Intuitionistic Fuzzifications of *a*-Ideals in BCI-Algebras

Young Bae Jun

Department of Mathematics Education (and RINS) Gyeongsang National University, Chinju 660-701, Korea skywine@gmail.com

Chul Hwan Park*

Department of Mathematics University of Ulsan,Ulsan 680-749, Korea chpark@ulsan.ac.kr or skyrosemary@gmail.com

Seok Zun Song

Department of Mathematics Cheju National University,Jeju 690-756 Korea szsong@cheju.ac.kr

Abstract

The notion of intuitionistic fuzzy *a*-ideals in BCI-algebras is introduced. Conditions for an intuitionistic fuzzy ideal to be an intuitionistic fuzzy *a*-ideal are provided. Using a collection of *a*-ideals, intuitionistic fuzzy *a*-ideals are established.

Mathematics Subject Classification: 06F35, 03G25, 94D05 Keywords: *a*-ideal; intuitionistic fuzzy subalgebra; (closed) intuitionistic fuzzy ideal; intuitionistic fuzzy *a*-ideal.

1 Introduction

To develop the theory of BCI-algebras, the ideal theory plays an important role. Liu and Meng [6] introduced the notion of q-ideals and a-ideals in BCI-

^{*}Corresponding author: chpark@ulsan.ac.kr or skyrosemary@gmail.com (C.H.Park)

algebras. Liu and Zhang [7] discussed the fuzzification of *a*-ideals, gave relations between fuzzy ideals, fuzzy *a*-ideals and fuzzy *p*-ideals. They also considered characterizations of fuzzy *a*-ideals. Using the notion of fuzzy *a*-ideals, they provided characterization of associative *BCI*-algebras. After the introduction of fuzzy sets by Zadeh [9], there have been a number of generaizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Aranassov [1, 2] is one among them. In this paper, we apply the concept of an intuitionistic fuzzy set to *a*-ideals in *BCI*-algebras. We introduce the notion of an intuitionistic fuzzy *a*-ideal of a *BCI*-algebra, and investigate some related properties. We provide relations between an intuitionistic fuzzy ideal and an intuitionistic fuzzy *a*-ideal. We give characterizations of an intuitionistic fuzzy *a*-ideal. Using a collection of *a*-ideals, we establish intuitionistic fuzzy *a*-ideals.

2 Preliminaries

An algebra (X; *, 0) of type (2, 0) is called a *BCI-algebra* if it satisfies the following conditions:

- (I) $(\forall x, y, z \in X) (((x * y) * (x * z)) * (z * y) = 0),$
- (II) $(\forall x, y \in X) ((x * (x * y)) * y = 0),$
- (III) $(\forall x \in X) (x * x = 0),$
- (IV) $(\forall x, y \in X) \ (x * y = 0, y * x = 0 \Rightarrow x = y).$

We can define a partial order ' \leq ' on X by $x \leq y$ if and only if x * y = 0. Any *BCI*-algebra X has the following properties:

- (a1) $(\forall x \in X) (x * 0 = x).$
- (a2) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y).$
- (a3) $(\forall x, y, z \in X) \ (x \le y \Rightarrow x * z \le y * z, z * y \le z * x).$

A mapping $\mu : X \to [0, 1]$, where X is an arbitrary nonempty set, is called a *fuzzy set* in X. For any fuzzy set μ in X and any $t \in [0, 1]$ we define two sets

$$U(\mu; t) = \{x \in X \mid \mu(x) \ge t\}$$
 and $L(\mu; t) = \{x \in X \mid \mu(x) \le t\},\$

which are called an *upper* and *lower t-level cut* of μ and can be used to the characterization of μ .

As an important generalization of the notion of fuzzy sets in X, Atanassov [1, 2] introduced the concept of an *intuitionistic fuzzy set* (IFS for short) defined on a nonempty set X as objects having the form

$$A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \mid x \in X \},\$$

where the functions $\mu_A : X \to [0, 1]$ and $\gamma_A : X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for all $x \in X$.

Such defined objects are studied by many authors (see for Example two journals: 1. *Fuzzy Sets and Systems* and 2. *Notes on Intuitionistic Fuzzy Sets*) and have many interesting applications not only in mathematics (see Chapter 5 in the book [3]).

For the sake of simplicity, we shall use the symbol $A = \langle X, \mu_A, \gamma_A \rangle$ for the intuitionistic fuzzy set $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \mid x \in X \}.$

A nonempty subset A of a BCI-algebra X is called an *ideal* of X if it satisfies:

- (I1) $0 \in A$,
- (I2) $(\forall x, y \in X) \ (\forall y \in A) \ (x * y \in A \Rightarrow x \in A).$

A nonempty subset A of a BCI-algebra X is called an *a-ideal* of X if it satisfies (I1) and

(I3) $(\forall x, y \in X) \ (\forall z \in A) \ ((x * z) * (0 * y) \in A \Rightarrow y * x \in A).$

