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Abstract

Intuitionistic Type Theory (also Constructive Type Theory or Martin-Löf Type Theory) is a
formal logical system and philosophical foundation for constructive mathematics (link). It is a full-
scale system which aims to play a similar role for constructive mathematics as Zermelo-Fraenkel

Set Theory (link) does for classical mathematics. It is based on the propositions-as-types principle
and clarifies the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic. It extends
this interpretation to the more general setting of Intuitionistic Type Theory and thus provides
a general conception not only of what a constructive proof is, but also of what a constructive
mathematical object is. The main idea is that mathematical concepts such as elements, sets and
functions are explained in terms of concepts from programming such as data structures, data
types and programs. This article describes the formal system of Intuitionistic Type Theory and
its semantic foundations.
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1 Overview

We begin with a bird’s eye view of some important aspects of Intuitionistic Type Theory. Readers
who are unfamiliar with the theory may prefer to skip it on a first reading.

The origins of Intuitionistic Type Theory are Brouwer’s Intuitionism and Russell’s Type Theory.
Like Church’s classical Simple Theory of Types (link) it is based on the lambda calculus with types,
but differs from it in that it is based on the propositions-as-types principle, discovered by Curry (1958)
for propositional logic and extended to predicate logic by Howard (1980) and de Bruijn (1970). This
extension was made possible by the introduction of indexed families of types (dependent types) for
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representing the predicates of predicate logic. In this way all logical connectives and quantifiers can
be interpreted by type formers. In Intuitionistic Type Theory further types are added, such as a type
of natural numbers, a type of small types (a universe) and a type of well-founded trees. The resulting
theory contains intuitionistic number theory (Heyting Arithmetic) and much more.

The theory is formulated in natural deduction where the rules for each type former are classified
as formation, introduction, elimination, and equality rules. These rules exhibit certain symmerties
between the introduction and elimination rules following Gentzen’s and Prawitz’ treatment of natural
deduction, as explained in the article on proof-theoretic semantics (link).

The elements of propositions, when interpreted as types, are called proof-objects. When proof-
objects are added to the natural deduction calculus it becomes a typed lambda calculus with dependent
types, which extends Church’s original typed lambda calculus. The equality rules are computation
rules for the terms of this calculus. Each function definable in the theory is total and computable.
Intuitionistic Type Theory is thus a typed functional programming language with the unusual property
that all programs terminate.

Intuitionistic Type Theory is not only a formal logical system but also provides a comprehensive
philosophical framework for intuitionism. It is an interpreted language, where the distinction between
the demonstration of a judgment and the proof of a proposition plays a fundamental role (Sundholm
2012). The framework clarifies the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic
and extends it to the more general setting of Intuitionistic Type Theory. In doing so it provides a gen-
eral conception not only of what a constructive proof is, but also of what a constructive mathematical
object is. The meaning of the judgments of Intuitionistic Type Theory is explained in terms of com-
putations of the canonical forms of types and terms. These informal, intuitive meaning explanations
are “pre-mathematical” and should be contrasted to formal mathematical models developed inside a
standard mathematical framework such as set theory.

This meaning theory also justifies a variety of inductive, recursive, and inductive-recursive defini-
tions. Although proof-theoretically strong notions can be justified, such as analogues of certain large
cardinals, the system is considered predicative. Impredicative definitions of the kind found in higher-
order logic, intuitionistic set theory, and topos theory are not part of the theory. Neither is Markov’s
principle, and thus the theory is distinct from Russian constructivism.

An alternative formal logical system for predicative constructive mathematics is Myhill and Aczel’s
Constructive Zermelo-Fraenkel Set Theory (CZF) (link). This theory, which is based on intuitionistic
first-order predicate logic and omits some of the axioms of classical Zermelo-Fraenkel Set Theory, has
a natural interpretation in Intuitionistic Type Theory. Martin-Löf’s meaning explanations thus also
indirectly form a basis for CZF.

Variants of Intuitionistic Type Theory underlie several widely used proof assistants, including
NuPRL, Coq, and Agda. These proof assistants are computer systems that have been used for formal-
izing large and complex proofs of mathematical theorems, such as the Four Colour Theorem in graph
theory and the Feit-Thompson Theorem in finite group theory. They have also been used to prove the
correctness of computer software.

Philosophically and practically, Intuitionistic Type Theory is a foundational framework where con-
structive mathematics and computer programming are, in a deep sense, the same. This point has
been emphasized by Gonthier (2008) in the paper in which he describes his proof of the Four Colour
Theorem:

The approach that proved successful for this proof was to turn almost every mathemat-
ical concept into a data structure or a program in the Coq system, thereby converting the
entire enterprise into one of program verification.
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2 Propositions as types

Intuitionistic Type Theory - a new way of looking at logic?

Intuitionistic Type Theory offers a new way of analyzing logic, mainly through its introduction of
explicit proof objects. This provides a direct computational interpretation of logic, since there are
computation rules for proof objects. As regards expressive power, Intuitionistic Type Theory may be
considered as an extension of first-order logic, much as higher order logic, but predicative.

A Type Theory. Russell developed Type Theory (link) in response to his discovery of a paradox in
naive set theory. In his Ramified Type Theory mathematical objects are classified according to their
types: the type of propositions, the type of objects, the type of properties of objects, etc. When Church
developed his Simple Theory of Types (link) on the basis of a typed version of his lambda calculus he
added the rule that there is a type of functions between any two types of the theory. Intuitionistic
Type Theory further extends the simply typed lambda calculus with dependent types, that is, indexed
families of types. An example is the family of types of n-tuples indexed by n.

Types have been widely used in programming for a long time. Early high-level programming
languages introduced types of integers and floating point numbers. Modern programming languages
often have rich type systems with many constructs for forming new types. Intuitionistic Type Theory
is a functional programming language where the type system is so rich that practically any conceivable
property of a program can be expressed as a type. Types can thus be used as specifications of the task
of a program.

An intuitionstic logic with proof-objects. Brouwer’s analysis of logic led him to an intuitionistic
logic which rejects the law of excluded middle and the law of double negation. These laws are not
valid in Intuitionistic Type Theory. Thus it does not contain classical (Peano) arithmetic but only
intuitionistic (Heyting) arithmetic. (It is another matter that Peano arithmetic can be interpreted in
Heyting arithmetic by the double negation interpretation, link to article about Intuitionistic Logic)

Consider a theorem of intuitionistic arithmetic, such as the division theorem

∀m,n.m > 0 ⊃ ∃q, r.mq + r = n

A formal proof (in the usual sense) of this theorem is a sequence (or tree) of formulas, where the last
(root) formula is the theorem and each formula in the sequence is either an axiom (a leaf) or the result
of applying an inference rule to some earlier (higher) formulas.

When the division theorem is proved in Intuitionistic Type Theory, we do not only build a formal
proof in the usual sense but also a construction (or proof-object) ”div” which witnesses the truth of
the theorem. We write

div : ∀m,n : N.m > 0 ⊃ ∃q, r : N.mq + r = n

to express that div is a proof-object for the division theorem, that is, an element of the type representing
the division theorem. When propositions are represented as types, the ∀-quantifier is identified with the
dependent function space former (or general cartesian product) Π, the ∃-quantifier with the dependent
pairs type former (or general disjoint sum) Σ, the identity relation = with the type former I of proof-
objects of identities, and the greater than relation > with the type former GT of proof-objects of
greater-than statements. Using ”type-notation” we thus write

div : Πm,n : N.GT(m, 0) → Σq, r : N.I(N,mq + r, n)

to express that the proof object ”div” is a function which maps two numbers m and n and a proof p
that m > 0 to a triple (q, (r, s)), where q is the quotient and r is the remainder obtained when dividing
n by m. The third component s is a proof-object witnessing the fact that mq + r = n.
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Crucially, div is not only a function in the classical sense; it is also a function in the intuitionistic
sense, that is, a program which computes the output (q, (r, s)) when given m, n, p as inputs. This
program is a term in a lambda calculus with special constants, that is, a program in a functional
programming language.

