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1. Introduction. The main objective of this paper is to find condi-
tions under which (x(t\ x(t)) -> (η, 0), as ί —> °°, for every solution of a
suitable nonautonomous second order differential equation. Here (η, 0)
will be an equilibrium point of a certain autonomous equation. We are
also interested in studying the stability properties of a class of equilib-
rium points of the above mentioned second order differential equation.

Theorem 1 is a generalization of a result of Yoshizawa obtained by
Onuchic et al. in [4]. Theorem 2 is a modified but closely related version
of Yoshizawa's Theorem 3 in [6]. Theorem 2 can also be seen as a special
case of Miller's Theorem 1 in [1], The basic tool used here in attacking
the above problems is provided by Theorems 1 and 2.

2. α)-limit set and invariance. Consider a system of ordinary
differential equations, defined on a region QaRn,

where H(x) is continuous on Q. Here Rn denotes a normed, real n-
dimensional vector space with any convenient norm | |.

If M is a subset of Q then M is called semi-invariant with respect
to (1) if, and only if, for each xQeM, there is at least one solution x(t)
of (1), with α?(0) = x0, such that x(t) exists and remains in M for all real
t. If in addition some uniqueness condition with respect to the initial
value problem holds for (1) then M is called invariant with respect to (1).

Let x(t) be a continuous function defined in the future, that is, for
all t ;> some real t0. A point p e Rn is said to be an ω-limit point of
x(t) if there exists a sequence {tm}, tm-» °o asm-^oo, such that x(tm)->
p as m -> oo. The set of all ω-limit points of x(t) is denoted by Ω and
is called the ω-limit set of x(t). If x(t) is bounded in the future, that
is, x(t) is bounded on some interval [a, °o), a > — ©o, it is easily seen
that Ω is a nonempty, connected and compact set with x(t)->Ω as *-»
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oo, that is, άist(x(t)9 i2) —> 0 as t —> c>o.
Consider the differential system defined on [0, oo) x Q

( 2 ) * = F(t, x) + G(t, x ) ,

where F(t, x) and G(t, x) are continuous for ί ^ 0 and a; e Q.

THEOREM 1. Suppose that the following hypotheses hold with respect
to system (2):

( i ) F(t, x) is bounded for all t ^ 0 when x belongs to an arbitrary
compact subset of Q;

(ii) For every compact subset B of Q and every continuous function
z(t)eB, defined on [0, oo), it follows that

(3 ) Γ + G(r, z(τ))dτ -> 0 as s -> oo

uniformly for t on [0, 1];
(iii) There are real-valued nonnegative functions V(t, x) and W(t, x)

satisfying the following conditions:
(a) V(t, x) is continuous and locally Lipschitzian with respect to x,

for t ^ 0, x e Q;
(b) W(t, x) is a continuous function of x for each fixed t where the

continuity in x is uniform for ί o?ι [0, oo);
(c) There is xoeQ such that W(t, x0) is bounded on [0, oo);
(d) V(2)(t9 z) = limsupΛ_0+ [V(t + h, x + hF(t, x) + hG(t, x)) - V{t, x)]/h ̂

- W(t, x), t ^ 0, x e Q.
Let x(t) be a solution of (2) defined in the future, with x(t) e K for

t ^ some t0, where K is a compact subset of Q. Then Ω c E Π K, where
E = {x e Q I lim inf t ^ W(t, x) = 0} and Ω is the ω-limit set of x(t).

NOTE. This theorem is more general than Yoshizawa's result [6,
Theorem 5]. Yoshizawa considers the case in which W(t, x) does not

S oo

I G(ί, z(t)) I dt < oo which is
stronger than the one given by (3), but the ideas contained in the proof
of Theorem 1 are closely related to the ones in Yoshizawa's mentioned
result.

A sufficient condition for (3) is given as follows: For every compact
subset B of Q there corresponds a scalar function σB(t) defined for t ^ 0
so that I G(t, x) I ̂  σB(t) for all t^0,xeB and

S ί+l

σB(s)ds -> 0 as t -> co .

The example G = (t sin tf, t cos ί8) considered in [5] shows that condition
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(4) is not implied by condition (3). A proof of Theorem 1 can be found
in [4, Theorem 1].

