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ABSTRACT

Motivation: Nucleosome positioning participates in many cellular activ-

ities and plays significant roles in regulating cellular processes. With the

avalanche of genome sequences generated in the post-genomic age, it

is highly desired to develop automated methods for rapidly and effect-

ively identifying nucleosome positioning. Although some computational

methods were proposed, most of them were species specific and neg-

lected the intrinsic local structural properties that might play important

roles in determining the nucleosome positioning on a DNA sequence.

Results: Here a predictor called ‘iNuc-PseKNC’ was developed for

predicting nucleosome positioning in Homo sapiens, Caenorhabditis

elegans and Drosophila melanogaster genomes, respectively. In the

new predictor, the samples of DNA sequences were formulated by a

novel feature-vector called ‘pseudo k-tuple nucleotide composition’,

into which six DNA local structural properties were incorporated. It

was observed by the rigorous cross-validation tests on the three strin-

gent benchmark datasets that the overall success rates achieved by

iNuc-PseKNC in predicting the nucleosome positioning of the afore-

mentioned three genomes were 86.27%, 86.90% and 79.97%, re-

spectively. Meanwhile, the results obtained by iNuc-PseKNC on

various benchmark datasets used by the previous investigators for

different genomes also indicated that the current predictor remarkably

outperformed its counterparts.

Availability: A user-friendly web-server, iNuc-PseKNC is freely ac-

cessible at http://lin.uestc.edu.cn/server/iNuc-PseKNC.

Contact: hlin@uestc.edu.cn, wchen@gordonlifescience.org, kcchou@

gordonlifescience.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The basic unit of eukaryotic chromatin is nucleosome. Each nu-

cleosome contains a 147-bp core DNA (Richmond and Davey,

2003) that is tightly wrapped in 1.67 left-handed super-helical

turns around a histone octamer (Segal et al., 2006) as shown in

Figure 1. The histone octamer is formed by eight histones, of

which two are of H2A, two of H2B, two of H3 and two of H4,

and these histones bear highly conservative property in organism

evolution (Kornberg, 1977). Under the effect of histone H1, the

nucleosome core particle forms a stable structure by further

packaging into an advanced structure (Luger et al., 1997).

Adjacent nucleosomes are linked via a short DNA sequence,

called the linker DNA, which ranges from 10 to 100bp (Athey

et al., 1990; Mavrich et al., 2008a, b).

By modulating the accessibility of genomic regions to regula-

tory proteins (Albert et al., 2007; Yuan and Liu, 2008), it was

observed that the packaging of DNA around the histone octamer

played important roles in many biological processes such as tran-

scriptional control, DNA replication, DNA repair and RNA

splicing (Berbenetz et al., 2010; Schwartz et al., 2009; Yasuda

et al., 2005). Therefore, it is fundamentally important for in-

depth understanding the subsequent steps of gene expression to

Fig. 1. A schematic illustration to show the basic structure of nucleo-

some. Each nucleosome consists of �147bp of DNA wrapped 1.67 turns

around a histone octamer. Instead of light blue for nucleosomes, the

linker DNAs are colored black. See the text for further explanation

*To whom correspondence should be addressed.

1522 � The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/11/1522/283594 by guest on 21 August 2022

http://lin.uestc.edu.cn/server/iNuc-PseKNC
mailto:hlin@uestc.edu.cn
mailto:wchen@gordonlifescience.org
mailto:kcchou@gordonlifescience.org
mailto:kcchou@gordonlifescience.org
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu083/-/DC1
superhelical
,
.
,
,
to 100bp 
,
,
2008).
Fig. 1. A schematic illustration to show the basic structure of nucleosome. Each nucleosome consists of approximately 147 base pair of DNA wrapped 1.67 turns around a histone octamer. Instead of light blue for nucleosomes, the linker DNAs are colored black. See the text for further explanation. 
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reveal the mechanism involved in controlling nucleosome
positioning.
High-throughput techniques, such as chromatin immunopre-

cipitation (ChIP) coupled with microarrays (ChIP-chip) and
ChIP coupled with sequencing techniques (ChIP-Seq), have
been developed. Also, high-resolution nucleosome-positioning

maps are now available for several model organisms including
Homo sapiens (Ozsolak et al., 2007; Schones et al., 2008),
Caenorhabditis elegans (Valouev et al., 2008), Drosophila melano-

