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The notion of formal space was introduced by Fourman and Grayson [FG]
only a few years ago, but it 1s only a recent though important step of a long story
whose roots involve such names as Brouwer and Stone and whose development is
due to mathematicians from different fields, mainly algebraic geometry, category
theory and logic.

T am not going to tell this story (but see for instance [J] and [G]). For our
purposes here, it 1s enough to say that the main idea is to reverse the traditional
conceptual order of definitions in topology and define points as particular filters
of neighbourhoods, rather than opens as particular sets of points (T adjust the
language to this point of view, by considering open also as a noun). This
explains why our topic is sometimes called pointless topology; formal or abstract
topology, or just topology tout court would be preferable.

The basic notion is that of locale which, roughly speaking, is a lattice satis-
fying all those properties of opens in a topological space which are expressible
without mention of points. Thus locales are complete lattices, where A and
\/ correspond to finite intersection and arbitrary union, satisfying the law of
infinite distributivity a A\/{b; : i € I} = \/{a A b; : i € I}. One could also look
at locales as the solution of = : topological spaces = boolean algebras : Stone
spaces.

In [FG] a method is given to construct a locale from an entailment relation
and the result is called a formal space. We will show here that, with minor
modifications, their method is general enough to yield all locales. Our basic
notion is that of covering relation, which, besides entailment, is strictly related
to what is known in the literature under a wide variety of names: coverage,
J-operator, congruence, ...

This is not a mere technical device. In fact, from the intuitionistic point of
view, which is here taken seriously and thus is not reduced to putting an asterisk
where the axiom of choice is used, the notion of covering permits a study of
topology which avoids such problematic notions as the powerset of a given set
or quantification over subsets. I here try to show how this is possible, that 1s

I This paper is exactly the same as Intuitionistic formal spaces - a first communication,
in: Mathematical Logic and its Applications, D. Skordev ed., Plenum 1987, pp. 187-204
by the same author, except for: (i.) the conditions on the positivity predicate (part 3. of
definition 1.1 and end of section 1) and the treatment of Scott domains (section 8), which
have been modified as explained in the addendum Intuitionistic formal spaces vs. Scott
domains, in: Atti del Congresso Temi e prospettive della logica e della filosofia della scienza
contemporanee, vol. 1, CLUEB, Bologna 1988, pp. 159-163; (¢1.) the correction of some of the
misprints; (#ii.) one change in notation (now < is used for covering relations, rather than <)
and one in terminology (now ‘weak transitivity’ replaces ‘weakening’). For an update on the
development of formal topology, see the survey Formal topology - twelve years of development,
in preparation, by the same author.



begin to develop formal topology in the framework of Martin-Lof’s intuitionistic
type theory (or constructive set theory).

One of the fundamental aspects of Martin-Lof’s type theory is the distinction
between sets (or (data) types) and categories (or logical types). However, while
a formal treatment of sets has by now been developed and reached maturity (see
for instance [TTT]), a similar work for categories is still in progress. The lack of
texts with rules to handle categories is particularly felt here, where we deal with
the category of opens, among others (but see [SI] for the basic logical types of
propositions and truths). T thus have to ask the reader to rely on a pragmatic
principle, which is based on my understanding of Martin-Lof’s views by direct
talking: all what we are going to do informally, can also be done formally in
Martin-Lof’s foundational theory, once it will appear in complete form. Only a
few additions to [ITT] are necessary here, and we give them in the preliminaries
below.

During my visit to Stockholm in Spring 1984, following Martin-Lof’s pro-
posal I began to work with him on the topics of this paper; one of his aims then
was to give a general form to the connection he had discovered between deno-
tational and operational semantics for programming languages (cf. [SG] and
the course given in Udine at the Course on Computation Theory in September
1984). Since then, we have gradually changed basic definitions, also under the
influence of the literature, mainly [FG]. The first public outcome was the ‘short
course’ I gave at the VIII Incontro di Logica Matematica in Siena in January
1985. The present formulation is due to Martin-Lof and was presented by him
in a few seminars in Stockholm in May 1985.

This paper contains little beyond definitions and a few meaningful examples,
including Scott’s domains. Much work remains to be done, which, together with
time, will certainly cause modifications on what is presented here. It should be
clear however that even the present fragment would not exist without the work
by Per Martin-Lof; most ideas, definitions and examples have been suggested
by him and discussed together (but of course responsibility here is only mine).
I am glad to thank him for teaching me so much. T also thank Isa Bossi and
Silvio Valentini.

Preliminaries

The following simple though radical additions to [ITT] will be sufficient here.
A subset U of a set S is a unary propositional function with argument ranging
over S, shortly U(a) prop (a € S); we write as usual U C S, and a € U for
U(a) (note that, contrary to [ITT], a € U is a proposition here). We also often
write {a : U(a)} for U, and {f(a) : U(a)} for (3a € S)(I(S,z, f(a)) & U(a)).
A relation between A and B, where A, B are either sets or categories, is just
a propositional function with two arguments, one in A and one in B. Re-
call that propositions, and hence a fortior1 subsets of any set, form a cate-
gory which is not a set. For A, B propositions, we here write A < B for
A true — B true and thus A < B iff A - B = T, where T = any true propo-
sition and (A = B) = (4 < B & B < A). Finally, recall that any set is given



together with an equality relation between elements; such equality is denoted
simply by = here since it should always be clear to which set it refers.

1 Formal topologies

The classical notion of topological space 1s not suitable, as it stands, for an
intuitionistic treatment, mainly because opens generally form a proper category
and coverings are always defined pointwise. To bring opens into our framework,
we build them up from basic neighbourhoods, which are supposed to form a set,
by means of an abstract covering relation; and we define points in terms of the
algebra of opens (‘pointless topology’), and thus ultimately as particular filters
of neighbourhoods.

Thus the usual notion of topological space corresponds here to two notions,
formal topology and formal space. We must begin with the former. The hints
above should justify the following definition (but see also section 2 below for
some intuitive motivations):

Definition 1.1 A formal topology A consists of:

1. a formal base, namely a set S4 with a binary operation A4 and a distin-
guished element A 4, such that S4, A4, A4 form a semilattice with one;

2. a covering relation, that is a relation a <4 U prop (a € S,U C S) which
for arbitrary a,b € Sy, U,V C S4 satisfies

. aelU
t -
reflexivity aaal
transitivity @94l UaV where U 4 V= (YaeU)(a<a V)
a4V
/\-left a<dq U baa U
arAg b4 U aAgb<aqa U

a4 U adaq 'V

A-right
g a<dqUANqV

where UNAV ={bAac:beU,ceV}

3. a consistency predicate, that is a property Pos4(a) prop (a € S) which for
arbitrary a € S4, U C Sy satisfies
Pos4(a) a<a U
Pos4(U)

monotonicily

where Pos4(U) = (3b € U)Pos4(b)

Posg(a) > a<iq U
a<dq U

positivity

Elements a,b, ¢, - - - of S4 are called formal basic neighbourhoods, or simply
neighbourhoods; a <14 U is read U covers a, or U is a cover of a, and Pos4(a) is



read a is positive, or consistent. We read also U <14 V' as V covers U; it is then
natural to say that two subsets are equal if they cover each other:

(U:AV)E(UQAV&VQAU)

It is immediate to see that also for subsets <14 is reflexive and transitive, and
hence that =4 1s an equivalence relation.

