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INVARIANCE OF THE GLOBAL MONODROMIES IN FAMILIES

OF NONDEGENERATE POLYNOMIALS IN TWO VARIABLES
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˙
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Abstract

We are interested in a global version of Lê-Ramanujam m-constant theorem for

polynomials. We consider an analytic family f fsg, s A ½0; 1�, of complex polynomials in

two variables, that are Newton non-degenerate. We suppose that the Euler charac-

teristic of a generic fiber of fs is constant, then we show that the global monodromy

fibrations of fs are all isomorphic, and that the degree of fs is constant (up to an

algebraic automorphism of C2).

1. Introduction

Let f : C2 ! C be a complex polynomial function. It is well-known that
there exists a (minimal) finite set Bð f Þ in C, called the bifurcation set of f , such
that the restriction:

f : C2n f �1ðBð f ÞÞ ! CnBð f Þ
is a Cy-locally trivial fibration (see, for example, [28], [29], [17], [26], [7], [11]).
The bifurcation set Bð f Þ contains the set S0ð f Þ of critical values of f , but in
general it is bigger.

The above fibration permits us to introduce the global monodromy fibration
of f . Namely, for r > maxfjcj j c A Bð f Þg and S1

r :¼ fc A C j jcj ¼ rg, this is the
restriction

f : f �1ðS1
r Þ ! S1

r :

If c A S1
r then by translating the fiber f �1ðcÞ along the circle S1

r we obtain a
homeomorphism of f �1ðcÞ onto itself, and thus isomorphisms

mqð f Þ : Hqð f �1ðcÞ;ZÞ ! Hqð f �1ðcÞ;ZÞ; q ¼ 0; 1;

which we call the global monodromy operators of f .
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Let f fsg, s A ½0; 1�, be a family of complex polynomials in two variables,
whose coe‰cients are analytic functions in s. We will be interested in families
such that the Euler characteristic wð fsÞ of a generic fiber of fs is constant. These
families are interesting in the view of m-constant type theorem, see [8], [10],
[3], [5], [27]. We ask if for such families, the global monodromy fibrations are
isomorphic. In general, the answer is negative, as the following example shows
us:

Example 1.1. Let fsðx; yÞ ¼ sx2y2 þ xy. Then wð fsÞ ¼ 0 for all s but the
generic fibers of f0 and fs, s0 0, are isomorphic, respectively, to C� :¼ Cnf0g
and C� t C� (disjoint union).

We shall prove that for the class of Newton non-degenerate polynomials,
introduced in [14], the answer of our question is positive.

We will recall some basic facts about Newton polygons, see [14], [19],
[25]. Let f ¼

P
ðp;qÞ AZ2

b0
ap;qx

pyq be a given polynomial. We denote suppð f Þ ¼
fðp; qÞ j ap;q 0 0g, by abuse suppð f Þ will also denote the set of monomials
fxpyq j ðp; qÞ A suppð f Þg. The Newton polygon G�ð f Þ is by definition the convex
hull of the set fð0; 0ÞgU suppð f Þ. We denote Gð f Þ to be the union of closed
faces of G�ð f Þ which do not contain ð0; 0Þ. Zero dimensional faces are vertices
of the polygon G�ð f Þ and one dimensional faces are its edges. For a face g, let
fg ¼

P
ðp;qÞ A g ap;qx

pyq. The polynomial f is (Newton) non-degenerate if for all

faces g of Gð f Þ the system

qfg

qx
ðx; yÞ ¼ 0 and

qfg

qy
ðx; yÞ ¼ 0

has no solution in C� � C�. Note that, by the definition, if dim G�ð f Þ ¼ 1 then
the polynomial f is non-degenerate.

Our main result is the following m-constant type theorem:

Theorem 1.2. Let f fsg, s A ½0; 1�, be a family of non-degenerate polynomials
in two complex variables. If one of the two following conditions hold:

(i) dim G�ð fsÞ ¼ 1 and G�ð fsÞ is constant for all s A ½0; 1�;
(ii) dim G�ð fsÞ ¼ 2 for all s A ð0; 1�, and the Euler characteristic wð fsÞ is

constant for all s A ½0; 1�;
then the global monodromy fibrations of fs are isomorphic.