Definition 2.1. An IFS $A = \langle X, \mu_A, \gamma_A \rangle$ in a BCI-algebra X is called an intuitionistic fuzzy subalgebra of X if it satisfies:

$$(\forall x, y \in X) (\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\}), (\forall x, y \in X) (\gamma_A(x * y) \le \max\{\gamma_A(x), \gamma_A(y)\}).$$

$$(2.1)$$

Definition 2.2. An IFS $A = \langle X, \mu_A, \gamma_A \rangle$ in a BCI-algebra X is called an intuitionistic fuzzy ideal of X if it satisfies:

$$(\forall x \in X) (\mu_A(0) \ge \mu_A(x), \gamma_A(0) \le \gamma_A(x)), \qquad (2.2)$$

and

$$(\forall x, y \in X) (\mu_A(x) \ge \min\{\mu_A(x * y), \mu_A(y)\}), (\forall x, y \in X) (\gamma_A(x) \le \max\{\gamma_A(x * y), \gamma_A(y)\}).$$
(2.3)

Definition 2.3. An intuitionistic fuzzy ideal $A = \langle X, \mu_A, \gamma_A \rangle$ in a BCIalgebra X is said to be closed if it satisfies:

$$(\forall x \in X) (\mu_A(0 * x) \ge \mu_A(x), \gamma_A(0 * x) \le \gamma_A(x)).$$
(2.4)

3 Intuitionistic fuzzy *a*-ideals

In what follows, let X denotes a BCI-algebra unless otherwise specified. We first consider the intuitionistic fuzzification of the notion of a-ideals in a BCI-algebra as follows.

Definition 3.1. An IFS $A = \langle X, \mu_A, \gamma_A \rangle$ in X is called an intuitionistic fuzzy a-ideal of X if it satisfies (2.2) and

$$(\forall x, y, z \in X) (\mu_A(y * x) \ge \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\}), (\forall x, y, z \in X) (\gamma_A(y * x) \le \max\{\gamma_A((x * z) * (0 * y)), \gamma_A(z)\}).$$
(3.1)

Example 3.2. Consider a BCI-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

		a		
0	0	a	b	c
a	a	0	c	b
b	b	$a \\ 0 \\ c$	0	a
c	c	b	a	0

We define an IFS $A = \langle X, \mu_A, \gamma_A \rangle$ in X by

$$A = \left\langle X, \left(\frac{0}{0.8}, \frac{a}{0.8}, \frac{b}{0.3}, \frac{c}{0.3}\right), \left(\frac{0}{0.1}, \frac{a}{0.1}, \frac{b}{0.4}, \frac{c}{0.4}\right) \right\rangle,\$$

By routine calculations, we know that $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy *a*-ideal of X.

Theorem 3.3. Every intuitionistic fuzzy a-ideal is both an intuitionistic fuzzy subalgebra and an intuitionistic fuzzy ideal.

Proof. Let $A = \langle X, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy *a*-ideal of X. Taking y = z = 0 in (3.1) and using (III) and (a1), we have

$$\mu_A(0*x) \ge \mu_A(x), \ \gamma_A(0*x) \le \gamma_A(x). \tag{3.2}$$

Setting x = z = 0 in (3.1) induces from (a1), (III), (2.2) and (3.2) that

$$\mu_A(y) = \mu_A(y * 0) \ge \mu_A(0 * (0 * y)) \ge \mu_A(0 * y),$$

$$\gamma_A(y) = \gamma_A(y * 0) \le \gamma_A(0 * (0 * y)) \le \gamma_A(0 * y)$$

for all $y \in X$. It follows from (3.1) and (a1) that

$$\mu_A(x) \geq \mu_A(0 * x) \geq \min\{\mu_A((x * z) * (0 * 0)), \mu_A(z)\} \\ = \min\{\mu_A(x * z), \mu_A(z)\},\$$

$$\gamma_A(x) \leq \gamma_A(0*x) \leq \max\{\gamma_A((x*z)*(0*0)), \gamma_A(z)\}$$

=
$$\max\{\gamma_A(x*z), \gamma_A(z)\}$$

for all $x, z \in X$. Hence $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy ideal of X. Now, for any $x, y \in X$, we have

$$\mu_A(x * y) \geq \min\{\mu_A((x * y) * x), \mu_A(x)\} \\
= \min\{\mu_A(0 * y), \mu_A(x)\} \\
\geq \min\{\mu_A(x), \mu_A(y)\},$$

$$\gamma_A(x * y) \leq \max\{\gamma_A((x * y) * x), \gamma_A(x)\} \\ = \max\{\gamma_A(0 * y), \gamma_A(x)\} \\ \leq \max\{\gamma_A(x), \gamma_A(y)\}.$$

Therefore $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy subalgebra of X.

The converse of Theorem 3.3 is not true in general as seen in the following Example.