For convenience, we will omit the subscript A, except when it is necessary
to avoid confusion; in particular, it is needed to distinguish =4 above from
extensional equality of subsets, denoted by = as usual.

Definition 1.2 For any formal topology A, Open(A) is the category P(S) of
subsets of S, with equality = 4. The objects of Open(A) are called formal opens
of A.

In other words, an open in A is the equivalence class under =4 of a subset
of S.

It is well known that opens of a topological space form a complete Heyting
algebra (see for instance [J], p. 39). Our next aim is to see that this is true also
for formal opens. However, it is easier if we first have a little stock of derived
rules at our disposal.

From reflexivity we have U C V — U <1V, and hence

a<1lU UcCcvV
alV

weak transitivity

Applying weak transitivity and substitution rules of [ITT], we have

a=b bV aU U=V
alqV alqV

substitution

A fortiori, we obtain that =4 respects <1; that is, writing a <1 b for a <1 {b}, and
hence a =4 b for {a} =4 {b}

a=4bb balU U=4xV
a1V

Since a A A = a, by A-left applied to A <1 A we have a << A and hence
U<aA

Applying first A-left and then A-right, we obtain

stability M
aNbIUAV
which, since b <1 b, gives in particular
aU
localisati _ h b= b:
ocalisation NN where U A {aAb:aeU}

This completes the list of derived rules we need.



We have already seen that < is a preorder on P(S). So, to see that it is
a partial order on Open(A), it is enough to check that < is respected by =4,
namely

UaV)& (U =4 U & (V=4 V)T aV’

which is obvious by transitivity.
Next we show that A gives to Open(A) the structure of a semilattice. To
begin with, we must check that =4 respects A, namely

(U=aUN& (V=4 V)5 UANV =4 U AV

(Proof. If @ € U AV, then there exist b € U, ¢ € V such that a = b A ¢. Since
UaU,VaV' wehave b<U’, ¢V’ and hence b A c < U’ AV’ by stability.
This proves U AV QU A V', and the converse holds by symmetry.) Then it is
enough to show that A gives the infimum, or meet, with respect to <1, namely

UAV AU, UANV AV

WaU&&WaV = WaUAV

which are obvious by A-left and A-right respectively.
Since U <1 A and obviously § <« U for any U,  and {A} are zero and one of
Open(A), respectively.
The last step is to define arbitrary suprema, or joins. For any family of
subsets (U;);er we put
\/ Ui = UierUi
i€l
(in section 3 we try to give a reason for this definition). Again, we first have to
check that =4 respects \/, that is

Vie )(Ui=aU)) =\ Ui=a \/ U]
i€l i€l

This is not difficult, by using weak transitivity. Now we easily see (the first by
weak transitivity, the second by intuitionistic logic) that indeed \/ gives joins:

(vie (U <\/ i)
i€l
VienUiaV)—=\/UiaV
i€l
Finally, the definition of A tells us that VA U;crU; = User(V A T;), and
hence a fortiori infinite distributivity holds:

VAN Ui=a \/ (VAT
iel i€l

We follow [FG] here and use the word frame for complete lattices with infinite
distributivity; so we have shown above that Open(A) is a frame. Tt is well known



that in any frame the operation of implication is definable, that is we can make a
complete Heyting algebra out of any frame. In our case, such definition reduces
to:

U—=saV={aecS:UnaaV}

We leave it to the reader to show, first of all, that — 4 is well defined (i.e. it is
respected by =4), and that it satisfies the usual characterization of implication,
namely

WaU -4 VIt WAUQV
We thus have completed the proof of

Proposition 1.3 Open(A), A4,V 4,0, Aa, =4 form a complete Heyting alge-
bra

Proving that any complete Heyting algebra, or better any frame, is obtain-
able as above, is now an easy task. We say that a frame H is based on a set Dy
if H is the closure of Dy under finite meets and arbitrary joins. The closure of
Dq under finite meets, including the top element of H, forms a set D, which is
a semilattice with one. We define a covering on D putting

a<lKUEa§H\/U

Then the assignment U — \/ U is an isomorphism of Open(.A) onto H, because
by infinite distributivity A is preserved and any element of H can be written as
join of elements in D.

From the classical point of view, any frame is trivially set-based and hence
representable as above, which means that our approach is not restrictive. On
the other hand, it is our claim that the notion of formal topology itself is the
intuitionistic counterpart of classical frames, and what follows should justify it.

We now turn to the consistency predicate. First of all, note that the rule

—Pos4(a)

fal dlibet
ex falso quodlibe aaql

is immediately derivable from positivity by intuitionistic logic. Recalling that
Pos(U') = (3b € U) Pos(b), we can easily extend monotonicity to subsets

Pos(U) UaV
Pos(V)

In particular =4 respects Pos, that 1s
Pos(U) & (U =4 V) — Pos(V)
so that we may speak of consistency for opens. The empty open is not consistent,

= Pos(f)



since trivially —=(3a € #)Pos(a). Therefore also

U<l
—Pos(U)

since Pos(U7) together with U <1} gives Pos(f}) by monotonicity. But by ex falso
quodlibet also the converse holds

—Pos(U)
U<l

and hence

=Pos(U) <+ U =4 0

that is, § is the only inconsistent open.

We intend Pos(U) to be a positive way to assert that U is not empty (classi-
cally, from what above we would have Pos(U) ++ U #4 0). A similar predicate
is also introduced in [FG], p. 113, but its definition requires a quantification
over subsets, which is not accepted here.

The meaning of our definition is better understood after the following:

Proposition 1.4 The following conditions are all equivalent:

Pos(a) = a < U

1. ol positivity
2. a:<]<]UU where UT = {b € U : Posy4(b)} and at = {a}*
3. UaU*
a1l
4. o openness
5. a<at

Proof. The first equivalence is just the observation that Pos(a) = a < U is log-
ically equivalent to a™ <1 U. Now assume positivity holds, and let « € U. From
Pos(a) we then have a € U™, hence a<tU* by reflexivity, that is Pos(a) — a<tU+
holds, so that by positivity a <t U*; this shows I/ <« UT. The other implica-
tions needed to show equivalence follow by very simple deductions in the order
suggested.

Openness is necessary to express the fact that only consistent opens con-
tribute to covers. From the classical point of view, openness or any of its
equivalents has little meaning, since one can easily prove that:

Proposition 1.5 Any decidable property satisfying monotonicity and ex falso
quodlibet, also satisfies positivity, and hence is a consistency predicate.

Finally note that ex falso quodlibet can be seen as a special case of positivity,
obtained by considering I/ = (J in 2. of proposition 1.4.



