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The field of artificial intelligence (AI) has made astonishing 
progress in recent years, mastering an increasing range of 
tasks that now include Atari video games1, board games such 

as chess and Go2, scientific problems including protein-folding3 
and language modelling4. At the same time, success in these nar-
row domains has made it increasingly clear that something funda-
mental is still missing. In particular, state-of-the-art AI systems still 
struggle to capture the ‘common sense’ knowledge that guides pre-
diction, inference and action in everyday human scenarios5,6. In the 
present work, we focus on one particular domain of common-sense 
knowledge: intuitive physics, the network of concepts that under-
lies reasoning about the properties and interactions of macroscopic 
objects7. Intuitive physics is fundamental to embodied intelligence, 
most obviously because it is essential to all practical action, but 
also because it provides one foundation for conceptual knowledge 
and compositional representation in general8. Despite considerable 
effort, however, recent advances in AI have yet to yield a system that 
displays an understanding of intuitive physics comparable to that of 
even very young children.

To pursue richer common sense physical intuition in AI sys-
tems, we take, at multiple points in our work, inspiration from 
developmental psychology, where the acquisition of intuitive phys-
ics knowledge has been an intensive focus of study9–12. We build a 
deep-learning system that integrates a central insight of the devel-
opmental literature, which is that physics is understood at the level 
of discrete objects and their interactions. We also draw on develop-
mental psychology in a second way, which relates to the problem 
of behaviourally probing whether an AI system (or in the case of 
developmental psychology, an infant or child) possesses knowledge 
of intuitive physics.

In developing behavioural probes for research on children, 
developmental psychologists have based their approach on two 
principles. First, that the core of intuitive physics rests upon a set 
of discrete concepts11,13 (for example, object permanence, object 
solidity, continuity and so on) that can be differentiated, operation-
alized and individually probed. By specifically targeting discrete 
concepts, our work is quite different from standard approaches 

in AI for learning intuitive physics, which measure progress via 
video or state prediction14–16 metrics, binary outcome prediction17, 
question-answering performance18,19 or high reward in reinforce-
ment learning tasks20. These alternative approaches intuitively seem 
to require an understanding of some aspects of intuitive physics, but 
do not clearly operationalize or strategically probe an explicit set of 
such concepts.

The second principle used by developmental psychologists for 
probing physical concepts is that possession of a physical con-
cept corresponds to forming a set of expectations about how the 
future can unfold. If human viewers have the concept of object 
permanence21, then they will expect that objects will not ‘wink out 
of existence’ when they are out of sight. If they expect that objects 
will not interpenetrate one another, then they have the concept of 
solidity22. If they expect that objects will not magically teleport from 
one place to another but instead trace continuous paths through 
time and space, then they have the concept of continuity11. With 
this conceptual scaffolding, a method for measuring knowledge of 
a specific physical concept emerges: the violation-of-expectation  
(VoE) paradigm21.

Using the VoE paradigm to probe for a specific concept, 
researchers show infants visually similar arrays (called probes) that 
are either consistent (physically possible) or inconsistent (physically 
impossible) with that physical concept. If infants are more surprised 
by the impossible array, this provides evidence that their expecta-
tions, derived from their knowledge of the probed physical concept, 
were violated. In this paradigm, surprise is putatively measured via 
gaze duration, but see refs. 23–25 for further discussion. As an exam-
ple, consider the concept of continuity (depicted in Fig. 1): objects 
trace a continuous path through time and space. For the possible 
probe (Fig. 1, first row), researchers26 showed an object moving 
horizontally behind a pillar, being occluded by that pillar, subse-
quently emerging from occlusion, and travelling towards a second 
pillar, where it was again occluded behind that pillar and emerged 
from occlusion one final time. In the impossible probe (Fig. 1, third 
row), when the object is occluded by the first pillar, it does not 
emerge from occlusion immediately. Instead, after some delay, the 
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object emerges from behind the second pillar - never appearing in 
the space between the two pillars and thus seeming to teleport from 
one pillar to the other. Experiments with infants have shown that 
by the age of 2.5 months, they gaze longer at an object that teleports 
between two screens than an object that moves continuously from 
one screen to the next26. This same strategy has been used by devel-
opmental researchers to accumulate strong evidence that infants 
acquire a wide range of distinct physical concepts9–12 within the first 
year of life.

In previous work27, we introduced a machine-learning video 
dataset designed to systematically test how well models can learn 
specific physical concepts (see Discussion for comparison against 
similar datasets developed in parallel28 and subsequently29). Our 
original dataset contained procedurally generated VoE probes that 
assess acquisition of a set of physical concepts, constructed so that 
no individual video frame could explain any resulting VoE effect. 
In the present work, we introduce a much richer video corpus, the 
Physical Concepts dataset (https://github.com/deepmind/physical_
concepts). This new dataset contains VoE probe videos targeting five 
physical concepts that have been identified as central in the develop-
mental psychology literature. The first three, continuity (Fig. 1), object 
persistence (Supplementary Fig. 1) and solidity (Supplementary  
Fig. 2), were introduced above. The fourth concept, ‘unchangeable-
ness’ (refs. 9,30, Supplementary Fig. 3), captures the notion that certain  
object properties (for example, shape) do not change. The fifth and 

final concept, directional inertia (a more specific form of the inertia 
principle tested in ref. 31, Supplementary Fig. 4), involves the expec-
tation that moving objects undergo changes in direction consistent 
with the principles of inertia. As detailed in Methods, each video 
showing a violation of these physical principles is matched with a 
corresponding video that provides a physics-consistent baseline, 
maintaining precisely the same single-image statistics across vid-
eos. Our probe videos were based on stimuli used in specific devel-
opmental psychology experiments, but we made changes to event 
details introduced to enhance experimental control without chang-
ing the span of physical concepts probed.

Critically, the Physical Concepts dataset also includes a sepa-
rate corpus of videos intended as training data. These videos show 
a wide variety of procedurally generated physical events (Fig. 2 
and Methods) involving objects similar to those involved in the 
probe videos, among others, but never showing the specific events 
involved in the test probes. Readers are encouraged to view exam-
ples in video format: http://tiny.cc/phys_concepts_training.

Equipped with this dataset and evaluation framework, we now 
turn to the primary objective of the present research: to build a 
model capable of learning intuitive physics and dissect what 
enables that capacity. Our architecture is inspired by accounts from 
developmental psychology which posit that three object-centric 
processes underpin infant intuitive physics behaviour9. We 
leverage recent advances in AI to instantiate these systems in a 
model that we nickname PLATO, for Physics Learning through 
Auto-encoding and Tracking Objects. First and foremost is the 
process of object individuation11. Object individuation carves the 
continuous perceptual input of vision into a discrete set of enti-
ties, where each entity has a corresponding set of attributes. In 
PLATO, each segmented video frame is decomposed into a set of 
object codes via a perception module (Fig. 3a–c), thus implement-
ing a mapping from visual input to individuated objects. PLATO 
does not learn to segment the scene (that task is accomplished via 
ground truth segmentation masks from the dataset), but given a 
segmented object learns a compressed representation. Second, 
object tracking (or object indexing) assigns an index to each object, 
enabling a correspondence between object percepts across time32–34 
and computation of dynamic properties (Fig. 3b,c). In PLATO, 
the object codes are accumulated and tracked over frames in an 
object buffer (Fig. 3d). This is accomplished again by virtue of 
ground truth segmentation masks which provide a correspondence 
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Fig. 1 | Probes adapted from developmental psychology to assess the 
physical concept of continuity. Example probes adapted from ref. 26 to 
assess the physical concept of continuity11,69: objects trace a continuous 
path through time and space. Each row corresponds to one temporally 
downsampled video in a probe tuple. Checkered backgrounds were used 
as a cue for depth and to introduce visual diversity of our stimuli. Actual 
videos consist of a total of 15 frames. The top two rows are physically 
possible probes and the bottom two rows are physically impossible probes. 
Physically possible probes: in the first physically possible probe (first row), 
a ball rolls behind two occluders. In the second possible probe (second 
row), no ball is present. Physically impossible probes: these probes are 
formed by splicing parts of the physically possible probes into impossible 
events. In the first impossible probe (third row), the ball rolls behind the 
first occluder and emerges from the second occluder, never appearing 
between the two occluders. The second impossible probe (fourth row) has 
the opposite structure: the ball appears between the two occluders,  
but was never seen rolling behind the first occluder or rolling out of the  
second occluder.