Example 3.4. Consider a BCI-algebra $X = \{0, a, b\}$ with the following Cayley table:

$$\begin{array}{c|cccc} * & 0 & a & b \\ \hline 0 & 0 & b & a \\ a & a & 0 & b \\ b & b & a & 0 \end{array}$$

Let $A = \langle X, \mu_A, \gamma_A \rangle$ be an IFS in X defined by

$$A = \left\langle X, \left(\frac{0}{0.7}, \frac{a}{0.2}, \frac{b}{0.2}\right), \left(\frac{0}{0.2}, \frac{a}{0.5}, \frac{b}{0.5}\right) \right\rangle.$$

It is easy to verify that $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy ideal and an intuitionistic fuzzy subalgebra of X. But it is not an intuitionistic fuzzy a-ideal of X since

$$\mu_A(b*a) = \mu_A(a) = 0.2 < 0.7 = \min\{\mu_A((a*0)*(0*b)), \mu_A(0)\}$$

and/or

$$\gamma_A(b*a) = \gamma_A(a) = 0.5 > 0.2 = \max\{\gamma_A((a*0)*(0*b)), \gamma_A(0)\}.$$

Lemma 3.5. Let an IFS $A = \langle X, \mu_A, \gamma_A \rangle$ in X be an intuitionistic fuzzy ideal of X. If the inequality $x * y \leq z$ holds in X, then

$$\mu_A(x) \ge \min\{\mu_A(y), \mu_A(z)\}, \ \gamma_A(x) \le \max\{\gamma_A(y), \gamma_A(z)\}.$$
(3.3)

Proof. Let $x, y, z \in X$ be such that $x * y \leq z$. Then (x * y) * z = 0, and so

$$\begin{aligned}
\mu_A(x) &\geq \min\{\mu_A(x * y), \mu_A(y)\} \\
&\geq \min\{\min\{\mu_A((x * y) * z), \mu_A(z)\}, \mu_A(y)\} \\
&= \min\{\min\{\mu_A(0), \mu_A(z)\}, \mu_A(y)\} \\
&= \min\{\mu_A(y), \mu_A(z)\},
\end{aligned}$$

$$\begin{aligned} \gamma_A(x) &\leq \max\{\gamma_A(x*y), \gamma_A(y)\} \\ &\leq \max\{\max\{\gamma_A((x*y)*z), \gamma_A(z)\}, \gamma_A(y)\} \\ &= \max\{\max\{\gamma_A(0), \gamma_A(z)\}, \gamma_A(y)\} \\ &= \max\{\gamma_A(y), \gamma_A(z)\}. \end{aligned}$$

This completes the proof.

Remark 3.6. Example 3.4 shows that an intuitionistic fuzzy ideal is not an intuitionistic fuzzy a-ideal. So, we have a question: Under which condition(s), is every intuitionistic fuzzy ideal an intuitionistic fuzzy a-ideal? We give a solution for this question in the following Theorem.

Theorem 3.7. Let $A = \langle X, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy ideal of X. Then the following are equivalent:

- (i) $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy a-ideal of X.
- (ii) $A = \langle X, \mu_A, \gamma_A \rangle$ satisfies the following conditions:

$$(\forall x, y, z \in X)(\mu_A(y * (x * z)) \ge \mu_A((x * z) * (0 * y))) (\forall x, y, z \in X)(\gamma_A(y * (x * z)) \le \gamma_A((x * z) * (0 * y))).$$
(3.4)

(iii) $A = \langle X, \mu_A, \gamma_A \rangle$ satisfies the following conditions:

$$(\forall x, y \in X)(\mu_A(y * x) \ge \mu_A(x * (0 * y))) (\forall x, y \in X)(\gamma_A(y * x) \le \gamma_A(x * (0 * y))).$$
(3.5)

Proof. (i) \Rightarrow (ii) Assume that $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy *a*-ideal of X and let $x, y, z \in X$. Using (3.1), (a1) and (2.2), we have

$$\mu_A(y * (x * z)) \geq \min\{\mu_A(((x * z) * 0) * (0 * y)), \mu_A(0)\} \\ = \mu_A((x * z) * (0 * y)),$$

$$\gamma_A(y * (x * z)) \leq \max\{\gamma_A(((x * z) * 0) * (0 * y)), \gamma_A(0)\} \\ = \gamma_A((x * z) * (0 * y)).$$

(ii) \Rightarrow (iii) Taking z = 0 in (ii) and using (a1) induce (iii).

(iii) \Rightarrow (i) Note that

$$(x * (0 * y)) * ((x * z) * (0 * y)) \le x * (x * z) \le z$$

for all $x, y, z \in X$. It follows from (3.5) and Lemma 3.5 that

$$\mu_A(y * x) \ge \mu_A(x * (0 * y)) \ge \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\},\$$

$$\gamma_A(y * x) \le \gamma_A(x * (0 * y)) \le \max\{\gamma_A((x * z) * (0 * y)), \gamma_A(z)\}.$$

Hence $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy *a*-ideal of X.

Theorem 3.8. If $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy a-ideal of X, then the set

$$H := \{ x \in X \mid \mu_A(x) = \mu_A(0), \, \gamma_A(x) = \gamma_A(0) \}$$

is an a-ideal of X.