2 Example. Concrete spaces

Consider the following naive definition of topological spaces:
Definition 2.1 A concrete space M consists of:
1. a set M of concrete points m,n, . ..

2. a set S of indices a,b, ... with a binary operation A and a distinguished
element A

3. a neighbourhood relation, that is a relation N(m,a) prop (m € M,a € S)
which for arbitrary m € M, a,b € S satisfies:

N(im,A)=T, N(m,a Ab) = N(m,a) & N(m,b)

Of course, a is meant to be an index for the subset N, = {m € M : N(m, a)},
called a concrete neighbourhood. The family (Ng)qes is thus a concrete base
for a concrete topology on M, since, by the assumptions in 3., No = M and
Naap = Ny N Np. Concrete opens are then defined, as usual, to be unions of
concrete neighbourhoods: for every U C S, Ny ={m € M : (3a € U)N(m,a)}
is the concrete open which is the union of the family (Ny)4es. We might equiv-
alently define concrete opens to be those subsets P of M for which the usual
condition (Ym € P)(3a € S)(Ny, C P & m € N,) holds.

The trouble is that many interesting spaces can not be presented in this
way, because the points we want to consider do not form a set or the covering
relation 1s not defined pointwise. This is why we introduce the notion of formal
topology, which now can be seen as the abstract result of the following concrete
actions on concrete spaces:

1. add to S,A, A a relation a < U, which holds iff (Np)perr covers N, and a
predicate Pos(a) which holds iff (Im € M)(m € N,);

2. write down all the properties of A, A < and Pos which can be expressed
without mentioning concrete points;

3. get rid of concrete points, and hence also of the neighbourhood relation.

The content of this intuitive explanation is formally expressed as follows: if,
for any concrete space M, we put

SA(M)ES, Aany = A, AA(M)EA
a<anny U= (Yme M)(N(m,a) = (Ib € U)N(m, b))
Posa(ary(a) = (3m € M)(N(m, a)

we obtain a formal topology A(M) with base S.

Let us look at a concrete example of concrete space. Contrary to propo-
sitions, the formulae of a fixed formal language £, say that of predicate logic,
form a set. In particular, let S be the set of formulae A(x) with at most x
free. Given a structure for £ based on the set M, we put N(m, A) = A(m)
is true. Then M, S, N form a concrete space, whose concrete neighbourhoods
are the L-definable subsets of M, and of course two formal neighbourhoods are
extensionally equal iff they define the same subset of M.



3 Coverings as closure operators

Some reader may be annoyed by the fact that we give formal opens of a formal
topology A only up to =4-equivalence classes. If so, the following alternative
approach can be taken.
With any formal topology A, we associate an operator Cl4 acting on subsets
of S, by putting
Cla(U)={ae S a4 U}

To minimize subscripts, we often write A(U) for Cl4(U). Note that by definition
a € A(U) iff a<xU. Therefore

U ViffUu C AV)
Using this equivalence, one easily shows that:

Proposition 3.1 For any formal topology A, the following hold:
1. U CAU)
2.UCV = A(U) CA(V)
3. A(AU)) = A(U)

That is, Cl4 is a closure operator on P(S). Again by the above equivalence, we
have

UV iff AU) C A(V)

and hence

U=Viff AU) = A(V)

In particular, also

U =4 A(U)

Let us say that U is A-closed, or saturated, when U = A(U); then each
= 4-equivalence class is represented by one and only one A-closed subset, which
is the greatest in the class. That is, A : Open(A) — Sat(A), where Sat(A) is
the category of saturated subsets, is a bijection.

It is well known that, when A is a closure operator, A-closed subsets form a
complete lattice, with meets given by intersection and joins defined by \/, . ; A(U;)
= A(Uier A(U;)). With standard calculations, we see that A(U;erU;) = ;e r A(Us),
which at the same time means that the function A preserves joins and justifies
the very definition of joins as unions which we gave for opens.

Since A(A) = S, A preserves one, and since A(f) is the least saturated
subset, A also preserves zero. Thus to show that A is a frame homomorphism,
we only have to prove that A preserves meets, i.e.

4. AUANV)=AU)NAV)



The inclusion from left to right follows immediately from UAV U, UAV <V,
while the converse inclusion holds by A-right.

Finally, note that U — 4 V is saturated for any U,V C S (we leave this as an
exercise). This means both that — 4 is a good implication also in Sat(A), and
that A(U -4 V) = A(U) =4 A(V), that is A preserves — 4. This completes
the proof of:

Proposition 3.2 Sat(A) is a complete Heyting algebra isomorphic to Open(A).

We will in the sequel confuse the two algebras; as hinted above, in Sat(A)
equality is extensional.

We have shown that for any formal topology A, Cl4 is a closure operator
which preserves meets, i.e. is an operator on P(S) satisfying 1.— 4. An inter-
esting fact is that the converse also holds, in the following sense. For every
operator C : P(S) = P(S), we define a relation <1¢ by putting

a<cU=aecCU)

Then 1t is not difficult to reverse what we did, and show that when C is a closure
operator <l¢ is reflexive and transitive, and moreover that, when C satisfies 4.,
A-rules hold for <¢. Since the correspondence between C and <i¢ 1s obviously
biunivocal, we have

Proposition 3.3 There is an isomorphism between covering relations and meet-
preserving closure operators.

The notion of J-operator (see e.g. [J], p. 48) is strictly related to that of
meet-preserving closure operator. In fact, one can show that J-operators on
Open(A) coincide with those meet-preserving closure operators 8 which satisfy

A(U) C B(U) for any U C S (cf. definition 4.4 below).

4 Points and spaces

We have introduced bases, opens and coverings up to now, but still miss points.
To grasp the following definition, it may help to look at it as the result of
describing properties of concrete points without mentioning them.

Definition 4.1 A formal point on the formal topology A is a subset «(a) prop
(a € S) of S which for arbitrary a,b € S, U C S satisfies:

1. a(aAd) = afa) & a(b), a(A)=T
2. a<da U — afa) < a(U) where a(U) = (3b € U)a(b)
3. a(a) — Pos(a)

10



The definition above 1s simply the translation into our approach of the usual
definition of points as completely prime filters over a frame (see e.g. [J], p. 41).
To see this, let us first say that a propositional function F(U) prop (U C S)
is a filter on Open(A) if F(UAV) = F(U) & F(V), F(A) = T and U <«
V = F(U) < F(V). We then say that the filter F is completely prime if
F(UierU;) = (30 € I)F(U;) and consistent if F(U) — Pos(U) (note that
classically consistency is expressed by requiring —F({})). Now, given a point
« we put as above a(U) = (Ja € U)a(a) and then can easily check that
a(U) prop (U C S) is a completely prime consistent filter on Open(A). Con-
versely, given a completely prime consistent filter F' we put ap(a) = F({a})
and check (exercise) that ap is a point. Since the correspondence is obviously
biunivocal, we have

Proposition 4.2 There is an isomorphism between points on A and completely
prime consistent filters on Open(A).

