
Intrusion-Tolerant

Architectures:

Concepts and Design

Paulo Esteves Veŕıssimo
Nuno Ferreira Neves
Miguel Pupo Correia

DI–FCUL TR–03–5

April 2003

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

Intrusion-Tolerant Architectures:

Concepts and Design ∗

Paulo Esteves Verı́ssimo, Nuno Ferreira Neves, Miguel Pupo Correia

Univ. of Lisboa, Faculty of Sciences

Bloco C5, Campo Grande, 1749-016 Lisboa - Portugal

{pjv,nuno,mpc}@di.fc.ul.pt, http://www.navigators.di.fc.ul.pt

Abstract

There is a significant body of research on distributed computing architec-

tures, methodologies and algorithms, both in the fields of fault tolerance and

security. Whilst they have taken separate paths until recently, the problems

to be solved are of similar nature. In classical dependability, fault tolerance

has been the workhorse of many solutions. Classical security-related work

has on the other hand privileged, with few exceptions, intrusion prevention.

Intrusion tolerance (IT) is a new approach that has slowly emerged during

the past decade, and gained impressive momentum recently. Instead of try-

ing to prevent every single intrusion, these are allowed, but tolerated: the

system triggers mechanisms that prevent the intrusion from generating a sys-

tem security failure. The paper describes the fundamental concepts behind

IT, tracing their connection with classical fault tolerance and security. We

discuss the main strategies and mechanisms for architecting IT systems, and

report on recent advances on distributed IT system architectures.

∗Extended version of paper appearing in Architecting Dependable Systems, R. Lemos, C.

Gacek, A. Romanovsky (eds.), LNCS 2677, Springer Verlag, 2003. Navigators Home Page:

http://www.navigators.di.fc.ul.pt. Work partially supported by the EC, through project IST-1999-

11583 (MAFTIA), and FCT, through the Large-Scale Informatic Systems Laboratory (LaSIGE), and

projects POSI/1999/CHS/33996 (DEFEATS) and POSI/CHS/39815/2001 (COPE).

1

Contents

1 Introduction 3

2 The case for Intrusion Tolerance 4

2.1 A brief look at classical fault tolerance and security 4

2.2 Dependability as a common framework 5

2.3 Open problems . 7

3 Intrusion Tolerance concepts 9

3.1 AVI composite fault model . 9

3.2 Trust and Trustworthiness . 11

3.3 Coverage and separation of concerns . 13

4 IT frameworks and mechanisms 15

4.1 Secure and fault-tolerant communication 15

4.2 Software-based intrusion tolerance . 15

4.3 Hardware-based intrusion tolerance . 17

4.4 Auditing and intrusion detection . 17

4.5 Some security frameworks under an IT look 19

4.6 Processing the errors deriving from intrusions 20

4.7 Intrusion detection mechanisms . 21

5 Intrusion Tolerance strategies 22

5.1 Fault Avoidance vs. Fault Tolerance . 23

5.2 Confidential Operation . 23

5.3 Perfect Non-stop Operation . 24

5.4 Reconfigurable Operation . 24

5.5 Recoverable Operation . 24

5.6 Fail-Safe . 25

6 Modelling malicious faults 25

6.1 Arbitrary failure assumptions . 26

6.2 Hybrid failure assumptions considered useful 27

7 Architecting intrusion-tolerant systems 28

7.1 (Almost) no assumptions . 28

7.2 Non-justified assumptions, or the power of faith 29

7.3 Architectural hybridisation . 30

7.4 Prevention, Tolerance, and a bit of salt 31

7.5 Using trusted components . 32

8 Some Example Systems 33

8.1 OASIS . 33

8.2 MAFTIA . 35

8.2.1 Architectural Hybridisation in Practice 36

8.2.2 A Wormhole-Aware Protocol . 38

9 Conclusion 42

2

1 Introduction

There is a significant body of research on distributed computing architectures,

methodologies and algorithms, both in the fields of dependability and fault tol-

erance, and in security and information assurance. These are commonly used in a

wide spectrum of situations: information infrastructures; commercial web-based

sites; embedded systems. Their operation has always been a concern, namely

presently, due to the use of COTS, compressed design cycles, openness. Whilst

they have taken separate paths until recently, the problems to be solved are of sim-

ilar nature: keeping systems working correctly, despite the occurrence of mishaps,

which we could commonly call faults (accidental or malicious); ensure that, when

systems do fail (again, on account of accidental or malicious faults), they do so in a

non harmful/catastrophic way. In classical dependability, and mainly in distributed

settings, fault tolerance has been the workhorse of the many solutions published

over the years. Classical security-related work has on the other hand privileged,

with few exceptions, intrusion prevention, or intrusion detection without system-

atic forms of processing the intrusion symptoms.

A new approach has slowly emerged during the past decade, and gained im-

pressive momentum recently: intrusion tolerance (IT) 1. That is, the notion of

handling— react, counteract, recover, mask— a wide set of faults encompassing

intentional and malicious faults (we may collectively call them intrusions), which

may lead to failure of the system security properties if nothing is done to counter

their effect on the system state. In short, instead of trying to prevent every sin-

gle intrusion, these are allowed, but tolerated: the system has the means to trigger

mechanisms that prevent the intrusion from generating a system failure.

It is known that distribution and fault tolerance go hand in hand: one distributes

to achieve resilience to common mode faults, and/or one embeds fault tolerance in

a distributed system to resist the higher fault probabilities coming from distribu-

tion. Contrary to some vanishing misconceptions, security and distribution also go

hand in hand: one splits and separates information and processing geographically,

making life harder to an attacker. This suggests that (distributed) malicious fault

tolerance, a.k.a. (distributed) intrusion tolerance is an obvious approach to achieve

secure processing. If this is so obvious, why has it not happened earlier?

In fact, the term “intrusion tolerance” has been used for the first time in [19],

and a sequel of that work lead to a specific system developed in the DELTA-4

project [16]. In the following years, a number of isolated works, mainly on pro-

tocols, took place that can be put under the IT umbrella [10, 34, 23, 2, 27, 4, 22],

but only recently did the area develop explosively, with two main projects on both

sides of the Atlantic, the OASIS and the MAFTIA projects, doing structured work

on concepts, mechanisms and architectures. One main reason is concerned with the

fact that distributed systems present fundamental problems in the presence of ma-

1Example pointers to relevant IT research: MAFTIA: http://www.maftia.org. OASIS:

http://www.tolerantsystems.org.

3

licious faults. On the other hand, classical fault tolerance follows a framework that

is not completely fit to the universe of intentional and/or malicious faults. These

issues will be discussed below.

The purpose of this paper is to make an attempt to systematize these new con-

cepts and design principles. The paper describes the fundamental concepts behind

intrusion tolerance (IT), tracing their connection with classical fault tolerance and

security, and identifying the main delicate issues emerging in the evolution to-

wards IT. We discuss the main strategies and mechanisms for architecting IT sys-

tems, and report on recent advances on distributed IT system architectures. For

the sake of clarifying our position, we assume an ‘architecture’ to be materialized

by a given composition of components. Components have given functional and

non-functional properties, and an interface where these properties manifest them-

selves. Components are placed in a given topology of the architecture, and interact

through algorithms (in a generic sense), such that global system properties emerge

from these interactions.

2 The case for Intrusion Tolerance

Dependability has been defined as that property of a computer system such that

reliance can justifiably be placed on the service it delivers. The service delivered

by a system is its behaviour as it is perceptible by its user(s); a user is another

system (human or physical) which interacts with the former[5].

Dependability is a body of research that hosts a set of paradigms, amongst

which fault tolerance, and it grew under the mental framework of accidental faults,

with few exceptions [19, 17], but we will show that the essential concepts can be

applied to malicious faults in a coherent manner.

2.1 A brief look at classical fault tolerance and security

Paraphrasing Gray[20], “Why do computers fail and what can we do about it?”,

and notwithstanding the fact that all that works can fail, it seems that people tend to

overestimate the quality of the computational systems they rely upon. This problem

does not get better with distribution. Quoting Lamport, “A distributed system is

the one that prevents you from working because of the failure of a machine that

you had never heard of”. Machines should fail independently, for a start, and

thus reliability (< 1) of a system being the product of the individual component

reliabilities, the chances that some component is failed in a distributed system are

greater than in a monolithic one. If components influence each other when failing,

then the situation gets worse.

Malicious failures make the problem of reliability of a distributed system harder:

failures can no longer be considered independent, as with accidental faults, since

human attackers are likely to produce “common-mode” symptoms; components

may perform collusion through distributed protocols; failures themselves become

4

more severe, since the occurrence of inconsistent outputs, at wrong times, with

forged identity or content, can no longer be considered of “low probability”; fur-

thermore, they may occur at specially inconvenient instants or places of the system,

driven by an intelligent adversary’s mind.

This affects long-believed dogmas in classical fault tolerance: that fault types

and their distribution follow statistically definable patterns; that the environment

properties can be defined in probabilistically meaningful terms. In essence, that

you can rely on: pre-defined and static fault models and environment assumptions.

The first question that comes to mind when addressing fault tolerance (FT)

under a malicious perspective, is thus: How do you model the mind of an attacker?

Let us now look at the problem under a classical security perspective. Typical

security properties are: confidentiality, or the measure in which a service or piece

of information is protected from unauthorized disclosure; authenticity, or the mea-

sure in which a service or piece of information is genuine, and thus protected from

personification or forgery; integrity, or the measure in which a service or piece of

information is protected from illegitimate and/or undetected modification; avail-

ability, or the measure in which a service or piece of information is protected from

denial of authorized provision or access. The purpose of a sound system design is

to secure all or some of these properties.

Traditionally, security has evolved as a combination of: preventing certain at-

tacks from occurring; removing vulnerabilities from initially fragile software; pre-

venting attacks from leading to intrusions. For example, in order to preserve confi-

dentiality, it would be unthinkable to let an intruder read any confidential data at all.

Likewise, integrity would assume not letting an intruder modify data at all. That

is, with few exceptions, security has long been based on the prevention paradigm.

However, let us tentatively imagine the tolerance paradigm in security[1]:

• assuming (and accepting) that systems remain to a certain extent vulnerable;

• assuming (and accepting) that attacks on components/sub-systems can hap-

pen and some will be successful;

• ensuring that the overall system nevertheless remains secure and operational.

Then, another question can be put: How do we let data be read or modified by

an intruder, and still ensure confidentiality or integrity?

2.2 Dependability as a common framework

Let us observe the well-known fault-error-failure sequence in Figure 1. Depend-

ability aims at preventing the failure of the system. This failure has a remote cause,

which is a fault (e.g. a bug in a program, a configuration error) which, if activated

(e.g. the program execution passes through the faulty line of code), leads to an error

in system state. If nothing is done, failure will manifest itself in system behaviour.

In consequence, achieving dependability implies the use of combinations of:

fault prevention, or how to prevent the occurrence or introduction of faults; fault

removal, or how to reduce the presence (number, severity) of faults; fault forecast-

5

f a u l t
t o l e r a n c e

e r r o r
p r o c e s s i n g

f a u l t
t r e a t m e n t

i n t e r a c t i o n
f a u l t

f a u l t
p r e v e n t i o n

e r r o r

D e s i g n e r /
O p e r a t o r

f a u l t
r e m o v a l

d e s i g n /
o p e r / c o n f i g .
f a u l t

f a u l t
p r e v e n t i o n

(i m p e r f e c t)

(a) (b)

i n t e r a c t i o n
f a u l t

D e s i g n e r /
O p e r a t o r

d e s i g n /
o p e r / c o n f i g .
f a u l t

f a i l u r ee r r o r f a i l u r e

Figure 1: Fault–> Error–> Failure sequence

ing, or how to estimate the presence, creation and consequences of faults; and last

but not least, fault tolerance, or how to ensure continued correct service provision

despite faults. Thus, achieving dependability vis-a-vis malicious faults (e.g. at-

tacks and vulnerabilities) will mean the combined use of classical prevention and

removal techniques with tolerance techniques.

Let us analyse the foundations of modular and distributed fault tolerance, and

see how they fit in this new scenario:

• Topological separation, aiming at achieving failure independence and grace-

ful degradation.

• Replication, as a form of redundancy, either software or hardware, with

coarser or finer granularity.

• Configurability, through number of assumed faults, number of replicas, type

of replica control (active, semi-active, passive, round robin, voting disci-

pline).

• Resource optimisation, by software-to-hardware component mapping, and

incremental F/T classes (omissive, assertive, arbitrary).

Topological separation makes the intruder’s life more difficult, in terms of at-

tack effort. For example, a secret can be split through several sites, and getting

part of it reveals nothing about the whole. Replication makes components more

resilient to damage, in terms of integrity and availability, but can also (though

counter-intuitively) benefit confidentiality and authenticity, if we think of repli-

cated execution of decisions (e.g. whether or not to render a piece of data, or

to perform authentication. For example, one contaminated site alone (e.g., refer-

ence monitor) will not be able to decide authorization of access to a piece of data.