Proof. Assume that $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy *a*-ideal of X and let $x, y, z \in X$ be such that $(x * z) * (0 * y) \in H$ and $z \in H$. Then

$$\mu_A(0) \ge \mu_A(y * x) \ge \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\} = \mu_A(0),$$

$$\gamma_A(0) \le \gamma_A(y * x) \le \max\{\gamma_A((x * z) * (0 * y)), \gamma_A(z)\} = \gamma_A(0)$$

by using (2.2) and (3.1). Hence $\mu_A(y * x) = \mu_A(0)$ and $\gamma_A(y * x) = \gamma_A(0)$, which imply that $y * x \in H$. Obviously, $0 \in H$. Therefore H is an *a*-ideal of X.

We give another condition for an intuitionistic fuzzy ideal to be an intuitionistic fuzzy a-ideal.

Theorem 3.9. If X is associative, i.e., X satisfies the identity (x * y) * z = x * (y * z) for all $x, y, z \in X$, then every intuitionistic fuzzy ideal of X is an intuitionistic fuzzy a-ideal of X.

Proof. Suppose that X is an associative *BCI*-algebra. Let $A = \langle X, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy ideal of X. Note that 0 * x = x for all $x \in X$. Hence

$$y * x = (0 * y) * x = (0 * x) * y = x * y = x * (0 * y)$$

for all $x, y \in X$, and so

$$\mu_A(y * x) = \mu_A(x * (0 * y)), \ \gamma_A(y * x) = \gamma_A(x * (0 * y)).$$

It follows from Theorem 3.7 that $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy *a*-ideal of *X*.

Let $A = \langle X, \mu_A, \gamma_A \rangle$ be an IFS in a set X and let $\alpha, \beta \in [0, 1]$ be such that $\alpha + \beta \leq 1$. Then the set

$$X_A^{(\alpha,\beta)} := \{ x \in X \mid \mu_A(x) \ge \alpha, \ \gamma_A(x) \le \beta \}$$

is called an (α, β) -level subset of $A = \langle X; \mu_A, \gamma_A \rangle$.

Theorem 3.10. Let $A = \langle X, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy *a*-ideal of X. Then $X_A^{(\alpha,\beta)}$ is an *a*-ideal of X for every $(\alpha,\beta) \in \text{Im}(\mu_A) \times \text{Im}(\gamma_A)$ with $\alpha + \beta \leq 1$.

Proof. Obviously $0 \in X_A^{(\alpha,\beta)}$. Let $x, y, z \in X$ be such that $(x*z)*(0*y) \in X_A^{(\alpha,\beta)}$ and $z \in X_A^{(\alpha,\beta)}$. Then $\mu_A((x*z)*(0*y)) \ge \alpha$, $\gamma_A((x*z)*(0*y)) \le \beta$, $\mu_A(z) \ge \alpha$, and $\gamma_A(z) \le \beta$. It follows from (3.1) that

$$\mu_A(y * x) \ge \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\} \ge \alpha,$$

$$\gamma_A(y * x) \le \max\{\gamma_A((x * z) * (0 * y)), \gamma_A(z)\} \le \beta$$

so that $y * x \in X_A^{(\alpha,\beta)}$. Hence $X_A^{(\alpha,\beta)}$ is an *a*-ideal of X.

Theorem 3.11. Let $A = \langle X, \mu_A, \gamma_A \rangle$ be an IFS in X such that $X_A^{(\alpha,\beta)}$ is an a-ideal of X for every $(\alpha, \beta) \in \text{Im}(\mu_A) \times \text{Im}(\gamma_A)$ with $\alpha + \beta \leq 1$. Then $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy a-ideal of X.

Proof. Since $0 \in X_A^{(\alpha,\beta)}$, we have $\mu_A(0) \ge \mu_A(x)$ and $\gamma_A(0) \le \gamma_A(x)$ for all $x \in X$. Let $x, y, z \in X$ be such that $A((x * z) * (0 * y)) = (\alpha_1, \beta_1)$ and $A(z) = (\alpha_2, \beta_2)$, that is, $\mu_A((x * z) * (0 * y)) = \alpha_1$, $\gamma_A((x * z) * (0 * y)) = \beta_1$, $\mu_A(z) = \alpha_2$, and $\gamma_A(z) = \beta_2$. Then $(x * z) * (0 * y) \in X_A^{(\alpha_1,\beta_1)}$ and $z \in X_A^{(\alpha_2,\beta_2)}$. We may assume that $(\alpha_1, \beta_1) \le (\alpha_2, \beta_2)$, i.e., $\alpha_1 \le \alpha_2$ and $\beta_1 \ge \beta_2$, without loss of generality. It follows that $X_A^{(\alpha_2,\beta_2)} \subseteq X_A^{(\alpha_1,\beta_1)}$ so that $(x*z)*(0*y) \in X_A^{(\alpha_1,\beta_1)}$ and $z \in X_A^{(\alpha_1,\beta_1)}$. Since $X_A^{(\alpha_1,\beta_1)}$ is an a-ideal of X, we have $y * x \in X_A^{(\alpha_1,\beta_1)}$ by (I3). Thus

$$\mu_A(y * x) \ge \alpha_1 = \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\},\$$

$$\gamma_A(y * x) \le \beta_1 = \max\{\gamma_A((x * z) * (0 * y)), \gamma_A(z)\}$$

Consequently, $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy *a*-ideal of X.

