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Abstract

After the brilliant result of Papanicolau and Varadhan (1979) in the case of bounded

stationary and ergodic environments, there has been a recent upsurge in the research

of quenched homogenization of a symmetric diffusion process in random media. In

particular, to identify the optimal conditions that a general stationary and ergodic en-

vironment must satisfy in order to obtain the convergence to a non-degenerate Brow-

nian motion, is still an open problem. In this manuscript we show that, provided that

the environment satisfies certain moment conditions, then both a quenched invariance

principle and a quenched local central limit theorem hold for a diffusion formally gen-

erated by the divergence form operator Lω = div(aω∇· ). Since the coefficients are not

assumed to be smooth, we shall exploit Dirichlet form theory to make sense of the dif-

fusion associated to Lω. Both the proofs of the quenched invariance principle and of the

quenched local central limit theorem rely on a priori estimates for solutions to linear

partial differential equations. On one hand, with the help of the celebrated J. Moser’s

iteration technique, we derive a maximal inequality for solutions to degenerate elliptic

PDEs which in turn gives the sublinearity of the correctors and with that the quenched

invariance principle. On the other hand, relying once again on Moser’s scheme, we

obtain a parabolic Harnack inequality which can be used to control the oscillations of

solutions to parabolic PDEs. In particular, in the diffusive limit, we are able to bound

the oscillations of the transition densities of our diffusion. This successively yields the

quenched local central limit theorem.
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Zusammenfassung

Nach den brillanten Ergebnissen von Papanicolau und Varadhan (1979) im Fall von

beschränkten, stationären und ergodischen Umgebungen gab es ein erneutes Aufflam-

men in der Erforschung der “quenched” Homogenisierung eines symmetrischen Diffu-

sionsprozesses in zufälligen Medien. Insbesondere ist es immer noch ein ungelöstes

Problem die optimalen Bedingungen zu bestimmen, die eine stationäre und ergodische

Umgebung erfüllen muss, um die Konvergenz gegen eine nicht-degenerierte Brown-

sche Bewegung zu garantieren. In diesem Manuskript zeigen wir, dass, vorausgesetzt,

dass die Umgebung eine bestimmte Momentenbedingung erfüllt, sowohl ein quenched

Invarianzprinzip als auch ein quenched, lokaler, zentraler Grenzwertsatz für Diffusio-

nen, die vom Divergenzform Operator Lω = div(aω∇· ) generiert werden, gelten. Da

die Koeffizienten nicht glatt sind, bedienen wir uns der Theorie der Dirichlet Formen,

um Diffusionen, die formal mit dem Operator Lω assoziierte sind, einen Sinn zu geben.

Die Beweise für das quenched Invarianzprinzip und den quenched lokalen zentralen

Grenzwertsatz verwenden a-priori-Abschätzungen von Lösung partieller Differential-

gleichungen. Einerseits gelingt es uns mit Hilfe der berühmten J. Moser Iterationstech-

nik eine Maximalungleichung für Lösungen von elliptischen, partiellen Differentialgle-

ichungen herzuleiten, welche wiederum die Sublinearität der Korrektoren und damit

das quenched Invarianzprinzip implizieren. Andererseits, wieder dank Mosers Schema,

erhalten wir eine parabolische Harnack Ungleichung, die verwendet werden kann, um

die Oszillation von Lösungen parabolischer PDEs zu kontrollieren. Insbesondere, im

diffusen Grenzübergang, sind wir in der Lage die Oszillation der Übergangsdichten un-

serer Diffusion zu beschränken. Sukzessive ergibt sich daraus ein quenched, lokaler,

zentraler Grenzwertsatz.



vi



Contents

Introduction 1

I A priori estimates for solutions to degenerate PDEs 17

1 Sobolev type inequalities 19

1.1 Basic definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Symmetric forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Sobolev inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Nash inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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Introduction

point x ∈ O we must solve the following boundary value problem

{

div(a(x/ǫ)∇uǫ(x)) = f(x) x ∈ O,
uǫ(x) = 0 x ∈ ∂O.