Configurability is key to achieving incremental resilience to different strengths and

kinds of intrusions (f+1 replication to withstand denial-of-service attacks, 3f+1 for

resilience to Byzantine faults, and so forth), and to achieve different types of re-

covery (active being the most prompt, but also semi-active and passive). Resource

optimisation reduces the cost of achieving intrusion tolerance.

This roadmap seems convincing, but in concrete terms, how can tolerance be

6

applied in the context of attacks, vulnerabilities, intrusions?

2.3 Open problems

Let us analyse a few open problems that arise when intrusion tolerance is analysed

from a security or fault tolerance background.

To start with, what contributes to the risk of intrusion? Risk is a combined

measure of the probability of there being intrusions, and of their severity, that is,

of the impact of a failure caused by them. The former is influenced by two factors

that act in combination: the level of threat to which a computing or communica-

tion system is exposed; and the degree of vulnerability it possesses. The correct

measure of how potentially insecure a system can be (in other words, of how hard

it will be to make it secure) depends: on the number and nature of the flaws of the

system (vulnerabilities); on the potential for there existing attacks on the system

(threats). Informally, the probability of an intrusion is given by the probability of

there being an attack activating a vulnerability that is sensitive to it. The latter, the

impact of failure, is measured by the cost of an intrusion in the system operation,

which can be equated in several forms (economical, political, etc.).

Consider the following two example systems:

System Vault has a degree of vulnerability vvault=0.1, and since it has such

high resilience, its designers have put it to serve anonymous requests in the Internet,

with no control whatsoever to whoever tries to access it, that is, subject to a high

level of threat, tvault=100.

System Sieve, on the other hand, is a vulnerable system, vsieve=10, and in

consequence, its designers have safeguarded it, installing it behind a firewall, and

controlling the accesses made to it, in what can be translated to a level of threat of

tsieve=1.

Which of them offers a lower operational risk? Consider the product threat x

vulnerability in our academic example: with the imaginary values we attributed to

each system, it equates to the same value in both systems (10), although system

Vault is a hundred times less vulnerable than system Sieve!

Should we try and bring the risk to zero? And is that feasible at all? This is

classical prevention/removal: of the number, power, and severity of the vulnerabil-

ities and the attacks the system may be subjected to. The problem is that neither

can be made arbitrarily low, for several reasons: it is too costly and/or too complex

(e.g., too many lines of code, hardware constraints); certain attacks come from

the kind of service being deployed (e.g., public anonymous servers on the Inter-

net); certain vulnerabilities are attached to the design of the system proper (e.g.,

mechanisms leading to races in certain operating systems).

And even if we could bring the risk to zero, would it be worthwhile? It should

be possible to talk about acceptable risk: a measure of the probability of failure

we are prepared to accept, given the value of the service or data we are trying to

protect. This will educate our reasoning when we architect intrusion tolerance, for

it establishes criteria for prevention/removal of faults and for the effort that should

7

be put in tolerating the residual faults in the system. Further guidance can be taken

for our system assumptions if we think that the hacker or intruder also incurs in

a cost of intruding. This cost can be measured in terms of time, power, money,

or combinations thereof, and clearly contributes to equating ‘acceptable risk’, by

establishing the relation between ‘cost of intruding’ and ‘value of assets’.

Secure Sockets Layer (SSL) reportedly ensures secure client-server interac-

tions between browsers and WWW servers. Is SSL secure? Users have tended to

accept that the interactions are secure (assumed low degree of vulnerability), with-

out quantifying how secure. Several companies have built their commerce servers

around SSL, some of them to perform financially significant transactions on the In-

ternet (high level of threat). Netscape’s SSL implementation was broken because

of a bug that allowed to replicate session keys and thus decrypt any communi-

cation. The corrected version was then broken at least twice through brute-force

attacks on the 40-bit keys version (the only generically available at that time due to

the U.S.A. export restrictions on cryptographic material). This initial situation led

to a high risk.

Is SSL secure enough? Netscape issued a corrected version of SSL, and re-

ported that it would cost at least USD10,000 to break an Internet session in com-

puting time. The cost of intruding a system versus the value of the service being

provided allows the architect to make a risk assessment. Someone who spends 10

000 EURO to break into a system and get 100 EURO worth of bounty, is doing a

bad business. This defined the acceptable risk. Unfortunately, these estimates may

fail: shortly after Netscape’s announcement, a student using a single but power-

ful desktop graphics workstation, broke it for just USD600. However, what went

wrong here was not the principle and the attitude of Netscape, just the risk assess-

ment they made, which was too optimistic.

How tamper-proof is ‘tamper-proof’? Classically, ‘tamper-proof’ means that a

component is shielded, i.e. it cannot be penetrated. Nevertheless, in order to han-

dle the difficulty of finding out that some components were “imperfectly” tamper-

proof, experts in the area introduced an alternative designation, ‘tamper-resistant’,

to express that fact. However, the imprecision of the latter is uncomfortable, lead-

ing to what we call the “watch-maker syndrome”:

• “Is this watch water-proof?”

• “No, it’s water-resistant.”

• “Anyway, I assume that I can swim with it!”

• “Well yes, you can! But... I wouldn’t trust that very much...”

A definition is required that attaches a quantifiable notion of “imperfect” to

tamper-proofness, without necessarily introducing another vague term.

How can something be trusted and not trustworthy? Classically, in security

one aims at building trust between components, but the merits of the object of our

trust are not always analysed. This leads to what we called the “unjustified reliance

syndrome”:

• “I trust Alice!”

8

• “Well Bob, you shouldn’t, she’s not trustworthy.”

What is the problem? Bob built trust on Alice through some means that may

be correct at a high level (for example, Alice produced some signed credentials).

However, Bob is being alerted to a fact he forgot (e.g., that Alice is capable of

forging the credentials). It is necessary to establish the difference between what is

required of a component, and what the component can give.

How do we model the mind of a hacker? Since the hacker is the perpetrator

of attacks on systems, a fault model would be a description of what he/she can

do. Then, a classical attempt at doing it would lead to the “well-behaved hacker

syndrome”:

• “Hello, I’ll be your hacker today, and here is the list of what I promise not to do.”

• “Thank you, here are a few additional attacks we would also like you not to at-

tempt.”

In consequence, a malicious-fault modelling methodology is required that re-

fines the kinds of faults that may occur, and one that does not make naive assump-

tions about how the hacker can act. The crucial questions put in this section will

be addressed in the rest of the paper.

3 Intrusion Tolerance concepts

What is Intrusion Tolerance? As said earlier, the tolerance paradigm in security:

assumes that systems remain to a certain extent vulnerable; assumes that attacks on

components or sub-systems can happen and some will be successful; ensures that

the overall system nevertheless remains secure and operational, with a quantifiable

probability. In other words:

• faults— malicious and other— occur;

• they generate errors, i.e. component-level security compromises;

• error processing mechanisms make sure that security failure is prevented.

Obviously, a complete approach combines tolerance with prevention, removal,

forecasting, after all, the classic dependability fields of action!

3.1 AVI composite fault model

The mechanisms of failure of a system or component, security-wise, have to do

with a wealth of causes, which range from internal faults (e.g. vulnerabilities),

to external, interaction faults (e.g., attacks), whose combination produces faults

that can directly lead to component failure (e.g., intrusion). An intrusion has two

underlying causes:

Vulnerability - fault in a computing or communication system that can be ex-

ploited with malicious intention

9

Attack - malicious intentional fault attempted at a computing or communication

system, with the intent of exploiting a vulnerability in that system

Which then lead to:

Intrusion - a malicious operational fault resulting from a successful attack on a

vulnerability

It is important to distinguish between the several kinds of faults susceptible of

contributing to a security failure. Figure 2a represents the fundamental sequence

of these three kinds of faults: attack → vulnerability → intrusion → failure. This

well-defined relationship between attack/vulnerability/intrusion is what we call the

AVI composite fault model. The AVI sequence can occur recursively in a coherent

chain of events generated by the intruder(s), also called an intrusion campaign.

For example, a given vulnerability may have been introduced in the course of an

intrusion resulting from a previous successful attack.

Vulnerabilities are the primordial faults existing inside the components, essen-

tially requirements, specification, design or configuration faults (e.g., coding faults

allowing program stack overflow, files with root setuid in UNIX, naive passwords,

unprotected TCP/IP ports). These are normally accidental, but may be due to in-

tentional actions, as pointed out in the last paragraph. Attacks are interaction faults

that maliciously attempt to activate one or more of those vulnerabilities (e.g., port

scans, email viruses, malicious Java applets or ActiveX controls).

The event of a successful attack activating a vulnerability is called an intrusion.

This further step towards failure is normally characterized by an erroneous state in

the system which may take several forms (e.g., an unauthorized privileged account

with telnet access, a system file with undue access permissions to the hacker).

Intrusion tolerance means that these errors can for example be unveiled by intrusion

detection, and they can be recovered or masked. However, if nothing is done to

process the errors resulting from the intrusion, failure of some or several security

properties will probably occur.

i n t r u s i o n
t o l e r a n c e

i n t r u s i o n
p r e v e n t i o n

a t t a c k
(f a u l t)

v u l n e r a b i l i t y
p r e v e n t i o n

a t t a c k
p r e v e n t i o n

v u l n e r a b i l i t y
r e m o v a l

i n t r u s i o n
(f a u l t) f a i l u r ee r r o r

v u l n e r a b i l i t y
(f a u l t)

I n t r u d e r

I n t r u d e r /
D e s i g n e r /
O p e r a t o r

a t t a c k
r e m o v a l

(a) (b)

a t t a c k
(f a u l t)

i n t r u s i o n
(f a u l t) f a i l u r ee r r o r

v u l n e r a b i l i t y
(f a u l t)

I n t r u d e r

I n t r u d e r /
D e s i g n e r /
O p e r a t o r

Figure 2: (a) AVI composite fault model; (b) Preventing security failure

Why a composite model? The AVI model is a specialization of the generic

fault → error → failure sequence, which has several virtues. Firstly, it describes

10

the mechanism of intrusion precisely: without matching attacks, a given vulnera-

bility is harmless; without target vulnerabilities, an attacks is irrelevant. Secondly,

it provides constructive guidance to build in dependability against malicious faults,

through the combined introduction of several techniques. To begin with, we can

prevent some attacks from occurring, reducing the level of threat, as shown in

Figure 2b. Attack prevention can be performed, for example, by shadowing the

password file in UNIX, making it unavailable to unauthorized readers, or filtering

access to parts of the system (e.g., if a component is behind a firewall and cannot

be accessed from the Internet, attack from there is prevented). We can also perform

attack removal, which consists of taking measures to discontinue ongoing attacks.

However, it is impossible to prevent all attacks, so reducing the level of threat

should be combined with reducing the degree of vulnerability, through vulnerabil-

ity prevention, for example by using best-practices in the design and configuration

of systems, or through vulnerability removal (i.e., debugging, patching, disabling

modules, etc.) for example it is not possible to prevent the attack(s) that activate(s)

a given vulnerability. The whole of the above-mentioned techniques prefigures

what we call intrusion prevention, i.e. the attempt to avoid the occurrence of intru-

sion faults.

Figure 2b suggests, as we discussed earlier, that it is impossible or infeasible

to guarantee perfect prevention. The reasons are obvious: it may be not possible to

handle all attacks, possibly because not all are known or new ones may appear; it

may not be possible to remove or prevent the introduction of new vulnerabilities.

For these intrusions still escaping the prevention process, forms of intrusion toler-

ance are required, as shown in the figure, in order to prevent system failure. As

will be explained later, these can assume several forms: detection (e.g., of intruded

account activity, of trojan horse activity); recovery (e.g., interception and neutral-

ization of intruder activity); or masking (e.g., voting between several components,

including a minority of intruded ones).

3.2 Trust and Trustworthiness

The adjectives “trusted” and “trustworthy” are central to many arguments about

the dependability of a system. They have been often used inconsistently and up

to now, exclusively in a security context[1]. However, the notions of “trust” and

“trustworthiness” can be generalized to point to generic properties and not just

security; and there is a well-defined relationship between them— in that sense,

they relate strongly to the words “dependence” and “dependability”.

Trust - the accepted dependence of a component, on a set of properties (functional

and/or non-functional) of another component, subsystem or system

In consequence, a trusted component has a set of properties that are relied

upon by another component (or components). If A trusts B, then A accepts that

a violation in those properties of B might compromise the correct operation of A.

11

Note that trust is not absolute: the degree of trust placed by A on B is expressed

by the set of properties, functional and non-functional, which A trusts in B (for

example, that a smart card: P1- Gives a correct signature for every input; P2- Has

an MTTF of 10h (to a given level of threat...)).