Note that

$$X_A^{(\alpha,\beta)} = \{x \in X \mid \mu_A(x) \ge \alpha, \ \gamma_A(x) \le \beta\}$$

=
$$\{x \in X \mid \mu_A(x) \ge \alpha\} \cap \{x \in X \mid \gamma_A(x) \le \beta\}$$

=
$$U(\mu_A; \alpha) \cap L(\gamma_A; \beta).$$

Hence we have the following Corollary.

Corollary 3.12. Let $A = \langle X, \mu_A, \gamma_A \rangle$ be an IFS in X. Then $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy a-ideal of X if and only if $U(\mu_A; \alpha)$ and $L(\gamma_A; \beta)$ are a-ideals of X for every $\alpha \in [0, \mu_A(0)]$ and $\beta \in [\gamma_A(0), 1]$ with $\alpha + \beta \leq 1$.

Corollary 3.13. Let I be an a-ideal of X and let $A = \langle X, \mu_A, \gamma_A \rangle$ be an IFS in X defined by

$$\mu_A(x) := \begin{cases} \alpha_0 & \text{if } x \in I, \\ \alpha_1 & \text{otherwise,} \end{cases} \quad \gamma_A(x) := \begin{cases} \beta_0 & \text{if } x \in I, \\ \beta_1 & \text{otherwise,} \end{cases}$$

for all $x \in X$ where $0 \le \alpha_1 < \alpha_0$, $0 \le \beta_0 < \beta_1$ and $\alpha_i + \beta_i \le 1$ for i = 1, 2. Then $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy a-ideal of X.

Proposition 3.14. Let $A = \langle X, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy a-ideal of X and $(\alpha_1, \beta_1), (\alpha_2, \beta_2) \in \text{Im}(\mu_A) \times \text{Im}(\gamma_A)$ with $\alpha_i + \beta_i \leq 1$ for i = 1, 2. Then $X_A^{(\alpha_1, \beta_1)} = X_A^{(\alpha_2, \beta_2)}$ if and only if $(\alpha_1, \beta_1) = (\alpha_2, \beta_2)$.

Proof. If $(\alpha_1, \beta_1) = (\alpha_2, \beta_2)$, then clearly $X_A^{(\alpha_1, \beta_1)} = X_A^{(\alpha_2, \beta_2)}$. Assume that $X_A^{(\alpha_1, \beta_1)} = X_A^{(\alpha_2, \beta_2)}$. Since $(\alpha_1, \beta_1) \in \operatorname{Im}(\mu_A) \times \operatorname{Im}(\gamma_A)$, there exists $x \in X$ such that $\mu_A(x) = \alpha_1$ and $\gamma_A(x) = \beta_1$. It follows that $x \in X_A^{(\alpha_1, \beta_1)} = X_A^{(\alpha_2, \beta_2)}$ so that $\alpha_1 = \mu_A(x) \ge \alpha_2$ and $\beta_1 = \gamma_A(x) \le \beta_2$. Similarly we have $\alpha_1 \le \alpha_2$ and $\beta_1 \ge \beta_2$. Hence $(\alpha_1, \beta_1) = (\alpha_2, \beta_2)$.

Theorem 3.15. Let $A = \langle X, \mu_A, \gamma_A \rangle$ be an IFS in X and

$$\operatorname{Im}(A) = \{(\alpha_0, \beta_0), (\alpha_1, \beta_1), \cdots, (\alpha_k, \beta_k)\}$$

where $(\alpha_i, \beta_i) < (\alpha_j, \beta_j)$ whenever i > j. Let $\{G_n \mid n = 0, 1, \dots, k\}$ be a family of a-ideals of X such that

- (i) $G_0 \subset G_1 \subset \cdots \subset G_k = X$,
- (ii) $A(G_n^*) = (\alpha_n, \beta_n)$, *i.e.*, $\mu_A(G_n^*) = \alpha_n$ and $\gamma_A(G_n^*) = \beta_n$, where $G_n^* = G_n \setminus G_{n-1}$, $G_{-1} = \emptyset$ for $n = 0, 1, \cdots, k$.

Then $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy a-ideal of X.

Proof. Since $0 \in G_0$, we have $\mu_A(0) = \alpha_0 \ge \mu_A(x)$ and $\gamma_A(0) = \beta_0 \le \gamma_A(x)$ for all $x \in X$. Let $x, y, z \in X$. To prove that $A = \langle X, \mu_A, \gamma_A \rangle$ satisfies condition (3.1), we discuss the following cases: If $(x * z) * (0 * y) \in G_n^*$ and $z \in G_n^*$, then $y * x \in G_n$ because G_n is an *a*-ideal of X. Thus

$$\mu_A(y * x) \ge \alpha_n = \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\},\$$

$$\gamma_A(y \ast x) \le \beta_n = \max\{\gamma_A((x \ast z) \ast (0 \ast y)), \gamma_A(z)\}$$

If $(x * z) * (0 * y) \notin G_n^*$ and $z \notin G_n^*$, then the following four cases arise:

- 1. $(x * z) * (0 * y) \in X \setminus G_n$ and $z \in X \setminus G_n$,
- 2. $(x * z) * (0 * y) \in G_{n-1}$ and $z \in G_{n-1}$,
- 3. $(x * z) * (0 * y) \in X \setminus G_n$ and $z \in G_{n-1}$,
- 4. $(x * z) * (0 * y) \in G_{n-1}$ and $z \in X \setminus G_n$.