Fig. 2 | Videos from the ‘freeform’ data used to train our models. 
Example training videos (temporally downsampled, actual videos contain 
15 frames). Scenes are constructed procedurally with composable 
interactions: objects added to a scene are either initialized completely 
randomly or target preexisting objects in the scene. The camera starts from 
a fixed location and drifts randomly over time.
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between objects across frames. The final component is relational 
processing of these tracked objects. This is inspired by the idea, 
proposed in developmental psychology, of a ‘physical reasoning 
system’9, which dynamically processes representations of objects, 
yielding new representations that are inflected by their relationship 
to and interactions with other objects. In PLATO, we learn interac-
tions (Fig. 3d) between the object memory (a slotted object-based 
long short-term memory (LSTM)35) and the history of object per-
cepts (the object buffer) to produce per-object predictions for the 
next video frame and update the object-based memory. We train 
PLATO on a next-step prediction task and evaluate its perfor-
mance on our suite of intuitive physics probes. Although PLATO 
is unique in its detailed inspiration from the developmental litera-
ture and the domain to which it is applied, it is important to note 
that there are various similar models and proposals that prioritize 
object-centric representations, interactions and computations  
(for example, refs. 20,36,37).

To foreshadow our results, we find that PLATO displays strong 
VoE effects across all five concept-probe categories in our data-
set. By contrast, carefully controlled comparison models that lack 
object-centred representations fail to achieve above-chance results 
on the evaluation suite, even when furnished with more compu-
tational capacity. Furthermore, we report that our object-centred 
model, when given object segmentation and tracking, can develop 
robust VoE effects with a surprisingly small amount of training 
data, equivalent to 28 h of visual experience. Finally, we evaluate our 
model’s behaviour on unseen objects and events as a strong test of 
generalization. We test PLATO, without additional training, on an 
independently developed test set, and find that it continues to dis-
play robust VoE effects in this generalization setting.

Results. Models. To implement the object-centric approach, our 
model comprises two main components: a feedforward percep-
tual module (Fig. 3a–c) and a recurrent dynamics predictor with 
per-object memory (Fig. 3d). The perceptual module takes as input 
an image and segmentation mask—we discuss later how segmenta-
tions can also be learned from scratch from visual data—and con-
verts these into a vector embedding using standard deep-learning 
auto-encoding methods (Fig. 3a–c and Methods). In effect, the 
perceptual module parses the high-dimensional visual input into a 
small set of discrete object codes.

The dynamics predictor centres on a structured recurrent neu-
ral network we developed called an InteractionLSTM (Fig. 3d: 
‘IN’ and ‘LSTM’ boxes; Methods). This takes as input the history 
of single-frame object-level embeddings (Fig. 3, ‘object buffer’) 
and predicts the set of object codes at the next timestep (Fig. 3, 
‘prediction’).

We hypothesized, on the basis of the insights provided by devel-
opmental psychology, that the involvement of object-level coding 
would be critical to the acquisition of intuitive physics concepts and 
corresponding VoE effects. To evaluate this claim, we constructed 
a well-matched object-agnostic ‘flat’ model as a baseline for com-
parison. For this, we took each component in PLATO that used a 
set of object codes, and replaced that set with a single vector embed-
ding for the entire scene (Methods). We investigate two versions of 
the resulting flat model on the basis that we can match either the 
number of tunable parameters in PLATO or the number of units 
representing each video frame. In the flat equal parameters (FEP) 
baseline, the flat embedding has the same number of dimensions 
(16) as one of PLATO’s single-object codes. This model has the 
same number of learnable parameters in the dynamics predictor as 
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Fig. 3 | PLATO uses both a perceptual model and a dynamics model to make per-object predictions. PLATO consists of two components: the perception 
module (left) and the dynamics predictor (right). The perception module is used to convert visual input into a set of object codes. These object codes 
are used by the dynamics modules to predict future frames. a, The perception module takes as input an image x and an associated segmentation mask 
m1:K. Taking the elementwise product yields a set of images of just the visible parts of each object: x1:K. b, Given an object image-mask pair, the perception 
module produces an object code zk via an encoder module ϕ. The object code is decoded back into a reconstruction of the object image-mask pair via the 
decoder module θ. The discrepancy between the reconstruction and the original image-mask pair is used to train the parameters of ϕ and θ such that zk 
comes to represent informative aspects of each object image-mask pair. c, After training, an entire image can be reconstructed via a set of object codes z1:K 
by independently running each image-mask pair through ϕ and decoding via θ. d, The dynamics module is trained on sequence data produced by running 
videos (and their segmentation masks) through the pretrained encoder ϕ. The dynamics module must predict the object codes in the next frame given 
the object codes in the current frame zt1:K and an object buffer of the codes in the preceding frames z1:t−1

1:K . The dynamics module comprises two trainable 
components: a ‘slotted’ object-based LSTM and an interaction network (IN). Predictions are made by computing interactions from each slot in the 
LSTM’s previous state (dotted arrow) to every other slot in the LSTM and all input object codes and buffers z1:t1:K. The resulting interaction is used to make 
objectwise predictions and updates to the LSTM.
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PLATO, but reduced capacity for representing images in the per-
ceptual module. In the second version, flat equal capacity (FEC), 
we give the flat code the same capacity for representing images in 
the perceptual model (a single 128-dimensional vector, given that 
PLATO contains eight 16-dimensional object-code slots). In this 
case the dynamics predictor contains approximately four million 
more parameters than PLATO (see Methods for full implementa-
tional details).

Training and testing. For all models, training consisted of two 
phases. In the first phase (Fig. 3a–c), the perceptual module was 
trained to reconstruct individual images from the training data 
(see Methods for loss function and other details). After this phase, 
the weights within the perceptual module were fixed, yielding an 
encoder that could produce object (or flat) codes from inputs and a 
decoder that could take object (or flat) codes and produce an image. 
In the second phase (Fig. 3d), we trained the dynamics module to 
predict the next set of object codes in videos from our training set 
(using teacher-forcing as detailed in Methods).

We evaluated our models using the VoE paradigm for the five 
physical concepts targeted in the Physical Concepts test set: conti-
nuity, directional inertia, object persistence, solidity and unchange-
ableness (see Methods for description). We chose these physical 
concepts to satisfy three criteria. First, we wanted to cover real-world 
physical phenomena (for example, gravity, solidity, stability and 
so on), which could be faithfully instantiated in a simulated envi-
ronment. Second, we chose concepts that had some experimental 
precedence in the developmental literature. Third, we chose physi-
cal concepts that were amenable to the probe construction splic-
ing procedure described below. For a single physical concept, we 
procedurally generated 5,000 probe tuples, each comprising two 
physically possible probes and two physically impossible probes. 
The impossible probes were constructed by splicing (illustrated in  
Fig. 4) together frames from the possible probes in a way that clearly 

violates physics. This splicing procedure ensures that the same set of 
images is present in the possible probes as in the impossible probes. 
The only difference is the ordering (which yields aphysical events in 
the impossible probes), an approach pioneered by Riochet et al.28. 
Furthermore, we splice frames such that all adjacent frames are 
physically possible, even if the scene as a whole is not. This ensures 
that the exact same pairs of images appear in both probe types. This 
precludes a model from showing strong VoE effects merely on the 
basis of temporally local inconsistencies (see Supplementary Fig. 17 
for empirical validation).