Observe that those properties of B trusted by A might not correspond quanti-

tatively or qualitatively to B’s actual properties. However, in order for the relation

implied by the definition of trust to be substantiated, trust should be placed to the

extent of the component’s trustworthiness. In other words, trust, the belief that B

is dependable, should be placed in the measure of B’s dependability.

Trustworthiness - the measure in which a component, subsystem or system, meets

a set of properties (functional and/or non-functional)

The trustworthiness of a component is, not surprisingly, defined by how well it

secures a set of functional and non-functional properties, deriving from its archi-

tecture, construction, and environment, and evaluated as appropriate. A smart card

used to implement the example above should actually meet or exceed P1 and P2,

in the envisaged operation conditions.

The definitions above have obvious (and desirable) consequences for the design

of intrusion tolerant systems: trust is not absolute, it may have several degrees,

quantitatively or qualitatively speaking; it is related not only with security-related

properties but with any property (e.g., timeliness); trust and trustworthiness lead

to complementary aspects of the design and verification process. In other words,

when A trusts B, A assumes something about B. The trustworthiness of B measures

the coverage of that assumption.

In fact, one can reason separately about trust and trustworthiness. One can de-

fine chains or layers of trust, make formal statements about them, and validate this

process. In complement to this, one should ensure that the components involved in

the above-mentioned process are endowed with the necessary trustworthiness. This

alternative process is concerned with the design and verification of components, or

of verification/certification of existing ones (e.g., COTS). The two terms establish

a separation of concerns on the failure modes: of the higher level algorithms or

assertions (e.g., authentication/authorization logics); and of the infrastructure run-

ning them (e.g., processes/servers/communications).

The intrusion-tolerance strategies should rely upon these notions. The assertion

‘trust on a trusted component’ inspires the following guidelines for the construc-

tion of modular fault tolerance in complex systems: components are trusted to the

extent of their trustworthiness; there is separation of concerns between what to do

with the trust placed on a component (e.g., building fault-tolerant algorithms), and

how to achieve or show its trustworthiness (e.g., constructing the component). The

practical use of these guidelines is exemplified in later sections.

Let us revisit the example of tamper-proof device, under the light of these con-

cepts. Tamperproofness is the property of a system/component of being shielded,

i.e. whose attack model is that attacks can only be made at the regular interface.

12

The component may not be perfect, but instead of using “tamper-resistant”, we

equate that in terms of the relative trustworthiness of the component, measured by

the notion of coverage of the ‘tamper-proofness’ assumption.

As an example, assume the implementation of an authorisation service using

JavaCards to store private keys. We assume JavaCards are tamper-proof, and so

we argue that they are trustworthy not reveal these keys to an unauthorised party.

Hence we build the authorisation service trusting the JavaCards, but only to the

extent of their trustworthiness, that is, up to the coverage given by the tamper-

proofness of the JavaCards. For example, an estimated figure could be put on the

resilience of the JavaCards in a given environment (attack model), for example, the

time or computational power to be broken.

3.3 Coverage and separation of concerns

Let us analyse how to build justified trust under the AVI model. Assume that

component C has predicate P that holds with a coverage Pr, and this defines the

component’s trustworthiness, 〈P, Pr〉. Another component B should thus trust C

to the extent of C possessing P with a probability Pr. So, there can be failures

consistent with the limited trustworthiness of C (i.e., that Pr < 1): these are

“normal”, and who/whatever depends on C, like B, should be aware of that fact,

and expect it (and maybe take provisions to tolerate the fact in a wider system

perspective).

However, it can happen that B trusts C to a greater extent than it should: trust

was placed on C to an extent greater than its trustworthiness, perhaps due to a

wrong or neglecting perception of the latter. This is a mistake of who/whatever

uses that component, which can lead to unexpected failures.

C 1 C 2

C 3 C 4 C 5

C 6

C 1 C 2

C 3 C 4 C 5

C 6

H

P r
e

< H >

(a) (b)

B 3

B 5

B 4

B 2

B 1

< A >

P r
o

Figure 3: Building trust

Finally, it can happen that the claim made about the trustworthiness of C is

wrong (about predicate P , or its coverage Pr, or both). The component fails in

worse, earlier, or more frequent modes than stated in the claim made about its re-

silience. In this case, even if B trusts C to the extent of 〈P, Pr〉 there can also

13

be unexpected failures. However, this time, due to a mistake of whoever archi-

tected/built the component.

Note that this separation of concerns is important in a component-based ap-

proach at architecting dependable systems, since it allows an “OEM” or “COTS”

approach: one “buys” a component with a certain specification, and the “manufac-

turer” (even if only another project design team) is ultimately responsible for the

component meeting that specification.

Ultimately, what does it mean for component B to trust component C? It means

that B assumes something about C. Generalizing, assume a set B of participants

(B1 − Bn), which run an algorithm offering a set of properties A, on a run-time

support environment composed itself of a set C of components (C1 − Cn). This

modular vision is very adequate for, but not confined to, distributed systems. Imag-

ine the environment as depicted in Figure 3a: C is architected so as to offer a set of

properties, call it H . This serves as the support environment on which B operates,

as suggested by the shaded cushion in Figure 3b.

Observe that B trusts C to provide H: B depends on the environment’s prop-

erties H to implement the algorithm securing properties A. Likewise, a user of B
trusts the latter to provide A. Without further discourse, this chain of trust would

be: if C is trusted to provide H , then B is trusted to provide A.

Now let us observe the trustworthiness side. H holds with a probability Pre,

the environmental assumption coverage[33]:

Pre = Pr(H|f) , f - any fault

Pre measures the trustworthiness of C (to secure properties H). Given H , A
has a certain probability (can be 1 if the algorithm is deterministic and correct, can

be less than one if it is probabilistic, and/or if it has design faults) of being fulfilled,

the coverage Pro or operational assumption coverage:

Pro = Pr(A|H)
Pro measures the confidence on B securing properties A (given H as environ-

ment). Then, the trustworthiness of individual component B (to secure properties

A given H) would be given by Pro.

As we propose, these equations should place limits on the extent of trust re-

lations. B should trust C to the extent of providing H with confidence Pre ≤ 1.

However, since the user’s trust on B is implied by B’s trust on C, then the user

should trust B not in isolation, but conditioned to C’s trustworthiness, that is, to the

extent of providing A with confidence:

Pra = Pro × Pre = Pr(A|H) × Pr(H|f) = Pr(A|f), f - any fault

The resulting chain could go on recursively. Pra is the probability that a user

of the system composed of B and C enjoys properties A, in other words, it measures

its trustworthiness.

14

4 IT frameworks and mechanisms

After introducing intrusion tolerance concepts, we begin this section by briefly

analysing the main frameworks with which the architect can work in order to build

intrusion tolerant systems: secure and fault-tolerant communication; software-

based intrusion tolerance; hardware-based intrusion tolerance; auditing and intru-

sion detection. We will also look at several known security frameworks[37] under

an IT perspective. Then we review error processing mechanisms in order to recover

from intrusions.

4.1 Secure and fault-tolerant communication

This is the framework concerning the body of protocols ensuring intrusion tolerant

communication. Essentially, relevant to this framework are secure channels and

secure envelopes, and classic fault tolerant communication.

Secure channels are normally set up for regular communications between prin-

cipals, or communications that last long enough for the concept of session or con-

nection to make sense. For instance, file transfers or remote sessions. They live

on a resilience/speed tradeoff, because they are on-line, and may use combinations

of physical and virtual encryption. Secure channels adopt per-session security,

and normally use symmetric communication encryption, and signature or cryp-

tographic checksum (MAC)-based channel authentication. Secure envelopes are

used mainly for sporadic transmissions, such as email. They resort to per-message

security and may make use of a combination of symmetric and asymmetric cryp-

tography (also called hybrid) as a form of improving performance, especially for

large message bodies.

Several techniques assist the design of fault-tolerant communication protocols.

Their choice depends on the answer to the following question: What are the classes

of failures of communication network components?

For the architect, this establishes the fundamental link between security and

fault tolerance. In classical fault tolerant communication, it is frequent to see

omissive fault models (crash, omissions, etc.). In IT the failure mode assumptions

should be oriented by the AVI fault model, and by the way specific components’

properties may restrict what should be the starting assumption: arbitrary failure

(combination of omissive and assertive behaviour). In fact, this is the most ade-

quate baseline model to represent malicious intelligence.

4.2 Software-based intrusion tolerance

Software-based fault tolerance has primarily been aimed at tolerating hardware

faults using software techniques. Another important facet is software fault toler-

ance, aimed at tolerating software design faults by design diversity. Finally, it has

long been known that software-based fault tolerance by replication may also be

extremely effective at handling transient and intermittent software faults[37].

15

Software-based fault tolerance is the basis of modular FT, which underpins

the main paradigms of distributed fault tolerance. The main players are software

modules, whose number and location in several sites of the system depends on the

dependability goals to be achieved.

Let us analyse what can be done under an IT perspective. In the case of de-

sign or configuration faults, simple replication would apparently provide little help:

errors would systematically occur in all replicas. This is true from a vulnerabil-

ity viewpoint: it is bound to exist in all replicas. However, the common-mode

syndrome under the AVI model concerns intrusions, or attack-vulnerability pairs,

rather than vulnerabilities alone.

This gives the architect some chances. Consider the problem of common-mode

vulnerabilities, and of common-mode attacks, i.e. attacks that can be cloned and

directed automatically and simultaneously to all (identical) replicas. Design di-

versity can be applied, for example, by using different operating systems, both to

reduce the probability of common-mode vulnerabilities (the classic way), and to

reduce the probability of common-mode attacks (by obliging the attacker to master

attacks to more than one architecture)[9]. Both reduce the probability of common-

mode intrusion, as desired.

This can be taken farther: different system architectures are used, or execution

results are tested against assertions about the desired outcome. For example, each

replica of a given component can be designed and developed by a different team of

programmers. Software design diversity is rather expensive (most software prod-

ucts already cost too much, even when a single development team is involved) and

as such it is only employed when the stakes are very high.

However, even mere replication with homogeneous components can yield sig-

nificant results. How? When components have a high enough trustworthiness that

claims can be made about the hardness of achieving a successful attack-vulnerability

match on one of them (e.g. “breaking” it). In this case, we could apply the classical

principle of achieving a much higher reliability of a replica set than the individual

replicas’ reliability. For example, simple replication can be used to tolerate attacks,

by making it difficult and lengthy for the attacker to launch simultaneous attacks

to all replicas with success.

The caveat is to derive the precise formula. The canonic formula assumes

independent failure modes. In IT, in our opinion, the truth lies in the middle: they

are neither independent, nor common mode. Exactly where, is still a research

topic. In following this approach, one must not forget the considerations of the

previous section on fault models complying with malicious behaviour. That is,

replication management (e.g., voting) criteria should normally encompass assertive

(value domain) behaviour, and of a subtle nature (e.g. inconsistent or Byzantine).

Finally, since replicas of a same component can reside in different hardware

and/or operating system architectures, and execute at different moments and in

different contexts, this implicit “diversity” is enough to tolerate many faults, espe-

cially those faults that lead to an intermittent behaviour. It follows that transient

and intermittent faults can also be tolerated this way, even certain malicious faults

16

such as low intensity sporadic attacks.

The introduction of a vulnerability as a first step of an intrusion campaign (to

be further exploited by subsequent attacks) can also be discussed under the at-

tacker power perspective. However, it can methodically be introduced in a stealth

way, unlike the attacks which require synchronization, and this renders such at-

tacks potentially difficult to evaluate, and thus more dangerous than the originating

vulnerability analysed individually.

4.3 Hardware-based intrusion tolerance

Software-based and hardware-based fault tolerance are not incompatible design

frameworks[37]. In a modular and distributed systems context, hardware fault tol-

erance today should rather be seen as a means to construct fail-controlled com-

ponents, in other words, components that are prevented from producing certain

classes of failures. This contributes to establish improved levels of trustworthiness,

and to use the corresponding improved trust to achieve more efficient fault-tolerant

systems.

Distributed algorithms that tolerate arbitrary faults are expensive in both re-

sources and time. For efficiency reasons, the use of hardware components with

enforced controlled failure modes is often advisable, as a means for providing an

infrastructure where protocols resilient to more benign failures can be used, with-

out that implying a degradation in the resilience of the system to malicious faults.

4.4 Auditing and intrusion detection

Logging system actions and events is a good management procedure, and is rou-

tinely done in several operating systems. It allows a posteriori diagnosis of prob-

lems and their causes, by analysis of the logs. Audit trails are a crucial framework

in security.