But, in either case, we know that

$$\mu_A(y * x) \ge \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\},\$$

$$\gamma_A(y * x) \le \max\{\gamma_A((x * z) * (0 * y)), \gamma_A(z)\}.$$

If $(x * z) * (0 * y) \in G_n^*$ and $z \notin G_n^*$, then either $z \in G_{n-1}$ or $z \in X \setminus G_n$. It follows that either $y * x \in G_n$ or $y * x \in X \setminus G_n$. Thus

$$\mu_A(y * x) \ge \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\},\$$

$$\gamma_A(y \ast x) \le \max\{\gamma_A((x \ast z) \ast (0 \ast y)), \gamma_A(z)\}.$$

If $(x * z) * (0 * y) \notin G_n^*$ and $z \in G_n^*$, then by similar process we have

$$\mu_A(y * x) \ge \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\},\$$

$$\gamma_A(y * x) \le \max\{\gamma_A((x * z) * (0 * y)), \gamma_A(z)\}.$$

This completes the proof.

Theorem 3.16. Let $\{G_{\alpha} \mid \alpha \in \Lambda \subseteq [0, \frac{1}{2}]\}$ be a finite collection of a-ideals of X such that $X = \bigcup_{\alpha \in \Lambda} G_{\alpha}$, and for every $\alpha, \beta \in \Lambda$, $\alpha < \beta$ if and only if $G_{\beta} \subset G_{\alpha}$. Then an IFS $A = \langle X, \mu_A, \gamma_A \rangle$ in X defined by

$$\mu_A(x) = \sup\{\alpha \in \Lambda \mid x \in G_\alpha\} \text{ and } \gamma_A(x) = \inf\{\alpha \in \Lambda \mid x \in G_\alpha\}$$

for all $x \in X$ is an intuitionistic fuzzy a-ideal of X.

Proof. According to Corollary 3.12, it is sufficient to show that the nonempty sets $U(\mu_A; \alpha)$ and $L(\gamma_A; \beta)$ are *a*-ideals of X for every $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \leq 1$. In order to show that $U(\mu_A; \alpha)$ is an *a*-ideal, we divide into the following two cases:

(i)
$$\alpha = \sup\{\delta \in \Lambda \mid \delta < \alpha\}$$
 and (ii) $\alpha \neq \sup\{\delta \in \Lambda \mid \delta < \alpha\}$.

Case (i) implies that

$$x \in U(\mu_A; \alpha) \Leftrightarrow x \in G_{\delta} \text{ for all } \delta < \alpha$$
$$\Leftrightarrow x \in \bigcap_{\delta < \alpha} G_{\delta},$$

so that $U(\mu_A; \alpha) = \bigcap_{\delta < \alpha} G_{\delta}$, which is an *a*-ideal of *X*. For the case (ii), we claim that $U(\mu_A; \alpha) = \bigcup_{\delta \ge \alpha} G_{\delta}$. If $x \in \bigcup_{\delta \ge \alpha} G_{\delta}$, then $x \in G_{\delta}$ for some $\delta \ge \alpha$. It follows that $\mu_A(x) \ge \delta \ge \alpha$ so that $x \in U(\mu_A; \alpha)$. This proves that $\bigcup_{\delta \ge \alpha} G_{\delta} \subset U(\mu_A; \alpha)$. Now assume that $x \notin \bigcup_{\delta \ge \alpha} G_{\delta}$. Then $x \notin G_{\delta}$ for all $\delta \ge \alpha$. Since $\alpha \neq \sup\{\delta \in \Lambda \mid \delta < \alpha\}$, there exists $\varepsilon > 0$ such that $(\alpha - \varepsilon, \alpha) \cap \Lambda = \emptyset$. Hence $x \notin G_{\delta}$ for all $\delta > \alpha - \varepsilon$, which means that if $x \in G_{\delta}$ then $\delta \le \alpha - \varepsilon$. Thus $\mu_A(x) \le \alpha - \varepsilon < \alpha$, and so $x \notin U(\mu_A; \alpha)$. Therefore $U(\mu_A; \alpha) = \bigcup_{\delta \ge \alpha} G_{\delta}$. Next we show that $L(\gamma_A; \beta)$ is an *a*-ideal of *X* for all $\beta \in [\gamma_A(0), 1]$. We consider the following two cases:

(iii)
$$\beta = \inf\{\delta \in \Lambda \mid \beta < \delta\}$$
 and (iv) $\beta \neq \inf\{\delta \in \Lambda \mid \beta < \delta\}.$

