
Intuitionistic Differential Nets and Resource

Lambda-Calculus

Paolo Tranquilli

Dipartimento di Matematica – Università Roma Tre
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Abstract

We define pure intuitionistic differential nets, extending Ehrhard and Regnier’s
differential interaction netswith the exponential box of Linear Logic.Normalization
of the exponential reduction and confluence of the full one is proved. Though
interesting and independent on their own, these results are directed and adjusted
to give a translation of Boudol’s untyped λ-calculus with multiplicities extended
with a linear-non linear reduction à la Ehrhrad andRegnier’s differentialλ-calculus.
Such reduction comes in two flavours: baby-step and giant-step β-reduction. The
translation, based on Girard’s encoding A → B ∼ !A ⊸ B and as such extending
the usual one for λ-calculus and proof nets, is in a sense injective and surjective and
enjoys bisimulation for giant-step β-reduction, a result from which we also derive
confluence of both the reductions.

Key words: Lambda-calculus, differential interaction nets, linear logic, proof nets

1 Introduction

Twenty years ago Jean-Yves Girard introduced Linear Logic (LL, [13]) start-
ing from a fine analysis of the coherent semantics he had introduced for
system F. This system has brought a new looking glass for the study of the
essence of computation in general, and λ-calculus specifically. Particularly
important for the background of this paper is the translation of pure and
typed λ-calculus into Girard’s proof nets, as studied by Danos and Regnier
in their theses [5,23]. It has proved to be a powerful tool to bring forth the
study of both sides of the mapping, proof nets on one side and λ-calculus
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on the other. Examples can be seen in the analysis of a new operational
equivalence [24], localization of β-reduction [7], or optimal reduction [14].

Recently Ehrhard has refined the coherent semantics by means of topo-
logical vector spaces and continuous linear maps [9,10], and again from
such semantical refinement the same author and Regnier presented exten-
sions with syntactic differential operators for both Linear Logic [12] and
λ-calculus [11]. The key ingredients are a mathematical understanding of
the actors involved, and the idea that linearity of differentiation along a
certain direction is linked with the computational and logical meaning of
linearity, which is using an argument or a hypothesis exactly once.

As such, the treatment of the subject can rely also on a line of research
already present in λ-calculus. Starting from Boudol’s work on λ-calculus
with multiplicities [1] and going on in [2,15], variants of λ-calculus where
studied where arguments could have a limited availability. In [12] Ehrhard
and Regnier introduce the link between the two approaches – a translation
to their promotion-free differential interaction nets from the fragment of
Boudol’s calculuswithout infinitely available resources, the resource calculus.
We bring further this link, after introducing promotion in differential nets.
Then the calculus that translates into them as λ-calculus does in proof
nets turns out to be an extended version of full Boudol’s λ-calculus with
resources. Extended not in the constructs, but in the reduction rule, as non-
deterministic lazy head reduction employed by Boudol is replaced by a non
lazy one which moreover interprets non-determinism by means of a formal
sums, in the style of Ehrhard and Regnier’s differential λ-calculus.

In the next section we will outline the story so far, pointing out the issues
and the starting points that have motivated our research, and setting the
goals for the following sections.

1.1 Notation

We will denote sets of reduction rules with letters as m or e, and by
e
→

(e-reduction) the corresponding relation. The relations
r=
→,

r+
→,

r∗
→ and ≡r

are respectively the reflexive, transitive, reflexive-transitive and reflexive-

transitive-symmetric closures of
r
→. Reduction

rs
→ is the union of reductions

r
→ and

s
→. A reduction

r
→ is

• strongly confluent if whenever s
r
→ u, v there is w such that u, v

r
→ w;

• confluent if r∗ is strongly confluent;

• locally confluent if whenever s
r
→ u, v there is w such that u, v

r∗
→ w.
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An element u is r-normal if there is no vwith u
r
→ v. Wewrite u

r
։ v if u

e∗
→ v

and v is r-normal. Whenever possible (there is always at least a reduction
to an r-normal form and r is confluent) we define NFr(u) as the unique r-

normal element such that u
r
։ NFr(u). R : u

r∗
→ v or u

R
→ v denotes a given

chain R of reduction steps from u to v. |R| denotes the length of R, and
r
→ is

strongly normalizing if all R : u
r
→ v are of finite length.

We denote byMfin(A) the set of finite multisets over A, equivalently seen as
functions A→ N with finite support (which is denoted by |A|). Depending
on where multisets are used, we will use either the additive (multiset union
is A + B) or multiplicative (multiset union is AB) notation. In any case the
notation

∑

a∈ADa stands for a sum with multiplicities, i.e.
∑

a∈|A|A(a) ·Da. For
example the cardinality #A of a multiset A can be written as

∑

a∈A 1.

R will be a commutative semiring with unit, and R 〈S〉 is the R-module
generated by S, which is the set of formal finite sums over Swith coefficients
inR, so that a generic element ofR 〈S〉 is written as

∑

s∈S csswith cs ∈ R. Every
time we write so, we will imply that the sum is finite, i.e. #{s ∈ S | cs , 0} <
+∞. We will usually have R =N, and in such a caseN 〈S〉 is in factMfin(S),
and each sum can be written without coefficients, as forU ∈N 〈S〉 =Mfin(S)
we can write U =

∑

u∈U u, counting the multiplicities as explained above.

2 State of the Art

Our starting point is the pairing between resource calculus and Ehrhard and
Regnier’s differential interaction nets (DIN) given in [12], and the attempt
at extending it to the same authors’ differential λ-calculus [11]. We will skip
over some definitions and technical points in this section. For a definition
of DINs one may refer to the next section, and take the promotion-free
fragment of intuitionistic differential nets.

2.1 Resource calculus and differential interaction nets

Starting from different motivations various authors have studied resource
calculus [1,2,15], introduced as λ-calculus with multiplicities by Boudol.
Ehrhard and Regnier present it with a reduction borrowed by their differ-
ential λ-calculus, and restrict it to the linear part, by ruling out infinitely
available arguments. We present it here.

Given a denumerable set of variablesV the set of simple terms ∆ is defined
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by the following grammar:

∆ ::= V | λV.∆ | 〈∆〉∆!,

where ∆! := Mfin(∆), presented in multiplicative notation, is the set of bags
of arguments, following [1] 1 . This language is extended to R 〈∆〉, the set of
terms, and the constructors of the grammar extended by multilinearity, so
that for example 〈r〉 (cu + dv)A = c 〈r〉uA + d 〈r〉 vA. The set of free variables
of a simple term is defined as usual, and we say x ∈ t to mean “x free in t”.

On this language we define the 0-substitution by t [x := 0] := 0 if x ∈ t, and t
otherwise. This is clearly the usual substitutionwith 0 ifwe take into account
the multilinearity of constructors. Moreover we have the linear substitution
defined by

∂y

∂x
· u := δx,y,

∂λy.s

∂x
· u := λy.

∂s

∂x
· u,

∂〈r〉A

∂x
· u :=

〈

∂r

∂x
· u

〉

A + 〈r〉
∂A

∂x
· u,

∂A

∂x
· u :=

∑

v∈A

(

∂v

∂x
· u

)

A/v,

where δx,y is the Kronecker symbol, equal to 1 if x = y, 0 otherwise. The
notation reflects the fact that this substitution can be regarded as a partial
derivative of a term (which following the parallel in calculus would yield a
linear form) in the direction of u. Strengthening such idea is the validity of
Schwartz’s lemma, in the sense that if x < v and y < uwe have

∂

∂x

(

∂t

∂y
· v

)

· u =
∂

∂y

(

∂t

∂x
· u

)

· v.

Restricting to R =N, reduction is defined by

〈λxs〉uA βbs

〈

λx
∂s

∂x

〉

A, 〈λx.s〉 1 βbs s [x := 0] ,

first extended to simple terms and bags as a context closure and then on
terms by linearity. One should note there is a choice regarding the term
to be fetched from the bag, however Schwartz’s lemma and linearity of
substitution assure strong confluence, and even in this untyped setting
strong normalization holds.

This approach differs from Boudol’s one, which defines a completely non-
deterministic (therefore non confluent) lazy reduction. Here one keeps track
of choices with the sum, and moreover the reduction does not substitute

1 They are called poly-terms in [12].
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1◦ := ! , ([u])◦ :=
!

S

u◦ , (AB)◦ :=

?

!

S

SS

A◦ B◦

Figure 1: Rules to translate bags of arguments.

head variables only. The bs in βbs stands for baby-step β-reduction, as in this
paper we regard it as a fine-grained version of the reduction βgs, giant-step
β-reduction, that completely exhausts the redex:

〈λx.s〉A βgs
∂#As

∂x#A
· A,

i.e. iterated linear substitution of xwith the terms inA, well defined because
of Schwartz’s lemma. More details will be given in the general setting in
Section 4.

The translation of this calculus can be regarded as a particular case of the
one given in Section 5. For now we can say that variables and abstraction
are treated in the same way as one does for λ-calculus. However, as DINs
are defined with a binary contraction and cocontraction, a bag is translated
in two by two steps, as shown in Figure 1. A barred wire stands for multiple
wires, S labels the conclusions of the nets and is the set of free variables of
the term/bag translated, where we possibly add needed dummy variables
by means of weakenings. Application 〈r〉A is translated by plugging A◦ on
a tensor cut against the output port of r◦, just like boxes are in the translation
of the application of λ-calculus into proof-nets.

One should note that the translation of a bag A is different for each different
way of writing A by means of binary merge operations. In [12] the solution
is stated but not discussed, as the different nets are said to be equivalent
moduloanotion left for futurework,which is associativityof (co)contraction
and neutrality of (co)weakening with respect to (co)contraction. Here we
settle such notion bymeans of a reduction, andmoreover we will also show
we cannot really ignore the issue when boxes are around (Remark 3).

Given such an equivalence, the rigorous statement of the simulation result
is that

u βbs v =⇒ u◦ ≡a
m
→
e∗
→
m
←≡a v

◦,

where ≡a denotes the equivalence relation stated above,m is the multiplica-
tive reduction`/⊗, e is the exponential reduction ?/!.We also have to rebuild

themultiplicative redex by
m
←. A better statementmay be achieved by either

5



considering giant-step reduction, for which the above result becomes

u βgs v =⇒ u◦
m
→
e∗
։≡a v

◦,

or by adopting the translation t• which normalizes multiplicative cuts (see
Section 6 for a sketched discussion on this translation and σ-equivalence),
for which we would have

u βbs v =⇒ u• ≡a
e∗
→
m
։≡a v

•.

Final a-conversion is needed to accommodate the arbitrary way in which
v◦/v• has been built. The initial one in βbs is needed instead to fetch the
argument from the bag that contains it, otherwise it might be buried by
different cocontractions.

This problem with (co)contractions is linked with one often arising in the
translation of various calculi into nets. The order in which variable occur-
rences are identified and dummy variables are introduced is usually ab-
stracted away in calculi, while respectively binary contractions and weak-
enings explicitly set it. Solutions proposed in LL include

• adopting a syntax which identifies contractions made at several exponen-
tial depths, as in [23] – for now it seems hard to apply it in differential
nets with boxes, we will see how the rule of codereliction against box
introduces many difficulties;

• using such an identification as an equivalence relation, as hinted in [12]
for DINs and investigated in [3,8] for LL proof nets – an elegant solution,
though it is less so with respect to freely moving around weakenings, as
it may generate infinite trees with weakened leaves;

• using it as a set of reductions, as in [4] – which is is the way we are
adopting here.