Not only for technical, but also for accountability reasons, it is very important

to be able to trace back the events and actions associated with a given time interval,

subject, object, service, or resource. Furthermore, it is crucial that all activity can

be audited, instead of just a few resources. Finally, the granularity with which

auditing is done should be related with the granularity of possible attacks on the

system. Since logs may be tampered with by intruders in order to delete their own

traces, logs should be tamperproof, which they are not in many operating systems.

Intrusion Detection (ID) is a classical framework in security, which has encom-

passed all kinds of attempts to detect the presence or the likelihood of an intrusion.

ID can be performed in real-time, or off-line. In consequence, an intrusion detec-

tion system (IDS) is a supervision system that follows and logs system activity, in

order to detect and react (preferably in real-time) against any or all of: attacks (e.g.

port scan detection), vulnerabilities (e.g. scanning), and intrusions (e.g. correlation

engines).

17

Definition of ID given by NSA (1998): Pertaining to techniques which attempt

to detect intrusion into a computer or network by observation of actions, secu-

rity logs, or audit data. Detection of break-ins or attempts either manually or via

software expert systems that operate on logs or other information available on the

network.

An aspect deserving mention under an IT viewpoint is the dichotomy between

error detection and fault diagnosis, normally concealed in current ID systems[1].

Why does it happen, and why is it important? It happens because IDS are primarily

aimed at complementing prevention and triggering manual recovery. It is impor-

tant because if automatic recovery (fault tolerance) of systems is desired, there is

the need to clearly separate: what are errors as per the security policy specification;

what are faults, as per the system fault model. Faults (e.g., attacks, vulnerabilities,

intrusions) are to be diagnosed, in order that they can be treated (e.g. passivated,

removed). Errors are to be detected, in order that they can be automatically pro-

cessed in real-time (recovered, masked).

To understand the problem better, consider the following example situations,

in an organization that has an intranet with an extranet connected to the public

Internet, and is fit with an IDS: (a) the IDS detects a port scan against an extranet

host, coming from the Internet; (b) the IDS detects a port scan against an internal

host, coming from the Internet; (c) the IDS detects a port scan against an internal

host, coming from the intranet. What is the difference between (a), (b) and (c)?

In fact, (a) must (currently) be considered “normal” Internet activity, and would at

most be an attack, not an intrusion, if the fault model includes, for example, given

thresholds or patterns for external activity. On the other hand, (b) implies an error

(in the outside protection mechanisms) if the security policy (as expected...) rules

out the permission for making internal port scans from the Internet. Finally, (c)

also prefigures an error, since it would also be expected that the security policy

forbids port scans from inside the institution.

ID as error detection will be detailed later in the paper. It addresses detection

of erroneous states in a system computation, deriving from malicious action e.g.,

modified files or messages, OS penetration by buffer overflow. ID as fault diag-

nosis seeks other purposes, and as such, both activities should not be mixed. Re-

gardless of the error processing mechanism (recovery or masking), administration

subsystems have a paramount action w.r.t. fault diagnosis. This facet of classical

ID fits into fault treatment[1]. It can serve to give early warning that errors may

occur (vulnerability diagnosis, attack forecasting), to assess the degree of success

of the intruder in terms of corruption of components and subsystems (intrusion di-

agnosis), or to find out who/what performed an attack or introduced a vulnerability

(attack diagnosis).

Diagnosis can be done proactively, before errors happen. For example, by

activating faults (e.g. vulnerability scanning) and post-processing (forecasting their

effects) one can get a metrics of resilience (subject to the method coverage...). On

the other hand, by analysing external activity one can try and predict attacks (e.g.

external port scan analysis).

18

4.5 Some security frameworks under an IT look

Observe that some mechanisms pertaining to known frameworks in security (secure

channels and envelopes, authentication, protection, cryptographic communication)[37]

can be revisited under the IT perspective and thus constitute useful conceptual tools

for the architect of IT systems.

N e t w o r k (I n t r a n e t) A

P a y l o a d P a c k .

S e c u r i t y
G a t e w a y

N e t w o r k (I n t r a n e t) C

P a y l o a d P a c k .

S e c u r i t y
G a t e w a y

N e t w o r k (I n t e r n e t) B

T u n n e lT u n n e l
C a r r i e r P a c k e t

Figure 4: Tunnels, Secure Channels and Envelopes

Secure tunnels, e.g. those built on the Internet with secure IP-over-IP channels,

are intrusion prevention devices (Figure 4): they enforce confidentiality, integrity

(and sometimes authenticity) between access points, despite intrusion attempts.

Coverage is given by: the resilience of the tunnelling method, and of the access

point gateways.

S e r v e r

E x t e r n a l
N e t w o r k

(e . g . I n t e r n e t)

D e - m i l i t a r i z e d Z o n e (D M Z)

S e r v e r

I n t e r n a l N e t w o r k

O u t e r
F i r e w a l l

I n n e r
F i r e w a l l

Figure 5: Firewalls

Firewalls are intrusion prevention devices (Figure 5): they prevent attacks on

inside machines that might exploit vulnerabilities leading to an intrusion. Their

coverage is given by: the power of the semantics of firewall functions, and the

resilience of bastions.

Mechanisms and protocols providing authentication between two or more enti-

ties (signature, message authentication codes (MAC)) are also intrusion prevention

devices (Figure 6a): they enforce authenticity preventing forging of identity of par-

ticipants or authorship/origin of data. Coverage is given by: the resilience of the

signature/authentication method.

Last but not least, some cryptographic protocols are very important intrusion

tolerance building blocks that can be used recursively. Seen as building blocks,

19

I ' m A l i c e ,
h e r e g o e s a m e s s a g e

s i g n e d b y m e

I ' m B o b ,
h e r e g o e s m y
s i g n e d r e p l y

C a s d h r t g

C a s d h r t g

M a l i c i o u s e n v i r o n m e n t

S e l f - E n f o r c i n g P r o t o c o l

A l i c e B o b

L u i s a

P a u l

A l i c e B o b

Figure 6: (a) Authentication; (b) Communication and agreement

self-enforcing protocols such as Byzantine agreement or atomic multicast (Fig-

ure 6b), are intrusion tolerance devices: they perform error processing or masking

(3f +1, 2f +1, f +2, depending on the fault model) and ensure message delivery

despite actual intrusions. Coverage is given by: semantics of protocol functions,

underlying model assumptions. Trusted Third Party (TTP) protocols are also in-

trusion tolerance devices which perform error processing/masking, but depend on

a TTP for their correct operation (Figure 7a). Coverage depends on: semantics

of protocol functions, underlying model assumptions, resilience of TTP. Finally,

threshold cryptographic protocols are intrusion tolerance devices (Figure 7b): they

perform error processing/masking under a threshold assumption of no more than

f+1 out of n intrusions. Their coverage is given by: semantics of the cryptographic

functions, brute force resilience of the cipher, underlying model assumptions.

A l i c e B o b

P a u l

T r e n t
(A d j u d i c a t o r ,
A r b i t e r ,

C e r t i f . A u t h)

T r u s t e d - T h i r d - P a r t y P r o t o c o l

Figure 7: (a) Trusted Third Party; (b) Threshold cryptography

4.6 Processing the errors deriving from intrusions

Next we review classes of mechanisms for processing errors deriving from intru-

sions. Essentially, we discuss the typical error processing mechanisms used in

fault tolerance, under an IT perspective: error detection; error recovery; and error

masking.

20

Error detection is concerned with detecting the error after an intrusion is ac-

tivated. It aims at: confining it to avoid propagation; triggering error recovery

mechanisms; triggering fault treatment mechanisms. Examples of typical errors

are: forged or inconsistent (Byzantine) messages; modified files or memory vari-

ables; phoney OS accounts; sniffers, worms, viruses, in operation.

Error recovery is concerned with recovering from the error once it is detected.

It aims at: providing correct service despite the error; recovering from effects of

intrusions. Examples of backward recovery are: the system goes back to a previ-

ous state known as correct and resumes; the system having suffered DoS (denial

of service) attack, re-executes the affected operation; the system having detected

corrupted files, pauses, reinstalls them, goes back to last correct point. Forward re-

covery can also be used: the system proceeds forward to a state that ensures correct

provision of service; the system detects intrusion, considers corrupted operations

lost and increases level of security (threshold/quorums increase, key renewal); the

system detects intrusion, moves to degraded but safer operational mode.

Error masking is a preferred mechanism when, as often happens, error de-

tection is not reliable or can have large latency. Redundancy is used systemati-

cally in order to provide correct service without a noticeable glitch. As examples:

systematic voting of operations; Byzantine agreement and interactive consistency;

fragmentation-redundancy-scattering; sensor correlation (agreement on imprecise

values).

4.7 Intrusion detection mechanisms

As to the methodology employed, classic ID systems belong to one (or a hybrid)

of two classes: behaviour-based (or anomaly) detection systems; and knowledge-

based (or misuse) detection systems.

Behaviour-based (anomaly) detection systems are characterized by needing

no knowledge about specific attacks. They are provided with knowledge about

the normal behaviour of the monitored system, acquired e.g., through extensive

training of the system in correct operation. As advantages: they do not require a

database of attack signatures that needs to be kept up-to-date. As drawbacks: there

is a significant potential for false alarms, namely if usage is not very predictable

with time; they provide no information (diagnosis) on type of intrusion, they just

signal that something unusual happened.

Knowledge-based (misuse) systems rely on a database of previously known

attack signatures. Whenever an activity matches a signature, an alarm is generated.

As advantages: alarms contain diagnostic information about the cause. The main

drawback comes from the potential for omitted or missed alarms, e.g. unknown

attacks (incomplete database) or new attacks (on old or new vulnerabilities).

Put under an IT perspective, error detection mechanisms of either class can and

should be combined. Combination of ID with automated recovery mechanisms is

a research subject in fast progress[1, 14, 24, 11].

21

This can be systematized and generalized as in Figure 8. System activity pat-

terns are followed, and compared against reference patterns[1]: normal and ab-

normal. Whenever there is a match with any of the abnormal patterns, an error is

reported (this is akin to the misuse style of detection). Likewise, whenever system

activity falls outside the normal patterns, an error is also reported (this falls into the

anomaly category). Note that both methodologies are seamlessly combined.

a n o m a l y

=

 ¹

m i s u s e

e r r o r

n o r m a l a c t i v i t y
R E F . p a t t e r n s

s y s t e m a c t i v i t y
p a t t e r n s

a b n o r m a l a c t i v i t y
R E F . p a t t e r n s

Figure 8: Intrusion detection methodologies

Modern intrusion detection should address errors deriving or not from mali-

cious action. In fact, a detector of errors caused by malicious faults should detect

errors caused by non-malicious ones. This puts emphasis on the result— the ob-

servable failure of some component to provide correct service— rather than on the

cause. The possible causes must have been defined previously, when devising the

fault model (AVI - attack, vulnerability, intrusion). Example: a Byzantine failure

detector in a distributed system, detects an abnormal behaviour of components,

such as sending inconsistent data to different participants. Whether or not it is

caused by malicious entities, is irrelevant. The quality of such detectors should be

measured by parameters such as: false alarm rate; omitted alarm rate; detection

latency.

5 Intrusion Tolerance strategies

Not surprisingly, intrusion tolerance strategies derive from a confluence of classical

fault tolerance and security strategies[37]. Strategies are conditioned by several

factors, such as: type of operation, classes of failures (i.e., power of intruder); cost

of failure (i.e., limits to the accepted risk); performance; cost; available technology.

Technically, besides a few fundamental tradeoffs that should always be made in any

design, the grand strategic options for the design of an intrusion-tolerant system

develop along a few main lines that we discuss in this section. We describe what

we consider to be the main strategic lines that should be considered by the architect

of IT systems, in a list that is not exhaustive. Once a strategy is defined, design

22

should progress along the guidelines suggested by the several intrusion-tolerance

frameworks just presented.

5.1 Fault Avoidance vs. Fault Tolerance

The first issue we consider is oriented to the system construction, whereas the

remaining are related with its operational purpose. It concerns the balance between

faults avoided (prevented or removed) and faults tolerated.

On the one hand, this is concerned with the ‘zero-vulnerabilities’ goal taken in

many classical security designs. The Trusted Computing Base paradigm[40], when

postulating the existence of a computing nucleus that is impervious to hackers,

relies on that assumption. Over the years, it became evident that this was a strategy

impossible to follow in generic system design: systems are too complex for the

whole design and configuration to be mastered. On the other hand, this balance also

concerns attack prevention. Reducing the level of threat improves on the system

resilience, by reducing the risk of intrusion. However, for obvious reasons, this is

also a very limited solution. As an example, the firewall paranoia of preventing

attacks on intranets also leaves many necessary doors (for outside connectivity)

closed in its way.

Nevertheless, one should avoid falling in the opposite extreme of the spectrum

—assume the worst about system components and attack severity— unless the crit-

icality of the operation justifies a ‘minimal assumptions’ attitude. This is because

arbitrary failure protocols are normally costly in terms of performance and com-

plexity.

