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Abstract A decade ago, Isham and Butterfield proposed a topos-theoretic approach
to quantum mechanics, which meanwhile has been extended by Döring and Isham so
as to provide a new mathematical foundation for all of physics. Last year, three of the
present authors redeveloped and refined these ideas by combining the C*-algebraic
approach to quantum theory with the so-called internal language of topos theory
(Heunen et al. in arXiv:0709.4364). The goal of the present paper is to illustrate our
abstract setup through the concrete example of the C*-algebra Mn(C) of complex
n × n matrices. This leads to an explicit expression for the pointfree quantum phase
space !n and the associated logical structure and Gelfand transform of an n-level
system. We also determine the pertinent non-probabilisitic state-proposition pairing
(or valuation) and give a very natural topos-theoretic reformulation of the Kochen–
Specker Theorem.

In our approach, the nondistributive lattice P (Mn(C)) of projections in Mn(C)

(which forms the basis of the traditional quantum logic of Birkhoff and von Neu-
mann) is replaced by a specific distributive lattice O(!n) of functions from the poset
C(Mn(C)) of all unital commutative C*-subalgebras C of Mn(C) to P (Mn(C)). The
lattice O(!n) is essentially the (pointfree) topology of the quantum phase space !n,
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and as such defines a Heyting algebra. Each element of O(!n) corresponds to a
“Bohrified” proposition, in the sense that to each classical context C ∈ C(Mn(C))

it associates a yes-no question (i.e. an element of the Boolean lattice P (C) of pro-
jections in C), rather than being a single projection as in standard quantum logic.
Distributivity is recovered at the expense of the law of the excluded middle (Tertium
Non Datur), whose demise is in our opinion to be welcomed, not just in intuitionistic
logic in the spirit of Brouwer, but also in quantum logic in the spirit of von Neumann.

Keywords Quantum logic · Topos theory · Intuitionistic logic

‘All departures from common language and ordinary logic are entirely avoided by reserving the word
“phenomenon” solely for reference to unambiguously communicable information, in the account of
which the word “measurement” is used in its plain meaning of standardized comparison.’ (N. Bohr [4])

1 Introduction

The main novelty of quantum mechanics, which also lies at the root of the difficulties
in interpreting this theory, is the property that its truth attributions are ontologically
(and not just epistemically) probabilistic. That is, if a ∈ " denotes the proposition
that an observable a (represented by a self-adjoint operator on a Hilbert space H )
takes values in a (measurable) subset " ⊂ R, then even a pure state ψ (represented
by a unit vector $ in H ) only gives a probabilistic truth attribution through the Born
rule

〈ψ, a ∈"〉 = ‖[a ∈"]$‖2. (1.1)

Here the left-hand side denotes the probability that a ∈ " is true in the state ψ ,
and the expression [a ∈ "] in the right-hand side stands for the spectral projection
defined by a and " (often written as E(") with a understood). In particular, unless
$ lies either in the image of [a ∈ "] (so that the right-hand side equals one), or in
the orthogonal complement thereof (in which case it is zero), one cannot say without
running into contradictions whether or not the proposition a ∈" is true.

One of the aims of the topos-theoretic approach to quantum theory initiated by
Isham and Butterfield [5, 22] (and subsequently extended by Döring and Isham so
as to provide a new mathematical foundation for all of physics [11–14]) is to define
non-probabilistic truth attributions. Since one cannot just go back to classical physics,
the price one has to pay for this is that such attributions do not take values in the
set {0,1} (identified with {false, true}), but in some more general and abstract “truth
object” %. Topos theory1 provides natural candidates for such objects (under the

1This paper requires some familiarity with elementary category theory at the level of the first few chapters
of [33]. The Appendix below contains sufficient information on topos theory to read this paper; as a general
introduction to topos theory we recommend [16] for beginners and [34] for readers already familiar with
category theory. For the moment, it suffices to know that a topos is a category in which most mathematical
reasoning that one is familiar with in the category Sets of sets and functions continues to make sense, with
the exception that all proofs now have to be constructive (in the sense that in principle neither the law of
excluded middle nor the axiom of choice may be used).
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name of subobject classifiers), and therefore seems to provide an appropriate tool for
the search for the non-probabilistic essence of quantum theory.

To explain our setup, let us go back to classical physics for a moment. Let M be
the phase space of some physical system, with topology O(M) (i.e. the subset of
the power set of M consisting of all open sets in M). We represent observables by
continuous functions a : M → R, and once again consider propositions of the form
a ∈ ", with " ⊂ R open. For a pure state x ∈ M , we say that a ∈ " is true in x iff
a(x) ∈" or, equivalently, iff x ∈ a−1("). Otherwise, a ∈" is false. We now claim
that the above truth attribution to the proposition a ∈" by the pure state x, which we
call 〈x, a ∈"〉, may be captured in categorical terms in the following way [19]:

(
1

〈x,a∈"〉−→ %
)

=
(
1

[a∈"]−→ O(M)
[δx=1]−→ %

)
. (1.2)

First, all objects and arrows are taken to be in Sets. For example, 1 denotes an ar-
bitrary but fixed singleton set; elements a ∈ A are identified with arrows a : 1 → A.
Thus 〈x, a ∈ "〉 : 1 → % on the left-hand side denotes a specific element of the set
% = {0,1} (identified with {true, false}, as above). Similarly, [a ∈ "] : 1 → O(M)
denotes an element of the set O(M), i.e. an open subset of M , namely a−1("). Thus
opens in M may be identified with equivalence classes of propositions of the type
a ∈": the latter defines the open [a ∈"] = a−1("), and conversely S ∈ O(M) cor-
responds to the equivalence class of all propositions a ∈" for which a−1(") = S.

Subsequently, let δx be the Dirac measure on M , defined by δx(U) = 1 if x ∈ U
and δx(U) = 0 if not. For technical reasons, like all probability measures we regard
δx as a map δx : O(M) → R+ (rather than as a map defined on all measurable subsets
of M ; this entails no loss of generality if M is locally compact and Hausdorff). The
notation {δx = 1} : O(M) →% stands for

[δx = 1] = χ{U∈O(M)|x∈U}, (1.3)

i.e. the function that maps U ∈ O(M) to 1 whenever δx(U) = 1, i.e. whenever x ∈ U ,
and to 0 otherwise. Finally, (1.2) means that the arrow on the left-hand side is defined
as the composition of the two arrows on the right-hand side; we invite the reader to
check that the ensuing element 〈x, a ∈ "〉 ∈ {0,1} indeed equals 1 when a(x) ∈ "
and equals zero otherwise.

Returning to the opening of this Introduction, in von Neumann’s approach to quan-
tum mechanics, phase space M is replaced by Hilbert space H , its topology O(M)
is replaced by the lattice P (B(H)) of projections on H , x ∈ M becomes a unit vec-
tor $ ∈ H , the arrow [a ∈"] : 1 → P (B(H)) now stands for the spectral projection
E(") defined by a, and %= {0,1} is turned into the interval [0,1]. Finally, the per-
tinent map P (B(H)) → [0,1] is given by p )→ ‖p$‖2. This recovers the Born rule
(1.1), but the categorical formulation does not add anything to its understanding.
Instead, our slogan is: truth is prior to probability. Thus we will first construct a non-
probabilistic state-proposition pairing, which only in a second step will presumably
reproduce the Born rule.2

2To accomplish this, the derivation of the Born rule in [32] will have to be combined with the results of
the present paper. The idea of a non-probabilistic state-proposition pairing (or valuation, as they called it)
is due to Isham and Butterfield [5, 22].
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Our main ingredient is a novel quantum analogue of classical phase space, or
rather of its topology, given by the notion of a frame (see Sect. A.3). A frame is
a generalized topology, so that we will denote the frame representing our quantum
phase space by O(!), even though there is no actual underlying space ! whose
topology it is; we will occasionally even use the symbol ! itself and refer to it as a
“virtual” (or “pointfree”) space.3 The main reason why we prefer frames to lattices of
projections on Hilbert space (or to more general orthomodular lattices) is that in their
guise of Heyting algebras, frames offer an intuitionistic logic for quantum mechanics,
which in being distributive is superior to the traditional quantum logic of Birkhoff and
von Neumann [2, 35, 38]. Namely, we feel the latter is:

• too radical in giving up distributivity (for one thing rendering it problematic to
interpret the logical operations ∧ and ∨ as conjunction and disjunction, respec-
tively);

• not radical enough in keeping the law of excluded middle (so that it falls victim to
Schrödinger’s cat and the like).