Under the VoE paradigm, physical concept acquisition is quan-
tified by comparing surprise on the two probe types. To calculate 
surprise for a given video, we compute for each frame the model’s 
prediction error, defined as the sum-squared error of the system’s 
pixel-level prediction. Then, we sum prediction errors across all 
frames within a video. For each of the 5,000 probe tuples for a 
physical concept, we compute the sum of the surprises on the pos-
sible probes, called the physically possible surprise, and similarly 
compute the physically impossible surprise. We compute an accu-
racy score where a probe is ‘classified’ correctly if the impossible 
surprise is greater than the possible surprise. We use the average 
accuracy to assess the model’s acquisition of a physical concept. 
Whereas accuracy is binary, we can also compute the relative sur-
prise, the difference between the impossible surprise and possible 
surprise, to quantify the magnitude of the surprise effect. To allow 
for comparison across the probe tuples, we normalize the relative 
surprise by the sum of both the possible and impossible surprises. 
This normalization takes account of the fact that some initial condi-
tions yield higher baseline surprises across both probe types (for 
example, probes with higher velocities). Finally, to accommodate 
variability in simulation results, we computed average accuracy and 
average relative surprise for five different initial random seeds of 
each model.

Test set performance. At test time, PLATO displayed robust VoE 
effects in all five probe categories when trained with five different 
random seeds each evaluated over 5,000 probe quadruplets. This 
was evident both in the relative surprise effect, most analogous to 
the original developmental experiments (Fig. 5 top row, green bars) 
as well as in classification accuracy (Fig. 5 middle row, green bars).

We performed a one-tailed, single-sample t-test to assess whether 
the mean relative surprise across seeds was above the chance value 
of zero. For all five physical concepts, PLATO produced mean 
(M) relative surprise values above zero: continuity: M = 0.044, 
s.d. = 0.006, t(4) = 15.9, P = 4.6 × 10−5; directional inertia: M = 0.017, 
s.d. = 7 × 10−4, t(4) = 47.8, P = 5.7 × 10−7; object persistence: 
M = 0.034, s.d. = 0.008, t(4) = 8.7, P = 4.8 × 10−4; solidity: M = 0.009, 
s.d. = 0.003, t(4) = 6.4, P = 0.002; unchangeableness: M = 0.007, 
s.d. = 2.2 × 10−4, t(4) = 60.57, P = 2.2 × 10−7. Additionally, we per-
formed a one-tailed, single-sample t-test to assess whether the aver-
age accuracy was above the chance value of 0.5. For all five physical 
concepts, PLATO produced accuracy values above 0.5: continuity: 
M = 0.891, s.d. = 0.028, t(4) = 27.7, P = 5 × 10−6; directional inertia: 
M = 0.727, s.d. = 0.017, t(4) = 26.9, P = 5.6 × 10−6; object persistence: 
M = 0.678, s.d. = 0.043, t(4) = 8.2, P = 5.9 × 10−4; solidity: M = 0.719, 
s.d. = 0.064, t(4) = 6.8, P = 0.001; unchangeableness: M = 0.656, 
s.d. = 0.021, t(4) = 14.7, P = 6.2 × 10−5. Furthermore, the time courses 
of relative surprise provided qualitative evidence that surprise rose 
at the moments in each probe video coinciding with the onset of the 
relevant physically impossible event (Fig. 5, bottom row).

In contrast, VoE effects were severely diminished or absent for 
the object-agnostic models (Fig. 5 top and middle rows, blue bars). 
The strongest results among the object-agnostic models came from 
the FEC baseline which was matched in representational capac-
ity to PLATO (and thus contained many more free parameters). A 
one-tailed, single-sample t-test showed that the FEC object-agnostic 
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Probe 1: A → A
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Probe 1: A → B
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Fig. 4 | Illustration of the splicing procedure used to create our physical 
concept probes. Illustration of the splicing procedure used to create a 
probe tuple for the physical concept of ‘unchangeableness’ as seen in 
Supplementary Fig. 4. Probe tuples consist of two possible videos and 
two impossible videos. The possible videos are created by running a 
physics engine with related initial conditions (for example, same objects 
but different positions). Importantly, videos are constructed so that they 
share a frame in common (centre image). The segments before this shared 
frame are called the ‘start segments’ (left) and the ones after are called the 
‘end segments’ (right). Thus, to create any probe, we can gather frames 
from a start segment, add the common frame and add frames from an end 
segment. Possible probes (green arrows) are formed by starting and ending 
at corresponding start and end segments (for example, start segment A 
to end segment A). Impossible probes (red arrows) are formed by using a 
mismatched end segment (for example, start segment A to end segment 
B). This design ensures that the possible videos and impossible videos 
within a probe tuple are perfectly matched in terms of individual frames 
and pairs of frames.
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model produced mean relative surprise above zero (Fig. 5 top row, 
blue bar) for only three physical concepts: continuity: M = 0.009, 
s.d. = 0.008, t(4) = 2.4, P = 0.038; directional inertia: M = 0.012, 
s.d. = 0.01, t(4) = 2.4, P = 0.036; object persistence: M = −3.9 × 10−5, 
s.d. = 6.4 × 10−5, t(4) = −1.2, P = 0.86; solidity: M = 9.3 × 10−5, 
s.d. = 2 × 10−4, t(4) = 0.92, P = 0.21; and unchangeableness: 
M = 1.4 × 10−4, s.d. = 1.3 × 10−4, t(4)=2.15, P = 0.049. A one-tailed, 
single-sample t-test showed that the FEC model produced accuracy 
scores (Fig. 5 middle row, blue bar) above zero for only two physi-
cal concepts: continuity: M = 0.71, s.d. = 0.15, t(4) = 2.8, P = 0.024; 
directional inertia: M = 0.69, s.d. = 0.2, t(4) = 1.9, P = 0.065; object 
persistence: M = 0.51, s.d. = 0.016, t(4) = 1.1, P = 0.168; solidity: 
M = 0.5, s.d. = 0.036, t(4) = 0.174, P = 0.435; and unchangeableness: 
M = 0.493, s.d. = 0.115, t(4) = −0.129, P = 0.548.

Taken together, these results indicate a strong facilitative role 
for object-level representation in the acquisition of intuitive phys-
ics concepts, consistent with the conclusions of developmental psy-
chology literature.

Effect of training set size. The training corpus in the Physical 
Concepts dataset contains a total of 300,000 videos. By a conservative  

calculation (Methods), this adds up to approximately 52 d worth 
of continuous visual experience. It is a question of obvious inter-
est, both from an AI and a developmental point of view, how much 
training data is actually required to yield VoE effects at test. To 
assess this, we trained three random seeds of PLATO’s dynamics 
predictor on datasets of gradually decreasing size (Fig. 6), calculat-
ing the ‘grand mean’ of VoE effects over all five probe categories 
(see Supplementary Fig. 12 for metrics on individual probe cat-
egories). After training on only 50,000 examples, a one-tailed, 
single-sample t-test revealed the grand mean relative surprise was 
above zero (M = 0.02, s.d. = 0.003, t(2) = 9.246, P = 0.006). Similarly, 
after 50,000 examples we found that the grand mean of PLATO’s 
accuracy scores was above 0.5 (M = 0.75, s.d. = 0.015, t(2) = 23.3, 
P = 9.2 × 10−4). These results indicate that robust VoE effects arise in 
our model after training with as few as 50,000 examples, the equiva-
lent of 28 h of visual experience.