Type theory as an extension of first-order predicate logic. Intuitionistic Type Theory can
be considered as an extension of first-order logic, much as higher order logic is an extension of first
order logic. In higher order logic we find some individual domains which can be interpreted as any
sets we like. If there are relational constants in the signature these can be interpreted as any relations
between the sets interpreting the individual domains. On top of that we can quantify over relations,
and over relations of relations, etc. We can think of higher order logic as first-order logic equipped with
a way of introducing new domains of quantification: if S1, . . . , Sn are domains of quantification then
(S1, . . . , Sn) is a new domain of quantification consisting of all the n-ary relations between the domains
S1, . . . , Sn. Higher order logic has a straightforward set-theoretic interpretation where (S1, . . . , Sn) is
interpreted as the power set P (A1×· · ·×An) where Ai is the interpretation of Si, for i = 1, . . . , n. This
is the kind of higher order logic or simple theory of types that Ramsey, Church and others introduced.

Intuitionistic Type Theory can be viewed in a similar way, only here the possibilities for introducing
domains of quantification are richer, one can use Σ,Π,+, I to construct new ones from old. (Section
3.1, Martin-Löf 1972). Intuitionistic Type Theory has a straightforward set-theoretic interpretation
as well, where Σ, Π etc are interpreted as the corresponding set-theoretic constructions; see below.
We can add to Intuitionistic Type Theory unspecified individual domains just as in HOL. These are
interpreted as sets as for HOL. Now we exhibit a difference from HOL: in Intuitionistic Type Theory we
can introduce unspecified family symbols. We can introduce T as a family of types over the individual
domain S:

T (x) type (x : S).

If S is interpreted as A, T can be interpreted as any family of sets indexed by A. As a non-mathematical
example, we can render the binary relation loves between member of an individual domain of people
as follows. Introduce the binary family Loves over the domain People

Loves(x, y) type (x : People, y : People).

The interpretation can be any family of sets Bx,y (x : A, y : A). How does this cover the standard
notion of relation? Suppose we have a binary relation R on A in the familiar set-theoretic sense. We
can make a binary family corresponding to this as follows

Bx,y = {0} if R(x, y) holds

Bx,y = ∅ if R(x, y) is false.

Now clearly Bx,y is nonempty if and only if R(x, y) holds. (We could have chosen any other element
from our set theoretic universe than 0 to indicate truth.) Thus from any relation we can construct a
family whose truth of x, y is equivalent to Bx,y being non-empty. Note that this interpretation does not
care what the proof for R(x, y) is, just that it holds. Recall that Intuitionistic Type Theory interprets
propositions as types, so p : Loves(John,Mary) means that Loves(John,Mary) is true.

The interpretation of relations as families allows for keeping track of proofs or evidence that R(x, y)
holds, but we may also chose to ignore it.

In Montague semantics (link) higher order logic is used to give semantics of natural language (and
examples as above). Ranta (1994) introduced the idea to instead employ Intuitionistic Type Theory
to better capture sentence structure with the help of dependent types.

In contrast, how would the mathematical relation > between natural numbers be handled in Intu-
itionistic Type Theory? First of all we need a type of numbers N. We could in principle introduce an
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unspecified individual domain N, and then add axioms just as we do in first-order logic when we set up
the axiom system for Peano arithmetic. However this would not give us the desirable computational
interpretation. So as explained below we lay down introduction rules for constructing new natural
numbers in N and elimination and computation rules for defining functions on N (by recursion). The
standard order relation > should satisfy

x > y iff there z : N such that y + z + 1 = x.

The right hand is rendered as Σz : N.I(N, y + z + 1, x) in Intuitionistic Type Theory, and we take
this as definition of relation >. (+ is defined by recursive equations, I is the identity type construc-
tion). Now all the properties of > are determined by the mentioned introduction and elimination and
computation rules for N.

A logic with several forms of judgment. The type system of Intuitionistic Type Theory is very
expressive. As a consequence the well-formedness of a type is no longer a simple matter of parsing,
it is something which needs to be proved. Well-formedness of a type is one form of judgment of
intuitionistic type theory. Well-typedness of a term with respect to a type is another. Furthermore,
there are equality judgments for types and terms. This is yet another way in which Intuitionistic Type
Theory differs from ordinary first order logic with its focus on the sole judgment expressing the truth
of a proposition.

Semantics. While a standard presentation of first-order logic would follow Tarski in defining the
notion of model, Intuitionistic Type Theory follows the tradition of Brouwerian meaning theory as
further developed by Heyting and Kolmogorov, the so called BHK-interpretation of logic. The key
point is that the proof of an implication A ⊃ B is a method that transforms a proof of A to a proof
of B. In Intuitionistic Type Theory this method is formally represented by the program f : A ⊃ B or
f : A → B: the type of proofs of an implication A ⊃ B is the type of functions which maps proofs of
A to proofs of B.

Moreover, whereas Tarski semantics is usually presented meta-mathematically, and assumes set
theory, Martin-Löf’s meaning theory of Intuitionistic Type Theory should be understood directly and
“pre-mathematically”, that is, without assuming a meta-language such as set theory.

A functional programming language. Readers with a background in lambda calculus and func-
tional programming can get an alternative first approximation of Intuitionistic Type Theory by think-
ing about it as a typed functional programming language in the style of Haskell or one of the dialects
of ML. However, it differs from these in two crucial aspects: (i) it has dependent types (see below)
and (ii) all typable programs terminate. (Note that Intuitionistic Type Theory has influenced recent
extensions of Haskell with generalized algebraic datatypes which sometimes can play a similar role as
inductively defined dependent types.)

2.1 The Curry-Howard correspondence

As already mentioned, the principle that

a proposition is the type of its proofs.

is fundamental to Intuitionistic Type Theory. This principle is also known as the Curry-Howard
correspondence or even Curry-Howard isomorphism. Curry discovered a correspondence between the
implicational fragment of intuitionistic logic and the simply typed lambda-calculus. Howard extended
this correspondence to first-order predicate logic. In Intuitionistic Type Theory this correspondence
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becomes an identification of proposition and types, which has been extended to include quantification
over higher types and more.

2.2 Sets of proof-objects

So what are these proof-objects like? They should not be thought of as logical derivations, but rather
as some (structured) symbolic evidence that something is true. Another term for such evidence is
“truth-maker”.

It is instructive, as a somewhat crude first approximation, to replace types by ordinary sets in this
correspondence. Define a set Em,n, depending on m,n ∈ N, by:

Em,n =







{0} if m = n

∅ if m 6= n.

Then Em,n is nonempty exactly when m = n. The set Em,n corresponds to the proposition m = n,
and the number 0 is a proof-object (truth-maker) inhabiting the sets Em,m.

Consider the proposition that m is an even number expressed as the formula ∃n ∈ N.m = 2n. We
can build a set of proof-objects corresponding to this formula by using the general set-theoretic sum
operation. Suppose that An (n ∈ N) is a family of sets. Then its disjoint sum is given by the set of
pairs

(Σn ∈ N)An = {(n, a) : n ∈ N, a ∈ An}.

If we apply this construction to the family An = Em,2n we see that (Σn ∈ N)Em,2n is nonempty exactly
when there is an n ∈ N with m = 2n. Using the general set-theoretic product operation (Πn ∈ N)An

we can similarly obtain a set corresponding to a universally quantified proposition.

2.3 Dependent types

In Intuitionistic Type Theory there are primitive type formers Σ and Π for general sums and products,
and I for identity types, analogous to the set-theoretic constructions described above. The identity
type I(N,m, n) corresponding to the set Em,n is an example of a dependent type since it depends on
m and n. It is also called an indexed family of types since it is a family of types indexed by m and n.
Similarly, we can form the general disjoint sum Σx : A.B and the general cartesian product Πx : A.B

of such a family of types B indexed by x : A, corresponding to the set theoretic sum and product
operations above.