The strategic option of using some trusted components— for example in criti-

cal parts of the system and its operation— may yield more performant protocols. If

taken under a tolerance (rather than prevention) perspective, very high levels of de-

pendability may be achieved. But the condition is that these components be made

trustworthy (up to the trust placed on them, as we discussed earlier), that is, that

their faulty behaviour is indeed limited to a subset of the possible faults. This is

achieved by employing techniques in their construction that lead to the prevention

and/or removal of the precluded faults, be them vulnerabilities, attacks, intrusions,

or other faults (e.g. omission, timing, etc.).

The recursive (by level of abstraction) and modular (component-based) use of

fault tolerance and fault prevention/removal when architecting a system is thus one

of the fundamental strategic tradeoffs in solid but effective IT system design. This

approach was taken in previous architectural works[32], but has an overwhelming

importance in IT, given the nature of faults involved.

5.2 Confidential Operation

When the strategic goal is confidentiality, the system should preferably be archi-

tected around error masking, resorting to schemes that despite allowing partial

unauthorised reads of pieces of data, do not reveal any useful information. Or

23

schemes that by requiring a quorum above a given threshold to allow access to

information, withstand levels of intrusion to the access control mechanism that re-

main below that threshold. Schemes relying on error detection/recovery are also

possible. However, given the specificity of confidentiality (once read, read for-

ever...), they will normally imply some form of forward, rather than backward re-

covery, such as rendering the unduly read data irrelevant in the future. They also

require low detection latency, to mitigate the risk of error propagation and eventual

system failure (in practical terms, the event of information disclosure).

5.3 Perfect Non-stop Operation

When no glitch is acceptable, the system must be architected around error masking,

as in classical fault tolerance. Given a set of failure assumptions, enough space

redundancy must be supplied to achieve the objective. On the other hand, adequate

protocols implementing systematic error masking under the desired fault model

must be used (e.g. Byzantine-resilient, TTP-based, etc.). However, note that non-

stop availability against general denial-of-service attacks is still an ill-mastered

goal in open systems.

5.4 Reconfigurable Operation

Non-stop operation is expensive and as such many services resort to cheaper re-

dundancy management schemes, based on error recovery instead of error masking.

These alternative approaches can be characterized by the existence of a visible

glitch. The underlying strategy, which we call reconfigurable operation, is nor-

mally addressed at availability- or integrity-oriented services, such as transactional

databases, web servers, etc.

The strategy is based on intrusion detection. The error symptom triggers a re-

configuration procedure that automatically replaces a failed component by a correct

component, or an inadequate or incorrect configuration by an adequate or correct

configuration, under the new circumstances (e.g. higher level of threat). For ex-

ample, if a database replica is attacked and corrupted, it is replaced by a backup.

During reconfiguration the service may be temporarily unavailable or suffer some

performance degradation, whose duration depends on the recovery mechanisms.

If the AVI sequence can be repeated (e.g., while the attack lasts), the service may

resort to configurations that degrade QoS in trade for resilience, depending on the

policy used (e.g., temporarily disabling a service that contains a vulnerability that

cannot be removed, or switching to more resilient but slower protocols).

5.5 Recoverable Operation

Disruption avoidance is not always mandatory, and this may lead to cheaper and

simpler systems. Furthermore, in most denial-of-service scenarios in open systems

(Internet), it is generically not achievable.

24

Consider that a component crashes under an attack. An intrusion-tolerant de-

sign can still be obtained, if a set of preconditions hold for the component: (a)

it takes a lower-bounded time Tc to fall; (b) it takes a upper-bounded time Tr to

recover; (c) the duration of blackouts is short enough for the application’s needs.

Unlike what happens with classic FT recoverable operation[37], where (c) only

depends on (b), here the availability of the system is defined in a more elaborate

way, proportionate to the level of threat, in terms of attack severity and duration.

Firstly, for a given attack severity, (a) determines system reliability under attack.

If an attack lasts less than Tc, the system does not even crash. Secondly, (a) and

(b) determine the time for service restoration. For a given attack duration Ta, the

system may either recover completely after Tr (Ta < Tc + Tr), or else cycle up-

down, with a duty cycle of Tc/(Tc + Tr) (longer attacks).

Moreover, the crash, which is provoked maliciously, must not give rise to in-

correct computations. This may be achieved through several techniques, amongst

which we name secure check-pointing and logging. Recoverable exactly-once op-

eration can be achieved with intrusion-tolerant atomic transactions[37]. In dis-

tributed settings, these mechanisms may require secure agreement protocols.

This strategy concerns applications where at the cost of a noticeable temporary

service outage, the least amount of redundancy is used. The strategy also serves

long-running applications, such as data mining or scientific computations, where

availability is not as demanding as in interactive applications, but integrity is of

primary concern.

5.6 Fail-Safe

In certain situations, it is necessary to provide for an emergency action to be per-

formed in case the system can no longer tolerate the faults occurring, i.e. it cannot

withstand the current level of threat. This is done to prevent the system from evolv-

ing to a potentially incorrect situation, suffering or doing unexpected damage. In

this case, it is preferable to shut the system down at once, what is called fail-safe

behaviour. This strategy, often used in safety- and mission-critical systems, is also

important in intrusion tolerance, for obvious reasons. It may complement other

strategies described above.

6 Modelling malicious faults

A crucial aspect of any fault-tolerant architecture is the fault model upon which the

system architecture is conceived, and component interactions are defined. The fault

model conditions the correctness analysis, both in the value and time domains, and

dictates crucial aspects of system configuration, such as the placement and choice

of components, level of redundancy, types of algorithms, and so forth. A system

fault model is built on assumptions about the way system components fail.

What are malicious faults? In the answer to this question lies the crux of the

25

argument with regard to “adequate” intrusion fault models. The term ‘malicious’

is itself very suggestive, and means a special intent to cause damage. But how do

we model the mind and power of the attacker? Indeed, many works have focused

on the ‘intent’, whereas from an IT perspective, one should focus on the ‘result’.

That is, what should be extracted from the notion of ‘maliciousness’ is a technical

definition of its objective: the violation of several or all of the properties of a

given service, attempted in any possible manner within the power available to the

intruder.

Classically, failure assumptions fall into essentially two kinds: controlled fail-

ure assumptions, and arbitrary failure assumptions.

Controlled failure assumptions specify qualitative and quantitative bounds on

component failures. For example, the failure assumptions may specify that com-

ponents only have timing failures, and that no more than f components fail during

an interval of reference. Alternatively, they can admit value failures, but not allow

components to spontaneously generate or forge messages, nor impersonate, col-

lude with, or send conflicting information to other components. In the presence of

accidental faults this approach is realistic, since it represents very well how com-

mon systems work, failing in a benign manner most of the time. However, it can

hardly be directly extrapolated to malicious faults, under the above definition of

maliciousness.

Arbitrary failure assumptions ideally specify no qualitative or quantitative bounds

on component failures. In this context, an arbitrary failure means the capability of

generating an interaction at any time, with whatever syntax and semantics (form

and meaning), anywhere in the system. Arbitrary failure assumptions adapt per-

fectly to the notion of maliciousness, but they are costly to handle, in terms of

performance and complexity, and thus are not compatible with the user require-

ments of the vast majority of today’s on-line applications.

Obviously, this should be understood in the context of a universe of “possible”

failures of the concerned operation mode of the component. For example, the

possible failure modes of interactions between components of a distributed system

might be limited to combinations of timeliness, form, meaning, and target of those

interactions (let us call them messages), and might not encompass the arbitrary

cloning of system components. On the other hand, practical systems based on

arbitrary failure assumptions must specify quantitative bounds on the number of

failed components, or at least equate tradeoffs between resilience of their solutions

and the number of failures eventually produced.

Note that the problem lies in how representative are our assumptions vis-a-vis

what happens in reality. That is, a problem of coverage of our assumptions. So,

how to proceed?

6.1 Arbitrary failure assumptions

Consider operations of very high value and/or criticality, such as: financial transac-

tions; contract signing; provision of long term credentials; state secrets. The risk of

26

failure due to violation of assumptions should not be incurred. This justifies con-

sidering arbitrary failure assumptions, and building the system around arbitrary-

failure resilient building blocks (e.g. Byzantine agreement protocols), despite a

possible performance penalty.

In consequence, no assumptions are made on the existence of trusted compo-

nents such as security kernels or other fail-controlled components. Likewise, a

time-free or asynchronous approach must be followed, i.e. no assumptions about

timeliness, since timing assumptions are susceptible to be attacked. This limits

the classes of applications that can be addressed under these assumptions: asyn-

chronous models cannot solve timed problems.

In practice, many of the emerging applications we see today, particularly on

the Internet, have interactivity or mission-criticality requirements. Timeliness is

part of the required attributes, either because of user-dictated quality-of-service re-

quirements (e.g., network transaction servers, multimedia rendering, synchronised

groupware, stock exchange transaction servers), or because of safety constraints

(e.g., air traffic control). So we should seek alternative fault model frameworks to

address these requirements under malicious faults.

6.2 Hybrid failure assumptions considered useful

Hybrid assumptions combining several kinds of failure modes would be desirable.

There is a body of research, starting with [28] on hybrid failure models that assume

different failure type distributions for different nodes. For instance, some nodes are

assumed to behave arbitrarily while others are assumed to fail only by crashing.

The probabilistic foundation of such distributions might be hard to sustain in the

presence of malicious intelligence, unless their behaviour is constrained in some

manner. Consider a component or sub-system for which given controlled failure

assumptions were made. How can we enforce trustworthiness of the component

vis-a-vis the assumed behaviour, that is, coverage of such assumptions, given the

unpredictability of attacks and the elusiveness of vulnerabilities?

A composite (AVI) fault model with hybrid failure assumptions is one where

the presence and severity of vulnerabilities, attacks and intrusions varies from com-

ponent to component. Some parts of the system would justifiably exhibit fail-

controlled behaviour, whilst the remainder of the system would still be allowed an

arbitrary behaviour. This might best be described as architectural hybridisation,

in the line of works such as [31, 38, 13], where failure assumptions are in fact en-

forced by the architecture and the construction of the system components, and thus

substantiated. That is (see Section 3) the component is made trustworthy enough

to match the trust implied by the fail-controlled assumptions.

The task of the architect is made easier since the controlled failure modes of

some components vis-a-vis malicious faults restrict the system faults the compo-

nent can produce. In fact a form of fault prevention was performed at system level:

some kinds of system faults are simply not produced. Intrusion-tolerance mecha-

nisms can now be designed using a mixture of arbitrary-failure (fail-uncontrolled

27

or non trusted) and fail-controlled (or trusted) components.

Hybrid failure assumptions can also be the key to secure timed operation. With

regard to timeliness and timing failures, hybridisation yields forms of partial syn-

chrony: (i) some subsystems exhibit controlled failure modes and can thus supply

timed services in a secure way; (ii) the latter assist the system in fulfilling timeli-

ness specifications; (iii) controlled failure of those specifications is admitted, but

timing failure detection can be achieved with the help of trusted components[13].

7 Architecting intrusion-tolerant systems

In this section, we discuss a few notions on architecting intrusion-tolerant systems.

7.1 (Almost) no assumptions

The fail-uncontrolled or arbitrary failure approach to IT architecture is based on

assuming as little as possible about the environment’s behaviour (faults, synchro-

nism), with the intent of maximizing coverage. It provides a conceptually simple

framework for developing and reasoning about the correctness of an algorithm,

satisfying safety under any conditions, and providing liveness under certain condi-

tions, normally defined in a probabilistic way.

Randomised Byzantine agreement protocols are an example of typical proto-

cols in this approach. They may not terminate with non-zero probability, but this

probability can be made negligible. In fact, a protocol using cryptography always

has a residual probability of failure, determined by the key lengths. Of course, for

the system as a whole to provide useful service, it is necessary that at least some of

the components are correct. This approach is essentially parametric: it will remain

correct if a sufficient number of correct participants exist, for any hypothesised

number of faulty participants f . Or in other words, with almost no assumptions

one is able to achieve extremely resilient protocols.

This has some advantages for the design of secure distributed systems, which

is one reason for pursuing such an approach. In fact, sometimes it is necessary and

worthwhile to sacrifice performance or timeliness for resilience, for example for

very critical operations (key distribution, contract signing, etc.)

Figure 9 shows the principle in simple terms. The metaphore used from now

on is: greyer for hostile, malicious, and whiter for benign, correct. Figure 9a shows

the participants being immersed in a hostile and asynchronous environment. The

individual hosts and the communication environment are not trusted. Participants

may be malicious, and normally the only restriction assumed is in the number of

ill-behaved participants. Figure 9b suggests that the protocol, coping with the envi-

ronment’s deficiencies, ensures that the participants collectively provide a correct

service (whiter shade).