Remark 1.3. (i) In fact, in Section 3, we shall prove a stronger form of
Theorem 1.2(i): Assume that dim G�ð fsÞ ¼ 1 for all s A ½0; 1�. Then G�ð fsÞ is
constant if and only if the global monodromy fibrations of fs are isomorphic.

(ii) For non-degenerate polynomial functions with constant Newton polygon,
Theorem 1.2 was obtained in [27], for any number of variables. However, the
hypothesis that the Newton polygon G�ð fsÞ of fs does not change is a non-
topological hypothesis. What is new here is the improvement in the result when
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G�ð fsÞ is not constant, and the method of proof is a thorough analysis of the
change of the Newton polygon G�ð fsÞ.

Example 1.4. Let us consider fsðx; yÞ :¼ sx4 þ x2y. An easy calculation
shows that the polynomial fs is non-degenerate and wð fsÞ ¼ 0 for all s A ½0; 1�.
By Theorem 1.2, the global monodromy fibrations of f0 and f1 are isomorphic.
Namely, the following diagram commutes:

f �1
0 ðS1

r Þ ���!f0 S1
r

F

???y id

???y
f �1
1 ðS1

r Þ ���!f1 S1
r

where r > 0 and Fðx; yÞ :¼ ðx; y� x2Þ is a homeomorphism. We notice that the
Newton polygon of fs is not constant and that fs has non-isolated critical points,
S0ð fsÞ ¼ f0g. Moreover, it follows from Proposition 2.2 below that Bð fsÞ ¼ f0g
for all s A ½0; 1�.

As a corollary of Theorem 1.2, we obtain the following result (see also [10,
Theorem 1.3]).

Corollary 1.5. With the hypotheses of Theorem 1.2. Then the global
monodromy operators of f0 and f1 are conjugate.

We are now interested in the constancy of the degree. It is well known that
the degree of a polynomial depends on the coordinate system of C2. Also in
families of non-degenerate polynomial functions with constant Euler characteristic
it can happen that the degree changes (see Example 1.4). On the other hand,
as a by-product of Theorem 1.2, we obtain the following result (see also [4,
Theorem 3]):

Corollary 1.6. With the hypotheses of Theorem 1.2. Then the family fs is
of constant degree up to an algebraic automorphism of C2.

Remark 1.7. In the above results, the polynomials fs can have non-isolated
singularities. Moreover, the Newton polygon G�ð f0Þ may be of one dimension.

The paper is organized as follows. In Section 2 we recall some useful
notations and results. The proofs are given in Section 3.

2. Tools

2.1. Fibrations. We will denote B2
R :¼ fðx; yÞ A C2 j kðx; yÞk < Rg, S3

R :¼
fðx; yÞ A C2 j kðx; yÞk ¼ Rg and Dr :¼ fc A C j jcj < rg.
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Let f : C2 ! C be a polynomial function. Let us choose r > 0 such that
the bifurcation set Bð f Þ of f is contained in the open disc Dr. The following
lemma is a consequence of transversality properties.

Lemma 2.1. Let R0 be a positive number such that for all c A S1
r and for all

RbR0, the fiber f �1ðcÞ intersects the sphere S3
R transversally. Then the global

monodromy fibration f : f �1ðS1
r Þ ! S1

r is isomorphic to the fibration f : f �1ðS1
r ÞV

B2
R ! S1

r for all RbR0.