Dependent types can also be defined by primitive recursion. An example is the type of n-tuples
An of elements of type A and indexed by n : N defined by the equations

A0 = 1

An+1 = A×An

where 1 is a one element type and × denotes the cartesian product of two types. We note that
dependent types introduce computation in types: the defining rules above are computation rules. For
example, the result of computing A3 is A× (A× (A× 1)).

2.4 Propositions as types in Intuitionistic Type Theory

With propositions as types, predicates become dependent types. For example, the predicate Prime(x)
becomes the type of proofs that x is prime. This type depends on x. Similarly, x < y is the type of
proofs that x is less than y.
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According to the Curry-Howard interpretation of propositions as types

⊥ = ∅

⊤ = 1

A ∨B = A+B

A ∧B = A×B

A ⊃ B = A → B

∃x : A.B = Σx : A.B

∀x : A.B = Πx : A.B

where Σx : A.B is the disjoint sum of the A-indexed family of types B and Πx : A.B is its cartesian
product. The canonical elements of Σx : A.B are pairs (a, b) such that a : A and b : B[x := a] (the
type obtained by substituting all free occurrences of x in B by a). The elements of Πx : A.B are
(computable) functions f such that f a : B[x := a], whenever a : A.

For example, consider the proposition

∀m : N.∃n : N.m < n ∧ Prime(n) (1)

expressing that there are arbitrarily large primes. Under the Curry-Howard interpretation this becomes
the type Πm : N.Σn : N.m < n× Prime(n) of functions which map a number m to a triple (n, (p, q)),
where n is a number, p is a proof that m < n and q is a proof that n is prime. This is the proofs
as programs principle: a constructive proof that there are arbitrarily large primes becomes a program
which given any number produces a larger prime together with proofs that it indeed is larger and
indeed is prime.

Note that the proof which derives a contradiction from the assumption that there is a largest
prime is not constructive, since it does not explicitly give a way to compute an even larger prime. To
turn this proof into a constructive one we have to show explicitly how to construct the larger prime.
(Since proposition (1) above is a Π0

2-formula we can for example use Friedman’s A-translation to turn
such a proof in classical arithmetic into a proof in intuitionistic arithmetic and thus into a proof in
Intuitionistic Type Theory.)

3 Basic Intuitionistic Type Theory

We first present a core version of Intuitionistic Type Theory, closely related to the first version of the
theory presented by Martin-Löf in 1972 (Martin-Löf 1998). In addition to the type formers needed
for the Curry-Howard interpretation of typed intuitionistic predicate logic listed above, we have two
types: the type N of natural numbers and the type U of small types.

The resulting theory can be shown to contain intuitionistic number theory HA (Heyting arith-
metic), Gödel’s System T of primitive recursive functions of higher type, and the theory HAω of
Heyting arithmetic of higher type.

This core Intuitionistic Type Theory is not only the original one, but perhaps the minimal version
which exhibits the essential features of the theory. Later extensions with primitive identity types,
well-founded tree types, universe hierarchies, and general notions of inductive and inductive-recursive
definitions have increased the proof-theoretic strength of the theory and also made it more convenient
for programming and formalization of mathematics. For example, with the addition of well-founded
trees we can interpret the Constructive Zermelo-Fraenkel Set Theory CZF of Aczel (1977). However,
we will wait until the next section to describe those extensions.
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3.1 Judgments

In Martin-Löf (1996) a general philosophy of logic is presented where the traditional notion of judgment
is expanded and given a central position. A judgment is no longer just an affirmation or denial of a
proposition, but a general act of knowledge. When reasoning mathematically we make judgments
about mathematical objects. One form of judgment is to state that some mathematical statement
is true. Another form of judgment is to state that something is a mathematical object, for example
a set. The logical rules give methods for producing correct judgments from earlier judgments. The
judgments obtained by such rules can be presented in tree form

J1 J2
J3

r1

J4
J5

r5
J6

J7
r3

J8
r4

or in sequential form
(1) J1 axiom
(2) J2 axiom
(3) J3 by rule r1 from (1) and (2)
(4) J4 axiom
(5) J5 by rule r2 from (4)
(6) J6 axiom
(7) J7 by rule r3 from(5) and (6)
(8) J8 by rule r4 from (3) and (7)

The latter form is common in mathematical arguments. Such a sequence or tree formed by logical
rules from axioms is a derivation or demonstration of a judgment.

First-order reasoning may be presented using a single kind of judgment:

the proposition B is true under the hypothesis that the propositions A1, . . . , An are all
true.

We write this hypothetical judgment as a so-called Gentzen sequent

A1, . . . , An ⊢ B.

Note that this is a single judgment that should not be confused with the derivation of the judgment
⊢ B from the judgments ⊢ A1, . . . ,⊢ An. When n = 0, then the categorical judgment ⊢ B states that B
is true without any assumptions. With sequent notation the familiar rule for conjunctive introduction
becomes

A1, . . . , An ⊢ B A1, . . . , An ⊢ C

A1, . . . , An ⊢ B ∧ C
(∧I)

.

3.2 Judgment forms

Martin-Löf type theory has four basic forms of judgments and is a considerably more complicated
system than first-order logic. One reason is that more information is carried around in the derivations
due to the identification of propositions and types. Another reason is that the syntax is more involved.
For instance, the well-formed formulas (types) have to be generated simultaneously with the provably
true formulas (inhabited types).

The four forms of categorical judgment are

• ⊢ A type, meaning that A is a well-formed type,
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• ⊢ a : A, meaning that a has type A,

• ⊢ A = A′, meaning that A and A′ are equal types,

• ⊢ a = a′ : A, meaning that a and a′ are equal elements of type A.

In general, a judgment is hypothetical, that is, it is made in a context Γ, that is, a list x1 : A1, . . . , xn : An

of variables which may occur free in the judgment together with their respective types. Note that
the types in a context can depend on variables of earlier types. For example, An can depend on
x1 : A1, . . . , xn−1 : An−1. The four forms of hypothetical judgments are

• Γ ⊢ A type, meaning that A is a well-formed type in the context Γ,

• Γ ⊢ a : A, meaning that a has type A in context Γ,

• Γ ⊢ A = A′, meaning that A and A′ are equal types in the context Γ,

• Γ ⊢ a = a′ : A, meaning that a and a′ are equal elements of type A in the context Γ.

Under the proposition as types interpretation

⊢ a : A (2)

can be understood as the judgment that a is a proof-object for the proposition A. When suppressing
this object we get a judgment corresponding to the one in ordinary first-order logic (see above):

⊢ A true. (3)

Remark 3.1. Martin-Löf (1994) argues that Kant’s analytic judgment a priori and synthetic judgment
a priori can be exemplified, in the realm of logic, by (2) and (3) respectively. In the analytic judgment
(2) everything that is needed to make the judgment evident is explicit. For its synthetic version (3) a
possibly complicated proof construction a needs to be provided to make it evident. This understanding
of analyticity and syntheticity has the surprising consequence that ”the logical laws in their usual
formulation are all synthetic.” (op. cit., p. 95). His analysis further gives: ” [...] the logic of analytic
judgments, that is, the logic for deriving judgments of the two analytic forms, is complete and decidable,
whereas the logic of synthetic judgments is incomplete and undecidable, as was shown by Gödel.” (op.
cit., p. 97). The decidability of the two analytic judgments (⊢ a : A and ⊢ a = b : A) hinges on the
metamathematical properties of type theory: strong normalization and decidable type checking.

Sometimes also the following forms are explicitly considered to be judgments of the theory:

• Γ context, meaning that Γ is a well-formed context.

• Γ = Γ′, meaning that Γ and Γ′ are equal contexts.

Below we shall abbreviate the judgment Γ ⊢ A type as Γ ⊢ A and Γ context as Γ ⊢ .