Indeed, the quantum logical structure carried by our quantum phase space ! has
exactly the opposite features: it is distributive but drops the law of excluded middle.4

In principle, our formalism is capable of coping with the most general quantum
systems, described by some unital C*-algebra A of observables, but in what follows
the reader may simply keep the case A = Mn(C) in mind, to which we will special-
ize in the main body of the paper. The construction of O(!) is based on a specific
reading of Bohr’s ‘doctrine of classical concepts’ [3], which, roughly speaking, ex-
presses that the quantum world can only be seen through classical glasses. We adopt
a very specific mathematical reading of this philosophy, namely that a noncommuta-
tive algebra of observables A of some quantum system has to be studied through its
(unital) commutative C*-subalgebras [31]. Hence we form the poset C(A) of all such
subalgebras, partially ordered by (set-theoretic) inclusion (i.e. C ≤ D iff C ⊆ D). We
then form the topos

T (A) = SetsC(A) (1.4)

of (covariant) functors from C(A), seen as a category, to Sets (cf. Sect. A.1). We will
underline objects in T (A). As a case in point, we define the tautological functor

A : C )→ C, (1.5)

which maps a point C ∈ C(A) to the corresponding commutative C*-algebra C ⊂ A

(seen as a set); for C ⊆ D the map A(C ≤ D) : A(C) → A(D) is just the inclusion
C ↪→ D. We call A the Bohrification of A. The key point is that A is a commuta-
tive C*-algebra in T (A) under natural operations (see [19]), so that according to the
general theory of commutative C*-algebras in topoi [1] it has a Gelfand spectrum.
The latter, called O(!), is a frame and hence at the same time a Heyting algebra in

3Similarly, in noncommutative geometry it has become quite customary to speak of “noncommutative
spaces” without there actually being an underlying space in the classical sense.
4See [6] for a different intuitionistic perspective on quantum logic, which we will explore separately.
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the topos T (A), carrying the (intuitionistic) logical structure of A. This structure is
defined within the topos T (A) (i.e., “internally”), and as such is hard to understand.
Fortunately, O(!) admits a so-called “external” description through an associated
frame (and hence Heyting algebra) in Sets, called O(!), which in many ways be-
haves like the topology of an underlying “quantum phase space” ! of the system. Its
explicit description (3.5) is one of the central results of this paper. Even if A is a von
Neumann algebra (which is the case in our running example A = Mn(C)), so that the
projection lattice P (A) is a quantum logic in the sense of Birkhoff and von Neumann
[36], the intuitionistic (and hence distributive) quantum logic carried by O(!) as a
Heyting algebra is quite different from the (nondistributive) quantum logic defined
by P (A).

In the classical case of a commutative C*-algebra A in Sets, the Riesz represen-
tation theorem yields a bijective correspondence between states on A and probability
measures µ on the Gelfand spectrum ! of A (i.e. the locally compact Hausdorff space
for which A ∼= C(!,C)). This generalizes: a state on the initial (possibly noncom-
mutative) C*-algebra A in Sets defines a probability measure µ on the spectrum ! of
the Bohrification A of A [19]. To make this analogy technically correct, though, one
has to redefine the notion of a measure on a topological space as a map whose domain
is the collection of open sets (rather than Borel sets), and whose image is the set of
positive lower reals R+

l (rather than Dedekind reals) [26]. This redefinition is obvious
in one direction:5 a measure µ in the usual sense may simply be restricted to the open
sets, and some value q = µ(U) defines the lower real ↓q = {r ∈ Q | r < q} ∈ Rl .

Consequently, each state ψ on A defines a probability “measure” µ on ! in the
technical sense of an arrow

O(!)
µ→ R+

l (1.6)

in T (A), where R+
l denotes the positive lower reals in the topos T (A) (cf. Sect. A.3).

One has an obvious arrow 1
↓1→ R+

l (where 1 is the terminal object in T (A),
see Sect. A.2), and hence a composite arrow

(
O(!)

1→ R+
l

)
=

(
O(!)

∃!−→ 1
↓1→ R+

l

)
. (1.7)

Now, whenever one has a pair of arrows X
σ→ Y and X

τ→ Y in a topos T , one

obtains an arrow X
[σ=τ]−→ %, where % is the subobject classifier in T [34]. Applying

this to (1.6) and (1.7), we obtain an arrow O(!)
[µ=1]−→ %, which we compose with an

arrow 1
S→ O(!); the latter plays the role of an open subset S of ! and defines an

elementary propositions, exactly as in classical physics.
Our non-probabilistic state-proposition pairing 〈ψ, S〉, then, is obtained by com-

bining these arrows as in

(
1

〈ψ,S〉−→ %
)

=
(
1

S→ O(!)
[µ=1]−→ %

)
. (1.8)

5See [10] for the general theory. It would be more correct to speak of a valuation rather than a measure.
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This is our Umdeutung [18] or “quantum-mechanical reinterpretation” of the corre-
sponding classical expression

(
1

〈x,S〉−→%
)

=
(
1

S−→ O(M)
[δx=1]−→ %

)
, (1.9)

which is obtained from (1.2) by replacing the open subset [a ∈ "] = a−1(") by an
arbitrary open S ∈ O(M).6

The plan of this paper is as follows. Following some preliminary calculations in
Sect. 2, we explicitly compute the Gelfand spectrum of Mn(C) in Sect. 3. By defini-
tion, this yields our quantum phase space, both in its internal description O(!) and
in its external description O(!). The latter carries the intuitionistic logical structure
of an n-level quantum system, which is explicitly described in Sect. 4. In fact, this
section can be understood without any knowledge of topos theory, based as it is on
the concrete expression (3.5) for O(!). Section 5 is a rather technical intermezzo, in
which we explicitly compute the Gelfand transform of the Bohrification A. This ma-
terial is instructive in itself, but it is also necessary preparation for Sect. 6, which
elaborates our formulation of the Kochen–Specker Theorem [19] in the spirit of
Isham and Butterfield [5, 22], i.e. as claiming the nonexistence of points of a certain
“space”. Our space, however appears to us to be much more natural than the one in
[5, 22]. Furthermore, our reformulation suggests a new proof of the Kochen–Specker
Theorem on the basis of intrinsic tools from topos theory (as opposed to previous
topos-theoretic reformulations of this theorem [5, 19, 22] whose proofs relied on the
original theorem [28]). In Sect. 7 we compute the non-probabilistic state-proposition
pairing explained above, leading to the explicit formula (7.2). Section 8 gives a con-
crete parametrization of the poset C(A) of unital commutative C*-subalgebras of A.
Finally, the Appendix in three parts gives some background on sheaf theory, topos
theory, and Heyting algebras and frames, respectively.

2 A Fresh Look at the Spectrum of Cn

We assume all C*-algebras to have a unit. The Gelfand spectrum !A of a commuta-
tive C*-algebra A (denoted by ! whenever it is clear which A is meant) is usually
defined as the set of nonzero multiplicative linear functionals on A, and coincides
with the pure state space of A. It is necessary for our purposes to deal with the
(Gelfand) topology O(!A) directly, equipped with its natural structure as a frame
(cf. Sect. A.3). This frame can be constructed in a way that generalizes to commuta-
tive C*-algebras in topoi. This was first shown by Banaschewski and Mulvey (see [1]
and references to earlier work therein), but for our present computational purposes
it is more convenient to follow the reformulation of the constructive theory of the
Gelfand spectrum in [7] (see also [8, 9, 19]). In what follows, Asa = {a ∈ A | a∗ = a}
denotes the self-adjoint part of a C*-algebra A, and A+ = {a ∈ Asa | a ≥ 0} is its
positive cone.

6There is also a rather complicated “quantum-mechanical reinterpretation” of the classical expression
a−1(") as an arrow [a ∈"] : 1 → O(!), namely the ‘Daseinization’ map originally proposed by Döring
and Isham [11–14] as redefined in [19].
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1. The positive cone A+ of a commutative C*-algebra A is a distributive lattice.
Define an equivalence relation ∼ on A+ by putting a ∼ b whenever there are
integers n,m ∈ N such that a ≤ nb and b ≤ ma. The quotient

LA = A+/ ∼ (2.1)

is again a distributive lattice. Decomposing a ∈ Asa as a = a+ − a− (with
a± ∈ A+) in the usual way, there is a surjective lattice homomorphism Asa → LA

given by a )→ [a+] (which restricts to the canonical projection A+ → LA for
a ∈ A+).

