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 A B S T R A C T 

 In this paper general group symmetry analysis so-called deductive group-theoretical method is 
applied to analyze the boundary layer flow of electrically conducting viscous fluid over with heat 
transfer over a non-linear surface. The symmetry groups admitted by the corresponding boundary 
value problem are obtained. With the use of the entailed similarity transformations the governing 
equations reduce to a set of non-linear ordinary differential equations. The system of equations is 
solved numerically using MATLAB coding. The effect of various flow parameters is studied for 
both Newtonian and Non-Newtonian power-law fluids in case of stretching and shrinking sheet.  
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1 Introduction 

Almost a century ago, Prandtl realised the key part that boundary layers play in determining 
accurately the flow of certain fluids. The solutions of governing the system of equations of 
boundary layer type flows are almost similarity solutions, a form of solution in which at least 
one co-ordinate lacks a distinguished origin; more physically, it describes a flow which 'looks 
the same' either at all times, or at all length scales. A powerful tool for the similarity solutions 
is group theoretical technique. The formulation of the group-theoretic method, also called 
symmetry analysis, is contained in the general theories of continuous transformation groups 
that were introduced and treated extensively by Lie (1975). Group analysis is the only 
rigorous mathematical method to find all symmetries of a given differential equation and no 
ad-hoc assumptions or a prior knowledge of the equation under investigation is needed. The 
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boundary layer equations are especially interesting from a physical point of view because they 
have the capacity to admit number of invariant solutions.  