Generalization to unseen objects and events. As a strong test of gen-
eralization, we evaluated our model on object shapes and dynam-
ics different from those presented during training. To do so, we 
leveraged the ADEPT dataset29, an independently developed,  
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(middle). Even when the flat model has more model parameters (dark blue), it only shows above-chance accuracy on two of the five concepts. Each 
point represents the average performance over 5,000 probe tuples for models trained with different random seeds. Error bars show the 95% confidence 
intervals over five seeds, assuming a normal distribution across seeds (although not formally tested). Bottom: frame-by-frame analysis of surprise 
reveals that the relative surprise increases substantially when videos become physically impossible. The trajectory of this increase is specific to the 
physical phenomena. For example, in the ‘unchangeableness’ dataset the occluder rises slowly, which yields a gradual increase in relative surprise. In 
contrast, ‘continuity’ shows a steep peak at the frames where the ball fails to appear between the pillars. Relative surprise is computed at each frame 
of probe videos for five random seeds of the PLATO model. The x axis indicates frame index within a video. Vertical lines indicate when the impossible 
probes become aphysical (varies by dataset). Blue and red dots code points above or below zero, respectively, only applied to frames after the onset of 
aphysicality. Small dots depict different random seeds. Large dots depict mean over three seeds, with corresponding error bars showing 95% confidence 
intervals over seeds (assuming a normal distribution, but not formally tested).

Nature Human Behaviour | VOL 6 | September 2022 | 1257–1267 | www.nature.com/nathumbehav 1261

http://www.nature.com/nathumbehav


Articles NAturE HumAn BEhAVIour

procedurally generated dataset designed to probe intuitive phys-
ics knowledge. As detailed under Methods, three probe types from 
the ADEPT dataset were amenable to the test procedure used in 
our main simulations. Labelled by their creators ‘overturn short’, 
‘overturn long’ and ‘block,’ these probe types include object types 
not included in our own dataset (for example, rabbits and bowling 
pins), as well as novel movement patterns (a drawbridge-like plank 
that rotates not only down but also up). The first two probe types 
test object permanence using a rotating drawbridge exactly like 
Baillargeon’s original study13. The third probe tests the concepts of 
solidity and continuity using a design in a different developmental 
study11: a rolling ball approaches a wall that should stop it, is briefly 
occluded before contact, and then is revealed to lie on the opposite 
side of the wall. This ‘magic trick’ can be viewed as a violation of the 
principle of solidity (the ball rolled through the wall) or of continu-
ity (the ball teleports to the other side of the wall). We tested PLATO 
on these probes without retraining or fine-tuning any part of the 
model, measuring prediction errors for impossible relative to possi-
ble probes, as in our original experiments. As shown in Fig. 7, PLATO 
displayed clear VoE effects for all three probe classes. A one-tailed, 
single-sided t-test showed that the mean relative surprise was above 
zero for all three probes: block: M = 0.007, s.d. = 0.002, t(4) = 7.5, 
P = 8.4 × 10−4; overturn long: M = 0.069, s.d. = 0.011, t(4) = 12.671, 
P = 1.1 × 10−4; overturn short: M = 0.022, s.d. = 0.016, t(4) = 2.8, 
P = 0.024. Similarly, PLATO’s accuracy was above 0.5 for all three 
probes: block: M = 0.765, s.d. = 0.049, t(4) = 10.9, P = 2 × 10−4; over-
turn long: M = 0.97, s.d. = 0.037, t(4) = 25.3, P = 7.2 × 10−6; overturn 
short: M = 0.79, s.d. = 0.16, t(4) = 3.56, P = 0.012.

Discussion
‘Common sense’ reasoning, in numerous varieties, has been an 
increasingly pressing objective for AI research. In the present work, 
we reported progress toward building deep-learning systems that 
construct, on the basis of perceptual experience, knowledge in a 
specific but fundamental common-sense domain: intuitive physics. 
In doing so, we drew inspiration from developmental psychology on 
two fronts. First, to measure progress systematically and quantita-
tively, we ported the VoE paradigm from developmental psychology 
to probe five different physical concepts. Second, to build a model 
capable of learning intuitive physics, we endowed our model with 
object-centric representation and computation directly inspired by 
accounts of infant intuitive physics. To train that model, we cre-
ated a training dataset of composable physical interactions yield-
ing complex three-dimensional (3D) scenes, the Physical Concepts 
dataset (also making this freely available online as a resource for 
other researchers). To test the utility of the object-based approach, 
we compared our model with tightly controlled, object-agnostic  

baselines. Finally, to test the generalization capabilities of our net-
work, we evaluated our model on an externally defined dataset with 
novel appearances, shapes and dynamics without any retraining.

Our results centre on four key observations. First, our 
object-based model displayed robust VoE effects across all five 
concepts we studied, despite having been trained on video data in 
which the specific probe events did not occur. Second, consistent 
with expectations founded on the developmental literature, we 
found that the VoE effects seen in our model diminished or disap-
peared in well-matched models that did not employ object-centred 
representations. Third, we observed that robust VoE effects could 
be obtained with as little as 28 h of visual training data. Finally, we 
report that our model generalized to an independently developed 
dataset involving novel object shapes and dynamics.

Our work relates closely to, and also substantially extends, a 
number of previous studies in AI and computational cognitive 
science. Two other groups have built intuitive physics evaluation 
frameworks specifically using the VoE paradigm. Riochet et al.28, in 
research conducted in parallel with our own original work in this 
area27, presented a dataset for probing a variety of physical concepts, 
including a subset of those covered in our Physical Concepts dataset. 
Although the videos comprising this dataset include richer textures 
and lighting effects than our dataset, the physical events themselves 
are more restricted in their diversity. Smith and colleagues29 intro-
duced the ADEPT VoE dataset mentioned earlier, which is still 
simpler in design and eschews collision events. Neither of these pre-
ceding studies reported a system that successfully acquires specific 
physical concepts through learning: the model presented by Riochet 
and colleagues showed VoE effects only in a minority of conceptual 
categories tested, and the model presented by Smith and colleagues 
embeds a hand-engineered physics engine rather than learning 
physics from scratch.

Our work extends these previous work by introducing a new 
dataset involving a more dramatic separation between training and 
test events, combined with object dynamics more faithful to phys-
ics. Of course, despite these advances, the range of object and event 
types in our dataset remains narrow compared with those encoun-
tered in the real world. Increasing richness and ecological validity 
while also maintaining experimental control is a challenge in AI 
just as it is in psychology, but growing research of the present kind 
towards richer data domains is of course an important aspiration. 
Fortunately, the architecture we have introduced is neither tied to 
the particular object types and events contained in our dataset, as 
demonstrated in our ADEPT experiment, nor is there an a priori 
reason to expect that a similar computational approach cannot 
be extended to more naturalistic event types. Indeed, relational 
architectures related to PLATO have recently been employed in  
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Fig. 6 | PLATO displays robust effects with as little as 28 h of visual experience. PLATO shows robust VoE effects (left) and accuracy (right) when the 
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engineering research to learn the dynamics of quite complex physi-
cal systems38.