In Section 3.4wewill also address the issuewith contraction andweakening
order with respect to box borders as [4] does for LL.

2.2 Differential λ-calculus and differential nets

A natural direction of investigation arising from [12] and [11] is the ques-
tion whether differential λ-calculus can be translated into differential nets.
The first problem which arises is that DINs are promotion-free, and though
from the syntactical point of view adding exponential boxes is easy, it has
not yet been done in literature, other than by replacing boxes with their
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Taylor expansion 2 , i.e. an infinite sum which therefore deprives the system
of its finitary nature. In next section we will thus introduce this system
as differential nets or DNs, dropping the “interaction” wording because La-
font’s interaction net paradigm [16] is broken by the promotion cell. This
same reason makes fundamental results like confluence or normalization
far harder. Therefore we will spend care in proving such results. As hinted
in Section 6, the proof techniques used should cover much work in the way
to settle normalization of propositional (first order) typed differential nets
also.

The second problem arises from the particular syntax presented in [11]. We
briefly sketch it here, assuming R = N and therefore dodging some of the
difficulties. Simple terms are defined in this three forms:

• Di1,...,in x · (u1, . . . , un), imposing an invariance with respect to permutations
σ ∈ Sn so that

Di1 ,...,in x · (u1, . . . , un) = Diσ(1),...,iσ(n) x · (uσ(1), . . . , uσ(n));

• Dn1 λx.s · (u1, . . . , un), with a similar invariance for permutations,
• (u)v where v is a differential term, i.e. a sum with coefficients in N over
simple terms.

Dk u ·v stands for the differential operator relative to the k
th argument of u in

the direction of v. The syntax makes it so that the commutation properties
of such operators are internalized, by shifting them further inside the term.
As an example:

D1,2(λx1, x2, x3.s)u · (v2, v3) =
(

D2,3 λx1, x2, x3.s · (v2, v3)
)

u =

=
(

λx1.D1(λx2.D1 λx3.s · v3) · v2
)

u,

where one can see how the two Dks “shift” into position. These operations
are taken as equalities, so that the substitution operator, whichweherewrite
as t [x := v], is not anymore an almost blind copying of v in every occurrence
of x as inλ-calculus, as after copying onemust shift the differential operators
as hinted by the example.

The new reduction rule is the linear one:

D1 λx.s · v→ λx.
∂s

∂x
· v,

2 If R admits natural fractions, an exponential box has surprisingly enough the

Taylor expansion of the exponential, i.e. a box containing π is
∑+∞
k=0

πk

k! , where the
power must be intended as k copies of π conveniently linked with cocontractions
and contractions.
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with ∂s
∂x
·v being a linear substitution similar to the one described for resource

calculus, with particular care in handling the application, which is not linear
in the argument. Now if we try to give a translation in nets extending the
one for λ-calculus, D1 λ is a redex, so one chooses to represent D1 with
a tensor cut against the main conclusion of the differentiated term. So in
D1 λ is present, the corresponding ` forms a multiplicative redex in the net.
However in the reduct of linear reduction the λ is still present. One might
therefore represent such a situation with

(D1 u · v)
◦ :=

⊗ `

? !

!
S

S

S

u◦

v◦

,

where the rightmost ` corresponds to a potential abstraction that gets there
if D1 fires. This could pose problems in sequentialization proofs: one should
distinguish between `s that correspond to actual abstractions and those
that are justified by a differentiation.

Moreover the way in which differential operators shift in terms can be
troublesome. Take the following term and its reduction:

(

λx.D1,2 x · (v1, v2)
)

λy1, y2.s→ D1,2 λy1, y2.s · (v1, v2) =

= D1(λy1.D1 λy2.s · v2) · v1 → D1

(

λy1, y2.

(

∂s

∂y2
· v2

))

· v1.

In nets the first reduct would be, after performing substitution via an ap-
propriate substitution lemma:

⊗
⊗`

`
`

`

!
!

!

!s◦
v◦
1

v◦2

where we are forgetting about contracted variables. The translation does
not perform the operations that in the syntax are given as equalities. The
result is that the marked cells are the ones corresponding to the couple D1 λ
fired in the second reduction, whereas in the translation they are separated,
and we do not get simulation.

We can see two solutions to this problem. One would be to directly employ
the t• translation that normalizes multiplicative cuts. This would probably
abstract away the order of differentiation operators, and would by the way
introduce σ-equivalence on differential calculus (see [23,24]). This would
showhow the two types of redex have a different syntactic nature: the classic
“(λ” that like in λ-calculus has a degree of imposed sequentiality that can
be subsequently equated through σ-equivalence, and the differential “D1 λ”
which syntactically has σ-equivalence somehow built in.
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We chose instead to investigate in another direction. In search for a calculus
thatwouldfindan exact counterpart inDNs just likeλ-calculusdoes inproof
nets, we arrived at a version of full Boudol’s λ-calculus with multiplicities.
In fact just like resource calculus described by Ehrhard and Regnier in [12]
is a an algebraic non-lazy version of the promotion-free fragment of λ-
calculus with multiplicities, the full resource calculuswe describe in Section 4
is the same for full Boudol’s calculus.Wemay say that it is Boudol’s calculus
enrichedwith thedynamicsofEhrhardandRegnier’sdifferentialλ-calculus,
which explains why such a strong link with differential nets can be found.
After the next two sections we will finally be able to define the translation
in Section 5 and show sequentialization and bisimulation.

3 Intuitionistic differential nets

Intuitionistic differential nets (or iDN) are an extension of intuitionistic
MELL proof nets with a differential operator. The main difference with
respect to DIN (differential interaction nets) is the explicit presence of ex-
ponential boxes in the net. This in fact goes out of the interaction net lan-
guage [16], as boxes have more than one active port for reduction. One of
the main consequences of this is that strong confluence no longer holds,
so that confluence and other results are a more delicate matter. Due to our
main interest here in λ-calculus, we will deal only with a pure version of
iDN. Typed and non intuitionistic versions are left for future work.

3.1 Statics: differential structures and correctness criterion

A net is given by the following data.

• A finite set P of free ports, also called conclusions.
• A finite set C of cells, to each of which is assigned a symbol, a principal
port and a certain number of auxiliary ports. The number of all these
ports, which go by the collective name of connected ports, is called arity
of the cell.

• A finite set W of wires which is the union of a partition of the set of
ports into sets with 2 elements and some wires not related to any port
(deadlocks).

Cells are typically graphically depicted as triangles with the principal port
on a vertex and the auxiliary ones on the opposed side. A cell is said to
be commutative if its auxiliary ports are indistinguishable and interchange-
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ı

ı

ı

o

o

o

?ı

?ı

?ı?ı

?ı

!o

!o

!o

!o!o

!o

!o!o

⊗ `

? ?

!

! !

. . .

. . .

. . .

π

tensor: par: promotion (or box):

dereliction and
contraction:

codereliction and
cocontraction:

Figure 2: Cells for intuitionistic differential structures. Contractions and
cocontractions are commutative and cannot have 2 ports.

able 3 .

A typing is the assignment of a formula in a given language with duals to
all directed ports. A directed port is a couple of a port and a direction –
incoming or outgoing from the cell for connected ports, while on free ports
incoming is given the meaning of outgoing from the net and vice versa. One
imposes that if A is assigned to an outgoing port, then A⊥ is assigned to the
same incoming port and vice versa. Rules will be given for assigning types
to ports of cells with a given symbol.

A net is typable with a given typing if for each wire between ports the
outgoing type of one of its ports is equal to the incoming type of the other.
If we assign a direction to any non deadlock wire, turning it into an ordered
couple, its type is the outgoing type of its first port (or the incoming type
of its second). The sequence of the types of incoming free ports (which we
recall is the type of wires directed towards the free ports and out of the net)
is called interface. We are not much interested here in deadlocks, and they
may be typed in any way.

Differential structures. The set DS0 of pure 0-depth simple intuitionistic
differential structures (or 0-depth simple DSs for short) is the set of nets
typable with formulas o, !o and respective duals ı, ?ı with symbols, arities
and typing rules defined in Figure 2, without the promotion cell. Then by
induction the set DSk+1 of k+ 1-depth simple DSs is the set of nets built with
all cells in Figure 2. To each promotion cell with n ports we must associate
an element π in R 〈DSk〉with all addenda having an interface made of n − 1
?ı and an o. This associated sum is called the content of the box and has
a fixed correspondence between its ?ı-conclusions and the auxiliary ports
of the box. DSk is increasing, so we can define the set of simple DSs as
DS := ∪k∈NDS. Intuitionistic differential structures are elements of R 〈DS〉

3 One can give a more formal definition by defining an equivalence relation on
nets and taking the equivalence classes thereafter.
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where addenda have the same interface. Corresponding free ports in the
addenda of a structure will be usually identified. The (exponential) depth
of a net π is the minimal k such that π ∈ R 〈DSk〉. The exponential depth
of a cell in π is the number of boxes in which it is contained. As these nets
are one of the main characters in this paper, we will from now on drop the
“intuitionistic” nomenclature.

We will often omit types, as they can be easily derived from the cells in-
volved. We will call n-contraction (resp. n-cocontraction) one which has
n+1 ports. 0-contractions (resp. 0-cocontractions) are also calledweakenings
(resp. coweakenings). Awire is exponential if its type is ?ı/!o, andmultiplica-
tive otherwise. A cut is a wire which either connects two principal ports or a
principal port and the auxiliary port of a box. A wire between the principal
port of a (co)contraction and an auxiliary one of another (co)contraction is
called an associative redex. A contraction which has more than one auxiliary
port connected to auxiliary ports of the same box is called a push redex, while
a box where all the addenda of the content have a weakening on a given
conclusion is called a pull redex. An axiom is a wire which does not connect
any principal or box auxiliary port.

Contexts. A simple context ω[ ] is a simple differential structure built with
an additional special node, the hole, which has an arbitrary but fixed arity
and outgoing types, the sequence of which is called the internal interface of
ω[ ]. We impose that the hole appears only once in ω[ ]: formally it means
that either it appears once at exponential depth 0, or inductively there is one
box which contains aψ[ ]+ σwith a , 0 and ψ[ ] simple context. Similarly, a
differential context is aω[ ] + πwith π differential structure and ω[ ] simple
context.

Given a simple structure π and a context ω[ ] such that the interface of π is
equal to the internal interface of ω[ ] we define ω[π] by substituting π for
the hole, i.e. identifying the free ports of π with corresponding ports of the
hole and then erasing them by merging wires which share such ports. In
case π is a linear combination the sum is extended to the whole content of
the box containing the hole, or the whole context is there is none. Formally,
after having defined ω[λ] for simple nets, ω[

∑

i ciλi] :=
∑

i ciω[λi] if the hole
is at depth zero, otherwise ω[

∑

i ciλi] is inductively the result of substituting
the content aψ[ ]+σ of the box containing the hole with aψ[

∑

i ciλi]+σ. Given
a relation ρ on structures its context closure is π ρ̃ σ iff there is a context ω[ ]
and two nets π′ ρ σ′ such that π = ω[π′] and σ = ω[σ′].

Though structures already have computational meaning, we define the cor-
rectness criterion following the Danos-Regnier one for LL proof nets [6].
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Correct nets. Given a simple structure λ a switching of λ is an unoriented
graph Gwith cells as nodes, obtained by deleting for every par and contrac-
tion all wires on its auxiliary ports but one, and converting all remaining
wires as edges between the cells connected by the wire. A principal switching
is one that on `s always erases the exponential wire. A simple DS λ is said
to be correct, or a simple differential net, or simple DN for short, if

• every switching G of λ is acyclic and has a number of connected compo-
nents equal to the number of weakenings at depth 0 in λ plus one;

• inductively every content of a box is correct.