 In this paper, we apply the so-called deductive group symmetry method (Darji and 
Timol 2013) for a particular problem of boundary layer theory. The main advantage of such 
method is that they can successfully be applied to non-linear differential equations. The 
symmetries of a differential equation are those continuous groups of transformations under 
which the differential equation remains invariant, that is, a symmetry group maps any solution 
to another solution. The interesting point is that, having obtained the symmetries of a specific 
problem, one can proceed further to find out the group-invariant solutions, which are nothing 
but the well-known similarity solutions. The similarity solutions are quite popular because 
they result in the reduction of the independent variables of the problem. In our case, the 
problem under investigation is two-dimensional. Hence, any similarity solution will transform 
the governing system of PDEs into a system of ODEs. Most of the researchers in the field of 
fluid mechanics try to obtain the similarity solutions by introducing a general similarity 
transformation with unknown parameters into the differential equation obtaining in this way 
an algebraic system. Then, the solution of this system, if exist, determines the values of the 
unknown parameters. In our opinion, it is better to attack any problem of similarity solutions 
from the outset, i.e, to find out the full list of the symmetries of the problem and then to study 
which of them are appropriate to provide group-invariant (or more specifically similarity) 
solutions. To obtain symmetry of a differential equation is equivalent to the determination of 
the transformation group associated with this symmetry. In [Olver (1993), Bluman and Kumei 
(1989), Ibragimov (1985, 1999)], one can find the general theory of Lie groups as well as the 
implied methods for determining transformation group via the infinitesimal generator 
components. An alternative way being based on exterior calculus for determining the 
transformation group so-called deductive group can be found in Moran and Gaggioli (1968). 
It is worth noting that there is an extensive literature where the methods arising from exterior 
calculus are used to attack symmetry problems of continuum mechanics [Suhubi (1991, 1994), 
Pakdemirli and Suhubi (1992), Kalpakides (1998, 2001), Koureas et. al (2001, 2003)].  
 In the present work this procedure is applied to boundary layer equations governing 
the flow of electrically conducting viscous fluid with heat transfer over a non-linear surface. 
This type of physical phenomena has important applications in many manufacturing processes 
and polymer industry, for examples, a continuous stretching of plastic films, artificial fibers, 
metal spinning, metal extrusion, continues casting, glass blowing and many more. The 
pioneering work on the continuously stretching sheet was first initiated by Sakiadis (1961). 
The problem in Sakiadis (1961) is extended to discuss the various aspects of flow and heat 
transfer characteristics by many researchers (Crane, 1970; Gupta and Gupta, 1977; McLeod 
and Rajagopal, 1987; Banks, 1983; Dutta et al., (1985); Chen and Char, 1988; Ali, 1995; Liao, 
2005). The linear velocity of the surface is taken in all above problems. In 2001, Vajravelu 
(2001) studied the numerical solution of flow and heat transfer in a viscous fluid over a 
nonlinearly stretching sheet. Later, Cortell (2007) discussed the viscous flow and heat transfer 
with constant surface temperature (CST) and prescribed surface temperature (PST) cases 
numerically. Recently, Abbas and Hayat (2008) extended the work of Bataller (2008) by 
considering the electrically conducting fluid and radiation effects in a porous medium and 
obtained purely analytic solution using homotopy analysis method (HAM). Very recently, 
Bataller (2008) discussed the similarity solutions for flow and heat transfer of a quiescent 
fluid over a non-linearly stretching sheet. He assumed a variable wall temperature and 
obtained a numerical solution.  
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The problem in the reverse case i.e., very little is known about the shrinking sheet where the 
velocity on the boundary is towards the origin or a fixed point, and the unsteady shrinking 
film solution was first investigated by Wang (1990). Again, Miklavcic and Wang (2006) 
studied the viscous hydrodynamic flow over a shrinking sheet for both two-dimensional and 
axisymmetric flows. It is also noted that the mass suction at the wall is required generally to 
maintain (or smooth) the flow over a shrinking sheet. They discussed the proof of existence 
and (non) uniqueness of both exact numerical and closed form solutions. The analysis of 
Miklavcic and Wang (2006) was also extended in various directions for different fluids by 
many researchers. Recently, Fang (2008) investigated the boundary layer flow over a 
shrinking sheet with surface moving with power-law velocity. A theoretical analysis is carried 
out for different values of power-index of the surface velocity using exact and numerical 
solutions. These studies restrict their analyses to Newtonian fluids. Flow due to a stretching 
sheet also occurs in thermal and moisture treatment of materials, particularly in processes 
involving continuous pulling of a sheet through a reaction zone, as in metallurgy, textile and 
paper industries, in the manufacture of polymeric sheets, sheet glass and crystalline materials. 
It is well known that a number of industrial fluids such as molten plastics, polymeric liquids, 
food stuffs or slurries exhibit Non-Newtonian character. Therefore a study of flow and heat 
transfer in non-Newtonian fluids is of practical importance. 
 In recent years several industries deal with the Non-Newtonian fluids under the 
influence of magnetic field. In view of this, some researchers [Sarpakaya (1961), Saponkov 
(1967), Martinson and Pavlov (1971), Samokhen (1987), Andersson et. al (1992), Cortell 
(2005a), Liao (2005)] have presented works on MHD flow and heat transfer in an electrically 
conducting power law fluid over a stretching sheet. Motivated by this, we produce similarity 
analysis via deductive group method based on general group transformation is, probably first 
time, to derive symmetry group and similarity solutions for boundary layer flow of an 
electrically conducting power-law fluid over non-linear surface. The aim of the present work 
is twofold: first to derive systematically the similarity transformation using general group 
theoretic method under similarity requirement for the governing equations, secondly to 
incorporate the effects of applied magnetic field for an electrically conducting fluid and to 
carry out the heat transfer analysis. 