For the case (iii) we have

$$x \in L(\gamma_A; \beta) \Leftrightarrow x \in G_{\delta} \text{ for all } \beta < \delta$$
$$\Leftrightarrow x \in \bigcap_{\beta < \delta} G_{\delta},$$

and hence $L(\gamma_A; \beta) = \bigcap_{\beta < \delta} G_{\delta}$, which is an *a*-ideal of *X*. For the case (iv), we will show that $L(\gamma_A; \beta) = \bigcup_{\beta \ge \delta} G_{\delta}$. If $x \in \bigcup_{\beta \ge \delta} G_{\delta}$, then $x \in G_{\delta}$ for some $\beta \ge \delta$. It follows that $\gamma_A(x) \le \delta \le \beta$ so that $x \in L(\gamma_A; \beta)$. Hence $\bigcup_{\beta \ge \delta} G_{\delta} \subset L(\gamma_A; \beta)$. Conversely, if $x \notin \bigcup_{\beta \ge \delta} G_{\delta}$ then $x \notin G_{\delta}$ for all $\delta \le \beta$. Since $\beta \ne \inf\{\delta \in \Lambda \mid \beta < \delta\}$, there exists $\varepsilon > 0$ such that $(\beta, \beta + \varepsilon) \cap \Lambda = \emptyset$, which implies that $x \notin G_{\delta}$ for all $\delta < \beta + \varepsilon$, that is, if $x \in G_{\delta}$ then $\delta \ge \beta + \varepsilon$. Thus $\gamma_A(x) \ge \beta + \varepsilon > \beta$, that is, $x \notin L(\gamma_A; \beta)$. Therefore $L(\gamma_A; \beta) \subset \bigcup_{\beta \ge \delta} G_{\delta}$ and consequently $L(\gamma_A; \beta) = \bigcup_{\beta \ge \delta} G_{\delta}$. This completes the proof. \Box

Theorem 3.17. Let $A = \langle X, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy a-ideal of X with the finite image. Then every descending chain of a-ideals of X terminates at finite step.

Proof. Suppose that there exists a strictly descending chain $G_0 \supset G_1 \supset G_2 \supset \cdots$ of *a*-ideals of X which does not terminate at finite step. Define an IFS $A = \langle X, \mu_A, \gamma_A \rangle$ in X by

$$\mu_A(x) := \begin{cases} \frac{n}{n+1} & \text{if } x \in G_n \setminus G_{n+1}, n = 0, 1, 2, \cdots, \\ 1 & \text{if } x \in \bigcap_{n=0}^{\infty} G_n, \end{cases}$$
$$\gamma_A(x) := \begin{cases} \frac{1}{n+1} & \text{if } x \in G_n \setminus G_{n+1}, n = 0, 1, 2, \cdots, \\ 0 & \text{if } x \in \bigcap_{n=0}^{\infty} G_n, \end{cases}$$

where G_0 stands for X. We prove that $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy *a*-ideal of X. Clearly $\mu_A(0) \ge \mu_A(x)$ and $\gamma_A(x) \le \gamma_A(0)$ for all $x \in X$. Let $x, y, z \in X$. Assume that $(x * z) * (0 * y) \in G_n \setminus G_{n+1}$ and $z \in G_k \setminus G_{k+1}$ for $n = 0, 1, 2, \dots$; $k = 0, 1, 2, \dots$. Without loss of generality, we may assume that $n \le k$. Then obviously $z \in G_n$, and so $y * x \in G_n$ because G_n is an *a*-ideal of X. Hence

$$\mu_A(y * x) \ge \frac{n}{n+1} = \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\}$$

$$\gamma_A(y * x) \le \frac{1}{n+1} = \max\{\gamma_A((x * z) * (0 * y)), \gamma_A(z)\}.$$

If $(x * z) * (0 * y), z \in \bigcap_{n=0}^{\infty} G_n$, then $y * x \in \bigcap_{n=0}^{\infty} G_n$. Thus $\mu_A(y * x) = 1 = \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\},\$

$$\gamma_A(y * x) = 0 = \max\{\gamma_A((x * z) * (0 * y)), \gamma_A(z)\}$$

If $(x * z) * (0 * y) \notin \bigcap_{n=0}^{\infty} G_n$ and $z \in \bigcap_{n=0}^{\infty} G_n$, then there exists $k \in \mathbb{N}$ such that $(x * z) * (0 * y) \in G_k \setminus G_{k+1}$. It follows that $y * x \in G_k$ so that

$$\mu_A(y * x) \ge \frac{k}{k+1} = \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\},\$$

$$\gamma_A(y * x) \le \frac{1}{k+1} = \max\{\gamma_A((x * z) * (0 * y)), \gamma_A(z)\}.$$

Finally suppose that $(x * z) * (0 * y) \in \bigcap_{n=0}^{\infty} G_n$ and $z \notin \bigcap_{n=0}^{\infty} G_n$. Then $z \in G_r \setminus G_{r+1}$ for some $r \in \mathbb{N}$. Hence $y * x \in G_r$, and so

$$\mu_A(y * x) \ge \frac{r}{r+1} = \min\{\mu_A((x * z) * (0 * y)), \mu_A(z)\},\$$
$$\gamma_A(y * x) \le \frac{1}{r+1} = \max\{\gamma_A((x * z) * (0 * y)), \gamma_A(z)\}.$$

Consequently, we conclude that $A = \langle X, \mu_A, \gamma_A \rangle$ is an intuitionistic fuzzy *a*-ideal of X and $A = \langle X, \mu_A, \gamma_A \rangle$ has infinite number of different values. This is a contradiction, and the proof is complete.