A sum of simple structures is correct if it is a sum of correct structures. We
speak of differential modules if we have only the acyclicity condition, and
every box content is correct. This is the minimal correctness we need to be
able to plug the module in a context and hope the result is correct: a cyclic
net, or one which has incorrect box contents, gives incorrect nets no matter
the context in which it is plugged.

We here state a lemma which will be used in Section 5.

Lemma 1 A correct net has exactly one o or !o conclusion.

PROOF (sketch). This proof is no different from what is done for LL
intuitionistic proof nets. See for example [23]. The idea is to use paths in a
principal switching, first to end up on a o/!o conclusion, then to arrive at a
contradiction if two such conclusions are supposed. �

3.2 Dynamics: multiplicative, exponential, associative reductions

From now on we will take R = N. Though greatly interesting, other cases
such as Q+ pose problems for normalization issues 4 , not to speak of cases
where R has subtraction, where one cannot even speak of a normal form 5 .
In this setting sumsmay always be written without coefficients, as for c ∈N
c · π = π + · · · + π c times. Note that multiplicities still count. We may
redefine contexts, ruling out the multiplication by a coefficient, and making
the upcoming definition of reduction more atomic. This is left to personal
taste, as the results do not change.

Reduction rules are defined in Figure 3, and take the form of ordered couples

4 Take π reducing in one step to π′. Then π = 1
2π +

1
2π →

1
2π +

1
2π
′ → 1

4π +
(

1
4 +

1
2

)

π′ → . . .→ 1
2k
π+

∑k
i=1

1
2k
π′ → . . . Achilles and the turtle come to mind, and

it is opinion of the author that there is a way to satisfactorily treat this “paradox”.
5 Taken a reduction π→ π′, then any net σ reduces to σ + π − π′.
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Figure 3: Reduction rules for differential structures.

of modules. They in turn define a relation on nets by context closure. In all
reduction rules contraction or cocontraction cells in the reducts which come
out to have 2 ports are a convention to denote a single connectingwire. Note
also that the rules cover the cases for (co)weakening.

The reduction marked by m is the multiplicative one, while e denotes the
exponential ones. These reduce all possible cuts. Moreover the associative re-
duction (a) reduces associative redexes. Reductions of push andpull redexes
will be discussed later in Section 3.4. Remark 3 shows why we are dealing
with a-reduction together with the other more classical ones: e-reduction
(and em-reduction) is not confluent without it. Reductions can be seen to
preserve both typing and correctness.

The rest of this section will be devoted to proving fundamental properties
of these reductions. To sum upwewill prove that ea is strongly normalizing
and confluent, and thatmea is confluent. For now it is immediate thatm and
a are strongly normalizing as they decrease the number of cells, and that
they are also strongly confluent.
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Figure 4:Confluence diagram for codereliction vs box vs contraction critical
pair.

Lemma 2 The reduction ea is locally confluent.

PROOF. As usual one checks the critical pairs. Some of them have been
covered in the literature about LL proof nets. The other ones are easy, if
somewhat long, to verify. We will show here one of the most interesting
cases, codereliction vs box vs contraction, making the simplification that
the box has only one other conclusion (apart from the one cut against the
codereliction) and that the contraction is a 2-contraction. The two reductions
are shown in Figure 4. The + . . . parts are the other addenda in the sums
which are completely symmetric. In the end we arrive to two a-equivalent
(equivalent up to associativity) forms, which therefore normalize with a to
the same net. �

Remark 3 The confluence diagram shown in Figure 4 proves also that e alone
is not confluent, contrary to what happens in LL proof nets, where confluence of
exponential (and general) reduction is independent of associativity.

3.3 Strong normalization of exponential reduction

Wewill now begin themost technical part of the paper: wewill prove strong
normalization of e first, and ea after that. It is crucial here thatwe do not have
double exponential types: once an exponential is deleted, say for example
by a dereliction against codereliction reduction, the possible new cut is not
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exponential anymore and thus it is inactive from the point of view of this
reduction 6 .

Sketch of the proof technique. Wewant to define a decreasingmeasure on
the net. We start by assigning to each cut a natural number. When a cut fires
the cuts created by the reduction have a lesser weight, though there may
be many of them. Thus we employ the multiset of the weights of the cuts
with multiset order. Another problem arises: sums make it so that when
a reduction creates addenda, there is a sort of global duplication of the
net. This can be settled with multisets again: one takes the multiset of the
multisets of weights given by the various addenda, so that if all addenda of
the reduct have a multiset lower than the one of the redex we are done. This
almost settles the issue, were not for promotion. Boxes can be duplicated,
but fortunately there is a way to foresee how many copies of the boxes
may be done. So we count the weights inside boxes as many times as are
these potential copies. Last problem: boxes contain sums, andwhen a box is
duplicated and opened every copymay spawn a different addendum.What
we need is a way to combine every multiset in the multiset associated to a
box with both everything that lies outside (including all the combinations
of other boxes) and also a certain number of multisets of the same box
depending on howmany potential copies may be done. This “combinatorial
monster” can be fortunately described by an operation on multisets that is
in fact a multiplication with respect to multiset sum: the convolution product
(Definition 4). So let us first introduce this abstract machinery on multisets.

Multisets. Let X me a well-ordered monoid (X, <, 0,+) with < compatible
with the sum, and consider Mfin(X) with additive notation. For each A ∈
Mfin(X) we define maxA := max |A|, with the convention that max ∅ = 0,
andA\{a} := A[a 7→ 0] = A−A(a)[a].OnMfin(X)we candefine anorder in one
of this two equivalent forms (inductive on # |A|, and as a transitive-reflexive
closure).

• A ≤ B iff maxA ≤ maxB, and if maxA = maxB then A(maxA) ≤
B(maxA), and if moreover A(maxA) = B(maxA) then A \ {maxA} ≤
B \ {maxB};

• ≤ is the transitive and reflexive closure of <1, where A <1 B iff there is
b ∈ B such that A = B− [ a ]+K where maxK < a, i.e. all elements of K are
less than a.

This is a well ordering on Mfin(X), a proof of which can be found in [18].
Moreover it is compatible with multiset sum, turning (Mfin(X), <, [ ],+) into
a well-ordered monoid itself.

6 In a typed first order setting, we can use such hypothesis by considering the
logical complexity of cut formulas. See Section 6 for a sketched discussion.
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Definition 4 The convolution product of two finite multisets A and B is (in
functional notation):

(A ∗ B)(z) :=
∑

x+y=z

A(x)B(y).

The support of A ∗ B is |A| + |B| = { x + y | x ∈ |A| , y ∈ |B| } (and is therefore
finite), and in fact the product can be seen as a generalization of that set
operation to multisets, i.e. we could write A ∗ B = [ x + y | x ∈ A, y ∈ B ]
wherewe countmultiplicities. This operation enjoys somegoodand trivially
provable properties: it is commutative, associative, has [0] as unit and [ ] as
absorbing element, anddistributes overmultiset sum.A less trivial property
is the following.

Proposition 5 The convolution product is compatible with multiset order, i.e. if
U ≤ V then U ∗W ≤ V ∗W.

PROOF. Excluding the trivial case W = [ ], we show that if U <1 V then
U ∗ W < V ∗W, which easily gives the result. We have V = V0 + [a] and
U = V0 + K, with maxK < a. Now

U ∗W = V0 ∗W + K ∗W, V ∗W = V0 ∗W + [a] ∗W.

Now it is easy to see that

max(K ∗W) = max(|K|+ |W|) = maxK+maxW < a+maxW = max([a] ∗W),

which together with compatibility with the sum suffices to give what was
looked for. �

We define the power of a multisetVk by iterated convolution product. Com-
patibility assures us this power is monotone increasing both with respect to
V and to k (as every V , [ ] is greater than the unity [0]). We will use

�
for

finite convolution products. As hinted above, we will apply this machinery
to finite multisets of finite multisets.

Measures on wires. We define four measures on exponential wires. Two
of them will depend on exponential paths going against ? ports, the other
two on paths going in the other direction. The two directions give rise to a
slightly different formal treatment. Let us fix for the subsequent definitions
a module π.

Definition 6 (!-path) An !-path is a sequence of exponential wires, not necessar-
ily at the same exponential depth, such that

• either there is a cell C between ek and ek+1, or ek+1 is on an auxiliary port of
a promotion cell, and ek is the corresponding wire in a simple net which is an
addendum of the content of the same promotion cell.
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• if C is a cocontraction or a box, then ek is on its principal port and ek+1 on an
auxiliary one.

• if C is a contraction, then ek is on an auxiliary port and ek+1 on its principal port.

Because of acyclicity there are no !-loops. Maximal !-paths can only end on
conclusions of the whole module, coweakenings, coderelictions, or boxes
without auxiliary ports. We define the !-measures cd (codereliction count) and
ℓ!(e) (!-length) by induction on the maximum length of maximal !-paths
starting from e. The definition is given by cases depending on the ! port
of the wire directed as in !-paths. For every incoming ?ı-typed conclusion
x of the whole module (not of the content of a box) let us declare variables
onN named cd(x) and ℓ!(x). Such variables are introduced so that we may
regard all these measures as depending on the context in which the module
is plugged, which will supply values for them.

• If e is on a codereliction, cd(e) := 1 and ℓ!(e) := 1.
• If e is on a conclusion x of the whole module, then cd(e) := cd(x) and
ℓ(e) := ℓ!(x).

• If e is on a coweakening, cd(e) := 0 and ℓ!(e) := 1.
• If e is on a contraction, or is the conclusion of a simple net inside a box,
cd(e) := cd( f ) and ℓ!(e) := ℓ!( f ) where f is the wire on the principal
port of the contraction or on the corresponding auxiliary door of the box
respectively.

• If e is on a cocontraction, and fi are the wires on the auxiliary ports of the
cell, then

cd(e) :=
∑

i

cd( fi) and ℓ!(e) := 1 +max
i

(

ℓ!(ei)
)

.

• If e is on a box, and fi are the wires on its auxiliary ports, then

cd(e) :=
∑

i

cd( fi) and ℓ!(e) := 1 + cd(e) = 1 +
∑

i

cd( fi).

We will also use #!(e) (!-count) to mean 1 + cd(e).

Definition 7 (?-path) A ?-path is a sequence of exponential wires at the same
exponential depth such that the reversed sequence is an !-path.

Clearly there are no ?-loops, and maximal ?-paths end with either a conclu-
sion, a weakening or a dereliction. We define the ?-measures #?(e) (?-count)
and ℓ?(e) (?-length) by induction on the exponential codepth of e (the depth
of the net minus the depth of the wire) and themaximum length of maximal
?-paths starting from e. Symmetrically to the ! case, the definition is given by
cases depending on the ? port of the wire, and there are assigned variables
onN named #?(x) and ℓ?(x) for every incoming !o-typed conclusion x.
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• If e is on a dereliction or a weakening then #?(e) := 1 and ℓ?(e) := 1.
• If e is on a conclusion x, #?(e) := #?(x) and ℓ?(e) := ℓ?(x).
• If e is on a cocontraction, #?(e) := #?(e) and ℓ?(e) := ℓ?( f ) where f is the wire
on the principal port of the cocontraction.

• If e is on a contraction, and fi are the wires on the auxiliary ports of the
cell, then

#?(e) :=
∑

i

#?( fi) and ℓ?(e) := 1 +max
i

(

ℓ?(ei)
)

.