2. For a ∈ A+ with image [a] ∈ LA and U ∈ P(LA) (i.e. the power set of LA), we
say that [a] ! U iff for all q > 0 there exists a finite subset U0 ⊆ U such that
[(a − q · 1)+] ≤ ∨

U0.
3. The frame O(!A) is given by

O(!A) = {U ∈ DLA | x ! U ⇒ x ∈ U}, (2.2)

where DLA is the poset of all lower sets in LA, ordered by set-theoretic inclusion.7

This procedure simplifies when A is finite-dimensional, in which case LA is a
finite lattice. In that case, since [(a − q)+] = [a] for small enough q , one simply
has x ! U iff x ≤ ∨

U , and the condition x ! U ⇒ x ∈ U in (2.2) holds iff U is a
(principal) down set, i.e. U =↓x for some x ∈ LA (not the same x as the placeholder
x in (2.2)). Hence for finite-dimensional A we have

O(!A) = {↓x | x ∈ LA}. (2.3)

For A = Cn, step 1 yields A+ = (Rn)+. One has (r1, . . . , rn) ∼ (s1, . . . , sn) just in
case that ri = 0 iff si = 0 for all i = 1, . . . , n. Hence each equivalence class under ∼
has a unique representative of the form [k1, . . . , kn] with ki = 0 or ki = 1; the preim-
ages of such an element of LA in A+ under the natural projection A+ → A+/ ∼
are the diagonal matrices whose i’th entry is zero if ki = 0 and any nonzero positive
number if ki = 1. The partial order in LA is pointwise, i.e. [k1, . . . , kn] ≤ [l1, . . . , ln]
iff ki ≤ li for all i. Hence LCn is isomorphic as a distributive lattice to the lattice
P (Cn) of projections in Cn, i.e. the lattice of those projections in Mn(C) that are
diagonal matrices: under this isomorphism [k1, . . . , kn] corresponds to the diagonal
matrix diag(k1, . . . , kn). If we equip P (Cn) with the usual partial ordering of projec-
tions on the Hilbert space Cn, viz. p ≤ q whenever p Cn ⊆ q Cn (which coincides
with their ordering as element of positive cone of the C*-algebra Mn(C)), then this
is even a lattice isomorphism.

Consequently, O(!Cn) consists of all sets of the form ↓p, p ∈ P (Cn), partially
ordered by inclusion. Of course, this means that

O(!Cn) ∼= P (Cn), (2.4)

under the further identification of ↓p ∈ P(P (Cn)) with p ∈ P (Cn). This starts out
just as an isomorphism of posets, and turns out to be one of frames (which in the

7A lower set in a poset P is a subset L ⊆ P such that x ∈ L and y ≤ x implies y ∈ L.
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case at hand happen to be Boolean). To draw the connection with the usual spectrum
Ĉn = {1,2, . . . , n} of Cn, we note that the right-hand side of (2.4) is isomorphic to
the discrete topology O(Ĉn) = P(Ĉn) of Ĉn under the isomorphism (of lattices and
even of frames)

P (Cn)
∼=→ O(Ĉn);

diag(k1, . . . , kn) )→ {i ∈ {1,2, . . . , n} | ki = 1}.
(2.5)

We now describe the Gelfand transform, which in general is given by

A
∼=→ C(!,C);

a )→ â;
â(ω) = ω(a).

(2.6)

Let a = (a1, . . . , an) ∈ Cn
sa = Rn. With ! realized as Ĉn, this just reads

â(i) = ai, (2.7)

for â : Ĉn → C. The induced frame map is given by

â−1 : O(C) → O(Ĉn);
U )→ {i ∈ {1,2, . . . , n} | ai ∈ U}.

(2.8)

By (2.5), this is equivalent to

â−1 : O(C) → P (Cn);
U )→ diag(χU(a1), . . . ,χU(an)).

(2.9)

For a = a∗ we may regard the Gelfand transform as an isomorphism Asa
∼=→ C(!,R),

and (2.9) may be rewritten as

â−1 : O(R) → P (Cn);
U )→ [a ∈ U ],

(2.10)

where U ∈ O(R), and the right-hand side denotes the spectral projection χU(a) de-
fined by the self-adjoint operator a on the Hilbert space Cn.

Finally, we write the usual correspondence between states ψ on a commutative
C*-algebra A and probability measures µψ ≡ µ on its spectrum ! in a way that can
be generalized to topos theory. In the usual setting, one may define the value of µ on
each open E ∈ O(!) by means of

µ(E) = sup{ψ(a) | 0 ≤ a ≤ 1, supp(â) ⊂ E}, (2.11)

where instead of 0 ≤ a ≤ 1 we could just as well write 0 ≤ â ≤ 1. Using (2.4), for
A = Cn this implies that µ : P (Cn) → R+ is given by

µ(p) =ψ(p). (2.12)
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3 Spectrum of the Bohrification of Mn(C)

We now use the insights of the previous section to compute the spectrum !A—more
precisely, its associated frame O(!A)—of the Bohrification A of A = Mn(C) in the
topos T (A). This may be done by implementing the three-step program of the pre-
vious section, giving the appropriate topos-theoretical meanings to the various con-
structions involved.8 For simplicity we write L for the lattice LA in T (A); similarly,
! stands for !A.

To begin with, for arbitrary A the lattice L can be computed “locally”, in the
sense that L(C) = LC [19], so that by (2.1) one has L(C) = C+/ ∼. Let P (C) be the
(Boolean) lattice of projections in C, and consider the functor C )→ P (C), where the
arrow C ⊆ D in C(A) induces the inclusion map P (C) ↪→ P (D). It follows (cf. the
preceding section) that we may identify L(C) with P (C) and hence we may identify
the functor L with the functor P . We will make this identification in what follows.

Second, whereas in Sets (2.3) makes O(!) a subset of L, in the topos T (A) the
frame O(!) is a subobject O(!) "%L, where % is the subobject classifier in T (A).
It then follows from (A.14) that O(!)(C) is a certain subset of Sub(P↑C), the set of
subfunctors of the functor P : C(A) → Sets restricted to ↑C ⊂ C(A). To explain
which subset, define

Subd(P↑C) = {S̃ ∈ Sub(P↑C) | ∀D ⊇ C ∃xD ∈ P (D) : S̃(D) =↓xD}. (3.1)

In other words, Subd(P↑C) consists of those subfunctors S of P↑C that are locally
(principal) down-sets. It then follows from (2.3) and the local interpretation of the
relation ! in T (A) [19] that the subobject O(!) "%L in T (A) is the functor

O(!)(C) = Subd(P↑C); (3.2)

the map

O(!)(C ≤ D) : O(!)(C) → O(!)(D),

defined whenever C ⊆ D, is inherited from %L (of which O(!) is a subobject), and
hence is just given by restricting an element of O(!)(C) to ↑D.

Writing

Subd(P ) = {S̃ ∈ Sub(P ) | ∀D ∈ C(A) ∃xD ∈ P (D) : S̃(D) =↓xD}, (3.3)

it is convenient to embed Subd(P↑C) ⊆ Subd(P ) by requiring elements of the left-
hand side to vanish whenever D does not contain C. We also note that if S̃ is to be a
subfunctor of P↑C , one must have S̃(D) ⊆ S̃(E) whenever D ⊆ E, and that ↓xD ⊆↓
xE iff xD ≤ xE in P (E). Thus one may simply describe elements of O(!)(C) via
maps S : C(A) → P (A) such that:

1. S(D) ∈ P (D);
2. S(D) = 0 whenever D /∈↑C (i.e. whenever C ! D);

8Technically, this means that one has to use the internal or Mitchell-Bénabou language of the topos.
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3. S(D) ≤ S(E) whenever C ⊆ D ⊆ E.

The corresponding element S̃ of O(!)(C) is then given by

S̃(D) = ↓S(D), (3.4)

seen as a subset of P (D). Hence it is convenient to introduce the notation

O(!) = {S : C(A) → P (A) | S(D) ∈ P (D), S(D) ≤ S(E) if D ⊆ E}; (3.5)

O(!)↑C = {S :↑C → P (A) | S(D) ∈ P (D), S(D) ≤ S(E) if D ⊆ E}, (3.6)

in terms of which we have isomorphisms

O(!)(C · 1) ∼= O(!); (3.7)

O(!)(C) ∼= O(!)↑C (3.8)

of posets and even of frames, provided we define the partial order on O(!) and
O(!)↑C pointwise with respect to the usual ordering of projections, i.e.

S ≤ T ⇔ S(D) ≤ T (D) for all D ∈ C(A). (3.9)

Although (3.5) and (3.7) are special cases of (3.6) and (3.8), respectively (namely for
C = C · 1), we have singled them out for two reasons:

1. O(!) plays a special role because of the isomorphism

Hom(1, O(!)) ∼= O(!)(C · 1), (3.10)

according to which each element S in (3.5) may be seen as an “open” 1
S→ O(!).

2. O(!) is the key to the “external” description of O(!) (see Sect. A.3).

Namely, equipping the poset C(A) with the Alexandrov topology,9 this description is
given by the frame map

π∗
! : O(C(A)) → O(!), (3.11)

given on the basic opens ↑D ∈ O(C(A)) by

π∗
!(↑D) = χ↑D : E )→ 1 (E ⊇ D);

E )→ 0 (E " D).
(3.12)

The external description of O(!) will be put to good use in Sects. 5 and 6.
To close this section, let us make two clarifying remarks.

1. The key identification (3.5) eventually relies on C ∼= Ck for some k, and on Ck

having enough projections as a C*-algebra (hence a similar result holds for arbi-
trary von Neumann algebras [20]).