Proof. See [10] or [27, Lemma 3.1]. r

2.2. Bifurcation set. We recall the result of Némethi A. and Zaharia A.
[19] on how to estimate the bifurcation set. A polynomial f : C2 ! C is
convenient for the x-axis if there exists a monomial xa in suppð f Þ ða > 0Þ; f
is convenient for the y-axis if there exists a monomial yb in suppð f Þ ðb > 0Þ; f is
convenient if it is convenient for the x-axis and the y-axis. Let gx and gy be the
two faces of G�ð f Þ that contain the origin. If f is convenient for the x-axis then
we set Cxð f Þ ¼ j, otherwise gx is not included in the x-axis and we set

Cxð f Þ :¼ fgxðx; yÞ j ðx; yÞ A C� � C� and
qfgx
qx

ðx; yÞ ¼ qfgx
qy

ðx; yÞ ¼ 0

� �
:

In a similar way we define Cyð f Þ. Let Syð f Þ :¼ Cxð f ÞUCyð f Þ.
The following result gives an estimation for the bifurcation set Bð f Þ of f in

terms of its Newton boundary at infinity.

Proposition 2.2 [14], [6], [19] (see also, [30], [12], [4]). Let f : C2 ! C be a
non-degenerate polynomial function. Then the following statements hold

(i) If f is convenient, then Bð f Þ ¼ S0ð f Þ.
(ii) If f is not convenient, then Bð f ÞHS0ð f ÞUSyð f ÞU f f ð0Þg.

2.3. Euler characteristic. Let us recall the definition of the Newton
number n, see [14]. Let T be a compact polytope T HZb0 � Zb0. The Newton
number of T is defined as follows

nðTÞ :¼ 2S � a� bþ 1;

where S is the area of T , a is the length of the intersection of T with the x-axis,
and b is the length of the intersection of T with the y-axis.

The following formula gives an explicit expression for the Euler character-
istics wð f Þ in terms of the Newton number of G�ð f Þ (see [2], [13], [21], [22], [23],
[24], [25], [1]):

Proposition 2.3. Let f : C2 ! C be a complex polynomial function. If f is
non-degenerate then

wð f Þ ¼ 1� nðG�ð f ÞÞ:
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2.4. Additivity and positivity. We need a variation of the Newton number
n, see [4]. Let T be a compact polytope whose vertices are in Zb0 � Zb0. We
define

tðTÞ ¼ nðTÞ � 1:

It is clear that t is additive: tðT1 UT2Þ ¼ tðT1Þ þ tðT2Þ � tðT1 VT2Þ, and in par-
ticular if T1 VT2 has null area then tðT1 UT2Þ ¼ tðT1Þ þ tðT2Þ. This formula
enables us to argue on triangles only (after a triangulation of T).

We denote A to be the set of triangles T such that T has two edges contained
in the x-axis and the y-axis, and the length of one of these edges is 1. Then
tðTÞ ¼ �1 for every triangle T A A. Moreover, we have the following facts

� nðTÞb 0; and
� nðTÞ ¼ 0 if and only if T A A.

2.5. Families of polytopes. We consider a family f fsg, s A ½0; 1�, of complex
polynomials in two variables. We will always assume that the only critical
parameter is s ¼ 0. We will say that a monomial xpyq disappears if ðp; qÞ A
suppð fsÞnsuppð f0Þ for s0 0. By extension a triangle of Zb0 � Zb0 disappears
if one of its vertices does. We triangulate Gð fsÞ such that a finite number of
triangles T disappear (see Figure 1, on pictures of the Newton polygon, a plain
circle is drawn for a monomial that does not disappear and an empty circle for
monomials that disappear).

We have the following simple results (see also [4, Lemma 9]).

Lemma 2.4. With the hypotheses of Theorem 1.2(ii). Suppose that there
exists a triangulation of Gð fsÞ, s0 0, with a triangle T A A that disappears. Then
either degxð fsÞ ¼ 1 or degyð fsÞ ¼ 1 for all s A ½0; 1�, where degxð fsÞ (resp., degyð fsÞ)
is the degree of f in x (resp., y).

Proof. By assumption, it is not hard to see that Gð fsÞ coincides with T
for s A ð0; 1�. Then either degxð fsÞ ¼ 1 or degyð fsÞ ¼ 1 for s A ð0; 1�. Moreover,
wð fsÞ ¼ �tðTÞ ¼ 1. As the Euler characteristic wð fsÞ is constant, we must have
either degxð f0Þ ¼ 1 or degyð f0Þ ¼ 1. r

Figure 1. Triangles that disappear.
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Lemma 2.5. With the hypotheses of Theorem 1.2(ii). Let T B A be a
triangle that disappears then tðTÞ ¼ 0.