gaster (Mavrich et al., 2008a, b) and Sacchoromryces cerevisiae
(Lee et al., 2007; Weiner et al., 2010). These high-resolution data
provided unprecedented opportunities, or made it feasible to de-

velop computational methods for accurately predicting nucleo-
some positioning by feature extraction approaches.
Satchwell et al. (1986) for the first time found that a 10-bp

interval repetition of AA/TT/TA occurred in the 147-bp core
region of nucleosomes. Widlund et al. (1999) demonstrated
that CA dinucleotide played an important role in nucleosome

positioning, and the sequences containing the fragment
TATAAACGCC had high binding affinity to histone.
Segal et al. (2006) found that �50% of nucleosome placements

were prefigured by genome sequence. It was also observed that
nucleosome deficiency always appeared in poly (dA:dT) frag-
ments (Segal and Widom, 2009). Subsequently, Liu et al. (Liu

et al., 2011a, b) found that the 10–11 bp periodicity signals for
some particular dinucleotides, such as AA, TT, TA and GC,
were more pronounced in the DNA nucleosomal sequences

than in the linker DNA sequences. The above findings have
demonstrated that nucleosome positioning is sequence-depend-
ent to some extent.

Based on the characteristics of nucleosome positioning se-
quence (or nucleosomal sequences), various computational meth-
ods (Chen et al., 2010, 2012b; Gupta et al., 2008; Peckham et al.,

2007; Xing et al., 2011, 2013; Zhang et al. 2012a,b; Zhao et al.,
2010) were proposed for predicting nucleosome positioning in
different genomes. All these methods could yield quite encoura-

ging results, and each of them did play a role in stimulating the
development of this area. However, further work is needed due
to the following reasons. (i) The datasets constructed in those

methods were too small to reflect the statistical profile of nucleo-
somes. (ii) No cutoff threshold (Chou and Shen, 2007) was
imposed to rigorously exclude the redundant samples or those

with high sequence similarity with others in a same dataset. (iii)
No web-server was provided to most of these methods, and
hence their usage is quite limited, especially for the majority of

experimental scientists. (iv) All the local DNA structural proper-
ties (Miele et al., 2008; Nozaki et al., 2011) and their impacts to
the global sequence effects were ignored; however, it was demon-

strated that this kind of properties might play important roles in
determining the rotational positioning of DNA around the his-
tone octamer (Chen et al., 2012b).

The present article was initiated in an attempt to improve the
prediction of nucleosomes from the above four aspects.
According to a comprehensive review (Chou, 2011) and

demonstrated by a series of recent publications (Chen et al.,

2013; Xiao et al., 2013), to establish a really useful statistical
predictor for a biological system, we need to consider the follow-
ing procedures: (i) construct or select a valid benchmark dataset

to train and test the predictor; (ii) formulate the biological

samples with an effective mathematical expression that can

truly reflect their intrinsic correlation with the target to be pre-

dicted; (iii) introduce or develop a powerful algorithm (or engine)

to operate the prediction; (iv) properly perform cross-validation

tests to objectively evaluate the anticipated accuracy of the pre-

dictor; (v) establish a user-friendly web-server for the predictor

that is accessible to the public. Below, let us describe how to deal

with these procedures one by one.

2 MATERIALS AND METHODS

2.1 Benchmark datasets for the nucleosomal and linker

sequences

In this article, we considered the following three species: (i) H.sapiens; (ii)

C.elegans; and (iii) D.melanogaster. The experimental data for nucleo-

some positions in the first species (Schones et al., 2008) were downloaded

from http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcellnucleosomes.

aspx; those for the second species from http://hgdownload.cse.ucsc.edu;

and those for the third species from (Mavrich et al., 2008a, b) and http://

atlas.bx.psu.edu/. The entire genome sequences for the three species were

downloaded from the UCSC genome database at http://hgdownload.cse.

ucsc.edu/, where the hg18 version, WS170/ce4 version and BDGP Release

5 version were used for (i) H.sapiens, (ii) C.elegans and (iii)

D.melanogaster genomes, respectively.

Since the H.sapiens genome and its nucleosome map contain a huge

amount of data, according to Liu’s strategy (Liu et al., 2011a) the nu-

cleosome-forming sequence samples (positive data) and the linkers or

nucleosome-inhibiting sequence samples (negative data) were extracted

from chromosome 20. As for the other two species, namely C.elegans

and D.melanogaster, the positive and negative data were extracted from

their entire genomes. In the datasets thus formed from the three organ-

isms, each of the DNA fragments was assigned with a nucleosome for-

mation score to reflect its propensity to form nucleosome: the higher the

score was, the more likely the fragment would be in forming a nucleo-

some. The DNA fragments with the highest nucleosome formation scores

were selected as the nucleosomal sequences, while those with the lowest

scores as the linker sequences.