Consider the differential system difined on [0, °°) x Q:

(5 ) x = H{x) + S(t, x) + G(t, x) ,

where H(x), S{t, x) and G(t, x) are assumed to be continuous on [0, co)χ
Q. Let A and K be subsets of Q, K compact. Assume that S(t, x) satisfies
the following property with respect to A: For each ε > 0 there correspond
§ = δ(ε) > 0 a n d T = T(ε) s u c h t h a t t ^ T(ε), xeK a n d d i s t f a , A ) < δ
imply

( 6 ) \S(jb,x)\<6.

THEOREM 2. Let hypotheses (3) and (6) hold. Let x(t) be a solution
of (5) such that x(t) eK, t ^ some T and K is a compact subset of Q
with x(t) —> A as t —» <>o. Then the co-limit set Ω of x(t) is a nonempty,
connected, compact and semi-invariant set with respect to (1).

NOTE. AS observed, this theorem is a version of Yoshizawa's Theorem
3 in [6]. See also Miller's Theorem 1 in [1].

Let

(7) & = f { t , x ) , t ^ O , x e Q ,

where f(ty x) eRn is continuous on [0, oo) x Q. Let ψ(t) be a solution of
(7) defined on [0, oo) such that \ψ(t)\ ^ iϊ*, H* < H, for all t ^ 0.

LEMMA 1. Suppose that
( i ) ψ(t) is uniformly stable)
(ii) There is p > 0 such that, for every t0 ^ 0, \x0 — ψ(to)\ < p

implies \x(t; t0, x0) — ψ(t)\ —> 0 as t —> oo.
Then ψ(t) is equiasymptotically stable, that is, there exists a δ0 > 0

and, for each ε > 0, a T(ε) > 0 such that \x0 — ψ(0)\ < ^0 implies \x(t; 0, x0) —
ψ(t)\ <ε for t^ Γ(e).

The proof of Lemma 1 can be done by an argument similar to that
in the proof of [7, Theorem 7.6],

3. Applications. The main objective of this section is to apply the
results of Section 2 to obtain sufficient conditions under which, for every
solution x(t) of the second order differential equation

(8) x + h(t, x, x)x + f(x) + g(t, x, x) + p(t, x, x) = 0 ,

we can guarantee that x(t) tends to some η satisfying f(η) = 0 and
x(t) -+ 0 as t -> oo. We wish also to study the stability properties of a
certain class of equilibrium points of (8') which is defined by
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y + h(t, x, y)y + f(x) + g(t, x, y) + p(t, x, y) = 0 ,

where t ^ 0 and (a;, y) 6 i?2. Consider also

( 9 ) x + f(x) = 0,

or equivalently

ίi = y
(9')

10+ /(») = 0.
Let D = {(£, 0) 6 R21 there is a positive p = ρ(ξ) such that (x - ξ)>f(x) > 0
for all 0 < \x - ξ\ ^ p}.

Suppose that some uniqueness condition with respect to the initial
value problem holds for (8'). Consider also the following set of assump-
tions:

(HJ f{x) is a continuous function on R so that
( i ) D is nonempty;

(ίi) \f(s)ds—> oo as Iαs|—• co
Jo

(iii) there is no interval [α, &], 6 > α, such that /(&) = 0 on [α, 6],
A sufficient condition for (Hx) is given as follows:

(HO f(x) is a C1 function on R so that x-f(x) > 0 for all x Φ 0 and

I f(s)ds —> oo as I a? I —> oo.

In this case D = {(0, 0)}.

(H2) p(ί, a?, y) is continuous and | p(t, x, y) \ ̂  /3(ί) for all t ^ 0, x, y

in iϊ, where β(t) is continuous with \ β(t)dt < ^ .
Jo

(H3) g(t, x9 y) is continuous and y-g(t, x, y) ^ 0 for all ί ^ 0, a;, 1/ in R.

(H4) For every compact B oi R and all continuous functions #(£) and

fir(τ, x{τ)yy(τ))dτ-^

0, as s—• oo, uniformly for te[O, 1].
A sufficient condition for (H4) is given as follows:
(HO For every compact B of R there corresponds a real valued

S ί + l
σB(s)ds-^0 as ί—>co and

\g(t, x,y)\^ σB{t) for all t ^ 0, x, y in 5 .