2 Mathematical formulation 

Consider a two-dimensional flow of an incompressible viscous fluid past a porous non-linear 
surface (stretching/shrinking sheet) at 0y = . The stretching/shrinking velocity of the sheet is 

( ) r
wu x cx=  , where 0c > , 0c <  respectively for stretching and shrinking sheet (referred as 

stretching/shrinking parameter), r is power-law velocity index and the wall mass suction 
velocity is ( )w wv v x= . The x-axis is taken along the stretching/shrinking sheet and the y-axis 
perpendicular to it into the fluid. The fluid is electrically conducting and the magnetic field 

( )B x  is assumed to be applied in the y-direction. The magnetic Reynolds number is taken to 
be small so that the induced magnetic field can be neglected. The temperature of the surface 
maintained at a constant temperature 0wT T=  and far away from the sheet temperature is T∞  , 
where wT T∞ > .  
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Also for the power fluid, the rheological equation of state between the stress components ijτ  

and the strain components ije , is defined by (Vujanovic et al. 1972 ) 

1
2

n

ij ij lm lm ijP K e e eτ δ
−

= − + ∑∑  

where P is the pressure, ijδ is the Kronecker delta and K and n are consistency and flow 
behavior indices of the fluid respectively. Such fluids are known as Non-Newtonian power- 
law fluids and n is referred as the power law index. When 1n > the fluid is described as 
dilatant, 1n < pseudo-plastic and when 1n =  it is simply the Newtonian fluid.  

Under boundary layer approximation, the continuity, momentum, and energy equations are 

 0,u v
x y

∂ ∂+ =
∂ ∂

 (1) 

 ( )1 2
,

n B xu v u uu v u
x y y y y

σ
ν

ρ

−⎛ ⎞∂ ∂ ∂ ∂ ∂⎜ ⎟+ = −
⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (2) 

 
22

2p
T T T uC u v
x y yy

ρ α μ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠
 (3) 

where u and v are the velocity components, x and y are the space coordinates, T is the 
temperature, ν is the kinematic viscosity of the fluid, α  is the thermal diffusivity of fluid, ρ  
is the density of the fluid, pC  is the specific heat at constant pressure of the fluid. In (2), the 
external electric field and the polarization effects are neglected 

The boundary conditions for the problem are: 

 
( ) ( ) 0, , , at 0

0,   as 
w wu u x v v x T T y

u T T y∞

= = = = ⎫
⎬

→ → → ∞ ⎭
  (4) 

Introducing following non-dimensional quantities: 

 * , * , * , * , *
w

x y u v T Tx y u v
L L U U T T

θ ∞

∞

−= = = = =
−

 (5) 

U  is the free stream velocity and L is the characteristic length.  

Substituting the values (1) to (4) and dropping the asterisks (for simplicity) yields the 
following dimensionless equations, 

 0u v
x y

∂ ∂+ =
∂ ∂

 (6) 



R. M. Darji and M. G. Timol 

Int. J. of Adv. in Appl. Math and Mech. 1 (2): 116-132, 2013. 

120

 
1 2

2

n
u v u uu v n Mu
x y y y
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x y y y
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 (8) 

where 
( )2B x

M
σ

ρ
=  is the magnetic field strength, Pr pCρ ν

α
=  is the Prandtl number and 

2

2
U
L

μλ =  is the flow parameter. 

 Introducing the stream function ψ  , which is related to the components of velocity field  such 

that ,u v
y x
ψ ψ∂ ∂= = −

∂ ∂
, above system of PDEs reduce to: 

 
12 2 2 3

2 2 3

n

n M
y y x x y y y y
ψ ψ ψ ψ ψ ψ ψ

−
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂− = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (9) 

 
22 2

2 2
1
Pry x x y y y

ψ θ ψ θ θ ψλ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂− = + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (10) 

The associated boundary conditions can be written as, 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

,0 , ,0 , ,0

, 0, , 0 as

w w wx u x x v x x x
y x

x y x y y
y

ψ ψ θ θ

ψ θ

∂ ∂ ⎫= = = ⎪∂ ∂ ⎪
⎬∂ ⎪→ → → ∞
⎪∂ ⎭

 (11) 

3 Application 

The procedure is initiated with the application of the class of a one-parameter continuous 
deductive group of transformations to the system of PDEs (11) and (12). Under this class, first, 
we search the subgroup of transformations, through which one will reduce the two 
independent variables by one and the system of non-linear partial differential equations (11) 
and (12) will transform to the system of ordinary differential equations. 