(1)

The problem now is to analyze the behavior of the temperature uǫ as the size of the

mesh goes to zero. Under suitable assumptions on a, it is found that there exists a

constant matrix D := {dij}i,j such that if u(x) is the solution of

{

div(D∇u(x)) = f(x) x ∈ O,
u(x) = 0 x ∈ ∂O,

(2)

then uǫ → u in L2(O). The tensor D is known as the effective conductivity and is im-

plicitly given by solving some auxiliary problem. The effective conductivity captures

the macroscopic properties of the conductor O and shows that if the oscillations of the

conductivity happen on a very small scale, then there exists an homogeneous medium

whose diffusive properties can approximate the heterogeneous one. It is hardly surpris-

ing that the construction of the coefficients D must be treated numerically, since, with

the exception of trivial cases, an exact closed formula is not available.

The problem of homogenization in periodic media has been widely studied from

many viewpoints with different level of generality by several authors [BLP75], [Koz85],

[Lej01b], [DASC92], [ME08], [BM15] and extended also beyond the linear cases by

[SRP09], [PS11] and references therein. For an exhaustive introduction on the various

techniques available for the periodic homogenization problem we refer to [BLP11].

In 1979, G.C. Papanicolaou and S.R.S. Varadhan [PV81] studied the boundary value

problem (1) in the case where the conductivity a is a stationary and ergodic random

field. To be more precise, they assumed to have a probability space (Ω,G, µ) and a

stationary and ergodic field a : R× Ω → R
d×d satisfying

c−1|ξ|2 ≤
d

∑

i,j=1

aij(x, ω)ξiξj ≤ c|ξ|2, ∀ξ ∈ R
d, µ-a.s.

for some constant c > 1 and x 7→ a(x, ω) smooth enough for almost all ω ∈ Ω. If we

denote by uǫ(x, ω) the solution to the Dirichlet problem with random coefficients

{

div(a(x/ǫ, ω)∇uǫ(x, ω)) = f(x) x ∈ O,
uǫ(x, ω) = 0 x ∈ ∂O,

(3)

then uǫ(x, ω) can be interpreted as the random temperature function at the point x ∈ O
in the environment ω ∈ Ω. In [PV81], the authors were able to prove that

lim
ǫ→0

∫

O
Eµ[|uǫ(x;ω)− u(x)|2] = 0,

where Eµ is the expectation with respect to µ and u solves a deterministic bound-

ary value problem of the type (2). Again, the randomly inhomogeneous conducting
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medium behaves like a homogeneous deterministic medium with effective conductivity

D when ǫ is small. As in the periodic setting, an implicit formula for D is provided,

but an exact closed formula is not given except for very simple cases. Since the sem-

inal works [PV81], [Koz79], [Koz85] many extensions and generalizations have been

explored in the framework of ergodic media; we mention [Osa83] for measurable coef-

ficients, [Lej01a] for second order linear operators with lower order terms, and [FR09]

for the study of non-linear operators.

In this manuscript we are interested in the homogenization of second order linear

elliptic operators, given their beautiful and intimate connection with stochastic pro-

cesses. Indeed, solutions to second order parabolic or elliptic PDEs can be interpreted

as averages of functionals of the trajectory of a diffusion process. It is well known

(See for example [RY99, Chapter VII]) that if the coefficients are smooth enough the

operator

L =
d

∑

i,j=1

aij(x)∂i∂j +
d

∑

j=1

bj(x)∂j

is the generator of the diffusion process Xt in R
d which solves the stochastic differential

equation

dXt =
√
2σ(Xt)dWt + b(Xt)dt,

being Wt a d-dimensional Brownian motion and σσT = a. In our work we shall look at

generators in divergence form,

L =
1

θ(x)
div(a(x)∇·) = 1

θ(x)

d
∑

i,j=1

aij(x)∂i∂j +
1

θ(x)

d
∑

j=1

(

d
∑

i=1

∂jaij(x)
)

∂j,

with aij = aji. As an example take θ(x) = eV (x) and a = eV (x)Id which corresponds,

given enough regularity on V , to the diffusion

dXt =
√
2dWt +∇V (Xt)dt.