9 Let P be a poset. The open subsets of P in the Alexandrov topology are the upper sets, i.e. those U ⊆ P
for which x ∈ U and x ≤ y implies y ∈ U . Basic examples of such opens are up-sets U = ↑x = {y ∈ P |
x ≤ y}, which form a basis of the Alexandrov topology. In fact, ↑x is the smallest open containing x.
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2. The Döring–Isham ‘Daseinization’ map [11–14, 19] leads to a specific associ-
ation of some S ∈ O(!) with a quantum-mechanical proposition a ∈ " in the
usual (von Neumann) sense; cf. the Introduction. Thus we see that whereas in
the traditional approach to quantum logic a single projection p ∈ P (A) defines
a proposition, in our ‘Bohrian’ approach a proposition S consists of a family of
projections S(C), one for each classical context C: this is our version of comple-
mentarity.10 See, however, (4.12) for a map P (A) → O(!) relating traditional
and intuitionistic quantum logic.

4 Intuitionistic Quantum Logic of Mn(C)

Thus our claim is that O(!) in (3.5) with A = Mn(C) describes the correct quantum
logic of an n-level system. We will now determine the Heyting algebra structure
of O(!).

First, the top and bottom elements of O(!) are given by

9(C) = 1 for all C; (4.1)

⊥(C) = 0 for all C. (4.2)

The logical operations on O(!) may be computed from the partial order; cf. [34,
Sect. I.8]. First, we obtain

(S ∧ T )(C) = S(C) ∧ T (C); (4.3)

(S ∨ T )(C) = S(C) ∨ T (C) (4.4)

for inf and sup. The operation of (Heyting) implication (A.18) is given by the more
interesting expression11

(S → T )(C) =
∨

{p ∈ P (C) | p ≤ S(D)⊥∨T (D)∀D ⊇ C} ≡
P (C)∧

D⊇C

S(D)⊥∨T (D);

(4.5)
recall that each S is some projection in D, so that S(D)⊥ = 1 − S(D). The derived
operation of negation (A.17) is therefore equal to

(¬S)(C) =
P (C)∧

D⊇C

S(D)⊥, (4.6)

10The connection between Bohr’s notion of complementarity and the actual formalism of quantum me-
chanics is beautifully described in two papers by our dedicatee [29, 30].
11Naively, one would expect the right-hand side of (4.5) to be S(C)⊥ ∨ T (C), but that would not define

an element of O(!). The notation
∧P (C) in (4.5) indicates that one takes a greatest lower bound over

all S(D)⊥ ∨ T (D) that is constrained to lie in P (C). Analogously for the lowest upper bound
∨P (D) in

(4.7).
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which yields

(¬¬S)(C) =
P (C)∧

D⊇C

P (D)∨

E⊇D

S(E). (4.7)

In general, this is by no means equal to S(C), so that our new quantum logic is indeed
intuitionistic (as general topos theory suggests). The failure of the law of excluded
middle may be illustrated by the following example for A = M3(C). In that case, one
has (see Sect. 8)

C(A) = C · 1 ∪ {U · D2 · U∗ | U ∈ SU(3)} ∪ {U · D3 · U∗ | U ∈ SU(3)}, (4.8)

with

D2 = {diag(a, a, b) | a, b ∈ C};
D3 = {diag(a, b, c) | a, b, c ∈ C}.

(4.9)

Now define S : C(A) → P (A) by

S(C · 1) = 0;
S(U · D2 · U∗) = U · diag(1,1,0) · U∗;
S(U · D3 · U∗) = 1.

(4.10)

This indeed defines an element of O(!); see (3.5). Then (4.7) yields

(¬¬S)(C · 1) = 1, (4.11)

which is clearly different from S(C · 1) = 0.
Finally, we briefly discuss an interesting map P (A) → O(!), p )→ Sp , given by12

Sp(C) = p if p ∈ C;
= 0 if p /∈ C.

(4.12)

This map may be seen as an extremely crude analogue of the Döring–Isham ‘Da-
seinization’ map δ [11–14, 19], in which the approximant δ(p)C to p at C is simply
taken to be zero if C does not contain p. However, this map fails to preserve both ∨
and ∧ and is, in general, not even a lattice homomorphism when restricted to some
Boolean part P (C) ⊂ P (A).

5 Gelfand Transform

We now compute the Gelfand transform for A. For a general commutative C*-algebra
A in a topos T with spectrum ! (which, we repeat, is really given by the correspond-
ing frame O(!)) one has [1]

Asa
∼= C(!,R) ≡ Frm(O(R), O(!)), (5.1)

12This map was independently proposed by our M.Sc. student Ronnie Hermens and by the referee.
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where the right-hand side is the definition of the middle term (which is just a conve-
nient notation). This reduces to the usual Gelfand transform in the topos Sets, where
C(!,R) happens to have its usual meaning of continuous functions of ! to R.13 To
understand the general case, one has to distinguish between:

1. the set HomFrm(O(R), O(!)) of internal frame maps from the frame O(R) of
(Dedekind) real numbers in T to the frame O(!) (i.e., the set of those arrows
from O(R) to O(!) that happen to be frame maps as seen from within T );

2. the object Frm(O(R), O(!)) in T defined as the subobject of the exponential
O(!)O(R) consisting of (internal) frame maps from O(R) to O(!).

The connection between 1. and 2. is given by the bijective correspondence [34, p. 20]
between C → BA and A × C → B; taking C = 1 (the terminal object in T ), we see
that an element of the set Hom(A,B) corresponds to an arrow 1 → BA.

We now take T = T (A), in which case (A.12) yields

Frm(O(R), O(!))(C) = NatFrm(O(R)↑C, O(!)↑C), (5.2)

the set of all natural transformations between the functors O(R) and O(!), both
restricted to ↑C ⊂ C(A), that are frame maps. This set can be computed from the
external description of frames and frame maps explained in Sect. A.3. As before, the
poset C(A) and its open subsets of the type ↑C are equipped with the Alexandrov
topology.

First, the frame O(R)↑C has external description

π−1
R : O(↑C) → O(↑C × R), (5.3)

where πR :↑C × R →↑C is projection on the first component. The special case
C = C · 1 yields the external description of O(R) itself, namely

π−1
R : O(C(A)) → O(C(A) × R), (5.4)

where this time (with some abuse of notation) the projection is πR : C(A) × R →
C(A).

Second, the frame O(!)↑C has external description

π∗
! : O(↑C) → O(!)↑C, (5.5)

given by (3.12) with the understanding that D ⊇ C (the special case C = C · 1 then
recovers the external description (3.11) of O(!) itself).

It follows that there is a bijective correspondence between frame maps

ϕ∗
C

: O(R)↑C → O(!)↑C

in T (A) and frame maps

ϕ∗
C : O(↑C × R) → O(!)↑C (5.6)

13 This is because in Sets both ! ≡ ! and R ≡ R are so-called sober spaces [34, Definition IX.3.2], in
which case C(!,R) is isomorphic to Frm(O(R), O(!)) through f ↔ f −1.
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in Sets that for any D ⊇ C satisfy the condition

ϕ∗
C(↑D × R) = χ↑D. (5.7)

Indeed, such a map ϕ∗
C defines an element ϕ∗

C
of Nat(O(R)↑C, O(!)↑C) in the obvi-

ous way: for D ∈↑C, the components ϕ∗
C
(D) : O(R)(D) → O(!)(D) of the natural

transformation ϕ∗
C

, i.e.

ϕ∗
C
(D) : O(↑D × R) → O(!)↑D, (5.8)

are simply given as the restriction of ϕ∗
C to O(↑D × R) ⊂ O(↑C × R); cf. (A.26)

in Sect. A.3. This is consistent, because (5.7) implies that for any U ∈ O(R) and
C ⊆ D ⊆ E one has

ϕ∗
C(↑E × U)(F ) ≤ ϕ∗

C(↑D × R)(F ), (5.9)

which by (5.7) vanishes whenever F " D. Consequently,

ϕ∗
C(↑E × U)(F ) = 0 ifF " D, (5.10)

so that ϕ∗
C
(D) actually takes values in O(!)↑D (rather than in O(!)↑C , as might be

expected).
Denoting the set of frame maps (5.6) that satisfy (5.7) by Frm′(O(↑ C ×

R), O(!)↑C), we obtain a functor Frm′(O(↑−×R), O(!)↑−) : C(A) → Sets, given
by

C )→ Frm′(O(↑C × R), O(!)↑C), (5.11)

with the stipulation that for C ⊆ D the induced map

Frm′(O(↑C × R), O(!)↑C) → Frm′(O(↑D × R), O(!)↑D)

is given by restricting an element of the left-hand side to O(↑D ×R) ⊂ O(↑C ×R);
this is consistent by the same argument (5.10).