We denote by Pt(A) the category of points on .A. Writing ¢(a, a) for a(a),
we immediately see that ¢(«, a) prop (o € Pt(A),a € S) is a neighbourhood
relation, since by the definition of point

dla, A) =T, dla,aANb) = ¢(a,a) & ¢(a,b)

We don’t have a concrete space, however, for the simple reason that P¢(.A) is in
general not a set. Still we say that a is a formal neighbourhood of « if ¢(o, a),
that is «(a), is true. More generally, we can define formal topological notions
on Pt(A) in terms of A (for instance, see the definition of subspaces below and
of continuos functions in section 6). This justifies the following

Definition 4.3 For any formal topology A, we call Pt(A) the formal space
induced by A.

Of course, a reader who doesn’t distinguish sets from categories will con-
sider Pt(.A) as an ordinary topological space, with the base given by the family
¢(a) = {a € Pt(A) : ¢(a,a)} for a € S and where of course the covering relation
is just inclusion. Then the assertion that ¢(U) = U{¢a : a € U} covers ¢a in
Pt(A) iff U covers a in A, or equivalently (Voo € Pt(a))(a(a) = «(U)) = a<U,
is far from being trivial, and actually is often a strong existence principle (see for
instance end of sections 7 and 9). Here we take the other way round, and define
¢da C ¢(U) to mean that a<aU (which is possible only because in constructive set
theory no other meaning is given to quantification over the category of points).
For similar reasons, we say that Pt(A) is proper when Pos(A) is true.

Given any two formal topologies A, 5 on the same base S, we say that A
is finer than B (and B coarser than A) if every open in B is also an open in A,
and every neighbourhood which is consistent in B is also consistent in .A. To
put it in symbols, A(U) C B(U) and Posg(U) — Posy(U) for any U C S. Tt is
immediate to see that when A is finer than B any point on B is also a point on
A. This justifies

11



Definition 4.4 If A is finer than B, then Pt(B) is called a subspace of Pt(A).
Two kinds of spaces deserve specific attention, and hence specific names.

Definition 4.5 If the covering relation < of a formal topology A satisfies 1.
(or 2.) below, then A is called a Stone (or Scott, resp.) topology, and Pt(A) a
Stone (or Scott, resp.) space:

1. a<U = a<aUy for some finite Uy C U
2. Pos(a) & a<tU = a<1b for somebe U

The names T have chosen are justified below (after my lecture in Druzhba,
Y. Ershov has kindly brought to my attention f-spaces, which he introduced
independently of Scott and which should correspond exactly to what I here call
Scott spaces; thus it seems that the name Scott here is justified not only by the
results in section 8, but also by gaps in my knowledge, which T am not able to
fill in now).

A perspicuous characterization of Stone and Scott topologies is easily ob-
tained through closure operators. Recall that a closure operator C is called al-
gebraic if C(U) = U{C(Uy) : Uy is a finite subset of U} holds for any U C S. Here
we also say that C is irreducible if for any consistent U C S, C(U) = U{C(a) : a € U}
(where of course C(a) = C({a})). Then, working out definitions and using the
equality A(U) = A(U™), we obtain the following characterizations:

Proposition 4.6 For any formal topology A,
1. A is Stone iff Cl4 s algebraic;
2. A is Secott iff Cl4 is irreducible.

Points on Stone and Scott topologies also have a neat characterization. As
usual, let us say that a subset a(a) prop (a € S) is a consistent filter on S, A, <14
if it satisfies 1.1, 1.3 above and a <4 b — a(a) < a(b); we also say that a filter
« is prime if it satisfies a <4 {b1, -, 0n} = afa) < a(by) V-V a(b,). Then,
by a little more than working out definitions, we obtain

Proposition 4.7 For any formal topology A,
1. if A is Stone, Pt(A) is the category of consistent prime filters;
2. if A is Secott, Pt(A) is the category of all consistent filters.

It is clear that any Stone topology is compact, in the sense that from A U
we have AUy for some finite Uy. Given an arbitrary topology A, we can get its
Stone compactification C(A) quite easily, namely by declaring a <¢(4) U to hold
iff a <14 Up holds for some finite Uy C U, while keeping the same consistency
predicate. It is routine to check that we indeed obtain a topology, which is Stone
by definition, and that any other Stone topology finer than A is also finer than
C(A). We can similarly obtain a Scott topology S(A) out of A by requiring, if
Pos(a) is true, a <g(4) U to hold iff (3b € U)(a <14 b). We thus have

12



Proposition 4.8 For any formal topology A, the topology C(A) (or S(A)) de-
fined above is the coarsest Stone (or Scott, resp.) topology finer than A.

5 Some examples

We present here some, hopefully instructive, examples of formal topologies and
formal spaces. In some of them we have used notions defined in successive
sections.

a. The real numbers Let ) be the set of rational numbers, S the set of pairs
(p,q) where p, q are either rational or +00. We define A to be (—oo, +00) and
Aby (p, o) AV, ¢") = (max{p,p'}, min{q,q'}); then S, A, A form a semilattice.
We can define on S a covering relation essentially as in [J], p. 123, and a
positivity predicate by putting Pos((p, ¢)) = (p < ¢), where < is the order of @
with top and least elements +o0o. The result will be a formal topology, whose
corresponding formal space is the space of real numbers (see [J], pp. 123 - 125
for details).

b. Compactifications of N The set N of natural numbers is constructed as
usual by means of the rules

neN
s(n) €N
Basing on them, we introduce the set S of formal neighbourhoods by the pro-
duction rules

0eN

0es AeS
aeS aeS be S
s(a) € S anbes

+5, A\, A form a semilattice with one

The idea 1s that a formal neighbourhood gives a piece of information: A gives
no information, s(a) is met by successors of those objects which meet a, 0 is
met only by 0, etc. We introduce a relation Approxz(n,a) prop (n € N,a € S)
(read: the information a applies to n, or a approximates n) by the rules

Approx(0,0) Approz(n, A)
Approz(n, a) Approz(n, a) Approz(n,b)
Approz(s(n), s(a)) Approz(n,a Ab)

Since Approz is clearly a neighbourhood relation, N, .S, Approz give a concrete
space . Then we have also a formal topology A(N'), whose covering relation
and consistency predicate are defined, as in section 2, by

a<1U = (Vn € N)(Approx(n,a) — (3b € U)(Approz(n, b))
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Pos(a) = (In € N)Approx(n,a)
The consistent formal neighbourhoods and their ordering in A(A) are indicated

in the picture:
A
0 sA
sO \

SSA

N
N
N
N

ss0 )

However, A(N') doesn’t say much: since A<1{0, s0, ss0, - - -}, points on A(N)
are just finite branches in the picture, and thus we get nothing but a copy of N.

The situation is quite different if we compactify A(N). In the Stone com-
pactification, A is not covered by {0, s0, ss0, - - -}, and therefore, beside all finite
branches, the infinite branch w = {A sA ssA,---} is also a point. The idea
behind w is that we can never exclude that 1t is a natural number; we thus may
call 1t a non standard natural number. In the Scott compactification, a path
from any node up to A in the picture is also a point; we may call it a partial
number.