As elaborated in (Chou, 2011), a dataset containing many redundant

samples with high similarity would be lack of statistical representative-

ness. A predictor, if trained and tested by such a biased benchmark

dataset, might yield misleading results with overestimated accuracy

(Chou and Shen, 2006; Ding, 2013). To get rid of redundancy and

avoid bias, the CD-HIT software (Fu et al., 2012) was used with the

cutoff threshold set at 80% to remove those DNA fragments with high

sequence similarity (note that the most stringent cutoff threshold for

DNA sequences by CD-HIT was 75%).

Finally, we obtained three benchmark datasets as formulated by

Sk ¼ S
þ
k [ S

�
k , k ¼

1 for H:sapiens
2 for C:elegans
3 for D:melanogaster

8<
: ð1Þ

here the positive dataset S
þ
1 contains 2273 nucleosome-forming sequences

while the negative dataset S
�
1 contains 2300 nucleosome-inhibiting

sequences; S
þ
2 contains 2567 nucleosome-forming sequences while S

�
2

contains 2608 nucleosome-inhibiting sequences; Sþ3 contains 2900 nucleo-

some-forming sequences while S
�
3 contains 2850 nucleosome-inhibiting

sequences; and the symbol [ means the union in the set theory. All

the sequence samples are 147-bp long; none of them has 480% pair-

wise sequence identity with any other. The detailed sequences in the

three benchmark datasets S1,S2 and S3 are given in Supplementary

Materials S1, S2 and S3, respectively.
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2.2 Pseudo k-tuple nucleotide composition

Suppose a DNA sequence D with L nucleic acid residues; i.e.

D ¼ R1R2R3R4R5R6R7 . . .RL ð2Þ

where R1 denotes the nucleic acid residue at the sequence position 1, R2

the nucleic acid residue at position 2 and so forth. If the DNA sequence

is represented by the k-tuple nucleotide composition (Ioshikhes et al.,

1996), the corresponding feature vector will contain 4k components, as

given by

D ¼ f1 f2 f3 f4 . . . f4k
� �T

ð3Þ

As we can see from the above equation, with the gradual increase of k,

although most of the base sequence-order information within a local or

short range could be included, none of the global or long-range sequence-

order information would be reflected by the formulation.

Actually, in computational proteomics, we have also faced the same

situation; i.e. although the dipeptide composition, tripeptide composition,

and k-tuple peptide composition were used by many investigators to rep-

resent protein sequences, their global or long-range sequence-order infor-

mation could still not be reflected. To deal with this problem, the concept

of pseudo amino acid composition (Chou, 2001a) or Chou’s PseAAC (Lin

and Lapointe, 2013) was proposed. Since then, the PseAAC approach has

rapidly penetrated into many areas of computational proteomics (see, e.g.

Chen and Li, 2013; Esmaeili et al., 2010; Hajisharifi et al., 2014; Liu et al.,

2013; Mohabatkar et al., 2011, 2013; Mohammad Beigi et al., 2011; Nanni

and Lumini, 2008; Nanni et al., 2012; Sahu and Panda, 2010) and a long

list of references cited in a review (Chou, 2011). Owing to its wide usage,

recently two powerful softwares, called ‘PseAAC-Builder’ (Du et al., 2012)

and ‘propy’ (Cao et al., 2013), were established for generating various

special pseudo-amino acid compositions.

Stimulated by the PseAAC approach (Chou, 2001a, 2005) in compu-

tational proteomics, below we are to propose a novel feature vector,

called ‘pseudo k-tuple nucleotide composition’ (PseKNC), to represent

DNA-sequence samples by incorporating the global or long-range se-

quence-order effects so as to improve the prediction quality in identifying

nucleosomes.