In presenting our approach, we have stressed the centrality of 
learning. In view of this, it is important to acknowledge that our 
model implementation was granted access to two sources of privi-
leged information: object (segmentation) masks and object indices 
allowing consistent placement of object embeddings within the 
model over timesteps (tracking). Recent research has introduced 
methods for object segmentation and tracking that would allow 
each of these to be extracted from pure video data without access to 
privileged information of any kind. In the case of object masks, sev-
eral recent papers have introduced methods for unsupervised object 
discovery (see refs. 39,40 for example). Recently, methods for learn-
ing to track objects consistently over time have been reported41,42. 
Integrating these methods into our framework to allow true ‘learn-
ing from scratch’ represents an appealing goal for next-step develop-
ment. In the meantime, it is worth noting that the mere availability 
of object-level segmentation and tracking information does not fully 
explain the simulation results we have presented. In our training-set 
size analysis (Fig. 6), the model without any training at all (‘0’) failed 
to produce any VoE effects. In a related simulation work also focus-
ing on VoE effect in intuitive physics, a model that was given seg-
mentation masks but which did not carry out relational object-level 
processing failed to produce VoE effects28.

The advantages of object-level representation observed in the 
present work echo related findings from other areas of AI research, 
including question-answering43 and reinforcement learning20,44–47, 
where object-level representation has been found to support 
faster learning and improve transfer. What is the explanation for 
the benefit of object-level representation in the problem setting 
we have studied? We speculate that the advantage derives from 
the role that object-level representation can play as a regularizer. 
In a machine-learning context, regularization refers to the inclu-
sion of constraints on a learning process, which bias that process to 
place greater weight on particular inferences from training data48. 
Regularization, in this sense, is employed to prevent a learning sys-
tem from ‘overfitting’ to training data, learning representations that 
are so closely tied to the specifics of that data that the system fails 
to identify more general regularities that would allow it to perform 
correctly on new data at test. A bias towards object-level representa-
tion could have this kind of regularizing impact on visual learning, 
in the sense that it biases the learning system towards a composi-
tional representation of visual events which corresponds to the 
actual compositional structure of the physical events themselves, 
resulting in knowledge that generalizes well to new events. While 

this explanation is speculative, it aligns with one informal observa-
tion from preliminary modelling work not described above. In this 
preliminary modelling, we trained object-based and flat models on 
videos in which the depicted events were much closer in form to 
those presented at test in the VoE probes. Under these conditions, 
the difference in VoE effects between object-based and flat models 
was considerably smaller than what we observed in the simulations 
that we report in the present paper, which featured much greater 
separation between training and testing data. It is in this setting, 
where a learning system must transfer at test to data that lies reason-
ably far from any particular training example, that regularization 
can be decisive. Not only does this regularization have the potential 
to make an intractable task tractable, but it may also make models 
more data-efficient. Where deep-learning models have often been 
criticized as being too data inefficient5, our results demonstrate that 
a relatively small amount of visual experience—on the order of tens 
of hours—is sufficient to engender robust VoE effects in response to 
violations of physics. Exploring this regularization-based interpre-
tation of the role of object-based representation thus stands as an 
appealing hypothesis for further investigation. In this connection, 
it is worth noting that recent work in AI has increasingly favoured 
computational architectures (for example, graph nets and tranform-
ers) that implement an inductive bias towards relational, composi-
tional processing49.

Throughout the present work, we have emphasized the role of 
insights from developmental psychology in guiding the research we 
have reported. What, if any, are the implications of our work for 
developmental psychology itself? This topic must be approached 
with some care, since the model that we have presented is not 
intended to provide a direct model of physical-concept acquisition 
in children. Nevertheless, we do think there are several insights 
that may be germane to developmental science. First, our model-
ling work provides a proof-of-concept demonstration that at least 
some central concepts in intuitive physics can be acquired through 
visual learning. Although research in some precocial species sug-
gests that certain basic physical concepts can be present from 
birth50, in humans the data suggest that intuitive physics knowledge 
emerges early in life31 but can be impacted by visual experience51,52. 
Of course there is extensive debate and legitimate uncertainty 
about innateness11,53. Our modelling work complements these con-
clusions from experimental research by demonstrating the suf-
ficiency of visual learning to explain the emergence of one core 
set of physical concepts, assuming—as developmental psychology 
led us to anticipate—that object-level representations are avail-
able. Furthermore, our model reflects just one point in a family of  
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possible models that implement proposed algorithmic-level54 prin-
ciples (for example, tracked objects) suggested by developmen-
tal psychologists. Exploring different ways of implementing these 
principles (for example, replacing our object buffer with a recurrent 
object tracker or removing recurrence from the dynamics predic-
tor; see Supplementary Fig. 12) presents a natural avenue for future 
work to make more precise contact with developmental accounts at 
the implementation level54.

It would be fascinating to extend the present modelling work to 
make even more direct contact with key questions in developmental 
psychology. For example, the order of concept acquisition through-
out development has been of central interest to developmental psy-
chology55. Although we do not model developmental trajectories in 
the present work, there is a long history of using connectionist mod-
els to shed light on stage-like developmental processes, including 
in the domain of intuitive physics56. Recent work57 is extending the 
VoE effect to neurophysiological measurements, potentially open-
ing up new possibilities for testing and constraining models of the 
kind we have proposed here. Bringing the present work to bear on 
these questions poses an obvious research opportunity. This would 
be especially promising in combination with newly emerging data-
sets that capture first-person footage of infant experience at large 
scale58,59. This represents just one opportunity that our model might 
offer as a tool for computational research into the origins of intuitive 
physics in human development. A broader range of possibilities fol-
lows from the wider class of relational AI systems mentioned briefly 
above49. Whereas the present work has explored the utility of rela-
tional, object-based processing for understanding intuitive physics, 
we speculate that relational mechanisms currently being explored 
in AI may be useful for understanding human knowledge in other 
‘core domains’ studied in developmental psychology12, perhaps 
most interestingly the interactions with animate agents.

Methods
Training dataset, ‘freeform’ physical events. Our training dataset consists 
of 300,000 procedurally generated scenes using custom Python code and the 
Mujoco physics engine. Our motivation was to build a dataset for training that 
encompassed a wide range of complex physical interactions. Thus, we built 
composable scene building blocks: rolling, collisions along the ground plane, 
collisions from throwing or dropping an object, occlusions (via a ‘curtain’ 
that descends from the top of the screen and retracts), object stacks, covering 
interactions (an open-bottom, closed-top container falls onto an object), 
containment events (an object falls into an open-top container) and rolling up/
down ramps. Each building block used randomly generated values for object 
appearances and locations, while ensuring the main intended physical interaction 
still occurred.

To form a scene, we chose two to four scene building blocks. Building blocks 
compose by advertising and/or consuming locations of interest. For example, 
‘rolling’ building blocks have two locations of interest: the rolling object’s starting 
point and the point it rolls towards. An ‘object stack’ building block has a single 
location of interest: the centre of the object stack. Composing these two building 
blocks can yield a scene where a sphere rolls at the object stack. Alternatively, 
the sphere can start off at the top of the object stack and roll off of it. With 
some probability, building blocks do not compose and inhabit the same scene 
independently.

