the prob-
lem of showing that the Φc2 scheme of [14] (Sect. 6.3) is
computationally secure, and is closely related to the theory
of compressibility of NP-instances [17] (see also [11]).

References

[1] Y. Aumann, Y. Z. Ding, and M. O. Rabin. Everlasting
security in the bounded storage model. IEEE Transac-
tions on Information Theory, 48(6):1668–1680, 2002.

[2] M. Bellare and P. Rogaway. Random oracles are prac-
tical: A paradigm for designing efficient protocols. In
ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

[3] G. R. Blakley. Safeguarding cryptographic keys. In
Proc. AFIPS 1979 National Computer Conference,
pages 313–317, 1979.

[4] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor.
Proactive security: Long-term protection against
break-ins. RSA CryptoBytes, 3(1):1–8, 1997.

[5] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. J. Lipton,
and S. Walfish. Intrusion-resilient key exchange in the
bounded retrieval model. In TCC’07, volume 4392 of
LNCS, pages 479–498, 2007.

[6] T. M. Cover and J. A. Thomas. Elements of Informa-
tion Theory. John Wiley and Sons, Inc., 1991.

[7] G. Di Crescenzo, R. J. Lipton, and S. Walfish. Per-
fectly secure password protocols in the bounded re-
trieval model. In TCC’06, volume 3876 of LNCS,
pages 225–244, 2006.

[8] D. Dagon, W. Lee, and R. J. Lipton. Protecting secret
data from insider attacks. In Financial Cryptography
and Data Security, pages 16–30, 2005.

[9] W. Diffie and M. E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

[10] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Au-
thentication and authenticated key exchanges. De-
signs, Codes and Cryptography, 2(2):107–125, 1992.

[11] B. Dubrov and Y. Ishai. On the randomness complex-
ity of efficient sampling. In ACM Symposium on The-
ory of Computing, pages 711–720, 2006.

[12] P. Duris, Z. Galil, and G. Schnitger. Lower bounds on
communication complexity. Inf. Comput., 73(1):1–22,
1987.

[13] S. Dziembowski. Intrusion-Resilience Via the
Bounded-Storage Model. In TCC’06, volume 3876
of LNCS, pages 207–224. Springer, 2006.

[14] S. Dziembowski. On Forward-Secure Storage. In
CRYPTO’06, volume 4117 of LNCS, pages 251–270,
2006.

[15] S. Dziembowski and U. Maurer. Optimal randomizer
efficiency in the bounded-storage model. Journal of
Cryptology, 17(1):5–26, January 2004.

[16] S. Dziembowski and K. Pietrzak. Intrusion-Resilient
Secret Sharing. Cryptology ePrint Archive, 2007. full
version of this paper.

[17] D. Harnik and M. Naor. On the compressibility of
np instances and cryptographic applications. In FOCS
’06, pages 719–728. IEEE, 2006.

[18] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby.
A pseudorandom generator from any one-way func-
tion. SIAM J. Comput., 28(4):1364–1396, 1999.

[19] U. Maurer. Conditionally-perfect secrecy and a
provably-secure randomized cipher. Journal of Cryp-
tology, 5(1):53–66, 1992.

[20] U. Maurer. Secret key agreement by public dis-
cussion. IEEE Transactions on Information Theory,
39(3):733–742, 1993.

[21] N. Nisan and A. Widgerson. Rounds in communica-
tion complexity revisited. In STOC ’91, pages 419–
429. ACM, 1991.

[22] C. H. Papadimitriou and M. Sipser. Communication
complexity. In STOC, pages 196–200. ACM, 1982.

[23] A. Shamir. How to share a secret. Communications of
the ACM, 22:612–613, November 1979.

[24] S. P. Vadhan. Constructing locally computable extrac-
tors and cryptosystems in the bounded-storage model.
Journal of Cryptology, 17(1):43–77, January 2004.

[25] S. Wiesner. Conjugate coding. SIGACT News,
15(1):78–88, 1983.

[26] A. Chi-Chih Yao. Some complexity questions re-
lated to distributive computing (preliminary report). In
STOC ’79, pages 209–213. ACM, 1979.

237237

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 09:36 from IEEE Xplore. Restrictions apply.