Similar to Equation (5) of Chou (2001a) or Equation (3) of Chou

(2009), the PseKNC can be formulated as

D ¼ d1 d2 � � � d4k d4kþ1 � � � d4kþ�
� �T

ð4Þ

where

du ¼

fuP4k

i¼1
fiþw

P�

j¼1
�j

1 � u � 4k
� �

w�
u�4kP4k

i¼1
fiþw

P�

j¼1
�j

4k � u � 4kþ�
� � :

8>>><
>>>:

ð5Þ

In the above equation, � is the number of the total counted ranks (or

tiers) of the correlations along a DNA sequence; fu (u¼ 1, 2, . . . , 4k) are

the same as Equation (3) that are now normalized to
P4k

i¼1 fi ¼ 1; while w

is the weight factor. The concrete values of � and w as well as k will be

further discussed later, while �j is given by

�j ¼
1

L� j� 1

XL�j�1
i¼1

�ðRiRiþ1, RiþjRiþjþ1Þ ðj ¼ 1, 2, . . . , �; �5LÞ

ð6Þ

which represents the j-tier structural correlation factor between all the j-th

most contiguous dinucleotide. For example, �1 is the first-tier correlation

factor that reflects the sequence-order correlation between all the most

contiguous dinucleotide along a DNA sequence (Fig. 2a); �2 reflects the

second-tier correlation factor between all the second-most contiguous

dinucleotide (Fig. 2b); �3 reflects the third-tier correlation factor between

all the third-most contiguous dinucleotide (Fig. 2c); and so forth.

Accordingly, the parameter � actually represents the highest counted

rank (or tier) of the correlation along a DNA sequence, and hence

must be an integer. The correlation function �(RiRiþ1, RiþjRiþjþ1) in

Equation (6) is defined by

�ðRiRiþ1, RiþjRiþjþ1Þ ¼
1

�

X�
v¼1

½PvðRiRiþ1Þ � PvðRiþjRiþjþ1Þ�
2
ð7Þ

where � is the number of local DNA structural properties considered that

is equal to 6 in the current article as will be explained below; Pv(Ri Riþ1),

the numerical value of the v-th (v¼ 1, 2, . . . ,�) DNA local structural

property for the dinucleotide Ri Riþ1 at position i and Pv(Riþj Riþjþ1)

the corresponding value for the dinucleotide Riþj Riþjþ1 at position iþj.

2.3 DNA local structural property parameters

It has been reported that DNA structural properties play important roles

in many biological processes, such as prokaryotic transcription initiation,

protein–DNA interactions, formation of chromosomes and meiotic re-

combination (Abeel et al., 2008; Chen et al., 2013; Goni et al., 2007,

2008). Recently, Miele et al. (2008) developed a model to predict nucleo-

some occupancy by using basic physical properties. Their model captures

a substantial part of chromatin’s structural complexity, thus leading to a

much better prediction of nucleosome occupancy than the methods based

only on periodic curved-DNA motifs (Miele et al., 2008).

Illuminated by Miele’s work (Miele et al., 2008), in this article, the

DNA local structural properties were considered to define PseKNC.

Generally speaking, the spatial arrangements of two neighboring base

pairs are characterized by six parameters (Dickerson, 1989), of which

three are local translational parameters and other three the local angular

parameters, as summarized in Equation (8)

Translational ¼
Rise
Slide
Shift

8<
: Angular ¼

Twist
Roll
Tilt

8<
: ð8Þ

and illustrated in Figure 3. The detailed values for the six DNA local

structural property parameters are given in Table S1 of Supplementary

Material S4, which will be used to calculate the global or long-rangese-

quence-order effects for the nucleosome and linker sequences via

Equation (7) as well as Equations (4–6).

Note that before substituting them into Equation (7), all the original

values in Table S1 of Supplementary Material S4 for Pv(Ri Riþ1)

Fig. 2. A schematic drawing to show the correlations of dinucleotides

along a DNA sequence for (A) the first-tier coupling that reflects the

correlation mode between all the most contiguous dinucleotide, (B) the

second-tier coupling between all the second-most contiguous dinucleotide

and (C) the third-tier coupling between all the third-most contiguous

dinucleotide
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(v¼ 1, 2, . . . , 6) were subjected to a standard conversion (Chou, 2005) as

described by the following equation:

Pv RiRiþ1ð Þ (
Pv RiRiþ1ð Þ �5Pv4

SD Pvð Þ
ð9Þ

where the symbol54means taking the average of the quantity therein

over 16 different dinucleotides, and SD means the corresponding stand-

ard deviation. The converted values obtained by Equation (9) will have a

zero mean value over the 16 different dinucleotides, and will remain un-

changed if going through the same conversion procedure again. Listed in

Table S2 of Supplementary Material S4 are the values of Pv(Ri Riþ1)

(v¼ 1, 2, . . . , 6) obtained via the standard conversion of Equation (9)

from those of Table S1 Supplementary Material S4.