• If e is on a box whose principal door is p and whose content is
∑

i λi, then

#?(e) := #?(p)#!(p)maxi
(

#?(e
λi)

)

,

ℓ?(e) := 1 + ℓ?(p) + cd(p) +maxi
(

ℓ?(eλi)
)

.

where eλi denotes the conclusion in net λi inside the box corresponding
to e.

We finally define ℓ(e) := ℓ?(e) + ℓ!(e) (length) and #(e) := #?(e)#!(e) (count).
Whenever we want to specify in which module or net the measure is taken,
we put it as a superscript, as in ℓπ

?
(e). We also naturally extend the measure

on ports rather then only wires, by calculating the corresponding measure
on the unique wires connecting them.

If we plug the module in a context, and the result is a module, we can
calculate the missing measures and use them in place of the variables,
getting again functions on the variables of the conclusions of the whole
context. Note however that because of the feedback nature of the presence
of cd in the definitions, ?-measures cannot be calculated on the internal
interface of the context before plugging the module, while !-measures can.

Measures on nets. Wefinally define themeasure |π| of amodule, whichwill
be a finite multiset of finite multisets of natural numbers. We will usually
regard such measures as relative, i.e. dependent on the variables assigned
on its conclusions. When finally measuring a net to be reduced, we will use
the absolutemeasure, i.e. the relative one evaluated on the values 1 for ℓ!, ℓ?
and #? and 0 for cd on all its conclusions. However we will not distinguish
with a different notation the two. The measure will be defined by induction
on the exponential depth of the net. Given σ the content of a box in π, |σ|π
denotes the relative measure |σ| evaluated on the !-measures of the auxiliary
ports of the box (there are no other exponential conclusions). Note that the
measure of the content of a box is not independent of what is outside it.
Given a set of wires W, let |W| be [ ℓ(e) | e ∈ W ], i.e. the multiset of lengths
overW. For a simple module λ let C0(λ) (resp.B0(λ)) be the set of cuts (resp.
boxes) at exponential depth 0 in λ. Given a box B, we denote by σ(B) its
content and by #(B) the count #(p) = #?(p)#!(p) on its principal door p.
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Definition 8 (measure of a module) In case π =
∑

i λi is a sum of simple mod-
ules |π| :=

∑

i |λi|. The measure of a simple module λ is defined as

|λ| :=
[

|C|0 (λ)
]

∗
�

B∈B0(λ)

|σ(B)|#(B)
λ
.

Note that the first factor can be furthermore factorized in
�
c∈C0(λ)

[

[ℓ(c)]
]

.

Note that the measure is monotone in all the measures of wires defined
above. In order to prove that the measure does not increase in other parts
of the net, it will suffice to show that those measures do not increase.

Intuitive idea of the measures. ℓmeasures the maximum number of steps
before a single cut arrives to a stop if we follow just one of the possibly
many children of the reduction, and this is done symmetrically in the two
directions. #? counts the maximum number of contraction branchings that
can arrive on the wire, giving the number of box copies that can be created
in the reduction. cd counts the coderelictions, and appears in all the other
measures because they create contractions and cocontractions on their way.
Also this count gives us #! which is the number of linear copies of a box that
can be made in the worst case. The elements of |π|, which are multisets as
well, measure the net as if it was unfolded and boxeswere opened, and from
each one a single net was chosen. This resembles the idea of single threaded
slices, a notion appearing in[21] in the case of LL with additives.However
here we expand the measures given by the content of the box with a power
operation which does nothing else than making potentially coexist together
a number (given by the count # on the box) of nets fetched from the box, a
coexistence that single threaded slices rule out.

In the following, given a simple module λ, let C?(λ) and C!(λ) be the set
of the (incoming) ?ı and !o typed conclusions of λ respectively. We see that
cdλ(y) with y ∈ C! is a function on just the variables cd(x) for x ∈ C?, as cd
is the only self defined measure. We say that µ can replace λ if !-measures on
C! and ?-measures on C? (which are functions on the variables of the ports)
are pointwise less for µ than for λ.

The idea is that when (correctly) plugged in a context, the measures of
the whole context do not increase between the two. However this is not
really immediate, as values on the variables are not independent of what
is plugged into the hole. Let us show what we mean with a little informal
reasoning. Let the symbols ! and ? here be treated as functions that give
! and ? measures respectively, so that for example !C? is the collection of
!-measures on C? ports. We will denote the various dependencies between
the measures by function literals such as F, G, and we will put λ and µ as
subscript whenever something depends on whether we plug λ or µ. For
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example !C? does not depend on it, so we do not put any subscript. We can
write

!λC! = Fλ(!C?) ≥ Fµ(!C!) = !µC?,

where Fλ and Fµ denote one of the dependencies that are the object of the
comparison in the definition of “µ can replace λ”. For ?C? the discussion
is more delicate, as ?C! is not independent of the module plugged in, as it
depends (let us say with function H) on !C!, because of cd being present in
all definitions. What is crucial is that all these dependencies are monotone
increasing, and we have already seen !λC! ≥ !µC!, so:

?λC? = Gλ(?λC!, !C?) = Gλ
(

H(!λC!), !C?
)

≥

≥ Gλ
(

H(!µC!), !C?
)

≥ Gµ
(

H(!µC!), !C?
)

= ?µC?.

We just had to strive a little more to be able to apply the pointwise compar-
ison.

We are now ready to prove the main lemma of this long proof, after which
the strong normalization theorem will be withing reach. A terminal wire
is one connecting a conclusion to a non-auxiliary port. When plugging a
module in a context terminal wires are the only ones that can can become
cuts.

Lemma 9 (modularity) Let π = ω[λ] and σ := ω
[∑

µi
]

be correct nets, where
ω is a context, λ and µi for i = 1, . . . , n are simple modules. Suppose that for every
i µi can replace λ, and let Ci be the set of terminal exponential wires of µi which
were not terminal in λ. Suppose moreover that

• n = 1 and
[

|C1|µ1

]

∗
∣

∣

∣µ1
∣

∣

∣ < |λ| pointwise,
• or we can write

|λ| = [u] ∗ X,
∣

∣

∣µi
∣

∣

∣ = [vi] ∗ Xi

so that we have that pointwise Xi ≤ X and |Ci|µi + vi < u for every i.

Then |π′| < |π|.

PROOF. Let ϕ[ ] be the simple context with its hole at depth 0, ψ[ ] the

context, a the coefficient and χ the net such that ω[ ] = ψ
[

aϕ[ ] + χ
]

and

aϕ[ ] + χ is either the content of the smallest box containing the hole or the

whole ω[ ] if none exists. We first prove that
∣

∣

∣ϕ[
∑

i µi]
∣

∣

∣ =
∑

i

∣

∣

∣ϕ[µi]
∣

∣

∣ <
∣

∣

∣ϕ[λ]
∣

∣

∣.
If n = 0 (a case always covered by the second possibility in the hypotheses)
this result is trivial, so take n > 0 in the following.

As previously remarked, by the hypothesis that µi can replace λ we have
that all ?-measures on C?(λ) and !-measures on C!(λ) decrease from ϕ[λ] to
ϕ[µi]. Thus, because of monotonicity, the measure of what is outside the
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hole decreases also. We have to keep track of wires on conclusions in λ and
µi which may be cuts when plugged in the context. Such wires that are cuts
in both situations have a lesser measure in µi because of the decrease of
measures. The ones that are cuts in λ but not in µi do not bother us. Finally
the ones that are cuts for µi but not for λ are contained in Ci. Summing up,
we can write

∣

∣

∣ϕ[µi]
∣

∣

∣ ≤
[

|Ci|µi

]

∗
∣

∣

∣µi
∣

∣

∣ ∗ Yi,
∣

∣

∣ϕ[λ]
∣

∣

∣ = |λ| ∗ Y

with Yi ≤ Y pointwise, which weight the parts of the context outside the
hole.

In case n = 1 we have [ |Ci| ] ∗ |µ1| < |λ| pointwise by hypothesis. We can
apply it here because of monotonicity, and we get what we were looking
for. Otherwise, putting it together:

∣

∣

∣

∣

∣

∑

i

ϕ[µi]

∣

∣

∣

∣

∣

≤
∑

i

([

|Ci|µi

]

∗
∣

∣

∣µi
∣

∣

∣ ∗ Yi
)

≤
∑

i

([

|Ci|µi

]

∗ [vi] ∗Xi ∗ Yi
)

≤

≤
∑

i

([

|Ci|µi + vi
]

∗ X ∗ Y
)

=

(
∑

i

[

|Ci|µi + vi
]

)

∗ X ∗ Y =

=
[

|C1|µ1 + v1, . . . , |Cn|µn + vn
]

∗ X ∗ Y.

Now u > vi + |Ci|µi for any i, which implies [|C1|µ1 + v1, . . . , |Cn|µn + vn] < [u]
and so

∣

∣

∣

∣

∣

∑

i

ϕ[µi]

∣

∣

∣

∣

∣

≤
[

|C1|µ1 + v1, . . . , |Cn|µn + vn
]

∗ X ∗ Y < [u] ∗ X ∗ Y =
∣

∣

∣ϕ[λ]
∣

∣

∣ .

Let’s return to ω[ ] = ψ
[

aϕ[ ] + χ
]

. If ψ[ ] = [ ], that is ω’s hole is not
contained in a box, we have nothing else to add, as the order is compatible
with sum. If otherwise B is the smallest box containing aϕ[ ]+χ,we first note
by inspection of the definition that the ?-measures on the auxiliary doors
of B with χ +

∑

i ϕ[µi] inside are less than the same measures with χ + ϕ[λ]
instead (decrease of measures on ϕ[ ] conclusions). Because of this remark
we can write

∣

∣

∣

∣

∣

∣

∣

ψ
[

a
∑

i

ϕ[µi] + χ
]

∣

∣

∣

∣

∣

∣

∣

= Z′ ∗
(

a
∑

i

∣

∣

∣ϕ[µi]
∣

∣

∣ + |χ|
)k

and
∣

∣

∣

∣

ψ
[

aϕ[λ] + χ
]

∣

∣

∣

∣

= Z ∗
(

a
∣

∣

∣ϕ[λ]
∣

∣

∣ + |χ|
)k

with k given by the product of the count # on all the boxes containing aϕ[ ]+χ
(which is equal between the two), and Z′ ≤ Z. We have that all !-measures
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on C?(ϕ[ ]) are the same (and C! is empty), so we can apply the pointwise

comparison previously established on the measures
∑

i

∣

∣

∣ϕ[µi]
∣

∣

∣ and
∣

∣

∣ϕ[λ]
∣

∣

∣,
and we get the final result. �

2

Theorem 10 The reduction
e
→ is strongly normalizing.

PROOF. For each couple redex-reduct of
e
→ as presented in Figure 3 we

have to verify the hypotheses of themodularity lemma. In factπ
e
→ σmeans

π = ω[λ] and σ = ω[
∑

i µi] with λ,
∑

i µi a couple given by one of those rules.
If the modularity lemma applies, we get for absolute measures |σ| < |π|. By
well-ordering we then have that there cannot be any infinite reduction. We
will not show all of the cases, just a first easy example of the way the sum is
dealt with and the two most interesting (and hardest) cases.

Codereliction vs contraction.

?

!

!

!

!

... ...
...∑

i

λ
∑

i

µi

c

e1e1

ei

en
en

1
1

i

nn

e

First, µi can replace λ, as

cdµi(e j) = δi, j ≤ 1 = cd
λ(e j), ℓ

µi
!
(e j) = 1 = ℓ

λ
! (e j).