Dealing with operators in divergence form has many advantages. First there is an

explicit invariant measure θ(x)dx which is absolutely continuous with respect to the

Lebesgue measure. Moreover it is possible to consider coefficients which are not nec-

essarily smooth, in this case the process formally associated to L is not in general the

solution of some stochastic differential equation. If it were, the drift term would include
∑d

i=1 ∂jaij(x), which is not defined for irregular coefficients a; since Itô calculus is not

available we shall exploit the stochastic calculus for processes generated by Dirichlet

forms. Despite its own interest, the need to look at non-smooth coefficients is moti-

vated by the fact that in our model they are realizations of random fields, which are

naturally non-smooth objects.

Generally speaking, if Xω
t is a diffusion associated to Lω = div(a(x, ω)∇·), then the

process ǫXω
t/ǫ2 is associated to Lǫ,ω = div(a(x/ǫ, ω)∇·) and the problem of homogeniza-

tion of solutions uǫ(x, ω) to (3) translates in identifying the asymptotic behavior of the

process ǫXω
t/ǫ2 as ǫ goes to zero; this is known in the literature as the diffusive limit.
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Introduction

Similarly to the homogenization problem (3), it can be observed that if we look

at the process on long space-time scale, then the highly complex small scale structure

averages in the limit, so that at the macroscopic level we will see a Brownian motion

with a deterministic effective diffusivity matrix D.

The effective diffusivity D = {dij}di,j=1 is given precisely by the formula

dij = 2Eµ[〈a(0, ω)(ei −∇χi(0, ω)), ej −∇χj(0, ω)〉], (4)

where χk : Rd × Ω → R, k = 1, . . . , d are functions whose gradient ∇χk is a stationary

and ergodic random field and ek are the coordinate directions. The corrector field

satisfies the following partial differential equation with random coefficients

div(a(x, ω)∇χk(x, ω)) = div(a(x, ω)ek),

for µ-almost all ω ∈ Ω.

In the study of stochastic processes in random environment we have to distinguish

between two different scenarios, the quenched law and the annealed law: the first is

the conditional law of the process for a given realization of the environment, while the

second is obtained by integrating the quenched law with respect to the environment

distribution. A very important difference between the two is that while the quenched

law is often Markovian (for example in the case of diffusions with generator in diver-

gence form with random coefficients as above), this is not in general the case for the

annealed law. In this manuscript we will be concerned with quenched type results.

Description of the model and main results

In this manuscript, in dealing with homogenization of second order linear operators in

random media, we focus on the stochastic process point of view. More precisely, we are

interested in the study of reversible diffusions associated to an infinitesimal generator

Lω in divergence form

Lωu(x) = ∇ · (aω(x)∇u(x)), x ∈ R
d, (5)

where aω(x) is a symmetric d-dimensional matrix depending on a parameter ω which

describes a random realization of the environment.

We model the environment as a probability space (Ω,G, µ) on which a measurable

group of transformations {τx}x∈Rd is defined. One may think of τxω as a translation of

the environment ω ∈ Ω in the direction x ∈ R
d. We assume that the random environ-

ment (Ω,G, µ, {τx}x∈Rd) is stationary and ergodic (a more precise definition is given in

Section 5.1). The random field {aω(x)}x∈Rd will then be constructed by simply taking

a random variable a : Ω → R
d×d and defining aω(x) := a(τxω), we will often use the

notation a(x, ω) for aω(x) as well.

We recall from the previous section that when x 7→ aω(x) is bounded and uniformly

elliptic, with the same constants for µ-almost all ω, then a quenched invariance princi-

ple holds for the diffusion process Xω
t associated with Lω. This means that, for µ-almost

4



all ω ∈ Ω, the scaled process Xǫ,ω
· := ǫXω

·/ǫ2 converges in distribution on C([0,∞),Rd)

to a Brownian motion with a non-trivial covariance structure as ǫ goes to zero; this

scaling is also known in the literature as diffusive scaling. See for example the clas-

sic result of Papanicolau and Varadhan [PV81] where the coefficients are assumed to

be differentiable, and [Osa83], [Lej01a] for measurable coefficients and more general

operators.