It is possible to obtain the three formal spaces above without any reference
to N; we here only give a hint, and leave the details as an exercise. Think of
formal neighbourhoods as pieces of information, as suggested above. Then the
rules for S can be integrated with s(a A b) = sa A sb; also, we declare 0, A to
be possible, a to be equipossible with s(a), 0 A sA to be impossible. Defining
a < b as a is more informative than b, that is ¢ < b= (a Ab = a), we obtain for
possible pieces of information the same picture as above. Now, according to how
we handle disjunction of information, we will have three possible coverings. If we
accept the infinite disjunction A <1{0, s0, ss0, - - -}, we obtain the topology A(N)
above, and hence a copy of N. If we only accept finite disjunctions, we obtain
the Stone topology above (more precisely, we assume A < {0,sA} and close
under the rule a <U — s(a) < {s(b) : b € U}, beside the rules for topologies; of
course, A <1{0, sA} is interpreted as saying that being 0 or a successor amounts
to no information). Finally, in the Scott topology no disjunction is allowed, i.e.
a <1 U means that U already contains one piece of information covering a.

c¢. The topology of ideals Assume that L is a set with operations +, - and
constants 0, 1 such that L, +,-,0, 1 form a distributive lattice with zero and one.
We write <y, for the partial order defined as usual by a <p, b = (a - b = a). For
any U C L, we define I(U) to be the ideal of L generated by U, that is we put

IU)y={aeL:(3by, - bpelU)a<pby+---+b,)}
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Tt is obvious, and well known, that T : P(L) — P(L) is an algebraic closure
operator. So to show that I induces a covering <y it is enough to show that
I(U-V)=I(U) - I(V), which is easily done using distributivity.

Now assume we also have a consistency predicate Pos (the easiest case is
when equality in I is decidable, so that we can put Pos(a) = (a # 0)). Then
L,-,1,<y, Pos give a formal topology I(L), called the topology of ideals of I,
which is Stone since 7 is algebraic. Note that Sat(I(L)) is just the well known
complete Heyting algebra of ideals of L. We will show in section 7 that all Stone
topologies are obtained in this way (up to isomorphism).

d. The subsets of the one-element set Let 1 be a set with just one
element, say 0 (Ny of [TTT] is such a set). 1 is trivially a semilattice with one,
and hence it can be taken as a formal base for a topology. We define a covering
relation < by putting

0U=U(0)=0eU

for any subset U of 1, and we declare 0 to be consistent. We then trivially
have a topology, whose algebra of opens is just P(1) with extensional equality,
because U <1V = U C V. Since 0 is the only consistent neighbourhood, {0} is
the only point of P(1).

Since subsets of 1 are propositional functions with an argument which can
only be 0, P(1) is isomorphic to the category of propositions (using a tiny bit
of Martin-Lof’s theory of expressions, we can see that the isomorphism maps a
subset U of 1 into U(0), which is a proposition, and conversely a proposition A
into its abstraction (#)A, which is a unary propositional function; the claim then
follows because U = (2)(U(0)) in P(1), while A = ((2)A)(0) in the category of
propositions). As a corollary, we obtain that for any formal topology A, Pt(.A)
is isomorphic to the category of morphisms from A into P(1) (cf. [FG], p. 122).

e. Free topologies TLet S be any set, Fin(S) the set of finite subsets of S.
For any d, e € Fin(S), we put dAe = dUe (and hence d < e =d D e) and A = 0.
Then Fin(S) becomes a semilattice with one, and actually the semilattice freely
generated by S (see for instance [J], p. 27). We now define Pos so that Pos(d)
holds for any d € Fin(S) and put

d<4U = FeelU)d<e)

Then < is the least covering relation on Fin(S), and the resulting topology
F(S) is called the free topology on S. In fact, given any formal topology .A and
a surjective map fy : S — Sy, where Sy is a subset of S4 generating S4 as a
semilattice, there is a unique full morphism from F(S) to A which extends f.
If we define a continuous function f* : P#(A) — Pt(B) to be injective
precisely when f is full, then Pt(F(S)) can be called a universal space, since
all formal spaces which are small enough can be embedded in it. Since F(S) is
Scott by definition, Pt(F(S)) then plays the role of a universal Scott domain.
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6 Morphisms of topologies and continuos func-
tions

The usual definition says that a function between two topological spaces is
continuous if its inverse is a homomorphism between the frames of opens. Since
here opens are more basic than points, reversing the order we will obtain a
continuous function as the adjoint (that is, a sort of generalized inverse) of a
homomorphism between the frames of opens, which in its turn can be described
in terms of the underlying formal topologies. We are thus led to:

Definition 6.1 Let A, B be arbitrary formal topologies. A function f: S —
P(Sg) is called a morphism of A into B, written f : A = B, if for any a,b € S,
UCS:

1 flaAb) =5 fa A fb, f(A4) = As
2. a<daU— fa<p f(U) where f(U)=U{fb:be U}
3. Posp(fa) = Pos(a)

In other words, f is a function which preserves all the structure of A. Two
little facts, however, should be pointed out: first, we can not require the base
S always to be mapped into the base Si, which explains why values of f are
subsets of Sg, i.e. opens; second, consistency is preserved backwards, which is
essential when defining f* below.

It is easy to see that for a morphism f : A — B properties 1. and 2. can be
extended to opens, that is fF(UAV) =g f(U)Af(V)and U<4V = f(U) <3
f(V) hold. This means that the function f° : Open(A) — Open(B), where
feU = f(U), is well defined and that it preserves the order and finite meets.
By its definition, f° also preserves arbitrary joins. So f° is a homomorphism
between frames.

Conversely, given an arbitrary homomorphism h : Open(A) — Open(B),
consider its trace hg on the base S4, which is defined by ho(a) = h({a}) for
a € S4. Then hy is obviously a morphism of topologies and h3 = h because h
preserves infinite joins. So we have:

Proposition 6.2 Any morphism of topologies f : A — B induces, as described
above, a frame homomorphism f° : Open(A) — Open(B), and all frame homo-
morphisms are obtained in this way.

A morphism f : A — B is called faithful if a <4 U < fa < f(U) and full
if for any V' C Sp there exists U C Sy such that f(U) =g V. A morphism
which is both faithful and full is called an equivalence of topologies, since it is
not difficult to prove that

Proposition 6.3 A morphism f : A — B is faithful iff f° : Open(A) = Open(B)

15 wnjective and full iff f° is surjective.
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Given a morphism f : 4 — B and a point 8 of B, we define a propositional
function f*/ by putting

(f*9)(a) = B(fa) for a € Sa

Tt is easy to check that f*3 is a point on A (here the fact that f preserves consis-
tency backwards is essential to show that f*/ is consistent). Now assume that
a is a formal neighbourhood of f*3, i.e. (f*5)(a) true. Then B(fa) is true, and
hence (3b € fa)B(b), i.e. there is a neighbourhood b of 5 such that b<ig fa (which
is our way of expressing the classical statement (Ya € Pt(B))(a(b) — (f*a)(a)),
that is f*(¢b) C ¢a). This justifies the following:

Definition 6.4 If f : A — B is a morphism, then f* : Pt(B) — Pt(A) is called
a continuous function.