3.1 Group formulation and invariance analysis 

Consider the group GC , a class of transformation of one-parameter ‘ a ’of the form: 

 ( ) ( ): Q Q
GC Q a Q a= ℵ + ℜ   (12) 
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where Q  stands for , , , ,x y Mψ θ whereas ' sℵ  and ' sℜ  are real-valued and are at least 
differentiable in the real argument a .  
To transform the differential equation, transformations of the derivatives of ψ  are obtained 
from GC  via chain-rule operations: 

 ; , , ; , ,

Q

ii i

Q

i ji j i j

Q Q

Q M i j x y

Q Q

ψ θ

⎫⎛ ⎞ℵ= ⎪⎜ ⎟⎜ ⎟ℵ ⎪⎝ ⎠ = =⎬
⎛ ⎞ℵ ⎪= ⎜ ⎟ ⎪⎜ ⎟ℵ ℵ⎝ ⎠ ⎭

 (13) 

Now (9) and (10) are said to be invariantly transformed, for some functions ( )1 aχ  and 

( )2 aχ whenever, 
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  (14) 

Substituting the values from the (12) and (13) in above system (14), yields 
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The invariance of (15) and (16) together with boundary conditions (11), implies that 

 ( )
( )

( )
( )

( )

( )
( )
( )

( )

2 2

12 2 1

2

22 4

0,

.
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n M
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a

a
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χ
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⎪
⎪ℵ ℵℵ ℵ= = = ⎪

ℵℵ ⎬ℵ ℵ
⎪

ℵ ℵ ℵ ⎪ℵ= = = ⎪ℵ ℵ ℵ ℵ ⎭
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These yields, 

 ( ) ( )
( )

( )
3 2 2

2
1x y My y
y

, ,ψ θℵ = ℵ ℵ = ℵ = ℵ =ℵ ℵ
ℵ

 (18) 

Finally, we get the one-parameter group G, which transforms invariantly the differential 
equations (9) and (10) and the auxiliary conditions (11), as 
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( )

( )
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3

2

2

2

:

:
1

y

H
y

y

y

y
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y y

G

M M

ψ ψ

θ θ

⎧ ⎧⎪ = ℵ⎪ ⎨⎪ ⎪ = ℵ⎩⎪
⎪⎪ = ℵ⎨
⎪ =⎪

ℵ⎪
⎪

=⎪ ℵ⎩

 (19) 

3.2 The complete set of absolute invariants 

Now we have proceeded in our analysis to obtain a complete set of absolute invariants. If 
( ),x yη η= is the absolute invariant of the independent variables then, 

 ( ) ( ), , , , , 1,2,3j jg x y M jψ θ η= Π =  (20) 

are absolute invariants of dependent variables. 

The application of the basic theorem in group theory, [Moran and Gaggioli (1968), Morgan 
(1952)], states that: 

A function ( ), , , ,g x y Mψ θ  is an absolute invariant of a one-parameter group if it satisfies the 
following first-order linear partial differential equation, 

 ( )
5

1

0, , , , ,i i i i
ii

gQ Q x y M
Q

α β ψ θ
=

∂+ = =
∂∑  (21) 
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where   

 
0 0

and 1,...5.
i i

i i i
a a

ε ε ε ε

α β
= =

∂ℵ ∂ℜ= = =
∂ ∂

 (22) 

and ‘ 0a ’denotes the value of parameter ‘ a ’ which yields the identity element of the group G. 

Since 0x y Mθ ψℜ = ℜ = ℜ = ℜ = ℜ =  implies that 1 2 3 4 5 0β β β β β= = = = =  and from (22) 

we get 1 2 3 4 5
3 3 33
2 2 2

α α α α α= = = − = .  