Recently a lot of effort has been put into extending this result beyond the uniformly

elliptic case. For example [FK97] considers a non-symmetric, but still in divergence

form, diffusion with uniformly elliptic symmetric part and unbounded antisymmetric

part and the recent paper [BM15] proves an invariance principle for divergence form

operators of the type

Lu(x) = eV (x) div(e−V (x)∇u(x))
where V is a periodic and measurable function, such that eV + e−V is locally inte-

grable. For what concerns ergodic and stationary environment a recent result has been

achieved in the case of random walk in random environment in [ADS15a], [ADS15b].

In these works moments of order greater than one are needed to get an invariance

principle in the diffusive limit.

The aim of this thesis is to present our new results in this direction. Namely, based

on [CDa], we want to prove a quenched invariance principle for an operator Lω of the

form (5) with a random field aω(x) which is ergodic, stationary and possibly unbounded

and degenerate. Denote by a : Ω → R
d×d the G-measurable random variable which de-

scribes the field through aω(x) = a(τxω). We assume that a is symmetric and that there

exist Λ and λ G-measurable, positive and finite, satisfying the following assumptions.

Assumption a.1. For all ω ∈ Ω and ξ ∈ R
d

λ(ω)|ξ|2 ≤ 〈a(ω)ξ, ξ〉 ≤ Λ(ω)|ξ|2;

Assumption a.2. There exist p, q ∈ [1,∞] satisfying 1/p+ 1/q < 2/d such that

Eµ[λ
−q] <∞, Eµ[Λ

p] <∞;

Assumption a.3. As functions of x, λ−1(τxω),Λ(τxω) ∈ L∞
loc(R

d) for µ-almost all ω ∈ Ω.

Since aω(x) is meant to model a random field, it is not natural to assume its differ-

entiability in x ∈ R
d. Accordingly, the operator defined in (5) does not make any sense,

and the techniques coming from stochastic differential equations and Itô calculus are

not very helpful neither in constructing the diffusion process, nor in performing the

relevant computation.

The theory of Dirichlet forms is the right tool to approach the problem of construct-

ing a diffusion. Instead of the operator Lω we shall consider the bilinear form obtained

by Lω, formally integrating by parts, namely

Eω(u, v) :=
∑

i,j

∫

Rd

aωij(x)∂iu(x)∂jv(x)dx (6)

5
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for a proper class of functions u, v ∈ Fω ⊂ L2(Rd, dx), more precisely Fω is the closure

of C∞
0 (Rd) in L2(Rd, dx) with respect to E + (·, ·)L2 . It is a classical result of Fukushima

[FOT94, Theorem 7.2.2] and [Röc93, Ch. II example 3b] that it is possible to asso-

ciate to (6) a diffusion process {Xω,Pω
x , x ∈ R

d} as soon as (λω)−1 and Λω are locally

integrable. It is well known that there is a properly exceptional1 set N ω ⊂ R
d of Xω

such that the associated process is uniquely determined up to the ambiguity of starting

points in N ω, in our situation the set of exceptional points may depend on the realiza-

tion of the environment. Assumption (a.3) is designed to remove the ambiguity about

the properly exceptional set N ω. We will then prove that assumption (a.2) and ergod-

icity of the environment are enough to grant that the process Xω starting from any

x ∈ R
d does not explode for almost all realizations of the environment.

Remark. Moment conditions on the environment are a very natural assumption in order to

achieve a quenched invariance principle for symmetric diffusions in divergence form, indeed

at least the first moment of Λ and λ−1 is required to obtain the result. As a counterexample

one can consider a periodic environment, namely the d-dimensional torus T
d, and the

following generator in divergence form

Lf(x) :=
1

φ(x)
∇ · (φ(x)∇f(x)),

where φ : Td → R is defined by φ(x) := 1B(x)|x|−d+1Bc(x), being B ⊂ T
d a ball of radius

one centered in the origin. It is clear that φα ∈ L1(Td) for all α < 1 but not for α = 1.