We restricted the primitive shapes in our dataset to rectangular prisms and 
spheres. From the rectangular prisms we built a ‘curtain,’ a ramp, an arch, and both 
open-top and closed-top containers. Object sizes were chosen in a hand-crafted 
range to ensure that objects were visible. Object colours and the checkerboard 
floor were chosen as random red-green-blue (RGB) values. Objects had varying 
but stereotyped masses. Rolled objects and objects in an object stack had a mass 
of 10. Dropped or thrown objects were made four times heavier so that they could 
more easily displace objects they hit. Containers had a mass of 4 or 5. Arches had a 
total mass of 60 to keep them upright. We did not withhold any object shapes from 
the training data for use in the test probes. Learning to generalize the dynamics of 
arbitrary shapes would be its own research programme with significant challenges. 
We could sidestep this issue by creating probes that employ novel shapes but endow 
them with familiar dynamics: a chess piece that glides across a frictionless floor 
would have the same lateral trajectory as one of our rolling balls. However, this 
would be a contrived version of physics that could only provide a superficial test of 
generalization to new objects. Each scene unfolded over 3,000 simulation steps and 
was rendered into 15 frames at a resolution of 64 × 64 RGB pixels. Each frame had 

a corresponding segmentation mask rendered at the same resolution where each 
object in the scene, including the floor, was given a unique and consistent value. To 
add extra complexity, we used a drifting camera. The position and orientation of 
the camera was the same at the start of all scenes. From there the camera randomly 
drifted its position and location (subject to a bounding box to ensure the camera 
was still looking at relevant parts of the scene). For each of the 15 frames in a video, 
we exported the camera position and orientation and gave this information to our 
model. We chose a checkered background to provide a depth cue for the relative 
positions of objects as they and the camera position moved throughout a video. We 
added this for visual diversity and to make our results comparable to that of ref. 27. 
Finally, we built an additional 5,000 ‘freeform’ scenes with this same structure to 
use as a test set during hyperparameter selection.

VoE paradigm. As described earlier, to assess the model’s knowledge of specific 
physical concepts, we leverage the VoE paradigm from the developmental literature 
and adapted for artificial models27,28 in parallel and subsequently29. We generated 
5,000 probe scenarios for each of the following physical concepts adapted from 
developmental psychology: object persistence, continuity, unchangeableness, 
directional inertia and solidity (described below). Whereas the training dataset 
had a freely moving camera, we used a stationary camera for the probes to ensure 
objects were (where applicable) occluded during the transition from physical to 
aphysical frames. We computed surprise as the model’s prediction errors over the 
course of a video. Although we optimized the loss in the object code space, for 
evaluation we looked at the error in pixel space. We can take this error in pixel 
space by decoding object codes to images using the ComponentVAE’s decoder, Θ.

surprise(video) =

T−1∑

t=1

K∑

k=1

(Θ(zt+1
k ) − Θ(ẑt+1

k ))
2.

we took this loss in pixel space, instead of in object code space which we used for 
training, due to the high variance of object codes representing empty ‘objects’. 
This arises because the ComponentVAE emits a fixed number (K = 8) of output 
components (‘objects’). If there are fewer than 8 objects in the image, then the 
ComponentVAE outputs ‘objects’ which correspond to blank pixels. As these 
empty objects were fairly prevalent in our scene (most videos did not contain the 
maximum of 8 objects in a scene), the learned representational code uses the unit 
Gaussian (mean = 0, variance = 1) to represent empty components. To represent 
components with actual objects in them, the ComponentVAE shifts the mean from 
0 and decreases the variance (Supplementary Fig. 18). Because of the high variance 
on empty objects, it is relatively difficult to predict the exact value of an empty slot 
across timesteps. By taking pixel loss, we avoided this issue as any of the values 
that encode an empty object all decode to a blank image. Furthermore, because 
the possible and impossible videos within a probe scenario contained the same 
objects, we avoided issues that typically arise when using pixel loss. For example, 
in pixel space, predictions of large objects carry more weight than predictions of 
small objects, but within a probe scenario the objects in the possible and impossible 
videos are perfectly matched.

Physical concept ‘object persistence’. Perhaps the most fundamental aspect of 
intuitive physics is understanding that objects cannot disappear from existence. 
This is referred to as ‘object permanence’. The principle of ‘object persistence’10 
extends this to say that “objects persist, as they are, in time and space”. Taking 
inspiration from a classic behavioural experiment13 on object permanence, probes 
for this category involved a rigid plank falling on an object. In the possible probe 
(Supplementary Fig. 1), when the plank fell on the object, the plank occluded it 
while also remaining propped up by it as expected. By contrast, in the impossible 
probe the plank fell on top of the object (in a manner that is initially identical) but 
ended up flat on the floor, as if the object had disappeared. In the counterbalanced 
probes, the possible probe had the plank falling flat on the floor in an otherwise 
empty scene, and the impossible probe had the plank falling in the same empty 
scene but ended up inexplicably propped up by an item that was made to appear 
under the plank while it occluded part of the floor. We flagged this as a test of 
object persistence because not only must the object continue to exist while being 
occluded, but it must also retain its properties. For example, if the object shrank 
while occluded, then the plank could occupy the space it occupied without 
violating physics.

Physical concept ‘unchangeableness’. By the principle of ‘unchangeableness’9, 
objects tend to retain their features (for example, colour, shape) over time. In the 
possible probes of this dataset (Supplementary Fig. 3), a random assortment of 
static objects were aligned in the foreground. A screen was lowered in front of 
those objects, and was then raised.

The concept of ‘unchangeableness’ relates to a number of different aspects of 
objects, and therefore in the impossible probes we swapped the positions of objects 
when they were behind the curtain to suggest that their position, colour or shape 
had changed.

The developmental study that inspired our event design30 used separate 
occluders for each object. To simplify procedural event generation, our probe 
videos involved a single occluder spanning all objects. It should be noted that, in 
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contrast to the developmental study, the ‘impossible’ events in our videos were 
therefore susceptible to an alternative interpretation, whereby objects traded 
places through self-propelled motion. In the developmental literature, this would 
be classified not as a violation of unchangeableness, but instead as a detection of 
(implausible) self-propelled motion in animate objects60.

Physical concept ‘continuity’. The concept that an object traces out one 
continuous path through space and time is referred to in the developmental 
literature as ‘continuity’31. For videos (Fig. 1) in this category, we used a nearly 
identical setup to a classic experiment26 where possible probes began with two 
static pillars separated by a gap. A ball was rolled horizontally behind both pillars 
so that it was visible before, between and after the pillars during its trajectory. 
In the impossible probes, while the ball was occluded by the first pillar, the ball 
was made invisible for the period when it would be between the pillars, and then 
reappeared after the second pillar. Because the size of the pillars matched the size of 
the ball, it was not possible that the ball was simply stopped behind the first pillar. 
Alternatively, we made the ball only visible when it was rolling between the pillars, 
but not before or after. The only way this could be possible would be if there were 
self-propelled balls, which never appeared in our dataset. Note that the splicing 
procedure for probes for this concept deviated slightly from what is shown in  
Fig. 4. However, we still maintained the image-level and pairwise matching of 
frames across possible and impossible videos in a probe tuple.

Physical concept ‘solidity’. This dataset is an adaptation of an experiment that 
uses an object and an occluder22 to test understanding of the solidity of objects, 
as related to the penetration of an object through a container and the ground 
below. Although originally situated in an analysis of the differences between 
infant cognition in occlusion versus containment events, it nonetheless relies 
on the concept of solidity. In probes, perspective was carefully controlled such 
that the camera can view inside the top of the container but not the bottom. In 
possible probes (Supplementary Fig. 2), a rectangular block was dropped into the 
container and came to rest as expected. In the impossible probes, the object ‘fell 
through’ the container and the floor, and therefore disappeared from view (with 
the penetration itself occluded by the face of the container) even if the object 
should have remained visible due to its height. To allow for the bias-free splicing 
procedure, we had an alternate impossible probe condition which related to solidity 
in a different way: the object remained visible at the top of the container when 
its height clearly dictated that it should have fallen further into the container. In 
this case, the violation is that objects can only rest upon solid surfaces. In terms of 
developmental theory, this relates closely to what have been termed the inertia  
and gravity principles61.