It is not difficult to check that formal topologies and morphisms form a
category in MacLane’s sense, and that Pt(—) : A — Pi(A), f — f*is a
contravariant functor. Hence our category of formal spaces corresponds to the
category of locales (see e.g. [J], p. 39). A natural question is then how much
of the theory of locales can be transferred into our framework; this indeed is a
good project, but yet for another paper.

Some reader may not like the definition of morphisms above, since they are
functions with subsets as values. Then, instead of f, (s)he may consider the
relation F'(a,b) prop (a € Sa,b € Sg) defined by F(a,b) = b € fa, and find
those properties of F' which correspond to 1.-3. above. Then (s)he will find that
the job is easier if f is assumed to be saturated, that is if fa is B-closed for each
a € Sp (note that f and its saturation fz(a) = B(fa) induce the same frame
homomorphism). The result is that f is a saturated morphism iff F' satisfies

1. FlaAb,e)=Fl(a,c) & F(bye) , F(Aa,Ap)
2. a<4U & Fla,b) > b<ig{c€ Sp: (Ja€ U)F(a,c)}

o

. Posp(b) & F(a,b) — Pos(a)
4. (Vb e V)F(a,b) & (b<1g V) = F(a,b)

So, since clearly any relation F(a,b) prop (a € S4,b € Sg) induces a func-
tion fa = {b € Sp : F(a,b)} and the correspondence is biunivocal, there is an
isomorphism between saturated morphisms and relations satisfying 1.-4.

Conditions 2. and 4. are not very perspicuous. When A, B are Scott,
however, they acquire a much simpler form, namely

2. a<d4d & F(a,b) = F(d',b)
4. F(a,b) &bV <1pb— F(a,b)

Apart from minor notational details, 1.,2’.,3.,4’. form the very definition of
approximable mappings in [S2].
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7 Compact opens and Stone representation
The usual notion of compactness is easily expressed in pointless words:

Definition 7.1 An open U in the formal topology A is called compact if, for
arbitrary V.C S, U<V = U a4V, for some finite Vi C V.

First of all, note that this is a good definition; hence compact opens of A
are just those elements of Open(A) which are compact (or algebraic, or finite)
according to the usual definition in complete lattices (see e.g. [J], p. 63). Note
that finite subsets of S need not be compact (the standard example here is that
of trees, in section 9). On the other hand we do have: if U is compact, then
U =4 Up for some finite Uy C U. Using this, it is easy to see that compact opens
are closed under finite unions, that is form a join-subsemilattice of Open(A).

By the definitions, A is Stone iff every basic neighbourhood is compact.
Thus, because of closure under finite unions, we have:

Proposition 7.2 A formal topology A is Stone iff every finite subset of S is
compact.

The following results are our version of Stone’s representation theorems (see

e.g. [J], pp. 64-66).

Proposition 7.3 Any Stone topology is equivalent to the topology of ideals on
a distributive lattice.

Proof. The idea is to induce on Fin(S), the set of finite subsets of S, the
structure of A. That is, for d,e € Fin(S), U C Fin(S), define d<;U = d<4UU,,
dhe={anb:acdbec}, d\/e=dUe. In particular, Fin(S) with equality
=7 is a distributive lattice and the name is well chosen, that is d <1y U iff d is
in the ideal of Fin(S) generated by U, because d is compact. Tt is now obvious
that the identity mapping i : Fin(S) — P(S.4) is an equivalence of topologies.

Proposition 7.4 Every distributive lattice L is isomorphic to the sublattice of
compact opens of the Stone topology I(L).

Proof. Since I(L) is Stone, U is compact in I(L) iff U =7 {ay, - -, an} for some
ai, --,a, € L, and hence U =f ap + -+ -+ a,. So the identity mapping is the
isomorphism we want.

It may be instructive to see how, admitting classical principles, Stone’s rep-
resentation of a distributive lattice I would be derived from the above result.
Recall that classically Pt(I(L)) is a topological space with base (¢a)ser. Then
¢ is a function from Open(I(L)) onto the opens of Pt(I(L)), since any open is
of the form ¢(I) = U{ga : a € I} for some ideal I of L. To show that ¢ is
injective, it is enough and necessary to have

paC¢(l) > ael
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for any ideal I. By definition, ¢a C ¢(I) means, classically, that (Voo € Pt(I(L)))
(a € « =(Fb € I)(b € a)); so by classical logic the condition above is equivalent
to

ag@l— (FaePI(L))(aca& INa=10)

which, by proposition 4.6, is exactly a formulation of the prime filter theorem.
So the prime filter theorem is equivalent to ¢ being an isomorphism. Since
obviously U is a compact subset in I(L) iff ¢(U) is compact in the traditional
sense, proposition 4 above gives Stone’s theorem: assuming the prime filter
theorem, I is isomorphic to the lattice of compact opens in P¢(I(L)).

8 Scott spaces and Scott domains

Various presentations of the so called Scott domains have been given by D. Scott
himself. In the so called axiomatic presentation, a Scott domain is a structure
D, L, < which is a complete partial order (i.e. < is a partial order with bottom
1, in which every directed subset F C D has a supremum \/ £) which is alge-
braic (i.e. for every element d of D, algebraic elements below d form a directed
subset whose supremum is d) and any two algebraic elements d, e which are
majorized in D have a supremum d V e. The connection with our approach is
immediate:

Proposition 8.1 Any Scott space Pt(A) is a Scott domain.

In fact, by proposition 4.7, points of A4 are just filters on S. So the order
a < = (VaeS)ala) = f(a)) = a C 5 is a complete partial order on Pt(A),
with the filter generated by A as bottom, which is algebraic since algebraic
elements are exactly principal filters. The last condition is then taken care of
by the consistency predicate: if the filters generated by a,b € S are majorized
by o in Pt(A), then a(a Ab) holds, hence Pos(a Ab) and the filter generated by
a A b is consistent.

On the other hand, let D be a Scott domain and S the set of its alge-
braic elements. Then any element of D may be identified with the directed set
Eq={a €S :a<d}, since d =\ FE; But then we may think of Fy as a
filter on the dual of S, that is the structure with order > and meet \/. In more
recent presentations, Scott has introduced neighbourhood systems [S1] and in-
formation systems [S2], which can be seen as a way to axiomatize the structure
of S above. In particular, information systems are provided with a consistency
predicate (which intuitively asserts a to be consistent with b when the meet of
a and b exists), and Scott domains are then given as the collection of consistent
filters over them. Our aim is to show that Scott formal topologies play the same
role, and that they can be identified with much simpler structures, as we now
see.