Proof. The proof is analogous to that of [4, Lemma 9]. In fact, we
suppose that tðTÞ > 0. By the additivity and positivity of tðTÞ we have for
s A ð0; 1�:

nðG�ð fsÞÞb nðG�ð f0ÞÞ þ tðTÞ > nðG�ð f0ÞÞ:
By Proposition 2.3, then

wð fsÞ ¼ 1� nðG�ð fsÞÞ < 1� nðG�ð f0ÞÞ ¼ wð f0Þ:
This gives a contradiction with wð fsÞ ¼ wð f0Þ. r

We will widely use the following observation.

Lemma 2.6. Under the hypotheses of Theorem 1.2(ii), we have
(i) A vertex xpyq, p > 0, q > 0, of Gð fsÞ cannot disappear.
(ii) If a vertex xa (resp., yb) of Gð fsÞ disappears, then there exists a monomial

xpy (resp., xyq) of suppð fsÞ.

Proof. We will adapt the proof of [4, Section 3].
(i) We suppose that a vertex xpyq, p > 0, q > 0, of Gð fsÞ disappears. Let T

be a triangle that contains xpyq. Then T disappears and T B A. By Lemma
2.5, tðTÞ ¼ 0. Hence, T has an edge contained in either the x-axis or the y-axis,
but not both, and the height of T (with respect to this edge) is 1 (see Figure
2). Then certainly we have Gð fsÞ coincides with T for s A ð0; 1�, otherwise there
exists a region T 0 that disappears with tðT 0Þ > 0, which contradicts Lemmas 2.4
and 2.5. Now an easy calculation shows that wð fsÞ ¼ 0 < wð f0Þ for s A ð0; 1�,
which is a contradiction.

Figure 2. Case where a vertex xpyq of Gð fsÞ disappears: (a) q ¼ 1; (b) p ¼ 1.
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(ii) Suppose that a vertex xa of Gð fsÞ disappears (a similar proof holds
for yb). Let xpyq, q > 0, be a monomial of suppð fsÞ with q minimal. Since
dim Gð fsÞ ¼ 2 for all s A ð0; 1�, such a monomial exists. Then certainly we have
q ¼ 1, otherwise there exists a region T that disappears with tðTÞ > 0, which
contradicts Lemmas 2.4 and 2.5 (see Figure 3). r

3. Proofs of the results

Proof of Theorem 1.2. We will always suppose that s ¼ 0 is the only prob-
lematic parameter. In particular Gð fsÞ is constant for all s A ð0; 1�.

(i) We assume that dim G�ð fsÞ ¼ 1 for all s A ½0; 1�. Then Gð fsÞ is a single
point. Hence, there exist integers p, q and db 1 such that Gð f0Þ ¼ fðp; qÞg and
Gð fsÞ ¼ fðdp; dqÞg, s0 0, (see Figure 4). By [27, Theorem 1], the global mono-
dromy fibrations of f0 and fs, s0 0, are isomorphic, respectively, to ones of the
polynomials xpyq and xdpydq. On the other hand, it is not hard to see that the
global monodromy fibrations of the polynomials xpyq and xdpydq are isomorphic
if and only if d ¼ 1. Therefore, the global monodromy fibrations of fs are

Figure 3. Case where a monomial xa of Gð fsÞ disappears: no monomial xpyq in Gð fsÞ with pb 0

and q ¼ 1.

Figure 4. Case where dim G�ð fsÞ ¼ 1.
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isomorphic if and only if d ¼ 1, that means that the Newton polygon G�ð fsÞ is
constant.