The Gelfand isomorphism (5.1) therefore becomes an arrow

A
∼=−→ Frm′(O(↑− × R), O(!)↑−), (5.12)

which, using (1.5), means that one has a compatible family of isomorphisms

C
∼=−→ Frm′(O(↑C × R), O(!)↑C);

a )→ â−1 : O(↑C × R) → O(!)↑C.
(5.13)

On basic opens ↑D × U ∈ O(↑C × R), with D ⊇ C, we obtain

â−1(↑D × U) : E )→ [a ∈ U ] if E ⊇ D;
E )→ 0 if E " D,

(5.14)
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where [a ∈ U ] is the spectral projection of a in U (cf. (2.10)); as it lies in P (C) and
C ⊆ D ⊆ E, [a ∈ U ] certainly lies in P (E), as required. We extend â−1 to general
opens in ↑C × R by the frame map property, and note that (5.7) for ϕ∗

C = â−1 is
satisfied.14

6 Kochen–Specker Theorem

We now work out our abstract formulation [19] of the Kochen–Specker Theorem
[28], with an indication how to prove it. Our reformulation is in the spirit of Isham
and Butterfield [5, 22], but we feel our version is more powerful, especially from a
logical perspective.15 Indeed, it is suggested by our formalism:

For n > 2, the Gelfand spectrum ! of Mn(C) has no points.

Some explanation is in order. We recall that the “space” ! is really defined by its
associated “topology”, namely the frame O(!). Informally, a point of ! is an arrow
σ : 1 →! in the topos T (A), but in the absence of ! this formally denotes a frame
map

σ ∗ : O(!) → O(1) ≡% (6.1)

in T (A). Here % is the truth object or subobject classifier in T (A). Hence our
Kochen–Specker Theorem states that there are no such frame maps.

To show that this claim is equivalent to the usual Kochen–Specker Theorem, we
use the external description of frames and frame maps (see Sect. A.3 and the previous
sections). The external description of O(!) has already been given in (3.11); the
external description of % is simply the identity map16

id : O(C(A)) → O(C(A)), (6.2)

where O(C(A)) is the Alexandrov topology on the poset C(A). Hence the external
description of (6.1) is a frame map

σ ∗ : O(!) → O(C(A)) (6.3)

14It is not quite obvious that the Gelfand transform is an isomorphism, but this follows from the general
theory [1]. In the special case that C is maximal, though, in which case ↑C = {C}, the isomorphism
property is a consequence of the fact that any frame map O(R) → P (C) is of the form U )→ [a ∈ U ] for
some a ∈ Csa (there is an analogous statement for spectral measures). To prove this, note that C ∼= Cn,
so that P (C) ∼= O({1,2, . . . , n} (in the discrete topology). Then because both {1,2, . . . , n} and R are
sober, there is a bijection between frame maps λ−1 : O(R) → O({1,2, . . . , n}) and (continuous) functions
λ : {1,2, . . . , n} → R. The λ(i) are the eigenvalues of a, and the given map O(R) → P (C) provides the
pertinent spectral projections.
15Our statement that a certain locale has no points has a logical interpretation in terms of (the lack of)
models of a so-called geometric theory [19], and is, in our opinion, considerably more revealing than the
claim that some presheaf without further structure lacks global sections (i.e. points). As explained below,
this logical perspective also suggests a wholly new type of proof of the Kochen–Specker Theorem.
16For any space (or even locale) X, the external description of the subobject classifier in Sh(X) is id :
O(X) → O(X).
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in Sets that satisfies the constraint

σ ∗ ◦ π∗
! = idO(C(A)). (6.4)

If we regard (3.11) as the inverse image map π∗
! = π−1

! of a “virtual” bundle

π! :! → C(A), (6.5)

and similarly look at (6.3) as the inverse image map σ ∗ = σ−1 of a “virtual” con-
tinuous map σ : C(A) → !, then the constraint (6.4) is just the pullback of the rule
π! ◦ σ = id! defining a continuous cross-section σ : C(A) → ! of the virtual bun-
dle (6.5). In this virtual (or pointfree) sense, our Kochen–Specker Theorem therefore
states that the bundle (6.5) has no continuous cross-sections.

Using (3.12), we see that (6.4) is explicitly given by

σ ∗(χ↑C) =↑C (6.6)

for all C ∈ C(A). We identify O(!)↑C in (3.6) with

O(!)↑C = {S ∈ O(!) | S(D) = 0 ∀D " C}
= {S ∈ O(!) | S ≤ χ↑C}. (6.7)

Since σ ∗ is a frame map, if S ∈ O(!)↑C and hence S ≤ χ↑C , then σ ∗(S) ≤
σ ∗(χ↑C) =↑C by (6.6), so that σ ∗ restricts to a frame map

σ ∗
C : O(!)↑C → O(↑C). (6.8)

Now take a ∈ Csa. Combining (6.8) with the Gelfand transform (5.13), we obtain a
frame map

σ ∗
C ◦ â−1 : O(↑C × R) → O(↑C). (6.9)

It can be shown that any frame map O(↑C ×R) → O(↑C) is the inverse image map
of a continuous function ↑C →↑C × R,17 so that

σ ∗
C ◦ â−1 = Ṽ −1

(a,C), (6.10)

for some continuous Ṽ(a,C) :↑C →↑C × R. Furthermore, the constraint (5.7) satis-
fied by ϕ∗

C = â−1 and the constraint (6.4) satisfied by σ ∗
C imply that Ṽ(a,C) takes the

17This is because C(A) and R are both sober; see footnote 13. For R this is well known; we provide a
proof for C(A). A space X is sober iff each irreducible closed subset S ⊂ X is the closure of a unique
point in S. The closed subsets of a poset in the Alexandrov topology are the lower sets, and the closure
of a point x is the downset ↓x. The irreducible closed subsets are the directed lower sets S (i.e. S is a
lower set and if a, b ∈ S then there exists c ∈ S such that a ≤ c and b ≤ c, cf. [23, p. 291]). We apply
this to X = C(A). The directed sets S in C(A) are those sets whose elements are mutually commuting
subalgebras, and for which C,D ∈ S implies the existence of E ∈ S containing C∗(C,D). Hence each
directed lower set contains C∗(C,D) whenever it contains C and D. Since for A = Mn(C) each subset of
C(A) that consists of mutually commuting subalgebras is finite, it follows that each directed lower set S is
the downset of the C*-algebra generated by the elements of S. This proves that C(A) is sober.
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form

Ṽ(a,C)(D) = (D,VC(a)), (6.11)

for some VC(a) ∈ R. For fixed C and a ∈ Csa, for each D ⊇ C and U ∈ O(R) we
define S(D,U) ∈ O(!)↑C by

S(D,U)(E) = [a ∈ U ] if E ⊇ D;
= E )→ 0 if E " D.

(6.12)

Using (5.14) and (6.11), we then find that (6.10) is equivalent to the following re-
quirement:

σ ∗
C(S(D,U)) = ↑D if VC(a) ∈ U ;

= ∅ if VC(a) /∈ U,
(6.13)

for all D ⊇ C and U ∈ O(R). Using the property

[f (a) ∈ U ] = [a ∈ f −1(U)] (6.14)

for each (bounded measurable) function f : R → R, we infer that (6.13) can only be
consistent if

VC(f (a)) = f (VC(a)). (6.15)

Finally, take D ⊇ C. Because σ ∗
C and σ ∗

D are both restrictions of the same map σ ∗

(see (6.8)), we have

VC(a) = VD(a). (6.16)

Hence we may simply write VC(a) = VD(a) = V (a), and regard the map a )→ V (a)

as a valuation that assigns a sharp value to each observable a ∈ Mn(C)sa. This valu-
ation satisfies the ‘functional composition principle’ (6.15) and the ‘noncontextual-
ity requirement’ (6.16), which are exactly the assumptions of the original Kochen–
Specker Theorem [28] (see also [37] for a very clear discussion of these assumptions).
We conclude that the statement that “! has no points” is equivalent to the Kochen–
Specker Theorem.

We close this section by giving yet another reformulation of it, which might have
the advantage of admitting a direct proof (in our opinion, the known proofs of the
Kochen–Specker Theorem are obscure). Following the literature [23, 26, 34], we
introduce18

pt(!) = {frame maps p∗ : O(!) → O(1)}, (6.17)

simply defined in Sets; recall that 1 denotes any singleton set 1 = {∗}. The set pt(!)

is topologized by declaring that the open sets are those of the form

pt(S) = {p∗ ∈ pt(!) | p∗(S) = ∗}, (6.18)

18If ! were a genuine space whose topology is sober, each frame map in (6.17) arises from a map p : 1 →
!, i.e. from a point of !. Hence the name pt(!).
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for each S ∈ O(!); see [34, Sect. IX.3]. An alternative description of pt(!) is as a
subset Pt(!) of O(!), consisting of all P ∈ O(!) that satisfy the conditions:

1. P @= 9 (see (4.1));
2. U ∧ V ≤ P implies U ≤ P or V ≤ P .

The topology on Pt(!) is given by the opens

Pt(S) = {P ∈ Pt(!) | S # P }. (6.19)

A homeomorphism pt(!) ↔ Pt(!), denoted by p ↔ P , is given by

P =
∨

{S ∈ O(!) | p∗(S) = ∅}; (6.20)

p∗(S) = ∅ if S ≤ P ; (6.21)

= ∗ if S # P. (6.22)

The point of introducing the space pt(!) is that any frame map σ ∗ : O(!) →
O(X) into the topology of a genuine space X (which will be C(A) in what follows)
factors as

σ ∗ = σ−1 ◦ pt, (6.23)

for some continuous function σ : X → pt(!), where pt : O(!) → O(pt(!)) is given
by (6.18). Conversely, any continuous σ defines a frame map σ ∗ by (6.23) and hence
one has a bijective correspondence between frame maps σ ∗ : O(!) → O(X) and
continuous functions σ : X → pt(!). Similarly with σ̃ : X → Pt(!). Taking (6.4)
into account, our reformulation of the Kochen–Specker Theorem may then be ex-
pressed as follows:

There exists no continuous map σ : C(A) → pt(!) that for each C ∈ C(A)

satisfies σ−1(pt(χ↑C) =↑C.