2.4 Support vector machine

Support vector machine (SVM) is a powerful and popular method for

pattern recognition that has been widely used in the realm of bioinfor-

matics (Bhasin and Raghava, 2004; Mohabatkar et al., 2011; Wan, 2013;

Chen et al., 2012c). The basic idea of SVM is to transform the data into a

high dimensional feature space, and then determine the optimal separat-

ing hyper plane using a kernel function. To handle a multi-class problem,

‘one-versus-one (OVO)’ and ‘one-versus-rest (OVR)’ are generally

applied to extend the traditional SVM. For a brief formulation of

SVM and how it works, see (Chou and Cai, 2002). For more details

about SVM, see a monograph Cristianini and Shawe-Taylor (2000).

In the current article, the LIBSVM 2.86 package (Fan et al., 2005) was

used as an implementation of SVM, which can be downloaded from

http://www.csie.ntu.edu.tw/*cjlin/libsvm/. The radial basis function

was selected as the kernel function due to its effectiveness and speed in

training process. The optimal penalty constant C and width parameter �

were determined via an optimization procedure using a grid search

approach.

The predictor obtained via the above procedures is called iNuc-

PseKNC, where ‘i’ stands for ‘identify’, ‘Nuc’ for ‘nucleosome’, ‘Pse’

for ‘pseudo’, ‘K’ for ‘k-tuple’, ‘N’ for ‘nucleotide’ and ‘C’ for ‘compos-

ition’. Moreover, its web-server has also been established as will be

further described later.

3 RESULTS AND DISCUSSION

3.1 Criteria for performance evaluation

One of the important procedures in developing a useful statistical

predictor (Chou, 2011) is to objectively evaluate its performance

or anticipated success rate. To realize this, we first need a set of

metrics to quantitatively measure the performance of a predictor.

Here, let us use the criterion proposed in (Chou, 2001b, c) to

develop a set of more intuitive and easier-to-understand metrics.

According to that criterion, the rates of correct predictions for

the nucleosome-forming sequences and the nucleosome-inhibit-

ing sequences are, respectively, defined by

�þ ¼
Nþ�Nþ�

Nþ , for the nucleosome-forming sequences

�� ¼
N��N�þ

N� , for the nucleosome-inhibiting sequences

8<
:

ð10Þ

where Nþ is the total number of the nucleosome-forming

sequences investigated while Nþ� the number of the nucleo-

some-forming sequences incorrectly predicted as the nucleo-

some-inhibiting sequences; N� the total number of the

nucleosome-inhibiting sequences investigated while N�þ the

number of the nucleosome-inhibiting sequences incorrectly pre-

dicted as nucleosome-forming sequences. Based on the symbols

in Equation (10), the following set of metrics can be obtained

(Xu et al., 2013)

Sn ¼ 1�
Nþ�
Nþ

Sp ¼ 1�
N�þ
N�

Acc ¼ �¼1�
Nþ�þN

�
þ

NþþN�

MCC ¼
1�

Nþ�
Nþ
þ

N�
þ

N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

N�
þ
�Nþ�

Nþ

� �
1þ

Nþ��N
�
þ

N�

� �r

8>>>>>>>>>>><
>>>>>>>>>>>:

ð11Þ

where Sn stands for the sensitivity, Sp for the specificity, Acc for

the accuracy and MCC for the Mathew’s correlation coefficient.

Such four metrics are generally used in statistical prediction for

quantitatively measuring the performance of a predictor from

four different angles. In some statistical analysis, Sn is also

called the ‘true positive rate’ and (1– Sp) the ‘false positive

rate’, as will be further discussed later.
From Equation (11), we can easily see the following. When