(ii) Assume that we have proved the following claims:
� There exists a positive constant r such that

S0ð fsÞUSyð fsÞU f fsð0ÞgHDr for all s A ½0; 1�:
� There exists a positive number R0 such that for all RbR0, for all s A ½0; 1�,
and all c A S1

r , the fiber f �1
s ðcÞ intersects the sphere S3

R transversally.
Then it follows from Proposition 2.2 that

Bð fsÞHS0ð fsÞUSyð fsÞU f fsð0ÞgHDr for all s A ½0; 1�:
Hence, by Lemma 2.1, the global monodromy fibration of the polynomial func-
tion fs:

fs : f
�1
s ðS1

r Þ ! S1
r

is isomorphic to the following fibration

fs : f
�1
s ðS1

r ÞVB2
R ! S1

r :

Now, with arguments similar to the ones used in the proof of the classical Lê
D. T. and Ramanujam C. P. theorem (see [15], [10, Lemma 2.1] or [3, Lemma

12]), we have that the fibrations fs : f
�1
s ðS1

r ÞVB2
R ! S1

r , s A ½0; 1�, are isomorphic.
As a conclusion, the global monodromy fibrations of the polynomials fs are
isomorphic. Consequently, the statement (ii) is proved. r

So we are left with proving the above claims. Firstly, we have the following
observation.

Remark 3.1. We suppose that a vertex xa of Gð fsÞ disappears. By Lemma
2.6(ii), there exists a monomial xpy A suppð fsÞ. We choose xpy in suppð fsÞ with
maximal p. We assume that p ¼ 0. Then degyð fsÞ ¼ 1 for s A ð0; 1�. An easy
calculation shows that wð fsÞ ¼ 1. As the Euler characteristic wð fsÞ is constant,
we must have either degy f0 ¼ 1 or degx f0 ¼ 1. Therefore the polynomials fs
are all topologically equivalent. In particular, the conclusion of Theorem 1.2(ii)
holds. We exclude this case for the end of the proof.

3.1. Boundedness of a‰ne singularities. The following result says that the
set S0ð fsÞ of critical values of fs is contained in some open disc of radius
independent of s.

Lemma 3.2. There exists a positive number r such that

S0ð fsÞHDr for all s A ½0; 1�:

Proof. It is enough to prove the lemma on an interval ½0; s0� with a small
s0 > 0. Assume the contrary. Then by the Curve Selection Lemma [18], [20],
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there exist an analytic curve ðxðsÞ; yðsÞÞ and an analytic function lðsÞ, s A ð0; eÞ,
such that:

(a1) lims!0kðxðsÞ; yðsÞÞk ¼ y;
(a2) lims!0 fsðxðsÞ; yðsÞÞ ¼ y;

(a3)
qfs

qx
ðxðsÞ; yðsÞÞ1 0; and

(a4)
qfs

qy
ðxðsÞ; yðsÞÞ1 0.

If xðsÞ1 0 (resp., yðsÞ1 0Þ we let m :¼ 0 (resp., n :¼ 0Þ, otherwise, we put
m :¼ valðxðsÞÞ (resp., n :¼ valðyðsÞÞÞ, here val lðsÞ for lðsÞ ¼

Py
ibk ais

i, ak 0 0,
meromorphic at infinity is defined as follows: val l :¼ k. By Condition (a1),
minfm; ng < 0. Let g be the face of Gð fsÞ, s0 0, where the linear function
mpþ nq defined on g takes its minimal value. If the face g does not disappear,
then we obtain a contradiction as in the proof of [27, Lemma 3.2]. So we
suppose that the face g disappears, i.e., at least one vertex of the boundary of g
disappears. By Lemma 2.6(i), we may assume without loss of generality that a
monomial xa of g disappears (a similar proof holds for yb). Then it follows
from Lemma 2.6(ii) that there exists a monomial xpy A suppð fsÞ. We choose xpy
in suppð fsÞ with maximal p. Remark 3.1 now yields p > 0 (see Figure 5).

Then we conclude from Lemma 2.6(i) that the monomial xpy of fs cannot
disappear, and hence that

01
qfs

qy
ðxðsÞ; yðsÞÞ ¼ csmp þ higher order terms in s;

for some c0 0, which is impossible. r

Figure 5. Case where a monomial xa of Gð fsÞ disappears: (a) g ¼ fxag; (b) g joints the vertices xa

and xpy.
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3.2. Boundedness of singularities at infinity. The following lemmas show
that the sets Syð fsÞ and f fsð0; 0Þg are contained in some open disc of radius
independent of s.