(H5) fc(ί, α?, i/) is a continuous nonnegative function on [0, <χ>) x R2,
where the continuity in x, y is uniform for t on [0, co). Also h(t, 0, 0)
is bounded on [0, ©o).

REMARK. We observe that condition (HB) implies that h(t, x, y) is
bounded on [0, oo) x B for every compact B of R2.
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(He) For all x, y such that liminf*^/?,(£, xf y) = 0 we have that
^ h(t, x, y) exists.

(H7) For every bounded orbit 7 of (9'), 7 not being an equilibrium
point of (9'), there is at least one point (x, y)ey such that h*(x, y) Φ 0
where h*(x, y) = lim inf^^ h(t, x, y).

A sufficient condition for (H7) is given as follows:
(HO (HI) is satisfied and for every orbit 7 of (9'), 7 Φ (0, 0), there

is at least one point (x, y)sj such that h*(xf y) Φ 0.

LEMMA 2. Suppose that some uniqueness condition with respect to
the initial value problem holds for (8'). Let h(t, x, y) be nonnegative
and continuous for t ^ 0, x, y in R. Let hypotheses (H^i), (H2) and
(H3) hold. Let (£, 0) e D and p(t, ξ, 0) = 0, t ^ 0. Then the equilibrium
point (ξ, 0) of (8') is uniformly stable.

The proof follows from [3, Lemma 2 and Corollary 1].

LEMMA 3. Let h(t, x, y) be nonnegative and continuous for t ^ 0,
x, yeR. Let hypotheses (Hx-ii), (H2) and (H8) hold. Then every solution
of (8') is bounded in the future.

PROOF. Let

V(t, x, y) = [i/2 + 2 \*/(s)ds + i l ί j 2 + \~β(s)ds

f(s)ds + M > 0 for all x. It is easy to

0

see that Vm(t, x,y)<*0 for all t ^ 0, x, y in R. Then, as W(x, y) =

\y2 + 2\*f(8)ds + MΎ2 ^ V(t, x, y) and W(x, y) -> ™ as | x | + |?/| -> oo, it
L Jo J

follows that every solution of (8') is bounded in the future.
THEOREM 3. Let hypotheses (HJ-ίHy) hold. Then for every solution

χ(t) °f (β) w e have that x(t) —> rj and x(t) —> 0 as t —> co 9 where η is a real
number satisfying f{rj) = 0.

PROOF. Let (α?(ί), y{t)) be any solution of (8;). Lemma 3 implies that
this solution is bounded in the future. Then the ω-limit set Ω of (x(t),
y(t)) is a nonempty, connected and compact set with (x(t), y(t)) —> Ω as
ί —> oo. We must have Ω C\ Rx Φ 0 because otherwise it would follow
|cc(£)| —:> co as t —ί• co, a contradiction. Define

f(s)ds + ikf > 0 for every sc
0
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Define

W(t, x, y) = y2h(t, x,

and rewrite (8') as follows:

(10) IX)=F+G,
\vl

where

) and G = (
-yh(t, x, y) - f(x)j \-g(t, x, y) - p(t, x, y)

An easy computation shows that Vm(tf x, y) ^ — W{t, x, y). Let us apply
Theorem 1 with respect to (10), Q = R2. It is not hard to see that the
hypotheses (i), (ii) and (iii) with V(t, x, y) and W(t, x, y) defined as above
are satisfied. Then the solution (x(t), y(t)) of (10), or equivalently of (8'),
is contained in some compact set K c R2, for t ^ some t0. We can say
also that ΩcEnK where E = {(x, y)eR2\ lim mit^W(t, x, y) = 0} and Ω
is the ft)-limit set of (x(t), y(t)). Write now (8') as follows:

(11) ( X

m) = H + S + G ,

where

g(t, x, y)-p(t, x, y),

Let us apply Theorem 2 with respect to (11), Q = R2 and A = E Π K.
As a consequence of hypotheses (H2) and (H4) it follows that G satisfies
condition (3). Let us show that condition (6) is satisfied with respect to

) and A =
-yh(t, xf )l

where E = {(x, y)eR2\ yh*(x, y) = 0}, h* (x, y) = lim inft_„ hit, x, y). For
every (x0, y0) e A we have yoh*(xQ, yQ) — 0 and from (Hβ) it follows that
lim^^ yoh(t, x0, y0) = 0. Given a positive ε it is easy to see, as a con-
sequence of (H5), that there are T — Γ(e, x09 y0) and § = δ(ε, xOf y0) such
that \yh(t, x, y)\ < ε for t ^ T, \x - xo\ + \y - yo\ < 5, (x, y)eK. As A
is compact it follows the existence of T = T(e) and δ = δ(e) so that for
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t ^ T(ε), (x, y)eK and dist(O, y), A)< δ imply \S(t, x, y)\ < ε. Then (6)
is satisfied with respect to S = S(t, x, y) and A = E Π K.