3.3 Inference rules

When stating the rules we will use the letter Γ as a meta-variable ranging over contexts, A,B, . . . as
meta-variables ranging over types, and a, b, c, d, e, f, . . . as meta-variables ranging over terms.

The first group of inference rules are general rules including rules of assumption, substitution, and
context formation. There are also rules which express that equalities are equivalence relations. There
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are numerous such rules, and we only show the particularly important rule of type equality which is
crucial for computation in types:

Γ ⊢ a : A Γ ⊢ A = B

Γ ⊢ a : B

The remaining rules are specific to the type formers. These are classified as formation, introduction,
elimination, and equality rules.

3.4 Intuitionistic predicate logic

We only give the rules for Π. There are analogous rules for the other type formers corresponding to
the logical constants of typed predicate logic.

In the following B[x := a] means the term obtained by substituting the term a for each free
occurrence of the variable x in B (avoiding variable capture).

Π-formation.
Γ ⊢ A Γ, x : A ⊢ B

Γ ⊢ Πx : A.B

Π-introduction.
Γ, x : A ⊢ b : B

Γ ⊢ λx.b : Πx : A.B

Π-elimination.
Γ ⊢ f : Πx : A.B Γ ⊢ a : A

Γ ⊢ f a : B[x := a]

Π-equality.
Γ, x : A ⊢ b : B Γ ⊢ a : A

Γ ⊢ (λx.b) a = b[x := a] : B[x := a]

This is the rule of β-conversion. We may also add the rule of η-conversion:

Γ ⊢ f : Πx : A.B

Γ ⊢ λx.f x = f : Πx : A.B
.

Furthermore, there are congruence rules expressing that operations introduced by the formation, in-
troduction, and elimination rules preserve equality. For example, the congruence rule for Π is

Γ ⊢ A = A′ Γ, x : A ⊢ B = B′

Γ ⊢ Πx : A.B = Πx : A′.B′
.

3.5 Natural numbers

As in Peano arithmetic the natural numbers are generated by 0 and the successor operation s. The
elimination rule states that these are the only possible ways to generate a natural number.

We write f(c) = R(c, d, xy.e) for the function which is defined by primitive recursion on the natural
number c with base case d and step function xy.e (or alternatively λxy.e) which maps the value y for
the previous number x : N to the value for s(x). Note that R is a new variable-binding operator: the
variables x and y become bound in e.

N -formation.
Γ ⊢ N

N -introduction.

Γ ⊢ 0 : N
Γ ⊢ a : N

Γ ⊢ s(a) : N

11



N -elimination.

Γ, x : N ⊢ C Γ ⊢ c : N Γ ⊢ d : C[x := 0] Γ, y : N, z : C[x := y] ⊢ e : C[x := s(y)]

Γ ⊢ R(c, d, yz.e) : C[x := c]

N -equality (under appropriate premises)

R(0, d, yz.e) = d : C[x := 0]

R(s(a), d, yz.e) = e[y := a, z := R(a, d, yz.e)] : C[x := s(a)]

The rule of N -elimination simultaneously expresses the type of a function defined by primitive
recursion and, under the Curry-Howard interpretation, the rule of mathematical induction: we prove
the property C of a natural number x by induction on x.

Gödel’s System T is essentially Intuitionistic Type Theory with only the type formersN and A → B

(the type of functions from A to B, which is the special case of (Πx : A)B where B does not depend
on x : A). Since there are no dependent types in System T the rules can be simplified.

3.6 The universe of small types

Martin-Löf’s first version of type theory (Martin-Löf 1971) had an axiom stating that there is a type
of all types. This was proved inconsistent by Girard who found that the Burali-Forti paradox could
be encoded in this theory.

To overcome this pathological impredicativity, but still retain some of its expressivity, Martin-Löf
introduced in 1972 a universe U of small types closed under all type formers of the theory, except that
it does not contain itself (Martin-Löf 1998). The rules are:

U -formation.
Γ ⊢ U

U -introduction.
Γ ⊢ ∅ Γ ⊢ 1

Γ ⊢ A : U Γ ⊢ B : U

Γ ⊢ A+B : U

Γ ⊢ A : U Γ ⊢ B : U

Γ ⊢ A×B : U

Γ ⊢ A : U Γ ⊢ B : U

Γ ⊢ A → B : U
Γ ⊢ A : U Γ, x : A ⊢ B : U

Γ ⊢ Σx : A.B : U

Γ ⊢ A : U Γ, x : A ⊢ B : U

Γ ⊢ Πx : A.B : U
Γ ⊢ N : U

U -elimination.
Γ ⊢ A : U

Γ ⊢ A

Since U is a type, we can use N -elimination to define small types by primitive recursion. For
example, if A : U , we can define the type of n-tuples of elements in A as follows:

An = R(n, 1, xy.A× y) : U

This type-theoretic universe U is analogous to a Grothendieck universe in set theory which is a
set of sets closed under all the ways sets can be constructed in Zermelo-Fraenkel Set Theory. The
existence of a Grothendieck universe cannot be proved from the usual axioms of Zermelo-Fraenkel Set
Theory but needs a new axiom.

In Martin-Löf (1975) the universe is extended to a countable hierarchy of universes

U0 : U1 : U2 : · · · .

In this way each type has a type, not only each small type.
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3.7 Propositional identity

Above, we introduced the equality judgment

Γ ⊢ a = a′ : A. (4)

This is usually called a “definitional equality” because it can be decided by normalizing the terms
a and a′ and checking whether the normal forms are identical. However, (4) is not a proposition
(type) and we thus cannot prove such equalities by induction. For this reason we need to introduce
propositional identity types. For example, the identity type for natural numbers I(N,m, n) can be
defined by U -valued primitive recursion. We can then express and prove the Peano axioms. Moreover,
extensional equality of ufnctions can be defined by

I(N → N, f, f ′) = Πx : N.I(N, f x, f ′ x).

3.8 The axiom of choice is a theorem

The following form of the axiom of choice is an immediate consequence of the BHK-interpretation of
the intuitionistic quantifiers, and is easily proved in Intuitionistic Type Theory:

(Πx : A.Σy : B.C) → Σf : (Πx : A.B).C[y := f x]

The reason is that Πx : A.Σy : B.C is the type of functions which map elements x : A to pairs (y, z)
with y : B and z : C. The choice function f is obtained by returning the first component y : B of this
pair.

It is perhaps surprising that Intuitionistic Type Theory directly validates an axiom of choice, since
this axiom is often considered problematic from a constructive point of view. A possible explanation
for this state of affairs is that the above is an axiom of choice for types, and that types are not in general
appropriate constructive approximations of sets in the classical sense. For example, we can represent a
real number as a Cauchy sequence in Intuitionistic Type Theory, but the set of real numbers is not the
type of Cauchy sequences, but the type of Cauchy sequences up to equiconvergence. More generally, a
set in Bishop’s constructive mathematics is represented by a type (commonly called “preset”) together
with an equivalence relation.

If A and B are equipped with equivalence relations, there is of course no guarantee that the choice
function, f above, is extensional in the sense that it maps equivalent element to equivalent elements.
This is the failure of the extensional axiom of choice, see (Martin-Löf 2009) for an analysis.

4 Extensions

4.1 The logical framework

The above completes the description of a core version of Intuitionistic Type Theory close to that of
(Martin-Löf 1998).

In 1986 Martin-Löf proposed a reformulation of intuitionistic type theory; see (Nordström, Peterson
and Smith 1990) for an exposition. The purpose was to give a more compact formulation, where λ and
Π are the only variable binding operations. It is nowadays considered the main version of the theory.
It is also the basis for the Agda proof assistant. The 1986 theory has two parts:

• the theory of types (the logical framework);

• the theory of sets (small types).
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Remark 4.1. Note that the word “set” in the logical framework does not coincide with the way it is
used in Bishop’s constructive mathematics. To avoid this confusion, types together with equivalence
relations are usually called “setoids” or “extensional sets” in Intuitionistic Type Theory.