Lemma 3.3. There exists a positive number r such that

Syð fsÞ ¼ Cxð fsÞUCyð fsÞHDr for all s A ½0; 1�:

Proof. Let gxðsÞ and gyðsÞ be the two faces of G�ð fsÞ, sb 0; that contain
the origin. We will prove that there exists r > 0 such that the following inclusion
holds

Cxð fsÞHDr for all s A ½0; 1�:

(A similar proof holds for Cyð fsÞ.) If gxðsÞ is constant, then with arguments
similar to the ones used in the proof of [27, Lemma 3.2] we obtain the desired
conclusion.

So we suppose that the face gxðsÞ is not constant. We also assume that the
only critical parameter is s ¼ 0. By Lemma 2.6(i), there exists a monomial
xa ða > 0Þ of gxðsÞ that disappears. Then for s A ð0; 1� the monomial xa is in

Gð fsÞ, so Cxð fsÞ ¼ j. If Gð f0Þ contains a monomial xa 0 ða 0 > 0Þ, then Cxð f0Þ ¼ j.
So we suppose that all monomials xk disappear. It follows from Lemma 2.6(ii)
that there exists a monomial xpy A suppð fsÞ. We can suppose that pb 0 is
maximal among monomials xky A suppð fsÞ. By Remark 3.1, p > 0. Note that
the monomial xpy does not disappear by Lemma 2.6(i). Now the edge of G�ð f0Þ
that contains the origin and the monomial xpy begins at the origin and ends at
xpy. Then it is easy to check that Cxð f0Þ ¼ j. So in case where gxðsÞ changes,
we have for all s A ½0; 1�, Cxð fsÞ ¼ j. r

Lemma 3.4. There exists a positive number r such that

f fsð0ÞgHDr for all s A ½0; 1�:

Proof. The claim follows easily from the continuity of the family fsðx; yÞ.
r

3.3. Transversality in the neighbourhood of infinity. Let us make the
following observation.

Remark 3.5. We suppose that a monomial xa of Gð fsÞ disappears. It
follows from Lemma 2.6(ii) that there exists a monomial xpy A suppð fsÞ. We
also suppose that pb 0 is maximal among monomials xky A suppð fsÞ. Remark
3.1 now gives p > 0. Then we can further assume, for the end of the proof of
Theorem 1.2, that all monomials xk disappear.

Lemma 3.6. Let r be a positive number such that the conclusions of Lemmas
3.2, 3.3 and 3.4 are fulfilled. Then there exists R0 su‰ciently large such that for
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all RbR0 and for all c A S1
r we have that the fiber f �1

s ðcÞ meets transversally the
sphere S3

R for each s A ½0; 1�.

Proof. It is su‰cient to prove the lemma for a family f fsg parameterized
by s in an interval ½0; s0� for a small s0 > 0. Assume the contrary. Then by the
Curve Selection Lemma [18], [20] there exist an analytic curve ðxðsÞ; yðsÞÞ and an
analytic function lðsÞ, s A ð0; eÞ, such that:

(b1) lims!0kðxðsÞ; yðsÞÞk ¼ y;
(b2) lims!0 fsðxðsÞ; yðsÞÞ ¼ c;

(b3)
qfs

qx
ðxðsÞ; yðsÞÞ ¼ lðsÞxðsÞ; and

(b4)
qfs

qy
ðxðsÞ; yðsÞÞ ¼ lðsÞyðsÞ.