Using Pt(!) instead of pt(!) (which has the advantage that continuity of σ̃ : C(A) →
Pt(!) translates into inverse monotonicity), the Kochen–Specker Theorem reads:

There exists no map σ̃ : C(A) → Pt(!) that for each inclusion C ⊆ D satisfies
σ̃ (D) ≤ σ̃ (C) and for each pair C,D ∈ C(A) satisfies σ̃ (D) $ χ↑C ⇔ C ⊆ D.

7 State-Proposition Pairing

We now compute the particular state-proposition pairing (1.8), which we repeat for
convenience:

(
1

〈ψ,S〉−→ %
)

=
(
1

S→ O(!)
[µ=1]−→ %

)
. (7.1)

Here ψ is a state on the C*-algebra Mn(C), and µ is the induced probability mea-
sure (more precisely: valuation) on !; see the Introduction. As opposed to the usual
probabilistic pairing taking values in the interval [0,1], the pairing (7.1) takes values
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in the subobject classifier % of T (A). It can be shown (cf. Sect. A.2) that %(C) con-
sists of all upper sets in ↑C, which means that each element X ∈ %(C) is a subset
of C(A) with the properties that D ∈ X must satisfy D ⊇ C, and that if D ∈ X and
E ⊇ D, then E ∈ X. Each %(C) is a Heyting algebra in Sets, partially ordered by set-
theoretic inclusion, with the empty upper set ∅ as bottom element, and the maximal
one ↑C as top element.

In principle, 〈ψ, S〉 is a natural transformation with components 〈ψ, S〉(C) at each
C ∈ C(A), but by naturality these are all given once the component at the bottom
element C · 1 of C(A) is known. In somewhat sloppy notation, we may therefore
regard 〈ψ, S〉, identified with 〈ψ, S〉(C · 1), as an element of the set %(C · 1) of all
upper sets in C(A). Consequently, 〈ψ, S〉 is simply a certain upper set in C(A), which
turns out to be

〈ψ, S〉 = {C ∈ C(A) |ψ(S(C)) = 1}. (7.2)

In words, the “truth” of 〈ψ, S〉 consists of those classical contexts C in which the
proposition S(C) is true in the state ψ in the usual sense (i.e. has probability one).
Here we have identified the arrow S : 1 → O(!) in (7.1) with an element of O(!)
as given by (3.5) (see Sect. 3), so that S(C) ∈ P (C) ⊂ Mn(C), and hence ψ(S(C)) is
defined.19

Let us note that (7.2) indeed defines an upper set in C(A). If C ⊆ D then S(C) ≤
S(D), so that ψ(S(C)) ≤ ψ(S(D)) by positivity of states,20 so that ψ(S(D)) = 1
whenever ψ(S(C)) = 1 (given that ψ(S(D)) ≤ 1, since ψ(p) ≤ 1 for any projec-
tion p).21

To derive (7.2), we note that µ : O(!) → R+
l is a natural transformation, defined

by its components µC : O(!)(C) → R+
l (C). It follows from [26, Corollary D4.7.3]

that R+
l (C) = L(↑C,R+), the set of all lower semicontinuous functions from ↑C

to R+. Generalizing (2.12) and making the identification (3.8), it is easy to show that

µC : O(!)(C) → L(↑C,R+)

is given by

µC(S) : ↑D )→ψ(S(D)), (7.3)

for D ⊇ C (see also Sect. 6 of [19]). Finally, for σ : O(!) → R+
l and τ : O(!) →

R+
l one needs a formula for [σ = τ ]C : O(!)(C) →%(C), namely22

[σ = τ ]C(S) = {D ∈↑C | σD(S) = τD(S)}. (7.4)

19Expression (7.2) would gain physical content when combined with the Döring–Isham ‘Daseinization’
map [11–14, 19]; see point 2 at the end of Sect. 3. However, as it stands it already explicitly displays the
non-binary truth values that are typical for the topos-theoretic approach to quantum physics.
20In case that ψ is a vector state induced by a unit vector $ ∈ Cn, this is the trivial property that $ ∈
S(C)Cn implies $ ∈ S(D)Cn.
21In the vector state case, this means that C contributes to the upper set 〈ψ, S〉 iff $ lies in the image of
the projection S(C) in Cn. This is reminiscent of certain ideas in [21].
22Let C be a category with associated topos SetsCop

. Let X,Y : Cop → Sets be presheaves in this topos,
let σ, τ : X → Y and take A ∈ C and x ∈ X(A). Then the natural transformation [σ = τ] : X →% is given
by its components [σ = τ]A : X(A) →%(A) as x )→ {f : B → A | σB(Xf (x)) = τB(Xf (x))}.
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8 Parametrization of C(Mn(C))

We start with a computation of the poset C(M2(C)) of unital C*-subalgebras of
M2(C). It is elementary that M2(C) has a single one-dimensional unital
C*-subalgebra, namely C · 1, the multiples of the unit. Furthermore, any two-
dimensional unital C*-subalgebra is generated by a pair of orthogonal
one-dimensional projections. The one-dimensional projections in M2(C) are of the
form

p(x, y, z) = 1
2

(
1 + x y + iz

y − iz 1 − x

)
, (8.1)

where (x, y, z) ∈ R3 satisfies x2 +y2 +z2 = 1. Thus the one-dimensional projections
in M2(C) are precisely parametrized by S2. We obviously have 1 − p(x, y, z) =
p(−x,−y,−z), and since the pairs (p,1 − p) and (1 − p,p) define the same
C*-subalgebra, it follows that the two-dimensional elements of C(M2(C)) may be
parametrized by S2/∼, where (x, y, z) ∼ (−x,−y,−z) (in other words, antipodal
points of S2 are identified). This space, in turn, is homeomorphic with the real pro-
jective plane RP2, i.e. the set of lines in R3 passing through the origin, or, equiva-
lently, the space of great circles on S2. This space has an interesting topology (which
is quite different from the Alexandrov topology on the poset C(A)), but in the present
paper we ignore this aspect and just conclude that we may parametrize

C(M2(C)) ∼= ∗ ∪ RP2, (8.2)

where ∗ stands for C ·1. A point [x, y, z] ∈ S2/ ∼ then corresponds to the C*-algebra
C[x,y,z] generated by the projections {p(x, y, z),p(−x,−y,−z)}. The poset struc-
ture of C(M2(C)) is evidently given by ∗ ≤ [x, y, z] for any [x, y, z] and no other
relations.

Let us now generalize the argument to determine C(Mn(C)) for any n. In general,
one has

C(Mn(C)) =
∐

k=1,...,n

C(k, n), (8.3)

where C(k, n) denotes the collection of all k-dimensional commutative unital
C*-subalgebras of Mn(C). To parametrize C(k, n), we note that each of its elements
C is a unitary rotation C = UDU∗, where U ∈ SU(n) and D is some subalgebra
contained in the algebra of all diagonal matrices. This follows from the case k = n,
since each element of C(k, n) with k < n is contained in some maximal abelian sub-
algebra.23 Hence

C(n,n) = {U · Dn · U∗ | U ∈ SU(n)}, (8.4)

23For k = n, note that C ∈ C(n,n) is generated by n mutually orthogonal projections p1, . . . , pn, each of
rank 1. Each pi has a single unit eigenvector ui with eigenvalue 1; its other eigenvalues are 0. Put these
ui as columns in a matrix, called U . Then U∗piU is diagonal for all i: if (ei ) is the standard basis of
Cn, one has Uei = ui for all i and hence U∗piUei = U∗piui = U∗ui = ei , while for i @= j one finds
U∗piUej = 0. Hence the matrix U∗piU has a one at location ii and zero’s everywhere else. All other
elements a ∈ C are functions of the pi , so that U∗aU is equally well diagonal. Hence C = UDnU∗ , with
Dn the algebra of all diagonal matrices.
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with Dn = {diag(a1, . . . , an) | ai ∈ C}. For k < n, C(k, n) is obtained by partitioning
{1, . . . , n} into k nonempty parts, and demanding ai = aj for i, j in the same part.
However, because of the conjugation with arbitrary U ∈ SU(n) in (8.4), two such
partitions induce the same subalgebra precisely when they permute parts of equal
size. Such permutations may be handled using Young tableaux [15]. As the size of a
part is of more interest than the part itself, we define

Y(k,n) = {(i1, . . . , ik) | 0 < i1 < i2 < · · · < ik = n, ij+1 − ij ≤ ij − ij−1}

(where i0 = 0) as the set of partitions inducing different subalgebras. Hence

C(k, n) ∼=
{
(p1, . . . , pk) : pj ∈ P (Cn), (i1, . . . , ik) ∈ Y(k,n)

| dim(Im(pj )) = ij − ij−1, pj ∧ pj ′ = 0 for j @= j ′}.