The logical framework has only two type formers: Πx : A.B (usually written (x : A)B or (x :
A) → B in the logical framework formulation) and U (usually called Set). The rules for Πx : A.B

((x : A) → B) are the same as given above (including η-conversion). The rules for U (Set) are also the
same, except that the logical framework only stipulates closure under Π-type formation.

The other small type formers (“set formers”) are introduced in the theory of sets. In the logical
framework formulation each formation, introduction, and elimination rule can be expressed as the
typing of a new constant. For example, the rules for natural numbers become

N : Set,

0 : N,

s : N → N,

R : (C : N → Set) → C 0 → ((x : N) → C x → C (s x)) → (c : N) → C c.

where we have omitted the common context Γ, since the types of these constants are closed. Note that
the recursion operator R has a first argument C : N → Set unlike in the original formulation.

Moreover, the equality rules can be expressed as equations

RC d e 0 = d : C 0

RC d e (s a) = e a (RC d e a) : C (s a)

under suitable assumptions.
In the sequel we will present several extensions of type theory. To keep the presentation uniform we

will however not use the logical framework presentation of type theory, but will use the same notation
as in section 2.

4.2 A general identity type former

As we mentioned above, identity on natural numbers can be defined by primitive recursion. Identity
relations on other types can also be defined in the basic version of Intuitionistic Type Theory presented
in Section 2.

However, Martin-Löf (1975) extended Intuitionistic Type Theory with a uniform primitive identity
type former I for all types. The rules for I express that the identity relation is inductively generated
by the proof of reflexivity, a canonicial constant called r. (Note that r was coded by the number 0 in
the introductory presentation of proof-objects in 1.3.) The elimination rule for the identity type is a
generalization of identity elimination in predicate logic and introduces an elimination constant J . (We
here show the formulation due to Paulin (1993) rather than the original formulation of Martin-Löf
(1975).) The inference rules are the following.

I-formation
Γ ⊢ A Γ ⊢ a : A Γ ⊢ a′ : A

Γ ⊢ I(A, a, a′)

I-introduction.
Γ ⊢ A Γ ⊢ a : A

Γ ⊢ r : I(A, a, a)

I-elimination.

Γ, x : A, y : I(A, a, x) ⊢ C Γ ⊢ b : A Γ ⊢ c : I(A, a, b) Γ ⊢ d : C[x := a, y := r]

Γ ⊢ J(c, d) : C[x := b, y := c]
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I-equality (under appropriate assumptions).

J(r, d) = d

By constructing a model of type theory where types are interpreted as groupoids (categories where
all arrows are isomorphisms) Hofmann and Streicher (1998) showed that it cannot be proved in Intu-
itionistic Type Theory that all proofs of I(A, a, b) are identical. This may seem as an incompleteness
of the theory and Streicher suggested a new axiom K from which it follows that all proofs of I(A, a, b)
are identical to r.

The I-type is often called the intensional identity type, since it does not satisfy the principle of
function extensionality. Intuitionistic Type Theory with the intensional identity type is also often
called Intensional Intuitionistic Type Theory to distinguish it from Extensional Intuitionistic Type
Theory which will be presented in section 6.1.

4.3 Well-founded trees

A type of well-founded trees of the form Wx : A.B was introduced in (Martin-Löf 1982) (and in a more
restricted form by Scott 1970). Elements of Wx : A.B are trees of varying and arbitrary branching:
varying, because the branching type B is indexed by x : A and arbitrary because B can be arbitrary.
The type is given by a generalized inductive definition since the well-founded trees may be infinitely
branching. We can think of Wx : A.B as the free term algebra, where each a : A represents a term
constructor sup a with (possibly infinite) arity B[x := a].

W -formation.
Γ ⊢ A Γ, x : A ⊢ B

Γ ⊢ Wx : A.B

W -introduction.
Γ ⊢ a : A Γ, y : B[x := a] ⊢ b : Wx : A.B

Γ ⊢ sup(a, y.b) : Wx : A.B

We omit the rules of W -elimination and W -equality.
Adding well-founded trees to Intuitionistic Type Theory increases its proof-theoretic strength sig-

nificantly (Setzer 1995).

4.4 Iterative sets and CZF

An important application of well-founded trees is Aczel’s (1978) construction of a type-theoretic model
of Constructive Zermelo Fraenkel Set Theory. To this end he defines the type of iterative sets as

V = Wx : U.x.

Let A : U be a small type, and x : A ⊢ M be an indexed family of iterative sets. Then sup(A, x.M),
or with a more suggestive notation {M |x : A}, is an iterative set. To paraphrase: an iterative set is
a set of iterative sets.

Note that an iterative set is a data-structure in the sense of functional programming: a possibly
infinitely branching well-founded tree. Different trees may represent the same set. We therefore need
to define a notion of extensional equality between iterative sets which disregards repetition and order
of elements. This definition is formally similar to the definition of bisimulation of processes in process
algebra. The type V up to extensional equality can be viewed as a constructive type-theoretic model
of the cumulative hierarchy,

See the article on Set Theory: Constructive and Intuitionistic ZF by (Crosilla) for further infroma-
tion about CZF.
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4.5 Inductive definitions

The notion of an inductive definition is fundamental in Intuitionistic Type Theory. It is a primitive
notion and not, as in set theory, a derived notion where an inductively defined set is defined impred-
icatively as the smallest set closed under some rules. However, in Intuitionistic Type Theory inductive
definitions are considered predicative: they are viewed as being built up from below.

The inductive definability of types is inherent in the meaning explanations of Intuitionistic Type
Theory which we shall discuss in the next section. In fact, Intuitionistic Type Theory can be described
briefly as a theory of inductive, recursive, and inductive-recursive definitions based on a framework of
lambda calculus with dependent types.

We have already seen the type of natural numbers and the type of well-founded trees as examples of
types given by inductive definitions; the natural numbers is an example of an ordinary finitary inductive
definition and the well-founded trees of a generalized possibly infinitary inductive definition. The
introduction rules describe how elements of these types are inductively generated and the elimination
and equality rules describe how functions from these types can be defined by structural recursion on
the way these elements are generated. According to the propositions as types principle, the elimination
rules are simultaneously rules for proof by structural induction on the way the elements are generated.

The type formers 0, 1,+,×,→,Σ, and Π which interpret the logical constants for intuitionistic
predicate logic are examples of degenerate inductive definitions. Even the identity type (in Intensional
Intuitionistic Type Theory) is inductively generated; it is the type of proofs generated by the reflexivity
axiom. Its elimination rule expresses proof by pattern matching on the proof of reflexivity.

The common structure of the rules of the type formers can be captured by a general schema for
inductive definitions (Dybjer 1991). This general schema has many useful instances, for example, the
type List(A) of lists with elements of type A has the following introduction rules:

Γ ⊢ nil : List(A)
Γ ⊢ a : A Γ ⊢ as : List(A)

Γ ⊢ cons(a, as) : List(A)

Other useful instances are types of binary trees and other trees such as the infinitely branching
trees of the Brouwer ordinals of the second and higher number classes.

The general schema does not only cover inductively defined types, but also inductively defined
families of types, such as the identity relation. The above mentioned type An of n-tuples of type A

was defined above by primitive recursion on n. It can also be defined as an inductive family with the
following introduction rules

Γ ⊢ nil : A0 Γ ⊢ a : A Γ ⊢ as : An

Γ ⊢ cons(a, as) : As n

The schema for inductive types and families is a type-theoretic generalization of a schema for
iterated inductive definitions in predicate logic (formulated in natural deduction) presented by Martin-
Löf (1971b). This paper immediately preceded Martin-Löf’s first version of Intuitionistic Type Theory.
It is both conceptually and technically a forerunner to the development of the theory.

It is an essential feature of proof assistants such as Agda and Coq that it enables users to define
their own inductive types and families by listing their introduction rules (the types of their construc-
tors). This is much like in typed functional programming languages such as Haskell and the different
dialects of ML. However, unlike in these programming languages the schema for inductive definitions
in Intuitionistic Type Theory enforces a restriction amounting to well-foundedness of the elements of
the defined types.