By Lemma 3.2, lðsÞ2 0. Thus we can write

lðsÞ ¼ l0sd þ higher order terms in s;

here l0 0 0 and d A Q.
We first suppose that yðsÞ1 0 (a similar proof holds for xðsÞ1 0). Then we

may write

xðsÞ ¼ x0s
m þ higher order terms in s;

where x0 0 0 and m < 0. Since Condition (b2), there exists a monomial
xa ða > 0Þ in suppð fsÞ, s0 0. We also suppose that a is maximal among mono-
mials xk A suppð fsÞ. Let uðsÞ be the coe‰cient of the monomial xa in fs. If the
monomial xa does not disappear, then uð0Þ0 0 and we have that

lim
s!0

fsðxðsÞ; yðsÞÞ ¼ lim
s!0

½uð0Þxa
0 s

ma þ higher order terms in s� ¼ y;

which contradicts Condition (b2).
So we suppose that the monomial xa disappears. By Lemma 2.6(ii), there

exists a monomial xpy A suppð fsÞ. We choose xpy in suppð fsÞ with maximal
p. Remark 3.1 now leads to p > 0. It follows from Lemma 2.6(i) that the
monomial xpy of fs cannot disappear. Let vðsÞ be the coe‰cient of the mono-
mial xpy in fs. Then vð0Þ0 0. By Condition (b4), therefore

01
qfs

qy
ðxðsÞ; yðsÞÞ ¼ vð0Þxp

0 s
mp þ higher order terms in s;

which is impossible.
We now suppose that xðsÞ2 0 and yðsÞ2 0. Let us write

xðsÞ ¼ x0s
m þ higher order terms in s;

yðsÞ ¼ y0s
n þ higher order terms in s;

where x0 0 0, y0 0 0, and minfm; ng < 0.
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Let g be the face of Gð fsÞ, s0 0, where the linear function mpþ nq defined
on g takes its minimal value. If the face g does not disappear, then we obtain
a contradiction as in the proof of [27, Lemma 3.5]. So we suppose that the face
g disappears, i.e., at least one vertex of the boundary of g disappears. By
Lemma 2.6(i), we may assume without loss of generality that a monomial xa of
g disappears (a similar proof holds for yb). We also suppose that a is maxi-
mal among monomials xa A suppð fsÞ, s0 0. Again by Lemma 2.6(ii), there
exists a monomial xpy A suppð fsÞ. We choose xpy in suppð fsÞ with maximal p.
According to Remark 3.1, we have p > 0. Then by a simple Plane Geometry
argument we would have (see Figure 5)

m < 0:

Let uðsÞ (resp., vðsÞ) be the coe‰cient of the monomial xa (resp., xpy) in fs.
As the monomial xa disappears and xpy does not, we find that

uðsÞ ¼ u0s
k þ higher order terms in s;

vðsÞ ¼ v0 þ v1sþ higher order terms in s;

where u0 0 0, v0 0 0, and k > 0.
Let us note that all monomials xk disappear (see Remark 3.5). There are

three cases to be considered.

Case 1: kþma < mpþ n. We have

fsðxðsÞ; yðsÞÞ ¼ u0x
a
0 s

kþma þ higher order terms in s;

qfs

qx
ðxðsÞ; yðsÞÞ ¼ au0x

a�1
0 skþmða�1Þ þ higher order terms in s;

qfs

qy
ðxðsÞ; yðsÞÞ ¼ v0x

p
0 s

mp þ higher order terms in s:

Then we conclude from Conditions (b2)–(b4) that

kþma ¼ 0;

kþmða� 1Þ ¼ dþm;

mp ¼ dþ n;

hence that d ¼ �2m, and finally that n ¼ mðpþ 2Þ < 0. This gives a contra-
diction with

0 ¼ kþma < mpþ n:
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Case 2: kþma > mpþ n. We have

fsðxðsÞ; yðsÞÞ ¼ v0x
p
0 y0s

mpþn þ higher order terms in s;

qfs

qx
ðxðsÞ; yðsÞÞ ¼ pv0x

p�1
0 y0s

mðp�1Þþn þ higher order terms in s;

qfs

qy
ðxðsÞ; yðsÞÞ ¼ v0x

p
0 s

mp þ higher order terms in s:

By Conditions (b2)–(b4), we get

mpþ n ¼ 0;

mðp� 1Þ þ n ¼ dþm;

mp ¼ dþ n:

Hence d ¼ �2m, and so that n ¼ mðpþ 2Þ < 0, which contradicts the equation
mpþ n ¼ 0.