Then, |λ| =
[

[ℓ(c)]
]

and
∣

∣

∣µi
∣

∣

∣ =
[

[ ]
]

, but all e js have become terminal.Anyway

however
ℓµi(e j) = ℓ?(e j) + 1 < 1 +max

k

(

ℓ?(ek)
)

+ 1 = ℓλ(c)

so that [ℓ(c)] > |Ci|µi + [ ] (as defined in the hypotheses of Lemma 9) which
ends this case.

Codereliction vs box.

?

?
!

!

!
!

!

! !...
...

π
∑

j

σ j

∑

j

∑

i

λi
∑

i

λi

λ j
c

c1

c2

p1

p2

e1
e1

e1
1

e2
1

en
en

e1n

e2n

p

p

p

In this case there is no new terminal wire. First we check the replacement
hypothesis.

cdσ j(p) = 1 + cdσ j(p2) = 1 +
∑

h cd
σ j(e2

h
) = cdπ(c) +

∑

h cd(eh) = cd
π(p),
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ℓ
σ j
!
(p) = 1 +max

(

1, 1 +
∑

h cd(eh)
)

= 1 + cdπ(c) +
∑

h cd(eh) = ℓ
π
!
(p),

#
σ j
?
(eh) = #

σ j
?
(e1
h
) + #

σ j
?
(p2)

(

1 +
∑

k cd(ek)
)

maxi
(

#
σ j
?
(e2λi
h
)
)

≤

≤ #?(p)maxi
(

#π
?
(eλi
h
)
)

+ #?(p)
(

1 +
∑

k cd(ek)
)

maxi
(

#π
?
(eλi
h
)
)

=

= #?(p)
(

2 + cd(ek)
)

maxi
(

#π
?
(eλi
h
)
)

= #π
?
(eh),

ℓ
σ j
?
(eh) = 1 +max

(

ℓ
σ j
?
(e1
h
), 1 +maxi(ℓ

σ j
?
(e2λi
h
)) + ℓ?(p) +

∑

k cd(ek)
)

≤

≤ 1 +max
(

ℓπ
?
(e
λ j
h
), 1 +maxi(ℓπ? (e

λi
h
))
)

+ℓ?(p) +
∑

k cd(ek) ≤

≤ 2 +maxi
(

ℓπ
?
(eλi
h
)
)

+ ℓ?(p) +
∑

k cd(ek) = ℓ
π
?
(eh).

We take the measures of the modules:

|π| =
[

[ℓπ(c)]
]

∗
(

∑

i |λi|π
)#?(p)(1+cd(p))

,

∣

∣

∣σ j
∣

∣

∣ = [δ j] ∗
∣

∣

∣λ j
∣

∣

∣

σ j
∗
(

∑

i |λi|σ j

)#
σ j
?
(p2)(1+cd

σ j (p2))
,

where δ j = [ℓ
σ j(c1), ℓ

σ j(c1)] if c1 is a cut, [ℓ
σ j(c2)] otherwise. In any case,

δ j ≤ [ℓσ j(c1), ℓσ j(c1)]. First observe that the measure of the content inside the
box is less in σ j than in π as all measures on its border are the same apart
from cd which is 1 less in σ j, while the measure remains the same on the
linear part λ j. So:

∣

∣

∣λ j
∣

∣

∣

σ j
∗
(

∑

i |λi|σ j

)#
σ j

?
(p2)(1+cd

σ j (p2))
≤

≤
(

∑

i |λi|π
)#?(p)
∗
(

∑

i |λi|π
)#?(p) cd(p)

=
(

∑

i |λi|π
)#?(p)(1+cd(p))

.

This settles the part Xi ≤ X in the hypotheses of the modularity lemma.
Moreover:

ℓσ j(c1) = 1 + ℓ
σ j
?
(c1) = 1 + ℓ

π
? (c

λ j) ≤ 1 +max
i

(

ℓπ? (c
λi)

)

< ℓπ? (c) < ℓ
π(c),

ℓσ j(c2) = 1 + ℓ
σ j
?
(c2) = 1 +maxi

(

ℓ
σ j
?
(cλi
2
)
)

+ ℓ
σ j
?
(p2) +

∑

k cd(ek) <

< 1 +maxi
(

ℓπ
?
(cλi)

)

+ ℓπ
?
(p) + 1 +

∑

k cd(ek) = ℓ
π(c),

So δ j ≤ [ℓσ j(c1), ℓσ j(c2)] < [ℓπ(c)], which settles the |Ci|σi + vi < u part of the
hypotheses.

Box vs box.

!
!

!
!

...
...

...
...

π σ

∑

i

∑

i

λi λi

λ′
i∑

j µ j
∑

j µ j
c cλi

e1e1

enen

f1f1

fmfm p p
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Again there are no new terminal wires. Replacement hypothesis is satisfied,
as

cdσ(p) =
∑

k cd(ek) +
∑

h cd( fh) = cd
π(p),

ℓσ
!
(p) = 1 + cdσ(p) = 1 + cdπ(p) = ℓσ

!
,

#σ
?
(ek) = #?(p)#

σ
!
(p)maxi

(

#σ
?
(e
λ′
i

k
)
)

= #?(p)#
π
!
(p)maxi

(

#π
?
(eλi
k
)
)

= #π
?
(ek),

#σ? ( fh) = #
σ(p)maxi

(

#σ
?
( f
λ′
i

h
)
)

= #π(p)maxi
(

#σ
?
(cλ

′
i )#σ
!
(cλ

′
i )max j

(

#σ
?
( f
µ j
h
)
))

=

= #π(p)maxi
(

#π
?
(cλi)#π

!
(c)

)

max j
(

#π
?
( f
µ j
h
)
)

= #π(c)max j
(

#π
?
( f
µ j
h
)
)

= #π
?
( fh),

ℓσ
?
(ek) = 1 +maxi

(

ℓσ
?
(e
λ′
i

k
)
)

+ ℓ?(p) + cd
σ(p) =

= 1 +maxi
(

ℓπ
?
(eλi
k
)
)

+ ℓ?(p) + cd
π(p) = ℓπ

?
(ek),

ℓσ? ( fh) = 1 +maxi
(

ℓσ
?
( f
λ′
i

h
)
)

+ ℓ?(p) + cd
σ(p) =

= 1 +maxi
(

1 +max j
(

ℓσ
?
( f
µ j
h
)
)

+ ℓσ
?
(cλi) + cdσ(cλi)

)

+ ℓ?(p) + cd
π(p) =

= 1 +max j
(

ℓπ
?
( f
µ j
h
)
)

+ 1 +maxi
(

ℓπ
?
(cλi)

)

+ ℓ?(p) + cd
π(p) + cdπ(c) =

= ℓπ
?
( fh).

Let us show ℓσ(cλ
′
i ) < ℓπ(c), knowing that ℓσ

!
(cλ

′
i ) = ℓπ

!
(p):

ℓσ
?
(cλ

′
i ) = ℓπ

?
(cλi) < 1 +max j

(

ℓπ
?
(cλ j)

)

+ ℓ?(p) + cd
π(p) = ℓπ

?
(c).

So if we let δi = [ℓσ(c
λ′
i )] if cλ

′
i is a cut, [ ] otherwise, and ε be [ℓπ

!
(c) +

max j
(

ℓπ
?
(cλ j)

)

] we have δi ≤ ε < [ℓπ(c)].Moreover #σ(c
λ′
i ) ≤ maxi

(

#π
?
(cλi)

)

#π
!
(c),

#σ(p) = #π(p), |λi|σ = |λi|π and
∣

∣

∣µ j
∣

∣

∣

σ
=

∣

∣

∣µ j
∣

∣

∣

π
, so we get

|σ| =
(

∑

i

∣

∣

∣λ′
i

∣

∣

∣

σ

)#σ(p)
=
(

∑

i

(

[δi] ∗ |λi|σ ∗
(

∑

j

∣

∣

∣µ j
∣

∣

∣

σ

)#σ(c
λ′
i )))#σ(p)

≤

≤
(

∑

i

(

[ε] ∗ |λi|π ∗
(

∑

j

∣

∣

∣µ j
∣

∣

∣

π

)maxi(#
π
?
(cλi ))#π

!
(c)))#π(p)

=

= [ε]#
π(p) ∗

(

∑

i |λi|π
)#π(p)

∗
(

∑

j

∣

∣

∣µ j
∣

∣

∣

π

)#π(p)maxi(#
π
?
(cλi ))#π

!
(c)
=

= [#π(p) · ε] ∗
(

∑

i |λi|π
)#π(p)

∗
(

∑

j

∣

∣

∣µ j
∣

∣

∣

π

)#π
?
(c)#π

!
(c)
<

<
[

[ℓπ(c)]
]

∗
(

∑

i |λi|π
)#π(p)

∗
(

∑

j

∣

∣

∣µ j
∣

∣

∣

π

)#π(c)
= |π| �

We end the section by stating and proving results which now come easily.
First we can throw in the associative reduction.

Theorem 11 The reduction
ea
→ is strongly normalizing.

PROOF. One has to check that
a
→ does not increase the measure defined

above, which is easy. Then one can take as measure (|π| , k(π)) where k(π)
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simply counts all contractions and cocontractions in π, which decreases in
a-reductions. Lexicographic well-ordering does the rest. �

By Newman’s Lemma and Lemma 2 we get

Theorem 12 The reduction
ea
→ is confluent.

We can now briefly deal also with the m reduction, though working in the
pure setting we clearly cannot hope for normalization. An essay on the
lemmaswe use to prove confluence can be found in the introduction of [22].

Lemma 13 If π
ea
→ σ and π

m
→ τ there is υ such that σ

m∗
→ υ and τ

ea
→ υ.

PROOF. m reductions cannot erase an exponential cut or an associative
redex,while an exponential reduction can erase or duplicate amultiplicative
cut, but cannot change it. Anyway we can still perform the e-reduction in τ
and close by performing the multiplicative reductions on the copies of the
m-redex in σ. �

By Huet’s Lemma we thus get commutation of
ea∗
→ and

m∗
→. By confluence of

ea and of m (recall that m is strongly confluent) we finally get by Hindley-

Rosen’s Lemma confluence of
eam
→.

3.4 Settling contractions and boxes: push and pull

We have shown that pure intuitionistic differential nets with multiplicative
exponential associative reduction are a “good” rewriting system. However
we have yet to fully tackle the problem with the order of identification of
variables we discussed in Section 2. The associative reduction that we had
to add anyway to get confluence solves part of it: contractions made at the
same exponential depth are merged and their order is forgotten. It remains
to settle the order in which contractions (and weakenings) are made with
respect to box enclosures. In an approach similar to [4], we will show that
we can add two more reductions which do not ruin the properties proved
in the previous section.

The p-reductions (push and pull) are presented in Figure 5. Similarly to the
associative reduction, if the outer contraction in the reduct of the push rule
has one auxiliary port it must be regarded as the notation for a wire. Note
how the two reductions work in opposite ways, though we cannot take any
of them in the opposite direction. Pushing weakenings in boxes would be
non deterministic and break confluence, pulling contractions from boxes
would break strong normalization as boxes containing 0 could infinitely
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push: pull:

??

?

?

?

!!!!

..
.

..
.