Nþ� ¼ 0 meaning none of the nucleosome-forming sequences was

incorrectly predicted to be a nucleosome-inhibiting sequence, we

have the sensitivity Sn¼ 1. When Nþ� ¼ Nþ meaning that all the

nucleosome-forming sequences were incorrectly predicted to be

the nucleosome-inhibiting sequences, we have the sensitivity

Sn¼ 0. Likewise, when N�þ ¼ 0 meaning none of the nucleo-

some-inhibiting sequences was incorrectly predicted to be a nu-

cleosome-forming sequence, we have the specificity Sp¼ 1;

whereas N�þ ¼ N� meaning all the nucleosome-inhibiting se-

quences were incorrectly predicted to be the nucleosome-forming

sequences, we have the specificity Sp¼ 0. When N�þ ¼ Nþ�¼0

meaning that none of the nucleosome-forming sequences and

none of the nucleosome-inhibiting sequences were incorrectly

predicted, we have the overall accuracy Acc ¼ 1 and

Mathew’s correlation coefficient MCC ¼ 1; when

Fig. 3. A schematic illustration to show the six spatial arrangements

between two neighboring base pairs in DNA, where one is colored

orange and the other blue. See the text and Equation (8) for further

explanation
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Fig. 3. A schematic illustration to show the six spatial arrangements between two neighboring base pairs in DNA, where one is colored orange and the other blue. See the text and Eq.8 for further explanation.
SVM
,
hyperplane
``
)''
``
)''
, see the papers
(
, 
study
,
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
(RBF) 
`
'
``identify'', ``Nuc''
``nucleosome'', ``Pse''
``pseudo'', ``K''
``
tuple'', ``N''
`
'',
`
'
`
''
results
; Chou, 2001c
Eq.
,
,
,
``
''
-
``
''
Eq.
,
=
=
=
=
=
=


Nþ� ¼ Nþand N�þ ¼ N� meaning that all the nucleosome-form-

ing sequences and all the nucleosome-inhibiting sequences were

incorrectly predicted, we have Acc ¼ 0 and MCC ¼ �1; whereas

when Nþ� ¼ Nþ=2 and N�þ ¼ N�=2 we have Acc ¼ 0.5 and

MCC ¼ 0 meaning no better than random prediction. As we

can see from the above discussion based on Equation (11), the

meanings of the four metrics have become much more intuitive

and easier-to-understand, particularly for the Mathew’s correl-

ation coefficient, which is usually used for measuring the quality

of binary (two-class) classifications as in the case of current

article.
It is instructive to point out that the aforementioned metrics

are valid only to the single-label system in which a sample inves-

tigated belongs to one, and only one class. In other words, a

same nucleotide sequence cannot belong to both nucleosome-

forming class and nucleosome-inhibiting class. However, it has

been observed recently that some molecular biosystems and bio-

medical systems are actually the multi-label systems in which

some of their constituent molecules may belong to two or

more attributes (Chen et al., 2013; Lin et al., 2013; Xiao et al.,

2013), and hence need two or more labels to tag them (Chou,

2013).

3.2 Cross validation

Three cross-validation methods, i.e. independent dataset test,

sub-sampling (or K-fold cross validation) test and jackknife

test, are often used to evaluate the anticipated success rate of a

predictor (Chou and Zhang, 1995). Among the three methods,

however, the jackknife test is deemed the least arbitrary and most

objective as elucidated in (Chou and Shen, 2008) and demon-

strated by Equations (28–32) of Chou (2011), and hence has been

widely recognized and increasingly adopted by investigators to

examine the quality of various predictors (see, e.g. Chen et al.,

2012a, 2013; Chen and Li, 2013; Chou et al., 2012; Esmaeili

et al., 2010; Gupta et al., 2013; Mei, 2012; Mohabatkar et al.,

2011, 2013). Accordingly, the jackknife test was also used to

examine the performance of the model proposed in the current

article. In the jackknife test, each sequence in the training dataset

is in turn singled out as an independent test sample and all the

rule-parameters are calculated without including the one being

identified.

3.3 Parameter optimization

As we can see from Equations (4 and 5), the current prediction

model was based on three parameters, namely k, � and w, where

w is the weight factor usually within the range from 0 to 1, k

reflects the local or short-range sequence-order effect, and � the

global or long-range sequence-order effect. Generally speaking,

the greater the k is, the more local sequence-order information

the model contains. Also, the greater the � is, the more global

sequence-order information the model contains. However, if k or

� is too large, it would reduce the cluster-tolerant capacity

(Chou, 1999) so as to lower down the cross-validation accuracy

due to overfitting or ‘high dimension disaster’ problem (Wang

et al., 2008). Therefore, our searching for the optimal values

for the three parameters were carried out according to the

following

2 � k � 6, with step � ¼ 1
1 � � � 20, with step � ¼ 1
0 � w � 1, with step � ¼ 0:1

8<
: ð12Þ

As we can see from above, there are 5� 20� 11¼ 1100 combin-

ations (or points in the 3D parameter space) that need to be

considered for finding the optimal parameter values. To reduce

the computational time, let us first use the 5-fold cross-validation

approach to deal with the parameter optimization. For example,

a histogram is given in Figure 4 to show how different k values

would affect the predicted results.
Once the optimal values of the three parameters are deter-

mined, the rigorous jackknife test will be performed to finally

evaluate the anticipated success rate of the predictor.