Physical concept ‘directional inertia’. This dataset is a loose adaptation of a 
paradigm developed by Spelke et al.62 for investigating infant knowledge of 
inertia. Where the classic paradigm investigated both magnitude and directional 
violations of the principle of inertia under occlusion, the current probe only tests 
the directional component in an unoccluded fashion. The altered version was 
chosen to allow for the bias-free splicing procedure. Furthermore, we wanted to 
include a test involving collisions (which is a common, albeit in 2D not 3D, domain 
for learning physical dynamics with deep learning; for example, ref. 63). Possible 
probes (Supplementary Fig. 4) were formed by rolling a ball at an angle towards a 
heavy block. Upon contact, the sphere rolled away from the block while reflecting 
its velocity about the angle of incidence (as expected). The paired possible probe 
reversed this trajectory: it began at the end point of the first possible probe, rolled 
at the same location on the block and bounced off the block to end up at the initial 
position of the first probe. Each impossible probe was formed by swapping the 
trajectories of the impossible probes at the point where they made contact with 
the block. The effect of this swap was that when the ball hit the block, instead of 
reflecting about the angle of incidence, it headed back towards its initial location, 
clearly violating the principles of directional inertia for colliding objects.

Model architecture. To implement our object-centric approach, our model used 
two main components: a feedforward perceptual module and a recurrent  
dynamics predictor.

The perceptual module took as input a 64 × 64 RGB image and 64 × 64 
segmentation mask consisting of n = 8 channels and produced an object code for 
each (potentially empty) channel in the segmentation mask through unsupervised 
representation learning. Although not provided as inputs or targets to the 
perceptual module, we found that some of the axes of the code represented 
interpretable, static properties of the objects such as position on the ground plane 
or above the ground, height, width and different types of shape transformations 
(see Figs. 19–23 in Supplementary Material for traversals of this learned latent 
space). These object codes were fed into the dynamics predictor, which was then 
tasked with predicting the object codes at the next timestep. Instead of directly 
predicting the next image in the video, the dynamics model predicted  
per-object percepts.

Perception module. To learn these object codes, we used ComponentVAE39. We 
used a convolutional neural network for the encoder Φ and a spatial broadcast 

decoder θ64. Where that work learned segmentation masks using an attention 
network, we used ground truth segmentation masks from the dataset. For a given 
image x and a segmentation mask m with K = 8 channels (representing a maximum 
of 8 objects in any scene), the ComponentVAE yielded K 16-dimensional Gaussian 
posterior distributions qϕ(zk∣xk, mk) (where xk is the masked image). The sample 
from this code, zk, was the object code for the kth object. The decoder took as 
input zk to reconstruct masked object image and mask: pθ(x̂k, m̂k|zk). Note that 
similar to ref. 39, we treated the ground plane as its own object with its own set of 
parameters in the encoder and decoder. Additionally, we always output 8 codes that 
were used by the dynamics predictor. Where there were fewer than 8 objects in the 
image (some of the mask channels were empty), the ‘extra’ slots were tasked with 
reconstructing an empty object image and mask.

During an offline phase, before training the dynamics predictor, we optimized 
the variational objective as defined by ref. 39 to learn the encoder and decoder 
parameters. We set β to 0.1 and γ to 10 to ensure that the model reconstructed the 
object masks with high fidelity. We found that even at this relatively low value of 
β, the model learned disentangled representations65 for each object, sometimes 
corresponding to factors such as position, shape, colour and size (see Figs. 19–23 in 
the Supplementary Information).

We used the pretrained ComponentVAE in two ways during the prediction 
task. First, to actually obtain the object codes, we fed in a segmented image into 
the ComponentVAE encoder to get the per-object posterior distributions. The 
object code was then obtained by taking a sample from each posterior distribution. 
Although it might seem more natural to use the mean instead of a sample, we 
found better results using the sample on our training data. Thus, each object code 
was a 16-dimensional vector in a learned representational space. Second, we used 
the ComponentVAE’s decoder to map the object codes predicted by our model to 
per-object images (which were easily composed to form a composite image). This 
allowed us to visualize the model’s predictions.

Dynamics predictor. Where the perception module captured static object 
properties, our dynamics predictor needed to integrate information over time 
(for example, to calculate velocities or remember occluded objects). Thus, we 
employed a recurrent module for the dynamics predictor. We developed the 
ComponentLSTM, which is an objectwise LSTM (with 2,056 hidden units) with 
shared weights ψ, but object-specific activations. At each timestep, the LSTM for 
the kth object computes the following:

ẑt+1
k , celltk, hidden

t
k = LSTM(z1:tk , cellt−1

k , hiddent−1
k ;ψ),

where the LSTM function is shorthand for the standard LSTM66 updates and ẑt+1
k  

is the model’s prediction for object code k in the next image. The z1:tk  here is the 
object buffer: it is the set of all previously seen object codes for the kth object. 
Although in principle we could feed in just the the most recent object codes, we 
found much better results on our training data when using the full history (see 
‘Hyperparameter Selection’ in Supplementary Information for motivation on this 
and other model hyperparameter choices). Because the segmentation masks were 
consistently ordered throughout the course of a video, the perceptual module’s 
outputs were also in a consistent ordering. Thus, when we aggregated object codes 
into the object buffer and fed them into the corresponding slot in the LSTM to 
make a prediction for the corresponding object, we endowed our model with object 
tracking.

Thus far, we have not equipped the dynamics predictor with a mechanism 
for computing the influence of objects on each other. To do so, we leveraged an 
Interaction Network63. We computed pairwise interactions from the LSTM cell 
states to both the cell states (using multi-layer perception (MLPρ)) and the object 
buffer inputs (using MLPλ). Each MLP consisted of three layers with 512 units 
and the Gaussian Error Linear Unit activation function67. Briefly (see ‘Computing 
Interactions’ in Supplementary Information for details), for the kth memory slot in 
the LSTM, cellt−1

k , we compute:

intk = InteractionNetwork(from = cellt−1
k , to = [cellt−1

1:K ;z1:t1:K]).

To aggregate the interactions across all pairs for the kth slot, we computed the 
sum and the maximum of the interactions and concatenated these values together. 
We added the corresponding interactions as an additional input to the kth LSTM, 
yielding the final update computation:

ẑt+1
k , celltk, hidden

t
k = LSTM(concat(z1:tk , intk), cellt−1

k , hiddent−1
k ;ψ).

we call the combination of an InteractionNetwork and ComponentLSTM an 
‘InteractionLSTM’. Additionally, we included a residual connection from the kth 
object code for the current timestep ztk to the model’s prediction for the kth object 
(once again exploiting aligned/tracked objects).

Finally, recall that the training data included a randomly drifting camera. Thus, 
we fed the ‘InteractionLSTM’ with viewpoint information as additional inputs. 
First, the interaction network received information about the current camera 
position. Additionally, the ComponentLSTM received information about the 
camera position at the next timestep. In this way, the dynamics predictor was not 
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only tasked with predicting dynamics, but also predicting dynamics from a  
specific viewpoint.