For a protocol to be able to provide correct service, it must cope with arbitrary

failures of components and the environment. For example, component Ck is mali-

28

A l i c e
B o b

L u i s a

P a u l
A l i c e

A l i c e
B o b

L u i s a

P a u l
A l i c e

(a) (b)

Figure 9: Arbitrary failure approach

cious, but this may be because the component itself or host C have been tampered

with, or because an intruder in the communication system simulates that behaviour.

7.2 Non-justified assumptions, or the power of faith

Alternatively, IT architecture may take the fail-controlled approach. Sometimes,

it may simply be assumed that the environment is benign, without substantiating

those assumptions. This is often done in accidental fault tolerance, when the envi-

ronment is reasonably well-known, for example, from statistic measurements. Is it

a reasonable approach for malicious faults?

A l i c e
B o b

L u i s a

P a u l
A l i c e

A l i c e
B o b

L u i s a

P a u l
A l i c e

(a) (b)

Figure 10: Non-justified assumptions

Figure 10a shows the participants being immersed in an assumed moderately

benign environment (essentially white, with a thin dark part, according to our

metaphors). For example, it is usual to consider that the individual hosts (local

environment) are trusted, and that the communication environment, though not

trusted has a given limited attack model. Some user participants may be malicious.

29

The implementation is bound to work most of the times. However, it should not

be surprising that a behaviour that is assumed out of statistic evidence (or worse,

out of faith...) and not by enforcement, can be defrauded by an intruder attack-

ing the run-time environment. Thus, it may turn out that the latter behaves in a

manner worse than assumed (e.g., hosts were not that trustworthy, or the commu-

nication support was more severely attacked than the model assumed), as suggested

in Figure 10b where, say upon an attack, the environment is shown actually more

aggressive than initially thought in Figure 10a.

In consequence, making assumptions that are not substantiated in a strong man-

ner may in many cases lead to the lack of trustworthiness (coverage) on the prop-

erties of a component or subsystem (suggested in our example by the dark shade

partially hitting the participants and protocol). This may be problematic, because it

concerns failures not assumed, that is, for which the protocol is not prepared, and

which may be orchestrated by malicious intelligence. Their consequences may

thus be unpredictable. We discuss a correct approach below.

7.3 Architectural hybridisation

Architectural hybridisation is a solid guiding principle for architecting fail-con-

trolled IT systems. One wishes to avoid the extreme of arbitrary assumptions,

without incurring the risks of lack of coverage. Assuming something means trust-

ing, as we saw earlier on, and so architectural hybridisation is an enabler of the

approach of using trusted components, by making them trustworthy enough.

Essentially, the architect tries to make available black boxes with benign be-

haviour, of omissive or weak fail-silent class[37]. These can have different capa-

bilities (e.g. synchronous or not; local or distributed), and can exist at different

levels of abstraction. A good approach is to dress them as run-time environment

components, which can be accessed by system calls but provide trustworthy re-

sults, in contrast with calls to an untrusted environment. Of course, fail-controlled

designs can yield fault-tolerant protocols that are more efficient than truly arbi-

trary assumptions protocols, but more robust than non-enforced controlled failure

protocols.

The tolerance attitude in the design of hybrid IT systems can be characterized

by a few aspects:

• assuming as little as possible from the environment or other components;

• making assumptions about well-behaved (trusted) components or parts of the

environment whenever strictly necessary;

• enforcing the assumptions on trusted components, by construction;

• unlike classical prevention-based approaches, trusted components do not in-

tervene in all operations, they assist only crucial steps of the execution;

• protocols run thus in an non-trusted environment, single components can be

corrupted, faults (intrusions) can occur;

30

• correct service is built on distributed fault tolerance mechanisms, e.g., agree-

ment and replication amongst participants in several hosts.

7.4 Prevention, Tolerance, and a bit of salt

On achieving trustworthy components, the architect should bear in mind a recipe

discussed earlier: the good balance between prevention and tolerance. Let us ana-

lyze the principles of operation of a trusted third party (TTP) protocol, as depicted

in Figure 11a. Participants Alice, Paul and Bob, run an IT protocol amongst them-

selves, and trust Trent, the TTP component, to provide a few services that assist the

protocol in being intrusion tolerant. What the figure does not show and is seldom

asked is: is the TTP trustworthy?

A l i c e B o b

P a u l

T r e n t
(A d j u d i c a t o r ,
A r b i t e r ,

C e r t i f . A u t h)

T r u s t e d - T h i r d - P a r t y P r o t o c o l A l i c e B o b

P a u l

T r u s t e d - T h i r d - P a r t y P r o t o c o l

C a s d h r t g

C a s d h r t g

C a s d h r t g

(a) (b)

T r e n t
(A d j u d i c a t o r ,
A r b i t e r ,

C e r t i f . A u t h)

T r e n t

R 1
S e l f - E n f o r c i n g P r o t o c o l

R 2

R 3

R 4

Figure 11: (a) TTP protocol; (b) Enforcing TTP trustworthiness

In fact, the TTP is the perfect example of a trusted component that is sometimes

(often?) trusted to an extent greater than its trustworthiness.

In Figure 11b we “open the lid” of the TTP and exemplify how a good combina-

tion of prevention and tolerance can render it trustworthy. To start with, we require

certificate-based authentication, as a means to prevent certain failures from ocur-

ring in the point-to-point interaction of participants with the TTP (e.g., imperson-

ation, forging, etc.). Then, if we replicate the TTP, we make it resilient to crashes,

and to a certain level of attacks on the TTP server replicas, if there is enough re-

dundancy. Furthermore, the replicas should communicate through self-enforcing

protocols of the Byzantine-resilient kind, if malicious faults can be attempted at

subsets of server replicas.

The user need not be aware of the additional complexity and distribution of

the TTP, a usual principle in fault tolerance. In fact, we should “close the lid”

so that participants see essentially a single logical entity which they trust (as in

Figure 11a). However, by having worked at component level (TTP), we achieve

trustworthy behaviour of the component as seen at a higher level (system). Note

that in fact, we have prevented some system faults from occurring. This duality pre-

vention/tolerance can be applied recursively in more than one instance. Recently,

31

there has been extensive research on making trustworthy TTPs, for example by

recursively using intrusion tolerance mechanisms[1, 42].

7.5 Using trusted components

The relation of trust/trustworthiness can be applied in general when architecting IT

systems, as we saw in the last section. However, particular instantiations of trusted

components deserve mention here.

IT protocols can combine extremely high efficiency with high resilience if sup-

ported by locally accessible trusted components. For example, the notion of secu-

rity kernel in IT would correspond to a fail-controlled local subsystem trusted to

execute a few security-related functions correctly, albeit immersed in the remaining

environment, subjected to malicious faults.

(a) (b)

L T C

L T C

L T C

L T C

D T C

Figure 12: Using trusted components: (a) Local; (b) Distributed

This can be generalised to any function, such as time-keeping, or failure detec-

tion. In that sense, a local trusted component would encapsulate, and supply in a

trusted way, a set of functions, considered crucial for protocols and services having

to execute in a hostile environment. The use of trusted hardware (e.g. smart cards,

appliance boards) may serve to amplify the trustworthiness of these special com-

ponents. In Figure 12a we see an example of an architecture featuring LTCs (local

trusted components). Inter-component communication should ensure that correct

components enjoy the properties of the LTC despite malicious faults. On the other

hand, the implementation of the LTC should ensure that malicious components,

such as the one on the right of Figure 12a, do not undermine the operation of the

LTC, making it work incorrectly.

Figure 12b shows a distributed trusted component (DTC). It amplifies the power

of a LTC, since it assumes the existence of not only local trusted execution, but also

a trusted channel among LTCs. This makes it possible to implement distributed

trust for low-level operations (e.g., distribution of message authentication codes-

MACS). It can be built for example with appliance boards with a private control

channel, such as a second network attachment in a host.

32

A DTC can assist protocols in number of ways, which we discuss with more

detail in later sections of the paper, but the fundamental rationale is the following:

• protocol participants have to exchange messages in a world full of threats,

some of them may even be malicious and cheat (the normal network);

• there is a channel that correct participants trust, and which they can use to

get in touch with each other, even if for rare and short moments;

• they can use this channel to synchronise, disseminate, and agree on, simple

but crucial facts of the execution of a protocol, and this limits the potential

for Byzantine actions from malicious participants.

8 Some Example Systems

The term “intrusion tolerance” appeared originally in a paper by Fraga and Pow-

ell [19]. Later their scheme –Fragmentation-Redundancy-Scattering– was used in

the DELTA-4 project to develop an intrusion-tolerant distributed server composed

by a set of insecure sites [16].

In the following years a number of isolated IT protocols and systems emerged.

BFT [10] is an efficient state-machine replication algorithm [35]. It has been used

to implement an intrusion-tolerant NFS server. Rampart provides tools for building

IT distributed services: reliable multicast, atomic multicast and membership proto-

cols [34]. SecureRing is a view-synchronous group communication system based

on the Totem single-ring protocols [23]. Both Rampart and SecureRing can be

used to build servers using the state-machine replication approach. Fleet [27] use

Byzantine quorum systems [2] to build IT data stores, respectively for data abstrac-

tions like variables and locks, and for Java objects. The protocol suite CLIQUES

supports group key agreement operations for dynamic groups of processes [4, 3].

More recently, two projects have focused on intrusion tolerance, OASIS and MAF-

TIA, developing several results that will be detailed ahead.

8.1 OASIS

Organically Assured and Survivable Information System (OASIS) 2 is a US DARPA

program with the goal of providing “defence capabilities against sophisticated ad-

versaries to allow sustained operation of mission critical functions in the face of

known and future cyber attacks against information systems”. The program has a

strong focus in intrusion tolerance. Its objectives are:

• to construct intrusion-tolerant systems based on potentially vulnerable com-

ponents;

• to characterize the cost-benefits of intrusion tolerance mechanisms;

2http://www.tolerantsystems.org/

33

• to develop assessment and validation methodologies to evaluate intrusion

tolerance mechanisms.

OASIS is financing something like 30 projects. It is not possible to describe all

of them so we survey a few that we find interesting and representative.

Intrusion Tolerance by Unpredictable Adaptation (ITUA) aims to develop a

middleware to help design applications that tolerate certain classes of attacks [14].

The ITUA architecture is composed by security domains, that abstract the notion

of boundaries that are difficult by an attacker to cross (e.g., a LAN protected by

a firewall). An intrusion-tolerant application usually has to adapt when there are

attacks. ITUA proposes unpredictable adaptation as a means to tolerate attacks that

try to predict and take advantage of that adaptation. Adaptation in ITUA is handled

by the QuO middleware and group communication is implemented as intrusion-

tolerant layers in the Ensemble toolkit.

Intrusion Tolerant Architectures has the objective to develop a methodology

based on architectural concepts for constructing intrusion-tolerant systems. The

project developed an IT version of Enclaves, a middleware for supporting secure

group applications in insecure networks, like the Internet [18]. IT-Enclaves has

several leaders from which at most f out of n ≥ 3f + 1 are allowed to be compro-

mised. The leaders provide all group-management services: user authentication,

member join and leave, group-key generation, distribution, and refreshment. Each

member of the group is in contact with 2f + 1 leaders.

COCA is an on-line certification-authority for local and wide-area networks

[42]. COCA uses replicated servers for availability and intrusion-tolerance. The

certificates that it produces are signed using a threshold cryptography algorithm.

COCA assumes an adversary takes a certain time to corrupt a number of servers,

therefore from time to time keys are changed (proactive security). Replication is

based on a Byzantine quorum system.

Integrity Through Mediated Interfaces is a project that has the objective of pro-

viding data integrity [36]. The approach consists in using an Integrity Manager

to monitor the programs that manipulate the data, and to record all data transfor-

mation. The records produced can be used with several purposes, including the

reconstruction of corrupted data. The

project designed wrappers for COTS applications, that can be used both with

the above mentioned goals, and with the purpose of protecting the environment

from malicious code (email attachments, macros, etc.).

ITDBMS is engineering an experimental intrusion-tolerant database system us-

ing COTS components in order to provide comprehensive, integrated, and cost

effective solutions for IT DBMSs [26]. The approach is based on a multi-layered

defence strategy that combines several mechanisms: transaction-level intrusion de-

tection, intrusion isolation, intrusion masking, damage location and confinement,

and self-stabilization.

Agile Objects is a framework to construct IT applications based on the ideas of

location, interface and dynamic elusiveness [11]. Location elusiveness is the capa-

34

bility of the application components to move across different hosts in order to evade

from attacks and corrupted nodes. Interface elusiveness allows the middleware to

automatically change the interface of the components. Dynamic elusiveness is the

capability of managing the dimensions of location and interface elusiveness.