Case 3: kþma ¼ mpþ n. We have

fsðxðsÞ; yðsÞÞ ¼ ðu0xa
0 þ v0x

p
0 y0Þskþma þ higher order terms in s;

qfs

qx
ðxðsÞ; yðsÞÞ ¼ ðau0xa�1

0 þ pv0x
p�1
0 y0Þskþmða�1Þ þ higher order terms in s;

qfs

qy
ðxðsÞ; yðsÞÞ ¼ v0x

p
0 s

mp þ higher order terms in s:

Case 3.1: u0x
a
0 þ v0x

p
0 y0 ¼ 0. We first suppose that

au0x
a�1
0 þ pv0x

p�1
0 y0 ¼ 0:

Then we must have a ¼ p, and hence k ¼ n. It follows from Conditions (b3)–
(b4) that

kþmða� 1Þ < dþm;

mp ¼ dþ n:

Therefore n < m. Consequently, mp ¼ ma < kþma ¼ mpþ n < mpþm. Thus
0 < m. This gives a contradiction.

We now suppose that

au0x
a�1
0 þ pv0x

p�1
0 y0 0 0:

Observe that

kþmða� 1Þ ¼ dþm;

mp ¼ dþ n:
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These constraints, together with the equation kþma ¼ mpþ n, imply that
n ¼ m < 0. Hence

ma < kþma ¼ mpþ n ¼ mðpþ 1Þ:
Therefore

a > pþ 1:

On the other hand, it is easy to see that

au0x
a�1
0 þ pv0x

p�1
0 y0 ¼ l0x0;

v0x
p
0 ¼ l0y0:

These constraints, together with the assumption u0x
a
0 þ v0x

p
0 y0 ¼ 0, imply that

p� a ¼ kx0k2

ky0k2
> 0;

which is impossible.

Case 3.2: u0x
a
0 þ v0x

p
0 y0 0 0. We have

kþma ¼ mpþ n ¼ 0;

kþmða� 1Þa dþm;

mp ¼ dþ n:

Hence d ¼ �2nb�2m. It follows that nam < 0, which is in contradiction
with mpþ n ¼ 0.

Having exhausted all cases, we have completed the proof of Lemma 3.6.
r

Proof of Corollary 1.5. By Theorem 1.2, there exist rg 1 and homeo-
morphisms F and C such that the following diagram commutes:

f �1
0 ðS1

r Þ ���!f0 S1
r

F

???y C

???y
f �1
1 ðS1

r Þ ���!f1 S1
r :

Fix c A S1
r . For each t A ½0; 1�, let ht : f �1

0 ðcÞ ! f �1
0 ðce2pitÞ be a homeomorphism

induced by the fibration f0 : f
�1
0 ðS1

r Þ ! S1
r . Then the map h1 gives rise to the

global monodromy operators m0ð f0Þ and m1ð f0Þ of f0. Moreover, we have a
commutative diagram:

f �1
0 ðcÞ �����!ht

f �1
0 ðce2pitÞ

F0

???y Ft

???y
f �1
1 ðCðcÞÞ �����!Ft�ht�F�1

0
f �1
1 ðCðce2pitÞÞ;
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where Ft is the restriction of F on the fiber f �1
0 ðce2pitÞ, and thus a homeo-

morphism

f �1
1 ðCðcÞÞ ! f �1

1 ðCðcÞÞ; z 7! F1 � h1 �F�1
0 ðzÞ:

By definition, this map gives rise to the global monodromy operators m0ð f1Þ and
m1ð f1Þ of f1. Therefore the following diagram commutes ðq ¼ 0; 1Þ:

Hqð f �1
0 ðcÞ;ZÞ ���!mqð f0Þ

Hqð f �1
0 ðcÞ;ZÞ

F0

???y F1

???y
Hqð f �1

1 ðCðcÞÞ;ZÞ ���!mqð f1Þ
Hqð f �1

1 ðCðcÞÞ;ZÞ:

Since F0 1F1, this gives us what we want. r

Proof of Corollary 1.6. The proof follows from Lemma 2.6 by using the
same argument in [4, Theorem 3]. We will leave to the reader to verify these
facts. r
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