We trained the dynamics predictor as a next-step predictor on the sequence 
of T = 15 VAE-compressed images for each video using teacher-forcing. At each 
timestep t, we converted an input segmented image to a set of object codes zt1:K , 
using the perceptual module’s encoder. We formed the object buffer z1:t1:K  by 
concatenating these object codes for all previously seen images from the video. 
To form a fixed-length vector across the sequence, we padded the object histories 
with zeros where necessary. Before feeding the object buffer into any downstream 
computations, we projected them into a 1,680-dimensional space using the 
Exponential Linear Unit activation function68. Camera information and the object 
buffer were fed into the InteractionLSTM to yield object code predictions ẑt+1

1:K . 
We optimized the sum of the mean-squared error between our predictions and the 
observed object codes at the next timestep:

Lobjectcode =

T−1∑

t=1

K∑

k=1

(zt+1
k − ẑt+1

k )
2

Baseline models. Where PLATO used a slotted perceptual module—each slot 
encoded a distinct object—the flat baseline models encoded the entire scene in 
a single slot. This translated naturally into the dynamics predictor which made 
predictions based off of a single slot. The updates in the flat models were identical 
to the PLATO update equations above, with the exception that K = 1 instead of 
K = 8. Because there was only one slot, this meant that the flat module did not 
get any information in the segmentation mask (it had only a single channel and 
was uniformly filled to 1). However, see ref. 28 for evidence that non-object-based 
models trained with segmentation masks still fail intuitive physics examinations.

Experiments. Training. To train the perception module, we used the RMSProp 
optimizer, with a learning rate of 1 × 10−4 for 1,000,000 steps with a batch size of 
64 images. To train the dynamics predictor, we trained our models for a total of 
1,300,000 training steps with a batch size of 128 videos. We used a learning rate 
that transitioned from 1 × 10−4 to 4 × 10−5 after 300,000 training steps. The above 
training procedure was used for all models and all experiments.

PLATO vs flat models. For each model, we pretrained the perception module on the 
full dataset of 4,500,000 images (300,000 videos each with 15 frames of content). 
We then trained the dynamics predictor, freezing the weights of the perception 
module, using five different random seeds for weight initialization. For each seed 
of the dynamics predictor, we ran 5,000 probe quadruplets for each of the  
five concepts.

Training set size. As above, we pretrained a perceptual module on the full dataset 
size of 300,000 videos (4,500,000 images). We then varied the dataset size used 
to train the dynamics predictor using three random seeds while freezing the 
weights of the perception module. Training the dynamics predictor proceeded 
as above regardless of dataset size. We also included a ‘0’ training set size which 
corresponded to a model with an untrained dynamics predictor. This model still 
received object percepts from the pretrained perceptual module. The lack of VoE 
effects for the ‘0’ model shows that the VoE effects depend on more than just 
tracked object representations. Predicting dynamics is necessary for VoE effects on 
the five physical concepts probed.

Visual experience calculation. To compute the visual experience contained in 
our dataset, we calculated the following: 300,000 videos each lasting 2 s yielded 
600,000 s or roughly 6.95 d of continuous visual experience. For only 50,000 videos, 
this amounts to roughly 28 h of continuous experience. Conservatively assuming 
8 h of wakeful experience in a day yields an equivalent of roughly 20.9 d for 300,000 
videos or 3.5 d for 50,000 videos.

Generalization test using ADEPT dataset. To measure our model’s ability to 
generalize, we tested PLATO on videos mined from the ADEPT dataset29. The 
dataset contains procedurally generated probes (scenarios in ADEPT) of intuitive 
physics, with objects entirely different from those of our own dataset. Each 
example in the dataset contains RGB images and corresponding object masks. The 
probes are organized into eight types. Similar to our probe quadruplets, ADEPT 
provides sets of possible and impossible videos for each probe type, although 
they do not use the same splicing procedure to carefully control for image-level 
differences between possible and impossible videos.

We had to make two changes to the ADEPT probes to apply PLATO. The first 
class of changes was cosmetic: we applied cropping and downsampling to the 
videos to make the videos match PLATO’s expected input size. Second, we had to 
confront the fact that PLATO expects input masks to be in a consistent ordering 
throughout a video. However, ADEPT only provides aligned input masks for one 
probe type: overturn short. Through a hard-coded, type-specific procedure, we 
were able to manually align two additional probe types: overturn long and block. 
In this way, we were able to ‘mine’ three probe types from the ADEPT dataset that 
span the concepts of object permanence, solidity and continuity. This served as a 

useful measure of PLATO’s generalization capabilities, but importantly cannot be 
compared directly to the ADEPT results.

First, we applied superficial changes to match the image size and video length 
expected by PLATO. We centrally cropped the ADEPT dataset from 320 × 480 
pixels to 320 × 320 pixels. We manually verified on a subset of probes that this still 
displayed the relevant parts of the probe displays. Subsequently, we downsampled 
from 320 × 320 pixels to 64 × 64 pixels to match PLATO’s expected input size. 
Finally, PLATO expects to operate over a video of 15 frames, but ADEPT had 
much higher temporal resolution and videos which varied in length by probe type. 
Thus, for each of the different probe types, we changed the downsampling factor 
to always yield 15 frames: block was downsampled by a factor of 12, overturn short 
by a factor of 8 and overturn long by a factor of 15. Again, we manually verified on 
a subset of examples that the downsampled videos retained relevant events of the 
possible and impossible probes.

We evaluated PLATO on our modified versions of the overturn short, overturn 
long and block probes without any retraining of our model. Where our dataset 
contained probe quadruplets (two physically possible videos and two physically 
impossible videos), ADEPT contains pairs of videos: one physically possible 
and one physically impossible. This allowed us to compute essentially the same 
metrics used for our dataset: mean relative surprise and average accuracy. The 
only difference was that we ‘summed’ over a single video instead of two videos. We 
performed this evaluation for five seeds of our model trained with our full training 
dataset to produce Fig. 7.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Instructions on accessing the physical concepts dataset are available at https://
github.com/deepmind/physical_concepts

Code availability
Our implementation of PLATO is not externally viable, but the corresponding 
author may be contacted for any clarifying questions on implementation details for 
building PLATO.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection We did not collect data, but a core aspect of this work is the synthetic dataset we generated.  As described in the text, we used a combination 
of custom "Python" (v 3.7.6) programming scripts and the Mujoco (v2.0) physics engine to generate our dataset.  The custom scripts were 
written to populate the Mujoco physics engine with various conditions and run these simulations over an internal distributed computing 
cluster.  We make the generated dataset fully available.

Data analysis We provide a Python Colab notebook suitable for loading our synthetic dataset into TensorFlow (v1).  We used Tensorflow (v1) to build our 
deep learning model and custom Python scripts for distributed training over our internal computing infrastructure.  We do not provide a 
specific implementation of our deep neural network and baselines, as there is no publicly-available, standard way to train/run our relatively 
large model or the two-phase training approach where we train on representations first and then use those representations for learning 
dynamics.  However, we very thoroughly describe how we build our model from existing, well-known components.  Please reach out to the 
corresponding author for any questions on implementation details.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

We make available (https://github.com/deepmind/physical_concepts/) our full synthetic dataset consisting of the training data and the various types of test data in 
our Physical Concepts dataset.  Additionally, the ADEPT dataset is available at: http://physadept.csail.mit.edu/
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Sample size Because our probe data was procedurally generated and we were evaluating models (not humans), we could easily have large sample sizes.  
We used a sample size of 5,000 probes per physical concept, each consisting of 4 videos.   This is similar in magnitude to previous iteration of 
this work (https://arxiv.org/pdf/1804.01128.pdf) which used 8,000 probes consisting of 2 videos.

Data exclusions No data was excluded: we built our test dataset and reported our model's behavior on the entirety of the test dataset. 

Replication We trained our model using multiple random seeds (either 5 or 3) and reported our results over the random seeds with corresponding error 
bars in the manuscript.  We did not attempt to replicate these results outside of the reported results.

Randomization We used random seeds (either 5 or 3) for weight initialization to evaluate the robustness of our results to different optimization runs.

Blinding Because our models were evaluated programmatically, there was no potential for blinding.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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