Finally, we consider the converse of Theorem 3.17.

Theorem 3.18. Let X be a BCI-algebra in which every descending chain of a-ideals terminates at finite step. For an intuitionistic fuzzy a-ideal $A = \langle X, \mu_A, \gamma_A \rangle$ of X, if a sequence of elements of Im(A) is strictly intuitionistic increasing, that is, a sequence of elements of Im(μ_A) is strictly increasing and a sequence of elements of Im(γ_A) is strictly decreasing, then $A = \langle X, \mu_A, \gamma_A \rangle$ has finite number of intuitionistic values, that is, μ_A and γ_A have finite number of values.

Proof. Suppose that $\text{Im}(\mu_A)$ is not finite. Let $\{\alpha_n\}$ be a strictly increasing sequence of elements of $\text{Im}(\mu_A)$. Then $0 \le \alpha_1 < \alpha_2 < \cdots \le 1$. Define

$$U(\mu_A; t) := \{ x \in X \mid \mu_A(x) \ge \alpha_t \}$$

for $t = 2, 3, \cdots$. Then $U(\mu_A; t)$ is an *a*-ideal of *X*. Let $x \in U(\mu_A; t)$. Then $\mu_A(x) \ge \alpha_t > \alpha_{t-1}$, which implies that $x \in U(\mu_A; t-1)$. Hence $U(\mu_A; t) \subseteq U(\mu_A; t-1)$. Since $\alpha_{t-1} \in \operatorname{Im}(\mu_A)$, there exists $x_{t-1} \in X$ such that $\mu_A(x_{t-1}) = \alpha_{t-1}$. It follows that $x_{t-1} \in U(\mu_A; t-1)$, but $x_{t-1} \notin U(\mu_A; t)$. Thus $U(\mu_A; t)$ is a proper subset of $U(\mu_A; t-1)$, and so we obtain a strictly descending chain

$$U(\mu_A; 1) \supset U(\mu_A; 2) \supset U(\mu_A; 3) \supset \cdots$$

of *a*-ideals of X which is not terminating. This is a contradiction. Now assume that $\operatorname{Im}(\gamma_A)$ is not finite. Let $\{\beta_n\}$ be a strictly decreasing sequence of elements of $\operatorname{Im}(\gamma_A)$. Then $1 \geq \beta_1 > \beta_2 > \beta_3 > \cdots \geq 0$. Note that

$$L(\gamma_A; k) := \{ x \in X \mid \gamma_A(x) \le \beta_k \}$$

is an *a*-ideal of X for $k = 2, 3, \cdots$. If $z \in L(\gamma_A; k)$, then $\gamma_A(z) \leq \beta_k < \beta_{k-1}$ and so $z \in L(\gamma_A; k-1)$. This shows that $L(\gamma_A; k) \subseteq L(\gamma_A; k-1)$. Since $\beta_{k-1} \in Im(\gamma_A)$, we have $\gamma_A(y_{k-1}) = \beta_{k-1}$ for some $y_{k-1} \in X$. Hence $y_{k-1} \in L(\gamma_A; k-1)$, but $y_{k-1} \notin L(\gamma_A; k)$. Therefore $L(\gamma_A; k)$ is a proper subset of $L(\gamma_A; k-1)$, and thus we get a strictly descending chain

$$L(\gamma_A; 1) \supset L(\gamma_A; 2) \supset L(\gamma_A; 3) \supset \cdots$$

of *a*-ideals of X which is not terminating. This is impossible, and the proof is complete. \Box

References

 K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems 20 (1986), 87–96.

- K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994), 137–142.
- [3] K. T. Atanassov, *Intuitionistic fuzzy sets. Theory and applications*, Studies in Fuzziness and Soft Computing, **35**. Heidelberg; Physica-Verlag 1999.
- Y. B. Jun, Fuzzy quasi-associative ideals in BCI-algebras, J. Fuzzy Math. 4(3) (1996), 567–581.
- [5] Y. B. Jun and K. H. Kim, Intuitionistic fuzzy ideals of BCK-algebras, Internat. J. Math. & Math. Sci. 24(12) (2000), 839–849.
- [6] Y. L. Liu and J. Meng, q-ideals and a-ideals in BCI-algebras, Southeast Asian Bull. Math. 24 (2000), 243–253.
- [7] Y. L. Liu and X. H. Zhang, Fuzzy a-ideals of BCI-algebras, Adv. Math. (China) **31** (2002), no. 1, 65–73.
- [8] Z. Yue and X. H. Zhang, Quasi-associative ideals in BCI-algebras, Select Papers on BCK and BCI-algebras (in P. R. China) 1 (1992), 85–86.
- [9] L. A. Zadeh, *Fuzzy sets*, Inform. Control 8 (1965), 338–353.

Received: May 10, 2007