For an arbitrary formal topology A, the trace SA of A on its base S
is the structure induced by A on the elements of S; more formally, we put
SA=(Ssa,=s4,NsA,Asa,Poss), where
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SsA =S4, Nsa=Aa, Adsa=Au

(a <sa b) =(a<4{b}) and hence (a =g4 b) = ({a} =4 {b})

Poss .4 (a) = Pos4(a)
It is easy to see that SA is a semilattice with one; in fact, it is the quotient of
S over =4, which is a congruence, and <g4 is then the partial order induced
by Asa. Moreover, SA is provided with a predicate Pos satisfying

Pos(a) a<b Pos(a) — a <b
Pos(b) a<b

We put all this into a definition, and hence also a little result:

Definition 8.2 Any semilattice with one and with a predicate Pos satisfying
the above two conditions is called a Scott semalattice.

Proposition 8.3 For any formal topology A, the trace SA is a Scott semilat-
tice.

In the opposite direction, from any Scott semilattice S = (S, A, A, Posg) we
construct the least formal topology based on &. We need a lemma.

Lemma 8.4 For any semilattice with one 8 = (S, A, A), putting
a<;U=(3FbelU)la<sh)

defines a covering relation <z which moreover is the coarsest possible (that is,
a<le U —=a<iaqU for any covering 14 on S).

Proof. For any covering <14 on &, by the rule of A-left we have

aggb
a<lgb

and hence a<i; U — a<i4q U. It is now easy to verify that £ is a closure operator
on P(S), for which L(U)N L(V) = L(U AV) holds, so that <. is a covering
relation by proposition 3.3.

Proposition 8.5 For any Scott semilattice S = (S, A, A, Posg), putting
a<salU =Posg(a) >a<c U

gives a covering relation. Then AS = (S, A, A, <as,Poss) is a Scott formal
topology, and it 1s coarser than any formal topology B based on S and with
Posg(a) > Poss(a).

Proof. From the assumption Posg(a)&a <s b — Posg(b), it follows that Posg
satisfies monotonicity with respect to <1z, and hence also with respect to <is4.
Positivity is immediate by definition. The proof that <is4 is a covering relation
is a direct verification of the conditions, using the lemma. So AS is a formal
topology. By the definition of <z and the fact that ¢ <gs b implies a <154 b,
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AS is a Scott topology. Finally, by the assumption on Posg, from a <145 U it
follows that Posg(a) — a <1z U and hence, by the lemma, Posg(a) = a <ig U,
from which a <15 U by positivity of B.

We now can easily prove that Scott semilattices can be identified with Scott
topologies:

Proposition 8.6 For any Scott semilattice S, the trace of AS on S is S itself,
that is SAS = S.

Proof. Since the base set S and Pos are the same, it is enough to show that
a<sbiffa <sas b. Nowa <sas b = a<das{b} = Posg(a) = (e € {b})(a <s )
iff Posg(a) — @ <s b and hence, by the assumptions on Posg, if and only if
a SS b.

Proposition 8.7 For any formal topology A, ASA = A iff A is Scott.

Proof. SA is a Scott semilattice by proposition 8.3, hence ASA is Scott by
proposition 8.5, hence also A is Scott if we assume that A = ASA.

Conversely, it is enough to show that <14s4 coincides with <14, when A is
Scott. By definitions,

a<iasa U =Posg(a) = (FbeU)(a<ab)
iff Posg(a) = (Posg(a) — (3b € U)(a <4 b))
iff Posg(a) > a<xa U  because A is Scott

a <14 U by positivity of A.

By propositions 8.7 and 8.5, any Scott topology A is the coarsest topology
over its own trace S.A, which by proposition 8.3 is a Scott semilattice. Moreover,
when A is Scott, by proposition 4.7 points over A are just consistent filters,
or actually filters (in the traditional sense) over the semilattice SA which are
consistent, i.e. contained in Pos. We thus can forget about Scott topologies, in
favour of Scott semilattices, which have a simpler structure.

Then, given any Scott semilattice S, since § = SAS by proposition 8.6, the
space of consistent filters of S is the same as the formal space Pt(AS), and
hence it is a Scott domain by proposition 8.3. Conversely, any Scott domain
can be presented in this way (the idea is that algebraic elements of a Scott
domain give rise to a Scott semilattice; we leave details to the reader). Thus
Scott semilattices play exactly the same role as Scott’s neighbourhood systems
in [S1] and information systems in [S2].

Therefore our proposal is to take Scott semilattices (may be with a shorter
name) as the basic structures on which the theory of Scott domains can be built
up. Besides a substantial technical simplification, the improvement here is that
of embedding such concepts in the more general theory of intuitionistic formal
spaces.
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9 Trees and bars

One of the motivations to the study of formal spaces is to give an interpretation,
in the foundational framework adopted, of Brouwer’s notion of choice sequence.
The main idea is that choice sequences on a given tree should be points of a
suitable formal topology based on that tree. However, this is easier said than
done. In fact, I was able to materialize that idea only at the cost of modifying the
definition of formal topology itself, namely by requiring a << UT to be derivable
from a < U only when Pos(a) holds (weak openness). Whether this is a good
reason to adopt this modification from the start, I still do not know. In any
case, I believe the topic to be interesting enough to present here, though briefly
and informally, the present state of work.
A tree is here given by two families of sets

A(n)set(n € N)

B(n,z)set(n € N,z € A(n))

which satisfy
An+1) = (Zx € A(n))B(n,z)

Intuitively, we begin with A(0), which usually contains only one element A,
called the root. Then we have a set B(0,A) of choices on how to proceed.
Once b € B(0,A) is chosen, we form a; = (A;b) € A(1). Then we have a set
B(1,a1) of choices, etc. So A(n) is the set of elements which are obtained with
n successive choices and S = (X2 € N)A(n) is the set of all nodes. May be a
better definition can be found, but at least the one above has the advantage of
lying entirely within the framework of [ITT]. Of course, common examples of
trees (like the complete tree over a given set T, which is often {0, 1} or N) fall
under it (take B(n,z) =T, A(0) = {A} and put A(n+ 1) = A(n) x T).

We define the ordering on S in which A is the top element by putting
(n,a) < (m,b) when n > m and b is obtained from a by right projection applied
n — m times. We often write a for (n, a), and say that @ is a node of length n.

We now want to put a topology on a given tree S. To this aim, we first close
S under an operation A of formal meet which respects the order of nodes; that
is, we impose A to satisfy a < b ¢ aAb = a, beside idempotency, commutativity
and associativity. What about the ‘formal’ nodes a A b obtained when a,b are
incomparable? The consistency predicate solves this problem: we declare them
to be inconsistent (and hence they will not appear in a drawing).

For every node a, we define immediate successors of a to be those nodes
which are reached from a with just one choice. More formally, the immediate
cover of (n,a) € S is the set C'(a) = {(n + 1,(a,d)) : b € B(n,a)} and any
element of C'(a) is called an immediate successor of a. Now assume we have a
predicate Pos satisfying

Pos(a) & a < b — Pos(b)
Pos(a) — Pos(C'(a))
Pos(a Ab) 5> a<bVb<a
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(this means of course that even ‘standard’ nodes may be inconsistent, i.e. ster-
ilized in Brouwer’s terminology). We then define a covering relation <l¢ by
assuming

a<e C(a)t for any a € S

and closing under the rules for coverings. We want to show that this indeed
defines a formal topology C, called the inductive topology (a name borrowed
from [FG]) on the tree S with consistency predicate Pos.