3.4 Prediction quality

Listed in Table 1 are the prediction quality measured by the four

metrics defined in Equation (11) for the iNuc-PseKNC predictor

in identifying nucleosomes via the rigorous jackknife cross val-

idation. The optimal values for the predictor’s three parameters

k, � and w are also given in the table.

Meanwhile, to provide a graphical illustration to show the

performance of the current binary classifier iNuc-PseKNC as

its discrimination threshold is varied, a 2D plot, called ROC

(receiver operating characteristic) curve, is given in Figure 5,

where its vertical coordinate Y is for the true positive rate or

Sn [cf. Equation (11)] while horizontal coordinate X for the

false positive rate or 1 –Sp. The best possible prediction

method would yield a point with the coordinate (0,1) represent-

ing 100% true positive rate (sensitivity Sn) and 0 false positive

rate or 100% specificity. Therefore, the (0,1) point is also called a

perfect classification. A completely random guess would give a

point along a diagonal from the point (0,0) to (1,1). The

AUROC is often used to indicate the performance quality of a

Fig. 4. A histogram to show the overall accuracy by iNuc-PseKNC in

identifying nucleosomes with different k values. The accuracy for

H.sapiens or D.melanogaster reaches a peak when k ¼ 4, while that for

C.elegans reaches a peak when k ¼ 3
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Fig. 4. A histogram to show the overall accuracy by iNuc-PseKNC in identifying nucleosomes with different k values. The accuracy for H.  sapiens or D. melanogaster reaches a peak when k=4, while that for C. elegans reaches a peak when k=3.
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Table 1. The prediction quality of iNuc-PseKNC measured by four metrics via jackknife testsaUsing the benchmark dataset given in Online Supporting Information S1.bUsing the benchmark dataset given in Online Supporting Information S2.cUsing the benchmark dataset given in Online Supporting Information S3.
.
(
Eq.
)
-
area under the ROC curve, also called 
,


binary classifier: the value 0.5 of AUROC is equivalent to

random prediction while 1 of AUROC represents a perfect one.
As we can see from Table 1 and Figure 5, even for such large

and stringent benchmark datasets, the rates obtained by iNuc-

PseKNC were all considerably high, indicating the current pre-
dictor is not only accurate, but also quite stable.

It is instructive to point out that the prediction accuracy by the
current method for D.melanogaster is not as high as those for
H.sapiens and C.elegant accuracies. The reason is probably due

to the fact that the features of D.melanogaster nucleosomes are
not fully extracted. As is well known, the nucleosomal positions

are neither fixed at all developmental stages (or tissues) nor uni-
formly phased with 100% (Gupta et al., 2008; Peckham et al.,
2007; Segal et al., 2006). Accordingly, it is rational to calculate

the nucleosomal-forming probability. If the probability of a se-
quence is �0.5, the sequence is predicted as nucleosome; other-

wise, linker.

3.5 Comparison with the existing predictor

As mentioned in the Section 1, the accuracy rates reported by the

existing methods in identifying nucleosomes were based on small

benchmark datasets without removing high similarity sequences

therein, and hence might be over-estimated as shown in Tables

S3–S6 of Supplementary Material S4, where the success rates

obtained with the current predictor by using the same test meth-

ods and same benchmark datasets as used in the existing pre-

dictors (Chen et al., 2012b; Zhang et al. 2012a, b; Zhao et al.,

2010) are given along with the reported rates in those papers. As

we can see from these tables, the current predictor iNuc-PseKNC

obviously outperformed its counterparts in identifying nucleo-

somes measured by all the four metrics as defined in Equation

(11) as well as by AUROC, indicating that the novel approach by

introducing the ‘PseKNC’ to represent DNA samples is really

very useful.
For example, it was reported last year that the overall success

rate in identifying nucleosomes achieved by iNuc-PhysChem

(Chen et al., 2012b) via the 5-fold cross-validation test was

96%, higher than that by any of its counterparts. Such a high

rate, however, was derived from the benchmark dataset collected

from S.cerevisiae without undergoing a rigorous screening pro-

cedure to exclude the high similarity sequences, just like the

benchmark datasets used by its then counterparts. Now, let us

see what happened if the identification was made by the current

predictor iNuc-PseKNC on the same benchmark dataset via the

same test method. The results thus obtained are given in Table S6

Supplementary Material S4, from which we can see that the rates

for Sn, Sp and Acc by iNuc-PseKNC on the same benchmark

dataset as used by iNuc-PhysChem (Chen et al., 2012b) were all

100%!