..
.
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.
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... ∑

i

∑

i
∑

i

∑

i

λi λiλiλi

k

k ≥ 2 pp

Figure 5: The push and pull rules. In the push rule k ≥ 2 is required.

spawn contractions 7 . From now on we will denote by c (for canonical) the
combination of the associative, push and pull reductions. We will prove
among other results that c in itself is strongly normalizing and confluent, so
we can speak of the unique canonical formNFc(π) of π.

Lemma 14 Reductions
c
→ and

ec
→ are locally confluent.

PROOF. Straightforward, though long check of the new critical pairs. �

To prove strong normalization the approach used with the associative re-
duction would fail, as creating new contractions inside boxes may increase
the measure. We instead slightly complicate the measure given in Defini-
tion 8 in order to have one which does not increase on both a and p, and
then define a measure which strictly decrease on a and p alone.

The push count. For every wire e connected to an auxiliary port of a box
B, consider all the !-paths starting from e. For each path E of them count the
number of contractions C along its way that have another !-path from any
auxiliary port of B entering C from an auxiliary port different than the one
traversed by E. Say push(E) is such number, and define

push(e) := max{push(E) | E !-path starting from e }.

Now redefine the ?-length substituting the case for the auxiliary port of a
box by

ℓ?(e) := 1 + push(e) + ℓ?(p) + cd(p) +max
i

(

ℓ?(e
λi)

)

,

where p is the principal port of the box.

The rest of the definitions remain the same, and we do not change the
notation. In order to still have the result shown in Theorem 10 (exponential
strong normalization) one has to check that the push count does not increase
in all e-reductions. We briefly illustrate why it is so.

Dereliction against cocontraction, dereliction against box and codereliction
against contraction cases clearly do not pose any problems. In contraction

7 Note that this is different from what happens in LL.
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against cocontraction, every !-path E traversing the redex persists exactly in
the reduct, and if the contraction in the redex contributed to push(E), then
the only contraction traversed by E in the reduct contributes too. The same
can be said for !-paths traversing the redex of contraction against box, and
paths E starting from the auxiliary ports of the box (or starting somewhere
inside it and going out of it) get duplicated in several copies in the reduct,
each with the same push value as the new contraction they traverse surely
does not contribute. Box against box and cocontraction against box are
similarly easy.

For codereliction against box, there is one more !-path passing through the
new cocontraction, however it ends immediately on the new codereliction,
so it does increase neither the push count of other paths, nor the push count
of some auxiliary ports with its own push count, as we take the maximum.
Each !-path traversing the redex gets preserved in a unique !-path in the
reduct with the same push count, as the new contraction does not add up to
the count. Also !-paths starting from the box get preserved in the same way,
and !-paths inside the box get copied also in the linear part, but anyway
each copy gets the same push count, always because the new contractions
cannot add up to any count.

So the measure |π| still strictly decreases on e-reductions, as we have added
a non increasing weight to lengths of cuts depending on auxiliary ports.
Moreover we also have the following result.

Lemma 15 If π
a
→ σ or π

p
→ σ then |σ| ≤ |π|.

PROOF. After noting that all c-reductions do not increase push counts, the
only interesting case is the push reduction. Let us assign some names to
wires (a barred wire stands for many wires, possibly none).

?
?

?

......

π σ

∑

i

∑

i λi

e1

ek

ei
1
ei
k

g
gi

f jf j
ee p

We have pushπ(eh) = 1 + push
σ(g), and as ℓσ

?
(ei
h
) = ℓπ

?
(eλi
h
) and, in case there

is at least an f j, we have by making maxima commute

ℓσ? (e) = 1 +max
(

max
j

(

ℓ?( f j)
)

, 1 + pushσ(p) +max
i

(

1 +max
h
(ℓσ? (e

i
h))

)

+ . . .
)

=

= 1 +max
(

max
j

(

ℓ?( f j)
)

,max
h

(

1 + pushπ(eh) +max
i
(ℓπ? (e

λi
h
)) + . . .

))

= ℓπ? (e),

where the dots indicate the part about the principal port omitted in the
drawing which does not change. If there is no f j then g = e in sigma, and
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the same calculations show that ℓ?(e) decreases by one. In any case all other
measures remain the same, and by monotonicity of the measure we get the
result. �

Theorem 16 The reduction
ec
→ is strongly normalizing.

PROOF. Let d(π) be the depth of a netπ, and con0(π) and coc0(π) be the sets
of respectively contractions and cocontractions at exponential depth 0 in π.
Moreover given a contraction cell C let ar(C) := n if C is an n-contraction.
Define the multiset of natural numbers p(π) by induction on the depth of π.
If π is a sum let p(

∑

i λi) :=
∑

i p(λi), if it is a simple net λ let

p(λ) :=
[

# coc(λ) +
∑

C∈con0(λ)

ar(C)3d(λ)
]

∗
�

B∈B0(λ)

p
(

σ(B)
)

.

Note that here the convolution product sums overN. Moreover let aux(π)
be the total number of auxiliary ports of boxes in π.

We now assign to each net π the measure
(

|π| ,p(π), aux(π)
)

, and show it

decreases strictly for all reductions π
ec
→ σ. For p to decrease, it suffices that

there is some simple net µ in the structure of π, in the sense that either µ is an
addendum of π or an addendum of some box content, such that p decreases
for µ, while the rest of π remains unchanged.

• If we e-reduce, then |σ| < |π|.
• If we a-reduce a cocontraction associative redex, then |σ| ≤ |π|, and if λ
is the smaller simple net in π containing the cocontractions and µ the
corresponding simple net in σ, we have # coc0(µ) < # coc0(λ) and the rest
is unchanged.

• If we a-reduce a contraction associative redex, then |σ| ≤ |π|. If λ and
µ are as above for the cocontraction case, d = d(λ) = d(µ) and the two
contractions in λ have ar equal to n and k then the merged contraction (if
any) has ar equal to n + k − 1, and we have

∑

C∈coc0(µ)

ar(C)3d = (n + k − 1)3d + . . . < n3d + k3d + . . . =
∑

C∈coc0(λ)

ar(C)3d

while the rest is unchanged. The degenerated case where n + k − 1 = 1 is
trivial.

• If we p-reduce a push redex, then |σ| ≤ |π|. If λ and µ are as above, D is
the box of the redex,

∑

i λi (resp.
∑

i µi) is the content of D in λ (resp. in
µ), d + 1 is the depth of λ and µ (so that all addenda of D have depth less
or equal than d), n + k with k ≥ 2 is ar of the contraction, then in µ the
contraction left out (if any) has ar equal to n + 1 and all addenda in D get
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a pushed contraction of ar equal to k. Summing up:

p(µ) = [ . . . + (n + 1)3d+1 ] ∗
(

∑

i p(µi)
)

∗ . . . =

= [ . . . ] ∗
(

∑

i

(

[ (n + 1)n3d+1 ] ∗ [ k3d(µi) + . . . ] ∗ . . .
))

∗ . . . ≤

≤ [ . . . ] ∗
(

∑

i

(

[ (n + 1)3d+1 + k3d ] ∗ . . .
))

∗ . . .

As k ≥ 2 > 2
3
, (n + 1)3d+1 + k3d = (3n + 3 + k)3d < (3n + 3k)3d = (n + k)3d+1,

we can continue the above chain of inequalities by

p(µ) < [ . . . ] ∗
(

∑

i

(

[ (n + k)3d+1 ] ∗ . . .
))

∗ . . . =

= [ . . . + (n + k)3d+1 ] ∗
(

∑

i p(λi)
)

∗ . . . = p(λ)

• If we p-reduce a pull redex, then |σ| ≤ |π|, and also p(σ) = p(π), as 0-
contractions simply do not contribute in any way to p. However trivially
aux(σ) < aux(π). �

We end the discussion by completing the confluence results exactly as done
in the previous section.

Theorem 17 Reductions
c
→,

ec
→ and

mec
→ are confluent.

PROOF. c and ec reductions are settledbyNewman’sLemmaandLemma14.
AsLemma13 is still valid substituting ec to ea,we get byHuet’s andHindley-
Rosen’s Lemmas that also mec is confluent. �

4 Full resource calculus

In this section we will redefine Boudol’s λ-calculus with multiplicities [1]
extending it with sums and two kinds of non lazy reduction. The substitu-
tions employed are those found in differential λ-calculus [11], most notably
the linear one. As nets presented in the previous section addedpromotion to
DINs ofc̃itediffnet, this will add infinitely available resources to the resource
calculus described in the same paper and presented in Section 2, thus we
call it the full resource calculus.

4.1 Statics: λ-calculus with multiplicities

Let V be a countable set of variables, and let ∆k be the increasing sequence
of sets given by induction as ∆0 := V, and ∆k+1 generated by the following
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grammar:
∆k+1 ::= ∆k | λV.∆k | 〈∆k〉∆

!
k.

∆!
k
, the kth set of bags of arguments, isMfin(Ak), where furthermoreAk, the k

th

set of arguments, is generated by

Ak ::= ∆k | (R 〈∆k〉)
∞.

Finally, the set ∆ of simple terms and the set ∆! of bags are ∆ :=
⋃

k∈N ∆k and
∆! :=

⋃

k∈N ∆
!
k
. A differential term, or simply term, is an element of R 〈∆〉. We

will also deal with R〈∆!〉, called differential bags. An argument of the form
(

∑

t∈∆ ct · t
)∞

is called boxed or exponential, otherwise it is linear.

As in Section 2, bags are multisets presented in multiplicative notation, and
the above constructors are extended by multilinearity, all but the one for
boxed argument. Given a bagA, its linear partL(A) (resp. boxed or exponential
part E(A)) is themultiset of its linear (resp. exponential) arguments. As usual
terms are identical up to α-conversion, that is renaming of variables bound
by λ. We write x ∈ t to mean “x appearing free in t” for t term 8 . A context
is a differential term or bag that uses a distinguished variable called its hole
exactly once.

The resource calculus presented in Section 2 is clearly embedded in full
resource calculus: it corresponds to the subset of terms that have no expo-
nential arguments. Also classical terms of λ-calculus can be embedded in
this calculus by the following mapping:

x∗ := x, (λx.t)∗ := λx.t∗,
(

(s)t
)∗

:= 〈s∗〉 (t∗)∞.

4.2 Dynamics: giant-step and baby-step β-reduction

In order to define an operational semantics we have to define the substi-
tution operator, which as in differential λ-calculus takes different forms.
Substitution s [x := t] with s, t ∈ R 〈∆〉 is defined as usual, possibly applying
the generalizations of constructors by multilinearity. Linear substitution ∂

∂x
generalizes the one given in Section 2. Inductive rules are:

∂y

∂x
· t := δx,y · t,

∂λy.u

∂x
· t := λy.

∂u

∂x
· t with y < t,

8 If in R there is −1 then every differential term t can be written as t+x−x for every
x, so we have to be accurate with the definition. One can circumvent this problem
by using an intersection of the free variables of all the possible representations as
sum of the term, but as we are mainly interested in R = N we do not investigate
such a definition.
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∂〈r〉A

∂x
· t :=

〈

∂r

∂x
· t

〉

A + 〈r〉
∂A

∂x
· t,

∂A

∂x
· t :=

∑

a∈A

(

∂a

∂x
· t

)

A/a,
∂u∞

∂x
· t :=

(

∂u

∂x
· t

)

u∞.

The definition for applications and bags can be compacted into

∂〈r〉A

∂x
· t =

〈

∂r

∂x
· t

〉

A +
∑

u∈L(A)

(

∂u

∂x
· t

)

A/s +
∑

v∞∈E(A)

(

∂v

∂x
· t

)

A.