8.2 MAFTIA

Malicious- and Accidental-Fault Tolerance for Internet Applications (MAFTIA)3

is a recently finished EU IST project with the general objective of systematically

investigating the ‘tolerance paradigm’ for constructing large-scale dependable dis-

tributed applications. The project had a comprehensive approach that includes both

accidental and malicious faults. MAFTIA followed three main lines of action:

• definition of an architectural framework and a conceptual model;

• the design of mechanisms and protocols;

• formal validation and assessment.

The first line aimed to develop a coherent set of concepts for an architecture that

could tolerate malicious faults [1]. Work has been done on the definition of a core

set of intrusion tolerance concepts, clearly mapped into the classical dependability

concepts. The AVI composite fault model presented above was defined in this

context. Other relevant work included the definition of synchrony and topological

models, the establishment of concepts for intrusion detection and the definition of a

MAFTIA node architecture. This architecture includes components such as trusted

and untrusted hardware, local and distributed trusted components, operating system

and runtime environment, software, etc.

Most MAFTIA work was on the second line, the design of IT mechanisms

and protocols. Part of that work was the definition of the MAFTIA middleware:

architecture and protocols [7]. An asynchronous suite of protocols, including reli-

able, atomic and causal multicast was defined [8], providing Byzantine resilience

by resorting to efficient solutions based on probabilistic execution. Work was also

done on protocols based on a timed model, which relies on an innovative concept,

the wormholes, enhanced subsystems which provide components with a means

to obtain a few simple privileged functions and/or channels to other components,

with “good” properties otherwise not guaranteed by the “normal” weak environ-

ment [39]. For example, the Trusted Timely Computing Base developed in MAF-

TIA (see next two sections) is based on a wormhole providing timely and secure

functions on enviroments that are asynchronous and Byzantine-on-failure. Archi-

tectural hybridisation discussed earlier is used to implement the TTCB. In the con-

text of MAFTIA middleware, an IT transaction service with support for multiparty

transactions[41] was also designed.

3http://www.maftia.org/

35

Intrusion detection is assumed as a mechanism for intrusion tolerance but also

as a service that has to be made intrusion-tolerant. MAFTIA developed a dis-

tributed IT intrusion detection system [15]. Problems like handling high rates of

false alarms and combining several IDSs were also explored.

Trusted Third Parties (TTPs) such as certification authorities are important

building blocks in today’s Internet. MAFTIA designed a generic distributed certi-

fication authority that uses threshold cryptography and IT protocols in order to be

intrusion-tolerant. Another TTP, the distributed optimistic fair exchange service,

was also developed.

MAFTIA defined an authorization service based on fine grain protection, i.e.,

on protection at the level of the object method call [29]. The authorization service

is a distributed TTP which can be used to grant or deny authorization for complex

operations combining several method calls. The service relies on a local security

kernel.

The third line of work was on formalizing the core concepts of MAFTIA and

verifying and assessing the work on dependable middleware [30]. A novel rigor-

ous model for the security of reactive systems was developed and protocols were

modelled using CSP and FDR.

In the next sections, we describe some of our own work in more detail: the con-

struction of a Trusted Timely Computing Base using the principle of architectural

hybridisation, and a protocol using the TTCB wormhole.

8.2.1 Architectural Hybridisation in Practice

The Trusted Timely Computing Base (TTCB) is a real-time secure wormhole [13].

The TTCB is a simple component providing a limited set of services. Its architec-

ture is presented in Figure 13. The objective is to support the execution of IT pro-

tocols and applications using the architectural hybridisation approach introduced

before.

A P P / P R O C

R u n t i m e
E n v i r o n m e n t

O S L o c a l
T T C B

H o s t 1

A P P / P R O C

R u n t i m e
E n v i r o n m e n t

O S L o c a l
T T C B

H o s t 2

A P P / P R O C

R u n t i m e
E n v i r o n m e n t

O S L o c a l
T T C B

H o s t n

C o n t r o l C h a n n e l

P a y l o a d N e t w o r k

Figure 13: System architecture with a TTCB

This experimental implementation of the TTCB was based on COTS compo-

nents. The hosts are common Pentium PCs with a real-time kernel, RT-Linux or

RTAI. The hosts are interconnected by two Fast-Ethernet LANs. One corresponds

36

to the payload network in Figure 13, while the other is the TTCB control-channel.

It is thus a configuration aimed at local environments, such as sites, campuses, etc.

Wide-area configurations are also possible, as discussed in [39].

The design of a system has both functional and non-functional aspects. Next

we describe the functionality of the TTCB –its services– and later we discuss the

how the security and timeliness (real-time) are enforced in the COTS based TTCB.

The TTCB provides a limited set of services. From the point of view of pro-

gramming they are a set of functions in a library that can be called by processes in

the usual way. We use the word “process” to denominate whatever uses the TTCB

services: a normal process, a thread, or another software component.

The TTCB provides three security-related services. The Local Authentication

Service allows processes to communicate securely with the TTCB. The service au-

thenticates the local TTCB before a process and establishes a shared symmetric key

between both, using a simple authenticated key establishment protocol. This sym-

metric key is used to secure all their further communication. Every local TTCB has

an asymmetric key pair, and we assume that the process manages to get a correct

copy of the local TTCB public key. The Trusted Block Agreement Service is the

main building block for IT protocols. This service delivers a value obtained from

the agreement of values proposed by a set of processes. The service is not intended

to replace agreement protocols in the payload system: it works with “small” blocks

of data (currently 160 bits), and the TTCB has limited resources to execute it. The

service provides a set of functions that can be used to calculate the result. For

instance, it can select the value proposed by more processes. A parameter of the

service is a timestamp that indicates the last instant when the service starts to be

executed. This prevents malicious processes from delaying the service execution

indefinitely. The last security-related service is the Random Number Generation

Service that provides uniformly distributed random numbers. These numbers can

be used as nonces or keys for cryptographic primitives such as authentication pro-

tocols.

The TTCB provides also four time services. The Trusted Absolute Times-

tamping Service provides globally meaningful timestamps. It is possible to obtain

timestamps with this characteristic because local TTCBs clocks are synchronized.

The Trusted Duration Measurement Service measures the time of the execution of

an operation. The Trusted Timing Failure Detection Service checks if a local or

distributed operation is executed in an interval of time. The Trusted Timely Exe-

cution Service executes special operations securely and within an interval of time

inside the TTCB.

The Trusted Block Agreement Service and the Trusted Timing Failure Detec-

tion Service are distributed, therefore they are implemented using communication

protocols that run in the TTCB control channel. We do not present these protocols

here for lack of space.

RT-Linux and RTAI are two similar real-time engineerings of Linux. Linux

was modified so that a real-time executive takes control of the hardware, to en-

force real-time behaviour of some real-time tasks. RT tasks were defined as spe-

37

cial Linux loadable kernel modules so they run inside the kernel. The scheduler

was changed to handle these tasks in a preemptive way and to be configurable to

different scheduling disciplines. Linux runs as the lowest priority task and its inter-

ruption scheme was changed to be intercepted by RT-Linux/RTAI. The local part

of a COTS-based TTCB is basically a (non-real-time) local kernel module, that

handles the service calls, and a set of two or more RT tasks that execute all time

constrained operations.

The local TTCB is protected by protecting the kernel. From the point of view

of security, RT-Linux/RTAI are very similar to Linux. Their main vulnerability is

the ability a superuser has to control any resource in the system. This vulnerability

is usually reasonably easy to exploit, e.g., using race conditions. Linux capabilities

are privileges or access control lists associated with processes that allow a fine grain

control on how they use certain objects. However, currently the practical way of

using this mechanism is quite basic. There is a system wide capability bounding

set that bounds the capabilities that can be held by any system process. Removing

a capability from that set disables the ability to use an object until the next reboot.

Although basic, this mechanism is sufficient to protect the local TTCB. Removing

the capability CAP SYS MODULE from the capability bounding set we prevent

any process from inserting code in the kernel. Removing CAP SYS RAWIO we

prevent any process from reading and modifying the kernel memory.

For the COTS-based TTCB we make the assumption that the control channel is

not accessed physically. Therefore, security has to be guaranteed only in its access

points. To be precise, we must prevent an intruder from reading or writing in the

control channel access points. This is done by removing the control network device

from the kernel so that it can only be accessed by code in the kernel, i.e., by the

local TTCB.

The control channel in the COTS-based TTCB is a switched Fast-Ethernet

LAN. The timeliness of that network packet is guaranteed preventing packet col-

lisions which would cause unpredictable delays. This requires that: (1) only one

host can be connected to each switch port (hubs cannot be used); and (2) the traffic

load has to be controlled. The first requirement is obvious. The second is solved

by an access control mechanism, that accepts or rejects the execution of a service

taking into account the availability of resources (buffers and bandwidth).

This is a brief presentation of the implementation of the design of the COTS-

based TTCB. Further details, including the enforcement of the TTCB properties

and the discussion of implementations in other networks and local architectures,

can be found in [13].

8.2.2 A Wormhole-Aware Protocol

This section presents an IT protocol based on the TTCB wormhole 4. This protocol

illustrates the approach based on hybrid failure assumptions: most of the system is

4The protocol is a simplified version of the protocol presented in [12].

38

assumed to fail in an arbitrary way, while the wormhole is assumed to be secure,

i.e, to fail only by crashing. The system is also assumed to be asynchronous, except

for the TTCB which is synchronous.

The protocol is a reliable multicast, a classical problem in distributed systems.

Each execution of a multicast has one sender process and several recipient pro-

cesses. In the rest of the section, we will make the classical separation of receiving

a message from the network and delivering a message – the result of the protocol

execution.

A reliable multicast protocol enforces the following two properties [6]: (1) all

correct processes deliver the same messages; (2) if a correct sender transmits a

message then all correct processes deliver this message. These rules do not imply

any guarantees of delivery in case of a malicious sender. However, one of two

things will happen, either the correct processes never complete the protocol execu-

tion and no message is ever delivered, or if they terminate, then they will all deliver

the same message. No assumptions are made about the behaviour of malicious (re-

cipient) processes. They might decide to deliver the correct message, a distinct

message or no message.

The protocol –BRM (Byzantine Reliable Multicast)– is executed by a set of

distributed processes. The processes can fail arbitrarily, e.g., they can crash, delay

or not transmit some messages, generate messages inconsistent with the protocol,

or collude with other faulty processes with malicious intent. Their communication

can also be arbitrarily attacked: messages can be corrupted, removed, introduced,

and replayed.

Let us see the process failure modes in more detail. A process is correct basi-

cally if it follows the protocol until the protocol terminates. Therefore, a process is

failed if it crashes or deviates from the protocol. There are some additional situa-

tions in which we also consider the process to be failed. A process has an identity

before the TTCB which is associated to the shared key. If that pair (id,key) is cap-

tured by an attacker, the process can be impersonated before the TTCB, therefore

it has to be considered failed.

Another situation in which we consider a process to be failed is when an at-

tacker manages to disrupt its communication with the other processes. Protocols

for asynchronous systems typically assume that messages are repeatedly retrans-

mitted and eventually received (reliable channels). In practice, usually a service

which is too delayed is useless. Therefore, BRM retransmits messages a limited

number of times and then we assume “isolated” processes to be failed. In channels

prone only to accidental faults it is usually considered that no more than Od mes-

sages are corrupted/lost in a reference interval of time. Od is the omission degree

and tests can be made in concrete networks to determine Od with the desired prob-

ability. For malicious faults, if a process does not receive a message after Od + 1
retransmissions from the sender, with Od computed considering only accidental

faults, then it is reasonable to assume that either the process crashed, or an attack is

under way. In any case, we will consider the receiver process as failed. The reader,

however, should notice that Od is just a parameter of the protocol. If Od is set

39

BRM-T Sender protocol

1 tstart = TTCB getTimestamp() + T0;

2 M := (elist, tstart, data);

3 propose := TTCB propose(elist, tstart, TTCB TBA RMULTICAST, H(M));

4 repeat Od+1 times do multicast M to elist except sender od

5 deliver M;

BRM-T Recipient protocol

6 read blocking(M);

7 propose := TTCB propose(M.elist, M.tstart, TTCB TBA RMULTICAST, ⊥);

8 do decide := TTCB decide(propose.tag);

9 while (decide.error 6= TTCB TBA ENDED);

10 while (H(M) 6= decide.value) do read blocking(M) od

11 repeat Od+1 times do multicast M to elist except sender od

12 deliver M;

Figure 14: BRM protocol.

to a very high value, then BRM will start to behave like the protocols that assume

reliable channels.

Formally, a reliable multicast protocol has the properties below [21]. The pred-

icate sender(M) gives the message field with the sender, and group(M) gives the

“group” of processes involved, i.e., the sender and the recipients (note that we con-

sider that the sender also delivers).

• Validity: If a correct process multicasts a message M, then some correct

process in group(M) eventually delivers M.

• Agreement: If a correct process delivers a message M, then all correct pro-

cesses in group(M) eventually deliver M.