If we look for example at d = 2, then the radial part of the process associated to L above,

when the radius is less than one, will be a Bessel process with parameter δ = 0 which is

known to have a trap in the origin [RY99, Chapter XI].

Remark. As observed in the previous remark, if we want to prove an invariance principle,

dealing with symmetric processes forces the degeneracy of the diffusion coefficient not to

be too strong. Namely, the diffusion coefficient can eventually be zero only on a set of null

Lebesgue measure. On the other hand, in the non-symmetric case the diffusion coefficient

is allowed to vanish in open sets, as was proved in periodic environments by [ME08] and

further extended and generalized in [FR09], [SRP09], [PS11]. In these works the strong

degeneracy of the diffusion coefficient is compensated by the drift through the Hörmander’s

condition; as a result and in contrast with our setting, the coefficients need to be smooth

enough.

Once the diffusion process Xω is constructed, the standard approach to diffusive

limit theorems consists in showing the weak compactness of the rescaled process and in

the identification of the limit. In the case of bounded and uniformly elliptic coefficients

the compactness is readily obtained by the Aronson-Nash estimates for the heat kernel.

In order to identify the limit, we use the standard technique used in [FK97], [Koz85]

and [Osa83]; namely, we decompose the process Xǫ
t into a martingale part, called the

harmonic coordinates and a fluctuation part, called the correctors. The martingale part is

1A set N ⊂ R
d is called properly exceptional if N is Borel, it has Lebesgue measure zero, and Px(Xt ∈

N or Xt− ∈ N for some t ≥ 0) = 0 for all x ∈ R
d \ N .

6



supposed to capture the long time asymptotic of Xǫ
t , and will characterize the diffusive

limit.

The challenging part is to show that the correctors are uniformly small for almost

all realizations of the environment. This is attained generalizing Moser’s arguments

[Mos61] to get a maximal inequality for positive subsolutions of uniformly elliptic, di-

vergence form equations. In this sense the relation 1/p + 1/q < 2/d is designed to let

the Moser’s iteration scheme work. This integrability assumption firstly appeared in

[EP72] in order to extend the results of De Giorgi and Nash to degenerate elliptic equa-

tions. A similar condition was also recently exploited in [Zhi13] to obtain estimates of

Aronson-Nash type for solutions of degenerate parabolic equations. The author looks

at generators of the form

Lu(x) = ∂tu(x)− e−V (x) div(eV (x)∇u(x)),

with the assumption that

sup
r≥1

|r|−d

∫

|x|≤r

epV + e−qV dx <∞.

We want to stress that condition (a.3) is not needed to prove the sublinearity of the

corrector, nor its existence, we used it only to have a more regular density of the semi-

group associated to Xω and avoid some technicalities due to exceptional sets in the

framework of Dirichlet form theory.

Once the correctors are showed to be sublinear, the standard invariance principle

for martingales gives the desired Quenched Functional Central Limit Theorem (QFCLT)

(cf. Theorem 1.1 in [CDa]).

Theorem I (QFCLT). Assume that (a.1), (a.2) and (a.3) are satisfied. Let Mω := (Xω
t ,P

ω
x),

x ∈ R
d, be the minimal diffusion process associated to (Eω,Fω) on L2(Rd, dx). Then the

following hold

(i) For µ-almost all ω ∈ Ω the limits

lim
t→∞

1

t
E
ω
0 [X

ω
t (i)X

ω
t (j)] = dij i, j = 1, ..., d

exist and are deterministic constants.

(ii) For µ-almost all ω ∈ Ω, the laws of the processes ǫXω
t/ǫ2, ǫ > 0 started at the origin

over C([0,+∞),Rd) converge weakly as ǫ → 0 to a Wiener measure having the

covariance matrix equal to D = [dij]. Moreover D, is a positive definite matrix.

As a corollary of Theorem I (see Corollary 5.6.3 for the precise statement), using a

time-change technique, we can establish a quenched invariance principle for diffusions

formally associated to

Lθ,ωu(x) :=
1

θω(x)
div(aω(x)∇u(x)), (7)

7



Introduction

with θω(x) a locally bounded stationary and ergodic random field such that Eµ[θ(0)],

Eµ[θ
−1(0)] are finite and with aω as before. In this case, the diffusion process formally

associated to Lθ,ω converges in distribution on C([0,∞),Rd), in the diffusive scaling, to

a Wiener measure having covariance matrix given by D/Eµ[θ], where D was given in

Theorem I.