4 WEB-SERVER GUIDE OR PROTOCOL

For the convenience of the vast majority of experimental scien-

tists, let us give a step-by-step guide on how to use the iNuc-

PseKNC web-server to get their desired results without the need

to follow the complicated mathematic equations that were pre-

sented just for the integrity in developing the predictor. The de-

tailed steps are as follows.

Step 1. On opening the web server at http://lin.uestc.edu.cn/

server/iNuc-PseKNC, the top page of iNuc-PseKNC on

computer screen will be seen, as shown in Figure 6.

Clicking the ‘Read Me’ button will give a brief introduction

about the predictor and the caveat when using it.

Step 2. On clicking the open circle, the organism concerned

will be selected. Either typed or copy/pasted the query DNA

sequences into the input box at the center of Figure 6. The

input sequence should be in the FASTA format. A sequence

in FASTA format consists of a single initial line beginning

with a greater than symbol (‘4’) in the first column, followed

by lines of sequence data. The words right after the ‘4’

symbol in the single initial line are optional and only used

for the purpose of identification and description. The se-

quence ends if another line starting with a ‘4’ appears; this

indicates the start of another sequence. Example sequences

in FASTA format can be seen by clicking on the ‘Example’

button right above the input box.

Step 3. To see the predicted result, the ‘Submit’ button has to

be clicked. For example, if the three query DNA sequences

Table 1. The prediction quality of iNuc-PseKNC measured by four met-

rics via jackknife tests

Species Optimal parameters Metrics

k � w Acc

(%)

Sn

(%)

Sp

(%)

MCC

H.sapiensa 4 6 0.5 86.27 87.86 84.70 0.73

C.elegansb 3 11 0.5 86.90 90.30 83.55 0.74

D.melanogasterc 4 7 0.2 79.97 78.31 81.65 0.60

aUsing the benchmark dataset given in Supplementary Material S1.
bUsing the benchmark dataset given in Supplementary Material S2.
cUsing the benchmark dataset given in Supplementary Material S3.

Fig. 5. A graphical illustration to show the performance of the iNuc-

PseKNC by means of the ROC curves. The areas under the ROC

curves, or AUROC, are 0.925, 0.935 and 0.874 for H.sapiens, C.elegans

and D.melanogaster, respectively
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are used from theH.sapiens species in the ‘Example’ window

as the input and checking on the ‘H.sapiens’ button, after

clicking the ‘Submit’ button, the following shown on

the screen of the computer will be seen: the outcome for the

first query example (with 147-bp long) is ‘nucleosome’; the

outcome for the second query sample (with 147-bp long) is

‘linker’; the outcome for the third query sample (with 238-bp

long) contains 238 – 147 þ 1 ¼ 92 sub-results, in which the

outcomes for the segments from #1 to #11 are of ‘linker’,

those for the segments from #72 to #92 are of ‘nucleosome’

and those from #49 to #71 are of ‘linker’. The nucleosome-

forming probabilities of these 92 sub-results are also pro-

vided. All these results are fully consistent with the experi-

mental observations. It takes about few seconds for the above

computation before the predicted result appears on your

computer screen; the more number of query sequences and

longer of each sequence, the more time it is usually needed.

To get the anticipated prediction accuracy, ‘the species

button consistent with the source of query sequences

always be checked’: if the query sequences are from

H.sapiens species, the ‘‘H.sapiens’’ button is checked; if

from C.elegan, the ‘C.elegan’ button is checked; if from

D.melalogaster, the ‘D.melalogaster’ button is checked.

Step 4. The ‘Data’ button is clicked to download the bench-

mark datasets used to train and test the iNuc-PseKNC

predictor.

Step 5. The ‘Citation’ button has to click to find the relevant

papers that document the detailed development and algo-

rithm of iNuc-PseKNC.

Caveats. Each of the input query sequences must be 147bp or

longer and only contains valid characters: ‘A’, ‘C’, ‘G’, ‘T’.
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