Hence, equation (21) reduces to  

 2 2 2 0.
3 3 3 3

g y g g M g gx
x y M

ψ θ
ψ θ

∂ ∂ ∂ ∂ ∂+ + − + =
∂ ∂ ∂ ∂ ∂

 (23) 

The absolute invariant of independent variables owing the equation (23) is ( ),x yη η=  if it 
satisfies the first order linear partial differential equation 

 0.
3
yx

x y
η η∂ ∂+ =

∂ ∂
 (24) 

Applying the variable separable method we get, 

 ( ) 1/3,x y yxη −=  (25) 

Further the absolute invariants of dependent variables owing the (28) are followed by  

( ) ( ) ( ) ( ) ( ) ( )2/3 2/3 2/3
1 1 2 2 3 3, , , , , , , , .g x y x g x y M Mx g x y xψ ψ η η θ θ η− −= = Π = = Π = = Π

Hence, 

 ( ) ( ) ( ) ( ) ( )2/3 2/3 2/3
1 2 3, , , , .x y x M x x y xψ η η θ η−= Π = Π = Π  (26) 

4 Group invariant solution 

Since ( )M x  is independent of y, ( )2 ηΠ  must be constant say m. (Referred as magnetic field 
parameter) 

Thus, finally we get the complete set of absolute invariants for the group G that transforms the 
system of partial differential equations (9)-(10) into ordinary differential equations together 
with auxiliary conditions (11), as 

 ( ) ( ) ( ) ( ) ( )2/3 2/3 2/3, , , , .x y x f M x mx x y x gψ η θ η−= = =  (27) 
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Using the similarity transformation (27) in equation (9)-(11) and assuming the free stream 
velocity for the Non-Newtonian power-law fluid of the form 2/ 3x−  (Na, 1994), yields to 
following non-linear ordinary differential equations 

 
( ) ( )

( ) ( )

1 2

2
2

1 2 0
3 3

1 2 0,
Pr 3

nn f f f ff mf

g f g fg b f b
L
μ

− ⎫′′ ′′′ ′ ′′ ′− + − = ⎪⎪
⎬
⎪′′ ′ ′ ′′+ − + = =
⎪⎭

 (28) 

Further to transform the boundary conditions in to constant form the temperature near surface 

wθ  must be proportional to 1/3x− , that is of the form 1/3
1w c xθ −= ,  1c  is non-vanishing 

arbitrary constant and the prescribe velocities are of the form ( ) ( )1/3 1/3
3,w wu x x v x c xε −= = . 

These are the precise restrictions for the existence of similarity solution.  

Hence the auxiliary conditions reduce to, 

 3 2 10 : , ' ,
: 0, ' 0

f c f c g c
g f

η
η

= = = = ⎫
⎬→ ∞ → → ⎭

 (29) 

where ε  is shrinking/stretching parameter and 3c  is the wall mass transfer at the sheet. 

Eqs. (28) and (29) describe the new form of our problem. Thus, the initial boundary value 
problem of PDEs has been transformed into a boundary value problem of ODEs.  

5 Result and discussions 

The system of non-linear ordinary differential equations (28) with boundary conditions (29) 
has been solved numerically using MATAB ode solver. It is worth mentioning here that the 
step size ηΔ  and the boundary layer thickness is chosen according to the values of 
parameters.  

The effects of various parameters for example, the power-law fluid index n, magnetic field 
number m and the Prandtl number Pr, controlling the parameter 11, 1b c= =  and wall mass 
transfer 3 4c =  on the velocity ( )f η′  and the temperature field ( )g η  are shown in Figs. 1–8.  

In Fig. 1 the velocity ( )'f η  is plotted both for both Newtonian ( )1n =    and Non-Newtonian 
(for 0.6n =  pseudoplastic and for 1.3n = dilatant) fluids in case of linear stretching sheet 
with m =0 and Pr = 0.71 are fixed. Fig. 2 presents a comparison between hydrodynamic fluid 
( )0m =  and hydromagnetic (MHD) fluid ( )0m ≠  on pseudoplastic fluid in case of linear 