It follows from Theorem 1 that the solution (x(t), y(t)) of (10) is
contained in if, t ^ some ί0, and that (x(ί), #(ί)) -> A = E f) K as t-> °°
since ΩαE f) K. Consequently, by applying Theorem 2, we have that
Ω is a nonempty, connected, compact and invariant set with respect to
(9')

We claim that ΩαRx. Suppose that this is not true. Then there
exists (x0, y0) e Ω with y0 Φ 0. As Ω is compact and invariant with respect
to (9') it follows that the orbit 7 of (9'), defined by (x0, yQ) e Ω with
y0 Φ 0, remains in Ω for all t e R and is bounded. One can see also that
7 is not an equilibrium point of (9'). Then 7 c Ω c E f] K and consequently
7 c E = {(a?, y) € R2 \ yh*(x, y) = 0}. Hence, for every (a?, y) e 7, we have
that yh*(x, y) = 0 or, equivalently, h*(x, y) — 0 for every (x, y) e 7. By
taking into account condition (H7) we have a contradiction. Then Ω c Rx.

As 42 is connected and invariant with respect to (9;) and by considering
condition (Hi-iii), it follows the existence of a real number η such that
Ω = {(97, 0)}. Therefore x(t) -> η and x(t) —> 0, as £ —> 00 ? where η is a real
number satisfying f(η) — 0.

REMARK. By considering another set of assumptions for system (8;),
we can also show that for every solution x(t) of (8) we have that x(t) —>
some point η satisfying f(η) = 0 and x(t) -> 0 as t -> <*>. [3, Theorem 3].
The basic tool used in [3, Theorem 3] is closely related to the one pro-
vided by Theorems 1 and 2. Several results on the subject under
consideration can be found in [2, 3].

THEOREM 4. Suppose that some uniqueness condition with respect
to the initial value problem holds for (8'). Let hypotheses (J1^)-(J1Ί) hold.
Let p(t, ξ, 0) = 0, t ^ 0, where (ξ, 0) e D. Then the equilibrium point
(ί, 0) of (8') is

(a) uniformly stable
and

(b) equiasymptotically stable.

PROOF. From Lemma 2 it follows that (a) is satisfied. Therefore,
condition (i) of Lemma 1 holds with respect to system (8') and ψ(t) —
(ξ, 0). Let us show that condition (ii) of Lemma 1 is satisfied with respect
to system (8;) and ψ(t) = (£, 0). To this end it is enough to show that
there is a positive σ = σ(ξ) such that ί0 ^ 0 and |x0 — ξ\ + \yQ\ < σ imply
(x(t),y(t))->(ζ,O) as ί->oo, where (x(t), y(t)) is the solution of (8')
satisfying a;(ί0) = χQf y(t0) = y0. Let p = p(ζ) > 0, given by the definition
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of A such that (x - ξ) f(x) > 0 for 0 < \x - ξ | ^ p. As (<?, 0) is uniformly
stable there is δ = δ(p) such that | x0 — ζ | + | y0 \ < δ implies | x{t) — ζ | +
I !/(*) I < ι°/2 for t ^ ί0. Theorem 3 implies that there is η, f{η) = 0, such
that x(t)—>η and y(t)->0 as ί-»oo# Then |^ — f l^^/2. But this is
satisfied only for 7j = ξ. Hence | x0 — ξ \ + | y0 \ < δ implies x(t) —> ξ and
y(t) —• 0. Thus, condition (ii) of Lemma 1 is satisfied with respect to
system (8') and ψ(t) = (ξ, 0). Then, by using Lemma 1 with respect to
system (8') and ψ(t) — (ξ, 0), we see that the equilibrium point (£, 0) of
(8') is equiasymptotically stable, that is, (b) is satisfied. The proof is
complete.
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