Note how the linear substitution operator distributes among linear terms,
and extracts a linear copy from a boxed argument if needed. This reflects
the derivation property of the exponential in calculus, where given y = y(x)
we have

∂ey

∂x
=
∂y

∂x
· ey.

This substitution is linear in both the derivated term u and the argument t,
and it is easy to state that if x < u, then ∂u

∂x · t = 0.

Non linear and linear substitutions enjoy the same properties found in [11],
though due to the simpler syntax proofs are somewhat easier. We state the
result needed in the definition of the reductions.

Lemma 18 (Schwartz) For t, u, v ∈ R 〈∆〉, and x, y such that y < u, then

∂

∂x

(

∂t

∂y
· v

)

· u =
∂

∂y

(

∂t

∂x
· u

)

· v +
∂t

∂y
·

(

∂v

∂x
· u

)

.

In particular if also x < v, the second addendum is equal to 0 and we have the classic
Schwartz’s lemma about commutation of partial derivatives.

PROOF. Standard induction on t. The case for application works because
of the way we linearize on the fly exponential arguments. �

If u1, . . . , un are such that x < ui, we write

∂nt

∂xn
· A :=

∂

∂x

(

· · ·

(

∂t

∂x
· u1

)

· · ·

)

· un

which by Schwartz’s lemma is well defined regardless of the order in which
we write A.

We will use a third type of substitution, directly derived from regular sub-
stitution. The partial substitution of u for x in t is t [x := x + u]. It is easy to
derive from the properties of regular substitution that if x < u, v, we have

t [x := x + v] [x := x + u] = t [x := x + u] [x := x + v] = t [x := x + u + v] ,
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which is an analogous of Schwartz’s lemma for this substitution. We have
one further commutation property between linear and partial substitution.

Lemma 19 If x < v, then

(

∂t

∂x
· u

)

[

y := y + v
]

=
∂t

[

y := y + v
]

∂x
·
(

u
[

y := y + v
])

.

PROOF. For a variable t = zwe have from the right member (as ∂v
∂x
gives 0)

∂z
[

y := y + v
]

∂x
·
(

u
[

y := y + v
])

=
∂(z + δy,z · v)

∂x
·
(

u
[

y := y + v
])

=

=
∂z

∂x
·
(

u
[

y := y + v
])

+δy,z ·0 =
(

δx,z · u
) [

y := y + v
]

=

(

∂z

∂x
· u

)

[

y := y + v
]

.

Abstraction and application are straightforward. �

Let us define the generalized substitution of a for x in t, with a an argument, as

Sx t · u :=
∂t

∂x
· u, Sx t · u

∞ := t [x := x + u] .

Then, given any bagA = a1 · · · a#A and a variable x < A, all the above lemmas
permit us to define

S#Ax t · A := Sx (· · · (Sx t · a1) · · · ) · a#A.

If in particular we order the substitutions by doing first the linear ones, we
obtain the equality

S#Ax t · A =

(

∂#L(A)t

∂x#L(A)
· L(A)

)















x := x +
∑

u∞∈E(A)

u















.

We are ready to define the reductions, which as foretold in Section 2 comes
in baby-step and giant-step form.

Definition 20 (βgs and βbs) Giant-step β-reduction (denoted by βgs or
g
→) is

generated by

〈λx.s〉A
g
→ S#Ax s · A [x := 0] =

(

∂#L(A)s

∂x#L(A)
· L(A)

)















x :=
∑

u∞∈E(A)

u















.

Baby-step β-reduction (denoted by βbs or
b
→) is generated by

〈λx.s〉 aA
b
→ 〈λx. Sx s · a〉A, 〈λx.s〉1

b
→ s [x := 0] .
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Clearly there is only one way to βgs-reduce a redex, while there are as many
ways as #A to βbs-reduce it. Partial substitutions break strong confluence,
so we need more care for proving confluence. However, we will have it
for giant-step reduction as a corollary of the bisimulation theorem in next
section (Corollary 32). Supposing given that result, wewill here derive from
it confluence for baby-step reduction also.

Remark 21 Directly following the definition and commutation of substitutions
we get that if u βbs v then there is a term w such that u βgs w and v β∗gs w, by
just firing the same redex in u and (if it still exists) in all addenda in v. Vice versa
trivially βgs⊂β∗bs, which in turn implies β

∗
gs⊂β

∗
bs
. The next lemma will generalize

this.

Lemma 22 If u β∗
bs
v then there exist a term w such that u, v β∗gs w.

PROOF. By induction on the length of the reduction u β∗
bs
v. If it is zero,

then take w = u = v and we are done. Otherwise we have the following
confluence diagram

v

gs∗

��
�

�

�

v′ (II)

bs
44iiiiiiiii

gs **T
T

T
T

gs∗

��
�

�

�

u (I)

bs∗
55kkkkkkkk

gs∗ ))S
S

S
S w′′

gs∗

��
�

�

�

w′
(III)

gs∗ **UUUU
U

w

We have (I) by inductive hypothesis, (II) by Remark 21, and (III) by conflu-
ence of βgs. �

Theorem 23 (confluence of βbs) The baby-step β-reduction is confluent.

PROOF. Suppose u β∗
bs
v1, v2. We get the following confluence diagram:

v1
gs∗

//____ w1
gs∗

&&M
M

M
M

u

bs∗
88rrrrrrr

bs &&LLLLLLL

gs∗
77

b d f h
j

m
o

gs∗
''

\ Z X V
T

Q
O

s

v2 gs∗
//____ w2

gs∗

88r
r

r
r

.

The left triangles are from the above lemma, while the right square is simply
confluence of βgs. As β∗gs is contained in β

∗
bs
, we get the result. �

5 Translation

We will now define the translation from terms and bags of full resource
calculus to differential nets. In order to do so, we will label ?ı conclusions of
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Terms:
(

∑

u∈∆

cu · u
)◦

:=
∑

u∈∆

cu · u
◦

x◦ := ?

x

(λx.s)◦ :=
`

x S

s◦

(〈r〉A)◦ := NFc
(

⊗

?

S

SS

r◦ A◦

)

Arguments:

(a1 · · · an)
◦ := NFc

(

?

!

. . .

S

SS

a◦
1

a◦n

)

([u])◦ :=
!

S

u◦
(v∞)◦ := NFc

(

!

S

v◦
)

Figure 6: Inductive rules for the definition of t◦.

nets with different variables inV. We will draw all nets with ?ı conclusions
above or left and the o/! conclusion down or right, and therefore wire types
can and will be omitted. A wire with a bar on it will be a convention to
indicate multiple wires (or possibly none), and its label will be the set of
labels of the wires. In order to be able to erase or add dummy variables
at will, nets will be considered equal if they differ only for conclusions
introduced by weakenings.

5.1 Statics: definition and sequentialization

Using the rules in Figure 5.1 for each t term (resp. bagor argument)wedefine
t◦, a labelled net with conclusions ?ı, . . . , ?ı, o (resp. !o) where the ?ı ones are
labelled by variables free in t. We are here denoting by [u] the simple term
u regarded as a linear argument (in fact it is a singleton bag containing only
a term). This is just to remedy the lack of an explicit constructor. Because of
the equality up to weakened conclusions we may freely add conclusions,
and this is used in the inductive definition. It is important to note that
the translation is well defined with respect to such equality because of the
pull reduction we perform on boxes. Without it when plugging nets equal
modulo weakened conclusions in a box we would get different nets (even
modulo weakened conclusions). Also the results we prove on bisimulation
rely on the pull reduction, as weakened conclusions may appear inside
boxes during the reduction.

In application, bag of arguments and boxed argument we normalize with
respect to the canonical reduction in order to forget nesting and exponential
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depths of contractions. Due to confluence and strong normalization of
ec
→

(Theorems 16 and 17) we can freely a or p-convert (that is, pass to a or p-
equivalent terms) if we have to ec-normalize somewhere in the future. In
particular in such caseswemayuse the forms that in the inductive definition
appear before c-normalization.

Remark 24 For every term t its translation t◦ is normal with respect to exponential
and canonical reduction. Moreover it is easy to see that each redex in t corresponds
exactly to a multiplicative cut in t◦. So in fact t is normal iff t◦ is normal.

This translation is injective and surjective, once we restrict our scope to ec-
normal nets without exponential axioms. These operationally have the same
meaning of a boxed axiom with dereliction, i.e. they are the translation of a
boxed variable 9 .

Theorem 25 (sequentialization of ec-normal nets) For every ec-normal net π
without exponential axioms, with labels in V on every ?ı conclusion, there is
uniquely either a term t or a bag A such that t◦ = π (resp. A◦ = π), modulo
weakened conclusions.

PROOF. (sketch). One first takes a principal switching (see page 12) of
every simple net in the net. Because of Lemma 1 we can take the connected
component of the unique o/!o conclusion, and because of correctness it is
acyclic, and as such it is a tree, for which we choose the o/!o as root. It
is then easy to convert it to the syntactical tree of a term if the root is o,
or of a bag if it is !o, by inductively doing the same for each box. The
condition on exponential axioms assures that wires above the exponential
port of a tensor, eventually forked by a single cocontraction, must end in
coderelictions or boxes, i.e. linear or exponential arguments. Injectivity also
depends on Lemma 1: being the only such conclusion, wemay compare two
nets translating terms or bags by going up from it, and reason by induction
on a term t different from a given term u, encountering either a different cell
or a different label. �

5.2 Dynamics: bisimulation

We want to show that reductions in the two systems are strongly linked by
this translation. This is done in two steps, showing the two directions of

9 From the dynamic point of view, this notion is not stable under reduction, as the
contraction against cocontraction reduction creates exponential axioms. However
one can prove that a net without exponential axioms e-normalizes to a net with the
same properties.
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bisimulation. First we have to prove our version of the typical substitution
lemma.

Lemma 26 (argument substitution) Given an argument a, a simple term u and
a variable x < a, we have that

?

! x
x

S

S
S

u◦a◦
ec
։ (Sx(u) · a)

◦ .

PROOF. Clearly we have to deal separately with the two possible types of
substitution. When applying inductive hypothesis to box contents we can
keep on ignoring weakened conclusions because the pull reduction brings
them out.

For partial substitution, with a = t∞, let us deal first with the case in which
x < u, which means that x is introduced by a weakening. So:

?

?

!
!

x
S

S
S u◦

t◦
e∗
→

?
?

?x
S

S
S u◦

a
։ u◦ = (u [x := x + t])◦ .

So we can suppose that x ∈ u, and proceed by induction on u. If u is a
variable then it is x, and

?

?
?

!
!

x
x

S

S

S

t◦
e∗
→

?

?

?

?

!

!

+

x

x

S

S

t◦

t◦

e
։

?

?

?

+

x

x

S

S
t◦
= x◦ + t◦ = (x [x := x + t])◦ .

Applying the inductive hypothesis on an abstraction is trivial. For applica-
tion and bags of arguments we work on the nets given in the inductive def-
inition as they appear before c-normalization, as c-equivalence is flattened
by ec-normalization. In order to be able to apply the inductive hypothesis,
we simply have to show that contraction duplicates the whole construct
leaving behind the appropriate contractions.

?

?
?

!
!

..
.

..
.

x

x
x

x
S

S
S

S

S

t◦
e∗
→

?

?
?

?

!

!
!

!

..
.

..
.

...

x

xx

S

S
S

S

S

≡a

?

?

?

?

!

!

!

!

..
.

..
.

...

x x

x

S

S
S

.