4.6 Inductive-recursive definitions

We already mentioned that there are two main definition principles in Intuitionistic Type Theory: the
inductive definition of types (sets) and the (primitive, structural) definition of functions by recursion on
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the way the elements of such types are inductively generated. Usually, the inductive definition of a set
comes first: the formation and introduction rules make no reference to the elimination rule. However,
there are definitions in Intuitionistic Type Theory for which this is not the case and we simultaneously
inductively generate a type and a function from that type defined by structural recursion. Such
definitions are simultaneously inductive-recursive.

The first example of such an inductive-recursive definition is an alternative formulation à la Tarski
of the universe of small types. Above we presented the universe formulated à la Russell, where there
is no notational distinction between the element A : U and the corresponding type A. For a universe
à la Tarski there is such a distinction, for example, between the element N̂ : U and the corresponding
type N . The element N̂ is called the code for N .

The elimination rule for U à la Tarski is:

Γ ⊢ a : U

Γ ⊢ T (a)

This expresses that there is a function T which maps a code a to its corresponding type T (a). The
equality rules defines this correspondence. For example,

T (N̂) = N.

We see that U is inductively generated with one introduction rule for each small type former, and
T is defined by recursion on these small type formers. The simultaneous inductive-recursive nature of
this definition becomes apparent in the rules for Π for example. The introduction rule is

Γ ⊢ a : U Γ, x : T (a) ⊢ b : U

Γ ⊢ Π̂x : a.b : U

and the corresponding equality rule is

T (Π̂x : a.b) = Πx : T (a).T (b)

Note that the introduction rule for U refers to T , and hence that U and T must be defined simultane-
ously.

There are a number of other universe constructions which are defined inductive-recursively: universe
hierarchies, superuniverses (Palmgren 1998, Rathjen, Griffor and Palmgren 1998), and Mahlo universes
(Setzer 2000). These universes are analogues of certain large cardinals in set theory: inaccessible,
hyperinaccessible, and Mahlo cardinals.

Other examples of inductive-recursive definitions include an informal definition of computability
predicates used by Martin-Löf in an early normalization proof of Intuitionistic Type Theory (Martin-
Löf 1998). There are also many natural examples of “small” inductive-recursive definitions, where the
recursively defined (decoding) function returns an element of a type rather than a type.

A large class of inductive-recursive definitions, including the above, can be captured by a general
schema (Dybjer 2000) which extends the schema for inductive definitions mentioned above. As shown
by Setzer, Intuitionistic Type Theory with this class of inductive-recursive definitions is very strong
proof-theoretically (Dybjer and Setzer 2003). However, as proposed in recent unpublished work by
Setzer, it is possible to increase the strength of the theory even further and define universes such as
an autonomous Mahlo universe which are analogues of even larger cardinals.

5 Meaning explanations

The consistency of Intuitionistic Type Theory relative to set theory can be proved by model construc-
tions. Perhaps the simplest method is an interpretation whereby each type-theoretic concept is given
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its corresponding set-theoretic meaning, as outlined in section 1.3. For example the type of functions
A → B is interpreted as the set of all functions in the set-theoretic sense between the set denoted by
A and the set denoted by B. To interpret U we need a set-theoretic universe which is closed under all
(set-theoretic analogues of) the type constructors. Such a universe can be proved to exist if we assume
the existence of an inaccessible cardinal κ and interpret U by Vκ in the cumulative hierarchy.

Alternatives are realizability models, and for intensional type theory, a model of terms in normal
forms. The latter can also be used for proving decidability of the judgments of the theory.

Mathematical models only prove consistency relative to classical set theory (or whatever other
meta-theory we are using). Is it possible to be convinced about the consistency of the theory in a more
direct way, so called simple minded consistency (Martin-Löf 1984)? In fact, is there a way to explain
what it means for a judgment to be correct in a direct pre-mathematical way? And given that we know
what the judgments mean can we then be convinced that the inference rules of the theory are valid?

An answer to this problem was proposed by Martin-Löf 1979 in the paper Constructive mathematics
and computer programming (Martin-Löf 1982) and elaborated later on in numerous lectures and notes,
see for example, Martin-Löf (1984, 1987). These meaning explanations for Intuitionistic Type Theory
are also referred to as the direct semantics, intuitive semantics, informal semantics, standard semantics,
or the syntactico-semantical approach to meaning theory.

This meaning theory follows the Wittgensteinian meaning-as-use tradition. The meaning is based
on rules for building objects (introduction rules) of types and computation rules (elimination rules)
for computing with these objects. A difference from much of the Wittgensteinian tradition is that also
higher order types like N → N are given meaning using rules.

In spite of the pre-mathematical nature of this meaning theory, its technical aspects can be captured
as a mathematical model construction similar to Kleene’s realizability interpretation of intuitionistic
logic, see the next section. The realizers here are the terms of type theory rather than the number
realizers used by Kleene.

5.1 Computation to canonical form

The meaning of a judgment is explained in terms of the computation of the types and terms in the
judgment. These computations stop when a canonical form is reached. These are the canonical forms
used in lazy functional programming (for example in the Haskell language).

For the purpose of illustration we consider meaning explanations only for three type formers:
N,Πx : A.B, and U . The context free grammar for the terms of this fragment of Intuitionistic Type
Theory is as follows:

a ::= 0 | s(a) |λx.a |N |Πx : a.a |U

R(a, a, xx.a) | a a.

The canonical terms are generated by the following grammar:

v ::= 0 | s(a) |λx.a |N |Πx : a.a |U,

where a ranges over arbitrary, not necessarily canonical, terms. Note that s(a) is canonical even if a
is not.

Judgments are interpreted in terms of the relation a ⇒ v between closed terms a and canonical
forms (values) v given by the following computation rules:

c ⇒ 0 d ⇒ v

R(c, d, xy.e) ⇒ v

c ⇒ s(a) e[x := d, y := R(a, d, xy.e)] ⇒ v

R(c, d, xy.e) ⇒ v

f ⇒ λx.b b[x := a] ⇒ v

f a ⇒ v
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in addition to the rule
v ⇒ v

stating that a canonical term has itself as value.

5.2 The meaning of categorical judgments

A categorical judgment is a judgment where the context is empty and there are no free variables.
The meaning of the categorical judgment ⊢ A is that A has a canonical type as value. In our

fragment this means that either of the following holds:

• A ⇒ N ,

• A ⇒ U ,

• A ⇒ Πx : B.C and furthermore that ⊢ B and x : B ⊢ C.

The meaning of the categorical judgment ⊢ a : A is that a has a canonical term of the canonical
type of A as value. In our fragment this means that either of the following holds:

• A ⇒ N and either a ⇒ 0 or a ⇒ s(b) and ⊢ b : N ,

• A ⇒ U and either a ⇒ N or a ⇒ Πx : b.c where furthermore ⊢ b : U and x : b ⊢ c : U ,

• A ⇒ Πx : B.C and a ⇒ λx.c and x : B ⊢ c : C.

The meaning of the categorical judgment ⊢ A = A′ is that A and A′ have the same canonical types
as values. In our fragment this means that either of the following holds:

• A ⇒ N and A′ ⇒ N ,

• A ⇒ U and A′ ⇒ U ,

• A ⇒ Πx : B.C and A′ ⇒ Πx : B′.C ′ and furthermore that ⊢ B = B′ and x : B ⊢ C = C ′.

The meaning of the categorical judgment ⊢ a = a′ : A is explained in a similar way.
It is a tacit assumption of the meaning explanations that the repeated computations of canonical

forms is well-founded. For example, a natural number is the result of finitely many computations of
the successor function s ended by 0. A computation which results in infinitely many computations of s
is not a natural number in Intuitionistic Type Theory. (However, there are extensions of type theory,
for example, Partial Type Theory, and Non-Standard Type Theory, where such infinite computations
can occur, see section 6.3. To justify the rules of such theories the present meaning explanations do
not suffice.)