First of all, note that when a < b holds, then a Ab = a and hence a <¢ b
follows from b <1¢ b by A-left; so, even if the converse a<l¢b — a < b 1s in general
false (for instance when b is the only immediate successor of a), we will drop
the subscript C.

The rule of ex falso quodlibet is easily seen to be derivable: if =Pos(a), then
also =Pos(C'(a)) by the assumptions on Pos, and hence C'(a)* = 0, so that a <1}
1s simply an axiom.

Any derivation of a <1 U, where Pos(a) is true, can be reduced to a sort of
canonical form as follows. First, it is easy to show that the rule of A-right is
equivalent to the rule of localisation introduced in section 1; thus we eliminate A-
right in favour of localisation. The advantage is that applications of localisation
can be lifted over all other rules (for example,

a1 U a<qlU
aNbalU reduces to aNedUANe
aANbAeaU ANe aNcANb<UAc

and other rules are treated similarly). Thus we can reduce the derivation to
one in which localisation is applied only to axioms, that 1s to obtain covers of
the form b A e <1 C' (b))t Ac (note that any number of consecutive applications of
localisation can be reduced to one).

Now the derivation of @ <1 U can be reduced to a derivation of a <« U™ in
which only consistent nodes occur. To see how this is possible, imagine to apply
weak openness to the conclusion of the derivation, and then lift it as much as
possible (an example of reduction is

baV VaW baV  ViaW
bW reduces to bVt Vtagwt
baWwt ba Wt

where it 18 better to think of V' <t W as a free-variable derivation of ¢ << W from
the assumption ¢ € V, so that Vt < W is obtained simply by restricting to
the assumption ¢ € V*; the cases for reflexivity and A-left are even simpler).
The result is that only consistent nodes appear, at least all the way up to any
conclusion b A ¢ <t C'(b)* A ¢ of localisation. Then in particular Pos(b A ¢) is
true, and hence b < ¢V ¢ < b. So we can substitute localisation either by
nothing (when b < ¢,b Ae=1band C(b)t Ac = C (b)) or by reflexivity (when
c<bbAc=rcand C(b)T Ac={c}). Note that the result is a real derivation
of a << U™ in which only the three rules of transitivity, A-left and reflexivity are
applied.
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Now 1t is easy to prove closure under monotonicity and weak openness by
induction on such three rules (the assumption Pos(a) is used to show that a<tU*
whenever a € U). This completes the proof of the fact that C is a formal
topology.

The definition of inductive covering is a precise formulation of the following
informal but clear notion: U is an intuitive cover of a if starting from a we
fall into U after a finite number of arbitrary choices. Certainly the axioms
and rules for <« fulfill such interpretation; the claim is that they embrace it
completely. Incidentally, note that the above informal notion is equivalent to
that of wellfounded tree, i.e. a cover of A.

Similarly, the definition of point i1s the precise counterpart of the informal
notion of branch (or arrow, or infinitely proceeding sequence). By condition
2 of definition 4.1, a point & which meets a node @, in the sense that a(a)
is true, also meets any cover U of a, in the sense that a(U). In particular,
a(a) = (3b € C(a))a(b) holds for any node a. Moreover, whenever b, ¢ € C'(a)
and a(b), a(c) are both true, then a(b A ¢) and hence Pos(b A ¢), which can only
hold if b = ¢, because b, ¢ have equal length. So « satisfies

(1) ala) = (3 € C(a))a(b)

which, together with a(A) and a(a) — Pos(a), tells that « is a branch. The
converse holds if we agree that any branch satisfies (1) and contains only con-
sistent nodes, beside the root. In fact, from a(a) — (3b € C(a))a(b), which
takes care of the axioms, condition 2 is proved by induction on the rules, while
condition 1 follows by the uniqueness of the immediate successor granted by
(1). Of course, the question remains open whether (1) is inherent our intuitive
notion of branch, in particular since it asserts the constructive existence of the
immediate successor (one could be satisfied with a(a) — —-=(3b € C(a))(a(b)).
This is why I have not used the word choice sequence.

Usually the order of definitions is the opposite (two good sources on such
matters are [FIM] and [MG]): one assumes to know what a branch is so well to
make sense of quantification over branches and then defines wellfoundedness, or
equivalently covers, by saying that U is a bar of a if

(2) (Va)(a(a) = a(U))

holds, where a ranges over branches. But the notion of bar so defined is difficult
to be used, unless one assumes also that, under some weak restrictions, bars can
be defined inductively (principle of bar induction). Inductive bars are defined
by the rules (read U i.b. @ as U is an inductive bar of a):

(b€ C(a))
|
Gl Uib.b
Uib.a Uib.a”

A subset U is monotone if a € U & b < a — b € U. Then monotone bar
induction is the statement

Blu U monotone & (VYa)(a(a) = «(U)) > Uib.a
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One of Brouwer’s arguments for BTy is based on the assumption (Brouwer’s
Dogma) that any fully analysed proof of (2) only makes use of , F, (-inferences,
where a (-inference allows to obtain U bars b from b € C'(a) and U bars a. Tt is
easy to see that, for a consistent node a, a fully analysed proof of U bars a exists
iff a<aU (hint: first reduce the derivation of a <<U to one in which transitivity is
applied only with an axiom as left premiss, and note that then 5, F, (-rules cor-
respond exactly to our reflexivity, A-left and transitivity+axioms, respectively).
Hence, assuming BD, Bly; is proved simply by lifting A-left over transitivity
(obvious) and then noting that any application of A-left under reflexivity can
be eliminated if U is monotone. Moreover, the fact that any derivation of a <1 U
can be reduced to a fully analysed proof in Brouwer’s sense, is a little argument
in favour of BD.

Brouwer himself gives also another, shorter argument for Bly: thought
through intuitionistically, a bar is nothing else than an inductive bar. We agree
with him (and hence also with Kleene, see [FIM], end of p. 50). However,
our foundational framework allows to go a little step further, and simply define
the meaning of (Va)(a(a) — «(U)) to be a < U. The content of Bly then
becomes part of the definition of universal quantification over points, and the
above claim by Brouwer is substituted by: thought through intuitionistically,
an intuitive cover is nothing else than an inductive cover.

Finally, it 1s now easy to keep a promise made in section 4. Conceiving of
Pt(C) in the classical way, the function ¢ from opens of C onto opens of Pt(C)
is an isomorphism iff for any monotone subset U and any consistent node a,
é(a) C ¢(U) = a<aU; but ¢(a) C ¢(U) is just (2), and we have shown above
that a < U is equivalent, when U is monotone and a is consistent, to U i.b. a.
Thus ¢ is an isomorphism iff Bly; holds.
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