shrinking sheet for 1, 0.6, Pr 0.71nε = − = =  and 3 4c = .. Fig. 2 reveals that velocity ( )'f η  
decrease as we increase m. This is because the magnetic force acts as a resistance to the flow. 
It is also seen that the boundary layer thickness decreases for higher values of m. Same trends 
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of velocity and boundary layer thickness is observed in case of stretching sheet ( )1ε =  for the 
same fluid as show in Fig. 3. However, this decrement in the velocity of fluid is smaller, as 
expected in case of stretching sheet than in case of shrinking sheet when compared with 
hydrodynamic fluid. Fig. 4 depicts the influence of Prandtl number Pr on velocity ( )'f η  of 

pseudo-plastic fluid ( )0.6n =   in presence of magnetic field ( )0.1m =  in case of shrinking 

sheet ( )1ε = −  keeping 4 4c =  fixed. It is worth to observe that as Prandtl number increase 
the velocity of fluid as well the momentum boundary layer thickness decrease. Fig. 5 shows 
the change in temperature ( )g η  for both Newtonian ( )1n =  and Non-Newtonian (for 0.6n =  
pseudoplastic and for 1.3n = dilatant) fluids in case of linear stretching sheet with m =0.1 and 
Pr = 0.71 are fixed. Fig.6 reveals the influence of magnetic field on temperature distribution 
for pseudo-plastic fluid ( )0.6n =   within the domain in case of shrinking sheet with fixed 
mass transfer and Prandtl’s number. It is evident from this figure that both the temperature 
and thermal boundary layer thickness decrease by increasing the values of magnetic strength 
m. Fig. 7 show that the same trend has been observed for the pseudo-plastic fluid in case of 
stretching sheet ( )1ε = . However, this decrement in the temperature ( )g η  of pseudo-plastic 
Non-Newtonian fluid is smaller in case of stretching sheet than in case of shrinking sheet. Fig. 
8 shows the change in temperature ( )g η  of Non-Newtonian fluid  for different values of 
Prandtl number Pr by keeping 30.1, 1, 4m b c= = =   fixed over shrinking sheet. It is evident 
from this figure that both the temperature and thermal boundary layer thickness decrease by 
increasing the values of Pr. It is also seen that the change in  ( )g η  is larger in the case of 
MHD fluid for larger value of Prandtl number.  

6 Concluding remarks 

In this study, Similarity solutions of heat transfer for a MHD viscous power-law fluid over a 
non-linear porous surface is derived. It is interesting to note that the deductive group theoretic 
method based on general group of transformation is first time applied to derive proper 
similarity transformations for the non-linear system of PDEs governing the flow under 
consideration. The numerical solution for both Newtonian and particular power-law fluid 
namely pseudo-plastic and dilatant fluid is studied. The influence of pertinent parameters on 
the physical quantities of interest is reported and discussed. The following conclusions may 
be extracted from the numerical results: 

• For pseudo-plastic fluid the momentum boundary layer thickness decreases by 
increasing the values of magnetic field m in both cases of shrinking and stretching 
sheets by controlling flow parameters. 

• Both the temperature and thermal boundary layer thickness are decreased by 
increasing the values of Pr for power-law fluids over non-linear surface. 
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7 Figures 

 

Figure 1: Comparison of the velocity ( )'f η  between Newtonian and Non-Newtonian fluids.  

 

Figure 2: Influence of magnetic field on velocity of pseudo-plastic fluid over shrinking sheet. 
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Figure 3: Influence of magnetic field on velocity of dilatant fluid over stretching sheet. 

 

 

Figure 4: Effect of Prandtl number on velocity of MHD pseudo-plastic fluid for shrinking 
sheet. 
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Figure 5: Comparison of temperature ( )g η   for MHD Newtonian and Non-Newtonian fluids. 

 

Figure 6: Influence of magnetic field on temperature of dilatant fluid over stretching sheet. 
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Figure 7: Effect of magnetic field on temperature of dilatant fluid over stretching sheet. 

 

Figure 8: Effect of Prandtl number on temperature of dilatant fluid over shrinking sheet. 
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