5.3 The meaning of hypothetical judgments

According to Martin-Löf (1982) the meaning of a hypothetical judgment is reduced to the meaning of
the categorical judgments by substituting the closed terms of appropriate types for the free variables.
For example, the meaning of

x1 : A1, . . . , xn : An ⊢ a : A

is that the categorical judgment

⊢ a[x1 := a1, . . . , xn := an] : A[x1 := a1, . . . , xn := an]

is valid whenever the categorical judgments

⊢ a1 : A1, . . . ,⊢ an[x1 := a1, . . . , xn−1 := an−1] : An[x1 := a1, . . . , xn−1 := an−1]

are valid.
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6 Mathematical models

6.1 Categorical models

Hyperdoctrines. Curry’s correspondence between propositions and types was extended to predicate
logic in the late 1960s by Howard (1980) and de Bruijn (1970). At around the same time Lawvere
developed related ideas in categorical logic. In particular he proposed the notion of a hyperdoctrine
(Lawvere 1970) as a categorical model of (typed) predicate logic. A hyperdoctrine is an indexed
category P : T op → Cat, where T is a category where the objects represent types and the arrows
represent terms. If A is a type then the fibre P (A) is a category of propositions depending on a
variable x : A. The arrows in this category are proofs Q ⊢ R and can be thought of as proof-objects.
Moreover, since we have an indexed category, for each arrow t from A to B, there is a reindexing functor
P (B) → P (A) representing substitution of t for a variable y : B. The category P (A) is assumed to be
cartesian closed and conjunction and implications are modelled by products and exponentials in this
category. The quantifiers ∃ and ∀ are modelled by the left and right adjoints of the reindexing functor.
Moreover, Lawvere added further structure to hyperdoctrines to model identity propositions (as left
adjoints to a diagonal functor) and a comprehension schema.

Contextual categories, categories with attributes, and categories with families. Lawvere’s
definition of hyperdoctrines preceded Intuitionistic Type Theory but did not model all aspects of
it. Nevertheless it influenced Scott’s (1970) work on Constructive Validity, a somewhat preliminary
precursor of Intuitionistic Type Theory. After Martin-Löf (1972) had presented a more definite formu-
lation of the theory, the first work on categorical models was presented by Cartmell in 1978 with his
notions of category with attributes and contextual category (Cartmell 1986). However, we will not de-
fine these structures here but instead the closely related categories with families (Dybjer 1996) which
are formulated so that they directly model a variable-free version of a formulation of Intuitionistic
Type Theory with explicit substitutions (Martin-Löf 1995).

A category with families is a functor T : Cop → Fam, where Fam is the category of families of sets.
The category C is the category of contexts and substitutions. If Γ is an object of C (a context), then
T (Γ) is the family of terms of type A which depend on variables in Γ. If γ is an arrow in C representing
a substitution, then the arrow part of the functor represents substitution of γ in types and terms. A
category with families also has a terminal object and a notion of context comprehension, reminiscent
of Lawvere’s comprehension in hyperdoctrines. The terminal object captures the rules for empty
contexts and empty substitutions. Context comprehension captures the rules for extending contexts
and substitutions, and has projections capturing weakening and assumption of the last variable.

Categories with families are algebraic structures which model the general rules of dependent type
theory, those which come before the rules for specific type formers, such as Π, Σ, identity types,
universes, etc. In order to model specific type-former corresponding extra structure needs to be added.

Locally cartesian closed categories. From a categorical perspective the above-mentioned struc-
tures may appear somewhat special and ad hoc. A more regular structure which gives rise to models
of Intuitionistic Type Theory are the locally cartesian closed categories. These are categories with a
terminal object, where each slice category is cartesian closed. It can be shown that the pullback functor
has a left and a right adjoint, representing Σ- and Π-types, respectively. Locally cartesian closed cat-
egories correspond to Intuitionistic Type Theory with extensional identity types and Σ and Π-types
(Seely 1984, Clairambault and Dybjer 2014). It should be remarked that the correspondence with
Intuitionistic Type Theory is somewhat indirect, since a coherence problem, in the sense of category
theory, needs to be solved. The problem is that in locally cartesian closed categories type substituion is
represented by pullbacks, but these are only defined up to isomorphism, see Curien 1993 and Hofmann
1994.

20



6.2 Set-theoretic model

Intuitionistic Type Theory is a possible framework for constructive mathematics in Bishop’s sense.
Such constructive mathematics is compatible with classical mathematics: a constructive proof in
Bishop’s sense can directly be understood as a proof in classical logic. A formal way to understand
this is by constructing a set-theoretic model of Intuitionistic Type Theory, where each concept of type
theory is interpreted as the corresponding concept in Zermelo-Fraenkel Set Theory. For example, a
type is interpreted as a set, and the type of functions in A → B is interpreted as the set of all functions
in the set-theoretic sense from the set representing A to the set representing B. The type of natural
numbers is interpreted as the set of natural numbers. The interpretations of identity types, and Σ
and Π-types were already discussed in the introduction. And as already mentioned, to interpret the
type-theoretic universe we need an inaccessible cardinal.

Model in CZF. It can be shown that the interpretation outlined above can be carried out in Aczel’s
constructive set theory CZF. Hence it does not depend on classical logic or impredicative features of
set theory.

6.3 Realizability models

The set-theoretic model can be criticized on the grounds that it models the type of functions as the set
of all set-theoretic functions, in spite of the fact that a function in type theory is always computable,
whereas a set-theoretic function may not be.

To remedy this problem one can instead construct a realizability model whereby one starts with a
set of realizers. One can here follow Kleene’s numerical realizability closely where functions are realized
by codes for Turing machines. Or alternatively, one can let realizers be terms in a lambda calculus
or combinatory logic possibly extended with appropriate constants. Types are then represented by
sets of realizers, or often as partial equivalence relations on the set of realizers. A partial equivalence
relation is a convenient way to represent a type with a notion of “equality” on it.

There are many variations on the theme of realizability model. Some such models, such as Aczel’s
Frege structures (Aczel 1980) tacitly assume set theory as the metatheory, whereas others explictly
assume a constructive metatheory (Smith 1984).

Realizability models are also models of the extensional version of Intuitionistic Type Theory
(Martin-Löf 1982) which will be presented in 7.1 below.

6.4 Model of normal forms and type-checking

In Intuitionistic Type Theory each type and each well-typed term has a normal form. A consequence
of this normal form property is that all the judgments are decidable: for example, given a correct
context Γ, a correct type A and a possibly ill-typed term a, there is an algorithm for deciding whether
Γ ⊢ a : A. This type-checking algorithm is the key component of proof-assistants for Intensional Type
Theory, such as Agda.

The correctness of the normal form property can be expressed as a model of normal forms, where
each context, type, and term are interpreted as their respective normal forms.

21



7 Variants of the theory

7.1 Extensional Type Theory

In Extensional Intuitionistic Type Theory (Martin-Löf 1982) the rules of I-elimination and I-equality
for the general identity type are replaced by the following two rules:

Γ ⊢ c : I(A, a, a′)

Γ ⊢ a = a′ : A

Γ ⊢ c : I(A, a, a′)

Γ ⊢ c = r : I(A, a, a′)

The first causes the distinction between propositional and judgmental equality to disappear. The
second forces identity proofs to be unique. Unlike the rules for the intensional identity type former, the
rules for extensional identity types do not fit into the schema for inductively defined types mentioned
above.

These rules are however justified by the meaning explanations in Martin-Löf (1982). This is because
the categorical judgment

⊢ c : I(A, a, a′)

is valid iff c ⇒ r and the judgment ⊢ a = a′ : A is valid.
However, these rules make it possible to define terms without normal forms. Since the type-checking

algorithm relies on the computation of normal forms of types, it no longer works for Extensional Type
Theory.