• Integrity: For any message M, every correct process p delivers M at most

once and only if p is in group(M), and if sender(M) is correct then M was

previously multicast by sender(M).

An implementation of BRM can be found in Figure 14. The sender securely

transmits a hash of the message (H(M)) to the recipients through the TTCB Agree-

ment Service and then multicasts the message Od+1 times. This hash code is used

by the recipients to ensure the integrity and authenticity of the message. When they

get a correct copy of the message they multicast it Od + 1 times. The pseudo-code

is pretty much straightforward so we do not describe it with detail and refer the

reader to [12].

Figure 15 illustrates the behavior of the protocol. The horizontal lines represent

the execution of processes through time. The thicker line represents the TTCB as

a whole, even though, each process calls a separate local TTCB in its host (this

representation is used for simplicity). The sender calls the TTCB agreement and

40

T T C B A g r e e m e n t

S e r v i c e

P 1

P 3

P 2

P 4

T T C B

t s t a r t t s t a r t + T a g r e e m e n t

B R M u l t i c a s t - T

T a g r e e m e n t
T T C B _ p r o p o s e (H (M))

T T C B _ d e c i d e (H (M))
O m i s s i o n D e g r e e (O d) = 1

- C o r r u p t e d m e s s a g e

- D e l i v e r y

Figure 15: Protocol execution

then multicasts the message twice (Od = 1). These messages are received in

the following way: P2 receives the two copies of the message, P3 receives the

first copy corrupted and the second well, and P4 does not receive the first copy

and the second is delayed. The example assumes that the first message sent to

P3 is corrupted only in the data part, and for that reason it is still possible to

determine this protocol instance. When a message arrives, the recipient calls the

TTCB agreement to get the result with the reliable value of H(M). Both processes

P2 and P3 get this value almost immediately after the end of the agreement. They

use the hash to select which of the messages they received is correct, and then

they multicast the message to all the other recipients. P4 asks for the result of

the agreement later, when it receives the first message from the protocol. Then, it

multicasts the message.

Bracha and Toueg have shown that, assuming arbitrary faults, it is impossible

to send reliable multicasts if there are more than f = n−1

3
faulty processes in a

system with n processes [6]. BRM imposes constraints on the number of process

failures that are similar to accidental fault-tolerant protocols: for f faults, BRM

requires n ≥ f + 2 processes, instead of n ≥ 3f + 1. In reality, BRM does not

impose a minimum number of correct processes, but we say that the number of

processes has to be n ≥ f + 2 to denote the notion that the problem is vacuous

if there are less than two correct processes. n ≥ f + 2 is also the constrain for

reliable multicast with arbitrary faults in synchronous systems [25].

The fact that BRM uses the TTCB wormhole allows it also not to need to use

asymmetric cryptography, a well known bottleneck in IT protocols. BRM was

tested using the COTS-based TTCB [12]. The latencies for 5 processes (one per

host) ranged from around 8 to 10ms. This is some times faster than asynchronous

protocols in the literature. The current, preliminary, implementation of the TTCB

41

Agreement Service was also identified as the main overhead of the protocol and

a faster design is being made. Protocols that use asymmetric cryptography also

degrade their performance considerably when we increase the number of processes

involved, while protocols based on the TTCB have a very light degradation.

9 Conclusion

We have presented an overview of the main concepts and design principles relevant

to intrusion tolerant (IT) architectures. In our opinion, Intrusion Tolerance as a

body of knowledge is, and will continue to be for a while, the main catalyst of

the evolution of the area of dependability. The challenges put by looking at faults

under the perspective of “malicious intelligence” have brought to the agenda hard

issues such as uncertainty, adaptivity, incomplete knowledge, interference, and so

forth. Under this thrust, researchers have sought replies, sometimes under new

names or slight nuances of dependability, such as trustworthiness or survivability.

We believe that fault tolerance will witness an extraordinary evolution, which

will have applicability in all fields and not only security-related ones. We will

know that we got there when we will no longer talk about accidental faults, attacks

or intrusions, but just (and again)... faults.

Acknowledgements

Many of the concepts and design principles presented here derive both from past

experience with fault-tolerant and secure system architectures, and from more re-

cent work and challenging discussions within the European IST MAFTIA project.

We wish to warmly thank all members of the team, several of whom contributed to

IT concepts presented here, and collectively have represented a fenomenal thinking

tank.

References

[1] Adelsbach, A., Alessandri, D., Cachin, C., Creese, S., Deswarte, Y., Kursawe,

K., Laprie, J.C., Powell, D., Randell, B., Riordan, J., Ryan, P., Simmonds, W.,

Stroud, R., Verı́ssimo, P., Waidner, M., Wespi, A.: Conceptual Model and Archi-

tecture of MAFTIA. Project MAFTIA IST-1999-11583 deliverable D21. (2002)

http://www.research.ec.org/maftia/deliverables/D21.pdf.

[2] Alvisi, L., Malkhi, D., Pierce, E., Reiter, M.K., Wright, R.N.: Dynamic Byzantine

quorum systems. In: Proceedings of the IEEE International Conference on Depend-

able Systems and Networks. (2000) 283–292

[3] Amir, Y., Kim, Y., Nita-Rotaru, C., Schultz, J., Stanton, J., Tsudik, G.: Exploring

robustness in group key agreement. In: Proceedings of the 21th IEEE International

Conference on Distributed Computing Systems. (2001) 399–408

[4] Ateniese, G., Steiner, M., Tsudik, G.: New multi-party authentication services and

key agreement protocols. IEEE J. of Selected Areas on Communications 18 (2000)

42

[5] Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.

Technical Report 01145, LAAS-CNRS, Toulouse, France (2001)

[6] Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. Journal of

the ACM 32 (1985) 824–840

[7] Cachin, C., Correia, M., McCutcheon, T., Neves, N., Pfitzmann, B., Ran-

dell, B., Schunter, M., Simmonds, W., Stroud, R., Verı́ssimo, P., Waid-

ner, M., Welch, I.: Service and Protocol Architecture for the MAF-

TIA Middleware. Project MAFTIA IST-1999-11583 deliverable D23. (2001)

http://www.research.ec.org/maftia/deliverables/D23final.pdf.

[8] Cachin, C., Poritz, J.A.: Hydra: Secure replication on the internet. In: Proceedings

of the International Conference on Dependable Systems and Networks. (2002)

[9] Canetti, R., Gennaro, R., Herzberg, A., Naor, D.: Proactive security: Long-term

protection against break-ins. RSA CryptoBytes 3 (1997) 1–8

[10] Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the

Third Symposium on Operating Systems Design and Implementation. (1999)

[11] Connelly, K., Chien, A.A.: Breaking the barriers: High performance security for

high performance computing. In: Proc. New Security Paradigms Workshop. (2002)

[12] Correia, M., Lung, L.C., Neves, N.F., Verı́ssimo, P.: Efficient Byzantine-resilient

reliable multicast on a hybrid failure model. In: Proceedings of the 21st IEEE Sym-

posium on Reliable Distributed Systems. (2002) 2–11

[13] Correia, M., Verı́ssimo, P., Neves, N.F.: The design of a COTS real-time distributed

security kernel. In: Proceedings of the Fourth European Dependable Computing

Conference. (2002) 234–252

[14] Cukier, M., Lyons, J., Pandey, P., Ramasamy, H.V., Sanders, W.H., Pal, P., Webber,

F., Schantz, R., Loyall, J., Watro, R., Atighetchi, M., Gossett, J.: Intrusion toler-

ance approaches in ITUA (fast abstract). In: Supplement of the 2001 International

Conference on Dependable Systems and Networks. (2001) 64–65

[15] Debar, H., Wespi, A.: Aggregation and correlation of intrusion detection alerts. In:

4th Workshop on Recent Advances in Intrusion Detection. Volume 2212 of Lecture

Notes in Computer Science. Springer-Verlag (2001) 85–103

[16] Deswarte, Y., Blain, L., Fabre, J.C.: Intrusion tolerance in distributed computing

systems. In: Proceedings of the 1991 IEEE Symposium on Research in Security and

Privacy. (1991) 110–121

[17] Dobson, J., Randell, B.: Building reliable secure computing systems out of unreliable

insecure components. In: Proceedings of the International Symposium on Security

and Privacy, IEEE (1986) 187–193

[18] Dutertre, B., Crettaz, V., Stavridou, V.: Intrusion-tolerant Enclaves. In: Proceedings

of the IEEE International Symposium on Security and Privacy. (2002)

[19] Fraga, J.S., Powell, D.: A fault- and intrusion-tolerant file system. In: Proceedings

of the 3rd International Conference on Computer Security. (1985) 203–218

[20] Gray, J.: Why do computers stop and what can be done about it? In: Proceedings of

the 5th IEEE Symposium on Reability in Distributed Software and Database Systems.

(1986) 3–12

43

[21] Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and re-

lated problems. Technical Report TR94-1425, Cornell University, Department of

Computer Science (1994)

[22] Hiltunen, M., Schlichting, R., Ugarte, C.A.: Enhancing survivability of security

services using redundancy. In: Proceedings of the IEEE International Conference on

Dependable Systems and Networks. (2001) 173–182

[23] Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: The SecureRing group commu-

nication system. ACM Transactions on Information and System Security 4 (2001)

371–406

[24] Knight, J., Heimbigner, D., Wolf, A., Carzaniga, A., Hill, J., Devanbu, P.: The Wil-

low survivability architecture. In: Proceedings of the 4th Information Survivability

Workshop. (2001)

[25] Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-

actions on Programming Languages and Systems 4 (1982) 382–401

[26] Lui, P.: General design of ItDBMS. Technical report, UMBC (2000)

[27] Malkhi, D., Reiter, M.K., Tulone, D., Ziskind, E.: Persistent objects in the Fleet

system. In: Proceedings of the 2nd DARPA Information Survivability Conference

and Exposition (DISCEX II). (2001)

[28] Meyer, F., Pradhan, D.: Consensus with dual failure modes. In: Proc. of the 17th

IEEE International Symposium on Fault-Tolerant Computing. (1987) 214–222

[29] Nicomette, V., Deswarte, Y.: An Authorization Scheme for Distributed Object Sys-

tems. In: IEEE Symposium on Research in Privacy and Security. (1996) 31–40

[30] Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its

application to secure message transmission. In: Proceedings of the IEEE Symposium

on Research in Security and Privacy. (2001) 184–200

[31] Powell, D., Seaton, D., Bonn, G., Verı́ssimo, P., Waeselynk, F.: The Delta-4 approach

to dependability in open distributed computing systems. In: Proceedings of the 18th

IEEE International Symposium on Fault-Tolerant Computing. (1988)

[32] Powell, D., ed.: Delta-4: A Generic Architecture for Dependable Distributed Pro-

cessing. Springer-Verlag (1991) Research Reports ESPRIT.

[33] Powell, D.: Fault assumptions and assumption coverage. In: Proceedings of the 22nd

IEEE International Symposium of Fault-Tolerant Computing. (1992)

[34] Reiter, M.K.: The Rampart toolkit for building high-integrity services. In: The-

ory and Practice in Distributed Systems. Volume 938 of Lecture Notes in Computer

Science. Springer-Verlag (1995) 99–110

[35] Schneider, F.B.: The state machine approach: A tutorial. Technical Report TR86-

800, Cornell University, Computer Science Department (1986)

[36] Tallis, M., Balzer, R.: Document integrity through mediated interfaces. In: Pro-

ceedings of the 2nd DARPA Information Survivability Conference and Exposition

(DISCEX II). (2001)

[37] Verı́ssimo, P., Rodrigues, L.: Distributed Systems for System Architects. Kluwer

Academic Publishers (2001)

44

[38] Verı́ssimo, P., Rodrigues, L., Casimiro, A.: Cesiumspray: a precise and accurate

global clock service for large-scale systems. Journal of Real-Time Systems 12 (1997)

243–294

[39] Verı́ssimo, P.: Uncertainty and predictability: Can they be reconciled? In: Future

Directions in Distributed Computing. Springer-Verlag LNCS 2584 (2003) –

[40] Verı́ssimo, P., Casimiro, A., Fetzer, C.: The Timely Computing Base: Timely ac-

tions in the presence of uncertain timeliness. In: Proceedings of the International

Conference on Dependable Systems and Networks. (2000) 533–542

[41] Xu, J., Randell, B., Romanovsky, A., Rubira, C., Stroud, R.J., Wu, Z.: Fault tolerance

in concurrent object-oriented software through coordinated error recovery. In: Pro-

ceedings of the 25th IEEE International Symposium on Fault-Tolerant Computing.

(1995) 499–508

[42] Zhou, L., Schneider, F., van Renesse, R.: COCA: A secure distributed on-line certi-

fication authority. ACM Trans. on Computer Systems 20 (2002) 329–368

45