Lastly, skipping the trivial steps needed for linear argument, we need to
handle boxed arguments. This is easy, as cocontraction and box simply
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enter (t∞)◦’s box, and the contractions on S left behind enters because of the
push rule.

For a = v and linear substitution, again we first see what happens when x is
not free in u, in which case we have ∂u∂x · v = 0. In fact:

?

?

!
!

x
S

S
S u◦

v◦
e
→

?

?
?!

x
S

S
S u◦

v◦
e
։ 0.

Next we check for the case u = x.

?

?
?

!
!

x
S

S
S

v◦
e
→

?

?

?

?

!

!

+

x

x

S

S

v◦

v◦

e
։ 0 + v◦ =

(

∂x

∂x
· v

)◦

.

Now if we look at the definition of linear substitution for application, we
again have to see what happens when cutting the construct against a con-
traction, and prove it reduces into a sum over the possible selections of the
components of the application.

?

?
?

!
!

..
.

..
.

x

x
x

x
S

S
S

S

S

t◦
e
→

a
→

?

?

?

!

!!

..
.

..
.

..
.

..
.

1

n
x x

x

S S

SS

v◦
e
→≡a

n
∑

i=1
?

? ?

!

!

!

!

!

!

..
.

..
.

1

i

n

x

x

x

x

S

S

S

Sv◦ ,

which is a-equivalent to what looked for. Lastly, again skipping linear ap-
plication, in case of a boxed argument t∞, suppose for simplicity that t is a
simple term (the case for a sum follows straightforwardly). Then

?

!
!

!

x
x

S

S

S

v◦ t◦
e
→ ?

!
!

!

x
x

S

S

S

v◦ t◦
e∗
→

?

?

!

!

!

!

!

!

!

x

x

x S

S

S

v◦

t◦

t◦

≡a

≡a
?

?
?

!

!
!

!

!

x

x

x

S

S

S

S
v◦ t◦

t◦

ec
→

(

( ∂t

∂x
· v

)

t∞
)◦

=

(

∂t∞

∂x
· v

)◦

.

by induction hypothesis. Associativity will take care of the leading cocon-
traction by merging it with the possible cocontraction of the bag containing
t∞. �
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Lemma 27 (0 substitution) Given a simple term u, we have that

! x

S
u◦

ec
։ (u [x := 0])◦ .

PROOF. Easy induction on u. The reductions involved are coweakening
against weakening for case x < u, coweakening against dereliction for u = x,
coweakening against contraction to apply inductive hypothesis in applica-
tion and bag of arguments, and coweakening against box for an exponential
argument. �

Lemma 28 (substitution) If A is a bag of arguments and u is a simple term, then

?
x

S

S
S

u◦
A◦

ec
։

(

S#Ax u · A
)

[x := 0] .

PROOF. If A = a1 · · · an then, by expanding the cocontraction at the base of
A◦ and the contractions on its variables, we have that

?
x

S

S
S

u◦
A◦

≡a

?

?
?

!
!

!
!

. . . x

S

S
S

S

S

S

u◦a◦
1

a◦2
a◦n

.

By a repeated application of Lemma 26 and a final application of Lemma 27

the above net gives as an ec-normal form
(

S#Ax s · A [x := 0]
)◦

. Having used

a-equivalence does not change the ec-normal form. �

We are ready for one direction of bisimulation. Note how the reduction
involved in the next theorem has a particular shape, so that even if the
result is a logical equivalence it is not yet full bisimulation.

Theorem 29 (giant-step simulation) s βgs t iff s◦
m
→
ec
։ t◦.

PROOF. First the only if part. Given a redex 〈λx.s〉A, we have

(〈λx.s〉A)◦ =
⊗`

?

x

S

S

S

u◦
A◦ m

→ ?
x

S

S
S

u◦
A◦

that because of the substitution lemma gives
(

S#Ax s · A [x := 0]
)◦

which is the

result of firing the redex. Vice versa take any reduction R : s◦
m
→ π

ec
։ t◦, then

let s βgs r be the result of firing the redex corresponding to themultiplicative
cut fired at the beginning of R. Then because of the only if part of this
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theorem s◦
m
→ π

ec
։ r◦ (note π is the same as before). By unicity of normal

form and injectivity of the translation we have t = r. �

The if implication of the above theorem can be generalized to the following
lemma, which is in fact the hard part in proving the inverse direction of
bisimulation.

Lemma 30 If s◦
m∗
→
ec
։ t◦ then s β∗gs t.

PROOF. LetM be the sequence ofmultiplicative reductions in the reduction

R : s◦
m∗
→ π

ec
։ t◦. Let us reason by structural induction on s. If s is a variable

there is no redex and the result is trivial. Also passing to the induction
hypothesis if s = λx.u is an abstraction is easy, as all reductions in the net
cannot touch the terminal `-cell which corresponds to the abstraction.

Take the case of an application 〈r〉 a1 · · · an. First suppose that all reductions
inM happen either in r◦ or in either of the a◦

i
s. Note we need an a-conversion

to really speak of such subnets, which however commutes withM. We can

partition M into L : u◦
m∗
→ σ and Ni : ai◦

m∗
→ τi, and we can freely commute

all reductions which happen in different subnets. By ec-normalizing the

subnets we get (also employing the sequentialization theorem) r◦
L
→

e
։ s◦

and a◦
i

Ni
→

e
։ b◦

i
. Applying these reductions on on the whole (〈r〉 a1 · · · an)

◦ and
commuting L and Ni back into their place inM, we get

(〈r〉 a1 · · · an)
◦ M→

ec
։ (〈s〉 b1 · · · bn)

◦.

By inductive hypothesis r β∗gs s and ai β
∗
gs bi which implies the result.

Suppose now that M reduces also a multiplicative cut outside of r◦ or ei-
ther ai. This means s = 〈r〉A is itself a redex, with r = λx.u. Reducing the
corresponding multiplicative cut cannot create other multiplicative cuts, so

that we can still partition M into L : u◦
m∗
→ ρ, Ni : ai

m∗
→ πi and the single

reduction µ on the external cut. If we exclude µ from the reduction we have
by a reasoning identical to the one above

(〈λx.u〉 a1 · · · an)
◦ L→

N1
→ . . .

Nn
→
ec
։ (〈λx.v〉 b1 · · · bn)

◦

with s β∗gs 〈λx.v〉B (as u β
∗
gs v and ai βgs bi).

Now in (〈λx.v〉B)◦ we execute µ and then ec-normalize, and by simulation

theoremwe get
((

S#Ax v · B
)

[x := 0]
)◦

. By commuting allmultiplicative reduc-

tions back into their place inM and before the exponential-canonical ones,
by unicity of ec-normal form and by injectivity of translation, we conclude

that
(

S#Bx v · B
)

[x := 0] (to which s reduces) is equal to t. �

39



Theorem 31 (giant-step bisimulation) If s◦
mec∗
−→ t◦, then s β∗gs t.

PROOF. Let s◦ = π0
mec
→ π1

mec
→ . . .

mec
→ πn = t

◦ be the reduction taken into
account, and consider s◦

i
:= NFec(πi) (where we use the sequentialization

theorem). By injectivity of translation s0 = s and sn = t. We now prove that

s◦
i

m∗
→

e
։ s◦

i+1
, which by the above lemma implies si β∗gs si+1 and ends the proof.

If πi
ec
→ πi+1, then NF

ec(πi) = NF
ec(πi+1) and therefore si = si+1. Suppose now

πi
m
→ πi+1. We can complete the reduction diagram in the following way:

πi

ec
����

m //πi+1

ec∗

��
�

�

�

ec

"" ""E
E

E
E

E
E

E
E

s◦
i m∗

//___ σi ec
// //___ s◦
i+1

The left confluence diagram is Lemma 13 for the ec-reduction, while the
right triangle is simply confluence to the ec-normal form. The bottom side
of the diagram is what we were looking for. �

Corollary 32 The reduction βgs on terms is confluent.

PROOF. Take s β∗gs u, v. By simulation s
◦ mec∗−→ u◦, v◦, so that by confluence

of the mec reduction we further get u◦, v◦
mec∗
−→ π. If we take t◦ = NFec(π), we

have u◦, v◦
mec∗
−→ t◦ which by bisimulation gives u, v βgs t. �

6 Conclusion and future work

The main contributions of this paper are

• having definedpure intuitionistic differential nets, which are an extension
of Ehrhard’s and Regnier’s differential interaction nets with LL’s promo-
tion box, and proved their “goodness” at being a rewriting system (i.e.
confluence and normalization of part of its reductions);

• having fully developed the link between differential nets and a refined
version of Boudol’s λ-calculus withmultiplicities hinted in Ehrhard’s and
Regnier’s work, establishing between the two the same strong connection
existing between proof nets and λ-calculus, and other calculi as well. We
here cite as examples polarized proof nets with λµ-calculus [17] and
stream nets with Λµ-calculus [20].

We now sketch some future developments or starting points for further
work.

40



Operational equivalence. Just like λ-calculus and proof nets, one can find
on full resource terms σ-equivalence [23,24] by equating terms having the
same translation t•, this being defined as NFm(t◦). This has not been treated
here but should be, by proving sequentialization and (bi)simulation. We
also expect to find in this translation the right simulation for the baby-step
reduction, and to be able to give a translation of Ehrhard’s and Regnier’s
differential λ-calculus.

Exponential isomorphism. The famous exponential isomorphism of LL
and coherence spaces, for which !A ⊗ !B � !(A & B) and 1 � !⊤, is clearly
also valid in differential LL and finiteness spaces, where however A & B �
A ⊕ B is in fact the sum, and ⊤ � 0. This isomorphisms spawn a specific
feature of differential netswhich is the following semantical and operational
equivalence 10 :

!... π + σ �

?

?
!

!

!...

...

...

π

σ

, !... 0 �

?

?

!... .

In full resource calculus this translates to the equivalence on bags (u+ v)∞ �
u∞v∞ and 0∞ � 1. This congruence should probably be investigated more
from the syntactical and rewriting point of view.

Propositional and second order differential MELL. In this paper we have
restricted our attention to pure intuitionistic DNs. However it is not hard to
define a typed version, both in the propositional and second order fragment
of LL formulas. The measure and techniques adopted in this paper can play
a central role in proving strong normalization for the first order fragment
of such a system. One should put more work on second order, and even
more so if one wants to shift from usual correctness through acyclicity to
correctness through visible acyclicity [19], which in Pagani’s ongoing work
is giving promising results in capturing the nature of differential nets and
their main semantics, the finiteness spaces.

Lazy head reduction in differential nets. Viewing this paper from the
perspective of λ-calculus with multiplicities, we can say we have given
a translation that has ferried from differential nets to Boudol’s calculus a
more algebraic reduction, extending the non-deterministic and lazy head
one adopted in his work. It could be fruitful to try the reverse procedure:

10 In light of the parallel between boxes and the exponential ex (see footnote 2 on
page 7), this even more shows the link between the exponential isomorphism and
the equalities ex+y = exey and e0 = 1, which were one of the reasons in the first
place for Girard to call the ! modality exponential.
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define a non-deterministic and lazy head reduction on differential nets that
restricted to the translation would reflect Boudol’s one. Such a reduction
would reduce only cuts at depth 0, and discard all addenda but one in
cases where usually one has a sum, but should avoid taking choices that
surely end up in a 0 addendum. The perception is that in the reduction
of differential nets with their current syntax there are a lot of unnecessary
reductions to 0 that pose difficulties to viewing it as a paradigmatic system
for non-determinism. Maybe a different notion of reduction along the line
of Boudol’s one would help in this way.
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