On the other hand, certain constructions which are not available in Intensional Type Theory are
possible in Extensional Type Theory. For example, function extensionality

(Πx : A.I(B, f x, f ′ x)) → I(Πx : A.B, f, f ′)

is a theorem.
Another example is that W -types can be used for encoding other inductively defined types in

Extensional Type Theory. For example, the Brouwer ordinals of the second and and higher number
classes can be defined as special instances of the W -type (Martin-Löf 1984). More generally, it can
be shown that all inductively defined types which are given by a strictly positive type operator can be
represented as instances of well-founded trees (Dybjer 1997).

7.2 Univalent Foundations and Homotopy Type Theory

Univalent foundations refers to Voevodsky’s programme for a new foundation of mathematics based
on Intuitionistic Type Theory and employing ideas from homotopy theory. Here every type A is
considered as a space, and the identity type I(A, a, b) is the space of paths from point a to point b in
A. The notion of ordinary set can then be thought of as a discrete space A where all paths in I(A, a, b)
are trivial loops. The origin of these ideas was the remarkable discovery by Hofmann and Streicher
(1995) that the axioms of Intensional Type Theory do not force all paths to be trivial. This was shown
by a model construction where each type is interpreted as a groupoid. Iterated identity types, e.g.

I(I(A, a, b), f, g)

represent higher homotopies. Deeper connections between identity types, and notions from homotopy
theory and higher categories were subsequently discovered by Awodey and Warren (2009), Lumsdaine
(2010), van den Berg and Garner (2011). Voevodsky realized that the whole type theory could be
modelled by a well-known category studied in homotopy theory, namely the Kan simplicial sets. In-
spired by this model he introduced the crucial univalence axiom for a small universe U of types, which
states that the substitution map associated with the J-operator

I(U, a, b) −→ T (a) ∼= T (b)
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is an equivalence. Equivalence here refers to a general notion of equivalence of higher dimensional ob-
jects, as in the sequence equal elements, isomorphic sets, equivalent groupoids, biequivalent bigroupoids,
etc. The univalence axiom expresses that ”everything is preserved by equivalence”, thereby realizing
the informal categorical slogan that all categorical constructions are preserved by isomorphism, and
its generalization, that all constructions of categories are preserved by equivalence of categories, etc.

The axiom of univalence was originally justified by Voevodsky’s simplical set model. This model is
however not constructive and (Bezem, Coquand and Huber 2014) has more recently proposed a model
in cubical sets.

Although univalent foundations concern preservation of mathematical structure in general, strongly
inspired by category theory, applications within homotopy theory are particularly actively investigated.
Intensional type theory extended with the univalence axiom and so called higher inductive types is
therefore also called ”Homotopy Type Theory”. We refer to Coquand’s article on Type Theory (link)
for further details.

7.3 Partial and Non-Standard Type Theory

Intuitionistic Type Theory is not intended to model Brouwer’s notion of free choice sequence, although
lawlike choice sequences can be modelled as functions from N . However, there are extensions of the
theory which incorporate such choice sequences: namely Partial Type Theory and Non-Standard Type
Theory (Martin-Löf 1990). The types in Partial Type Theory can be interpreted as Scott domains
(Martin-Löf 1986, Palmgren and Stoltenberg-Hansen 1990, Palmgren 1991). In this way a type N

which contains an infinite number ∞ can be interpreted. However, in Partial Type Theory all types
are inhabited by a least element ⊥, and thus the propositions as types principle is not maintained.
Non-Standard Type Theory incorporates non-standard elements, such as an infinite number ∞ : N
without inhabiting all types.

7.4 Impredicative Type Theory

The inconsistent version of Intuitionistic Type Theory of Martin-Löf 1971 was based on the strongly
impredicative axiom that there is a type of all types. However, Coquand and Huet 1985 showed with
their Calculus of Constructions, that there is a powerful impredicative but consistent version of type
theory. In this theory the universe U (usually called Prop) is closed under the following formation
rule for cartesian product of families of types:

Γ ⊢ A Γ, x : A ⊢ B : U

Γ ⊢ Πx : A.B : U

This rule is more general than the rule for constructing small cartesian products of families of small
types in Intuitionistic Type Theory, since we can now quantify over arbitrary types A, including U ,
and not just small types. (See Coquand and Huet 1988.)

The motivation for this theory was that inductively defined types and families of types become
definable in terms of impredicative quantification. For example, the type of natural numbers can be
defined as the type of Church numerals:

N = ΠX : U.X → (X → X) → X : U

This is an impredicative definition, since it is a small type which is constructed by quantification over
all small types. Similarly we can define an identity type by impredicative quantification:

I(A, a, a′) = ΠX : A → U.X a → X a′ : U
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This is Leibniz’ definition of equality: a and a′ are equal iff they satisfy the same properties (ranged
over by X).

Unlike in Intuitionistic Type Theory, the function type in impredicative type cannot be interpreted
set-theoretically in a straightfoward way, see Reynolds 1984.

7.5 Proof assistants

In 1979 Martin-Löf wrote the paper “Constructive Mathematics and Computer Programming” where
he explained that Intuitionistic Type Theory is a programming language which can also be used as a
formal foundation for constructive mathematics. Shortly after that, interactive proof systems which
help the user to derive valid judgments in the theory, so called proof assistants, were developed.

One of the first systems was the NuPrl system (PRL Group 1986), which is based on an extensional
type theory similar to Martin-Löf (1982).

Systems based on versions of intensional type theory go back to the type-checker for the impred-
icative Calculus of Constructions was written around 1984 by Coquand and Huet. This led to the Coq
system, which is based on the Calculus of Inductive Constructions (Paulin-Mohring 1993), a theory
which extends the Calculus of Construction with primitive inductive types and families. The encodings
of the pure Calculus of Constructions were found to be inconvenient, since the full elimination rules
could not be derived and instead had to be postulated. We also remark that the Calculus of Inductive
Constructions has a subsystem, the Predicative Calculus of Inductive Constructions, which follows the
principles of Martin-Löf’s Intuitionistic Type Theory.

Agda is another proof assistant which is based on the logical framework formulation of Intuitionistic
Type Theory, but adds numerous features inspired by practical programming languages (Norell 2008).
It is an intensional theory with decidable judgments and a type-checker similar to Coq’s. However, in
contrast to Coq it is based on Martin-Löf’s predicative Intuitionistic Type Theory.

There are several other systems based either on the Calculus of Constructions (Lego, Matita) or
on Intuitionistic Type Theory (Epigram, Idris); see (Pollack 1994, Asperti et al. 2011, McBride and
McKinna 2004, Brady 2011).
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[31] Per Martin-Löf. Constructive mathematics and computer programming. In Logic, methodology and
philosophy of science VI, Proceedings of the 1979 international congress at Hannover, Germany,
ed. L.J. Cohen, J. Los, H. Pfeiffer and K.-P. Podewski. Amsterdam: North- Holland Publishing
Company, 1982, pp. 153 – 175.
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Palmgren, G. Sundholm (Editors) Epistemology versus Ontology: Essays on the Philosophy and
Foundations of Mathematics in Honour of Per Martin-Löf. Springer 2012, pp. xxiii-xxiv.
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Related Entries

• Constructive Mathematics (Bridges and Palmgren): has a short introduction to Martin-Löf type
theory as one of several approaches to constructive mathematics

• Intuitionistic Logic (Moschovakis): intuitionistic number theory with Kripke and realizability
semantics

• Intuitionism in the Philosophy of Mathematics (Iemhoff):

• Type Theory (Coquand): universes, Girard’s paradox, impredicative type theory, univalent foun-
dations

• Church’s Type Theory (Andrews):

• Set Theory: Constructive and Intuitionistic ZF (Crosilla)

• Set Theory (Jech)

• Zermelo’s Axiomatization of Set Theory (Hallet)

• The Development of Proof Theory (von Plato)

• The Development of Intuitionistic Logic (van Atten)

• Proof-Theoretic Semantics (Schroeder-Heister)
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