Now, since d-dimensional orthogonal projections in Cn bijectively correspond to the
d-dimensional (closed) subspaces of Cn they project onto, we can write

C(k, n) ∼=
{
(V1, . . . , Vk) : (i1, . . . , ik) ∈ Y(k,n),Vj

∈ Gr(ij − ij−1, n) | Vj ∩ Vj ′ = 0 for j @= j ′},

where

Gr(d,n) = U(n)/(U(d) × U(n − d)) (8.5)

is the well-known Grassmannian, i.e. the set of all d-dimensional subspaces of
Cn [17]. In terms of the partial flag manifold

G(i1, . . . , ik;n) =
k∏

j=1

Gr(ij − ij−1, n − ij−1), (8.6)

for (i1, . . . , ik) ∈ Y(k,n) (see [15]), we finally obtain

C(k, n) ∼= {V ∈ G(i;n) : i ∈ Y(k,n)}/ ∼, (8.7)

where i ∼ i′ if one arises from the other by permutations of equal-sized parts.
Let us show how (8.2) is recovered from the above method. First, for any n the set

C(1, n) has a single element ∗, as there is only one Young tableau for k = 1. Second,
we have Y(2,2) = {(1,2)}, so that

C(2,2) ∼= G(1,2;2)/S(2)

= Gr(1,2) × Gr(1,1)/S(2) ∼= Gr(1,2)/S(2) ∼= CP1/S(2) ∼= RP2.
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Appendix: Sheaves, Topoi and Heyting Algebras

A.1 Basic Sheaf Theory

We will only use a few basic categories:

1. The category P defined by a partially ordered set (also called P ), which is seen as
a category by saying that p,q ∈ P are connected by a single arrow iff p ≤ q , with
special cases:
(a) P = O(X), the topology on a space X, the partial order being by set-theoretic

inclusion;
(b) P = C(A), the poset of unital commutative C*-subalgebras of a unital

C*-algebra A (which in this paper is usually A = Mn(C), the C*-algebra of
n × n complex matrices), again partially ordered by set-theoretic inclusion.

2. The category Sets of sets (as objects) and functions (as arrows), based on the usual
ZF-axioms.

3. For any category C , the category Ĉ = SetsC op
of (covariant) functors C op → Sets,

with natural transformations as arrows,24 with obvious special cases:
(a) T (A) = SetsC(A);
(b) Ô(X) = SetsO(X)op

, the category of so-called presheaves on a space X;
(c) The category Sh(X) of sheaves on X, which is the full subcategory of Ô(X)

defined by the following condition: a presheaf F : O(X)op → Sets is a sheaf if
for any open U ∈ O(X), any open cover U = ∪iUi of U , and any family {si ∈
F(Ui)} such that F(Uij ≤ Ui)(si) = F(Uij ≤ Uj )(sj ) for all i, j , there is a
unique s ∈ F(U) such that si = F(Ui ≤ U)(s) for all i. Here Uij = Ui ∩ Uj

and F(V ≤ W) : F(W) → F(V ) is the arrow part of the functor F , defined
whenever V ⊆ W . Using the concept of a limit, we may write this as

F(U) = lim←−iF (Ui). (A.1)

4. The category E(X) of étale bundles π : B → X over X, where π is a local ho-
meomorphism,25 and the arrows between πY : Y → X and πZ : Z → X are those
continuous maps ψ : Y → Z that satisfy πZ ◦ψ = πY .

It is important for some of the more technical arguments in this paper that for any
poset P , the category SetsP is equivalent to the category Sh(P ) of sheaves on P with

24Here C op is the opposite of a category C , which has the same objects as C and also the same arrows, but
the latter go in the opposite direction. If C = P is a poset, this just means that in P op the partial order is
reversed.
25That is, each p ∈ B has an open neighbourhood U for which π(U) is open in X and homeomorphic to
U through π [34, Sect. II.6].
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respect to the so-called Alexandrov topology (see footnote 9). The equivalence

SetsP C Sh(P ) (A.2)

is given by mapping a functor F : P → Sets to a sheaf F : O(P )op → Sets by defin-
ing the latter on basic opens by

F(↑x) = F(x), (A.3)

extended to general Alexandrov opens by (A.1). Vice versa, a sheaf F on P immedi-
ately defines F by reading (A.3) from right to left. In particular, we have

T (A) C Sh(C(A)), (A.4)

where C(A) is understood to be equipped with the Alexandrov topology.
Another useful equivalence is E(X) C Sh(X). The functor E(X) → Sh(X) estab-

lishing half of this equivalence is given by F̃ )→ F , F(U) = /(U, F̃ ), that is, the set
of continuous cross-sections U → F̃ , with functoriality given by restriction. In the
opposite direction, the pertinent functor Sh(X) → E(X) associates a bundle F̃ to a
sheaf F whose fiber (or “stalk”) at x ∈ X is

F̃x = lim−→Ox(X)F (U) ∼= {[s]x | s ∈ F(U),U ∈ Ox(X)}. (A.5)

Here the colimit in the first expression is taken over all U ∈ Ox(X), the set of all
open neighbourhoods of x. The right-hand side provides an explicit expression for
this colimit, in which the equivalence class [s]x (the germ of s at x) is defined by
saying that s ∼x t for s ∈ F(U) and t ∈ F(V ), U,V ∈ Ox(X), when there exists
W ∈ Ox(X) such that W ⊆ U ∩ V and s|W = t|W . The topology on F̃ is given by
declaring that

B(F̃ ) := {ṡ(U) | U ∈ O(X), s ∈ F(U)} (A.6)

is a basis of O(F̃ ), where the cross-section ṡ : U → F̃ is defined by ṡ(x) = [s]x .
See [34, Sect. II.6]. This equivalence assumes a particularly simple form when X = P

is a poset equipped with the Alexandrov topology [16, Sect. 14.1]. In that case, the
bundle defined by a functor F : P → Sets, or rather by the associated sheaf F as
in (A.3), has fibers

F̃x = F(x) (A.7)

and a topology generated by the basis

B(F̃ ) = {Bx,s | x ∈ P, s ∈ F(x)};
Bx,s = {F(x ≤ y)(s) | y ∈ P, x ≤ y},

(A.8)

where F(x ≤ y) : F(x) → F(y) is the arrow part of F . This follows from (A.6)
because for U,V ∈ Ox(X) there is a smallest W ⊆ U ∩ V containing x, namely ↑x.
Consequently, if U =↑x and s ∈ /(U, F̃ ) in the above analysis, one has ṡ = F(x ≤
y)(s), which leads to (A.8).
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For example, our internal C*-algebra A may be described as an étale bundle Ã. It
is immediate from (1.5) and (A.7) that the fibers of Ã are

ÃC = C, (A.9)

so that in passing from A ∈ T (A) to Ã ∈ E(C(A)) we have replaced the tautological
functor by the tautological bundle. According to (A.8), the topology on Ã is generated
by the basis opens

Ba,C = {a ∈ D | D ⊇ C}. (A.10)

Here a ∈ C, and the open (A.10) tracks this element as it embeds in all possible D’s
in which C is contained; here a ∈ D is an element of the fiber ÃD above D, to be
distinguished from a ∈ C which lies in the fiber ÃC above C.

A.2 Basic Topos Theory

This paper is mainly concerned with the categories T (A) and Sh(C(A)), the latter
with respect to the Alexandrov topology. These categories are examples of topoi. The
advantage of working in a topos is that most set-theoretic reasoning can be carried
out, with the restriction that all proofs need to be constructive (i.e. cannot make use
of the law of the excluded middle or the Axiom of Choice). Specifically, a topos is a
category with the following ingredients (all unique up to isomorphism):

1. Terminal object. This is an object called 1 such that for each object A there is a
unique arrow A → 1. In Sets this is any singleton set ∗. In T (A) and Sh(C(A))

(and more generally in Ĉ ), it is the constant functor taking the value ∗.
2. Pullbacks. These generalize the fibered product B ×A C = {(b, c) ∈ B × C |

f (b) = g(c)} of B
f→ A and C

g→ A in Sets into a pullback square with appropri-
ate universality property. Cartesian products are a special case. In Ĉ (and hence in
T (A) and Sh(C(A))), pullbacks may be computed “pointwise”; see [34, Sect. I.3].

3. Exponentials. These generalize the idea that the class BA of functions from a set A

to a set B is itself a set, and hence an object in Sets, equipped with the evaluation
map ev : A × BA → B . In Sh(X) one may take [34, Sect. II.8]

FG(U) = Nat(G|U ,F|U), (A.11)

the set of natural transformations between the functors G and F , both restricted
to O(U) (i.e. defined on each open V ⊆ U instead of all V ∈ O(X)). The map
evU : G(U)×Nat(G|U ,F|U) → F(U) is the obvious one, sending (g, θ) to θU(g).
By (A.4), in T (A) one analogously has

FG(C) = Nat(G↑C,F↑C) (A.12)

at each C ∈ C(A), where F↑C is the restriction of the functor F : C(A) → Sets to
↑ C ⊆ C(A). In particular, since C ·1 is the bottom element of the poset C(A), one
has

FG(C · 1) = Nat(G,F ). (A.13)
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4. Subobject classifier. This generalizes the idea that one may characterize a sub-
set A ⊆ B by its characteristic function χA : B → {0,1}. Subsets generalize to
subobjects, i.e. monic (“injective") arrows A " B , and in a topos there exists

an object % (the subobject classifier) with associated arrow 1
9→ % (“truth”)

such that for any subobject A " B there is a unique arrow B
χA−→ % for which

B
f← A → 1 is a pullback of B

χA−→% and 1
9→%. Conversely, given any arrow

B
χ→% there exists a subobject A " B of B (unique up to isomorphism) whose

classifying arrow χB equals χ . The subobject classifier in a topos play the role
of a “multi-valued truth object”, generalizing the simple situation in Sets, where
%= {0,1} = {false, true}).

In Sh(X) the subobject classifier is the sheaf % : U )→ O(U) with %(V ≤ U) :
O(U) → O(V ) given by W )→ W ∩ V whenever V ⊆ U ; see [34, Sect. II.8]. The

truth map 1
9→ % is given at U by 9U(∗) = U . Hence in our topos T (A) the

subobject classifier % is the functor assigning to C ∈ C(A) the collection UC of
upper sets on C,26 and to an arrow C ⊆ D in C(A) the obvious map UC → UD

given by X )→ X∩ ↑D.

Combining the third and fourth points, one has

%F (C) ∼= Sub(F ↑C), (A.14)

the set of subfunctors of F ↑C . In particular, like in (A.13) we find

%F (C · 1) ∼= Hom(F ,%) ∼= Sub(F ), (A.15)

the set of subfunctors of F itself. If C ⊆ D, then the map %F (C) →%F (D) defined
by %F , identified with a map Sub(F ↑C) → Sub(F↑D), is simply given by restricting
a given subfunctor of F↑C to ↑D.

A.3 Heyting Algebras and Frames

A Heyting algebra is a distributive lattice L with a map →: L × L → L (called
implication) satisfying

x ≤ (y → z) iff x ∧ y ≤ z. (A.16)

Every Boolean algebra is a Heyting algebra, but not vice versa; in fact, a Heyting
algebra is Boolean iff ¬¬x = x for all x, which is the case iff ¬x ∨ x = 9 for all x.
Here negation is a derived notion, defined by

¬x = (x →⊥). (A.17)

A Heyting algebra is complete when arbitrary joins (i.e. sups) and meets (i.e. infs)
exist.

26This means that X ⊂ C(A) lies in UC if X ⊆↑C and if D ∈ X and D ⊂ E implies E ∈ X.
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A frame is a complete distributive lattice such that x ∧ ∨
λ yλ = ∨

λ x ∧ yλ for
arbitrary families {yλ} (and not just for finite ones, in which case the said property
follows from the definition of a distributive lattice). For example, if X is a topological
space, then the topology O(X) of X is a frame with U ≤ V if U ⊆ V . A frame map
preserves finite meets and arbitrary joins; this leads to the category Frm of frames
and frame maps. For example, if f : X → Y is continuous then f −1 : O(X) → O(Y )
is a frame map. For this reason, frames are often denoted by O(X) and frame maps
are written f −1 or f ∗, even if the frame does not come from a topological space.

Any frame is at the same time a complete Heyting algebra, with implication

x → y =
∨

{z | z ∧ x ≤ y}. (A.18)

In particular, it follows from (A.17) and (A.18) that

¬x =
∨

{z | z ∧ x = ⊥}. (A.19)

Conversely, the infinite distributivity law in a frame is automatically satisfied in a
Heyting algebra, so that frames and complete Heyting algebras are essentially the
same things.27

Frames can be defined internally in any topos, and those in Sh(X) can be described
explicitly [24, 27] (see also [26, Sect. C1.6]). Namely, there is an equivalence

FrmSh(X) C (FrmSets/O(X))op (A.20)

between the category of internal frames in Sh(X) and the category of frame maps in
Sets with domain O(X), where the arrows between two such maps

π∗
Y : O(X) → O(Y ); (A.21)

π∗
Z : O(X) → O(Z); (A.22)

are the frame maps

ϕ∗ : O(Z) → O(Y ) (A.23)

satisfying28

ϕ∗ ◦ π∗
Z = π∗

Y . (A.24)

In this paper, this characterization is used to compute the frame maps in FrmSh(X),
whose internal characterization is rather indirect.

The equivalence (A.20) comes about as follows. First, a frame map π∗
Y : O(X) →

O(Y ) defines an internal frame O(IπY ) in the topos Sh(X) as the sheaf

O(IπY ) : U )→↓π∗
Y (U) ≡ {W ∈ O(Y ) | W ≤ π∗

Y (U)}, (A.25)

27They do not form isomorphic or even equivalent categories, though, for frame maps do not necessarily
preserve the implication → defining the Heyting algebra structure.
28This looks more palpable in terms of the “virtual” underlying spaces. If (A.21)–(A.23) are seen as
inverse images π∗ = π−1 of maps πY : Y → X , πZ : Z → X and ϕ : Y → Z, then (A.24) corresponds to
πZ ◦ ϕ = πY .
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with O(IπY )(U ≤ V ) :↓π∗
Y (V ) →↓π∗

Y (U) given by intersection with π∗
Y (U). Given

frame maps (A.21)–(A.23), one obtains an internal frame map ϕ∗ : O(IπZ ) →
O(IπY ) in Sh(X) by defining its components as a natural transformation by

ϕ∗(U) : ↓π∗
Z(U) → ↓π∗

Y (U);
S )→ ϕ∗(S).

(A.26)

Conversely, let O(!) be an internal frame in Sh(X). Consider

O(!) = O(!)(X), (A.27)

which is a frame in Sets. Define a map

π∗
! : O(X) → O(!) (A.28)

by

π∗
!(U) =

∧
{S ∈ O(!) | O(!)(U ≤ X)(S) = 9}, (A.29)

where 9 is the top element of the complete lattice O(!)(U), and the map

O(!)(U ≤ X) : O(!)(X) → O(!)(U)

is defined by the arrow part of the functor O(!) : O(X)op → Sets. Then (A.28) is a
frame map, whose corresponding internal frame O(Iπ! ) is isomorphic to O(!). The
map (A.28) is called the external description of O(!).29

In order to determine specific frames in Sh(X), we need a further result from
topos theory. The Dedekind real numbers Rd and the lower real numbers Rl (which
describe sets of the type x < q , q ∈ Q) can both be axiomatized by what is called
a geometric propositional theory T. In any topos T (with so-called natural numbers
object), such a theory determines a certain frame O(T)T , whose “points” are defined
as frame maps O(T) →%, where % is the subobject classifier in T (more precisely,
the object of points of O(T) in T is the subobject of %O(T) consisting of frame
maps). For example, if TRd is the theory axiomatizing Rd , in Sets one simply has

O(TRd )Sets = O(R), (A.30)

whose points comprise the set R.
The key result is as follows. Let πT : X× O(T)Sets → X be projection on the first

component, with associated frame map π∗
T ≡ π−1

T : O(X) → O(X × TSets). Then

O(T)Sh(X) = O(IπT). (A.31)

29An important application is the external reformulation of internal properties of O(!) in terms of set-
theoretic properties of the map (A.28). For example, the general theory of [1] requires that the Gelfand
spectrum O(!) of our internal C*-algebra A has a technical property called regularity (which is a frame-
theoretic generalization of the well-known corresponding property for topological spaces) [23]. This inter-
nal property may indeed be verified from the external version of regularity given in [25].
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Using (A.30), this yields that the frame of Dedekind real numbers O(Rd) ≡ O(TRd )

is the sheaf

O(Rd)Sh(X) : U )→ O(U × R), (A.32)

whereas the Dedekind real numbers object is the sheaf

(Rd)Sh(X) : U )→ C(U,R). (A.33)

Similarly, for the lower real numbers (whose frame we will not need) one obtains

(Rl )Sh(X) : U )→ L(U,R), (A.34)

the set of all lower semicontinuous functions from U to R that are locally bounded
from above [26, Corollary D4.7.3]. Using (A.3), such results may immediately be
transferred to SetsP and hence to T (A). For example, one has

O(Rd) ≡ O(Rd)T (A) : C )→ O((↑C) × R). (A.35)

Since Alexandrov-continuous functions must be locally constant, it follows from
(A.33) that

Rd : C )→ R. (A.36)

For the lower reals, however, (A.34) yields

Rl : C )→ L(↑C,R). (A.37)
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