Remark. As a consequence of Theorem I, the continuous mapping Theorem and of the

rich interplay between stochastic processes and PDEs, one could show homogenization for

solutions to (3). Indeed, the random weak solution uǫ(x, ω) to

{

div(a(x/ǫ, ω)∇uǫ(x, ω)) = f(x) x ∈ O,
uǫ(x, ω) = 0 x ∈ ∂O,

has a probabilistic representation in terms of the process ǫXω
t/ǫ2 . For example, in x = 0

uǫ(0, ω) = E
ω
0

[
∫ τǫO

0

f(ǫXω
t/ǫ2) dt

]

.

where τ ǫO is the exit time of ǫXω
t/ǫ2 from O. Provided that the functional in the integral is

continuous, we have

uǫ(0, ω) = E
ω
x

[
∫ τǫO

0

f(ǫXω
t/ǫ2) dt

]

→ E
W

[

∫ τWO

0

f(Wt) dt

]

,

where E
W is the expectation of a Brownian motion W started at zero with covariance

matrix given by D as in Theorem I and τWO is the exit time of W from O.

Under the moment condition (a.2) a finer result can be obtained. More precisely,

we show that if a quenched invariance principle holds for the process XΛ,ω formally

associated to LΛ,ω, then under (a.1) and (a.2), the density of ǫXΛ,ω
t/ǫ2 converges uniformly

on compacts to a Gaussian density for µ-almost all realizations of the environment

(see Theorem 1.1 [CDb]). This type of result is known in the literature as Quenched

Local Central Limit Theorem (QLCLT). Again, the construction of XΛ,ω follows from

Dirichlet form theory; namely XΛ,ω is the diffusion process associated to the Dirichlet

form (Eω,FΛ,ω) on L2(Rd,Λω), where Eω is given in (6) and FΛ,ω is the completion of

C∞
0 (Rd) in L2(Rd,Λω) with respect to Eω + (·, ·)L2(Rd,Λω).

To state the result we need to introduce the following assumption.

Assumption a.4. Assume that there is a positive definite symmetric d-dimensional

matrix Σ such that for µ-almost all ω ∈ Ω we have that for almost all o ∈ R
d, all balls

B ⊂ R
d and all compact intervals I ⊂ (0,∞)

lim
ǫ→0

P
ω
o (ǫX

Λ,ω
t/ǫ2 ∈ B) =

1
√

(2πt)d detΣ

∫

B

exp
(

−x · Σ
−1x

2t

)

dx,

uniformly in t ∈ I.
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Observe that in the special case where λω(·)−1,Λω(·) ∈ L∞
loc(R

d) µ-almost surely,

assumption (a.4) is satisfied for all o ∈ R
d, µ-almost surely with Σ = D/Eµ[Λ] due to

Corollary 5.6.3.

Set the notation

kΣt (x) :=
1

√

(2πt)d detΣ
exp

(

−x · Σ
−1x

2t

)

for the Gaussian kernel with covariance matrix given by Σ.

Theorem II (QLCLT). Let d ≥ 2. Assume (a.1), (a.2) and (a.4). Let pΛ,ωt (·, ·) be the density

with respect to Λω(x)dx of the semigroup PΛ,ω
t associated to (Eω,FΛ,ω) on L2(Rd,Λω). Let

R > 0 and I ⊂ (0,∞) compact. Then for µ-almost all ω ∈ Ω we have that for almost all

o ∈ R
d

lim
ǫ→0

sup
|x−o|≤R

sup
t∈I

|ǫ−dpΛ,ωt/ǫ2(o, x/ǫ)− Eµ[Λ]
−1kΣt (x)| = 0. (8)

If we further assume that λω(·)−1,Λω(·) ∈ L∞
loc(R

d) for µ-almost all ω ∈ Ω, then (8) is

satisfied for all o ∈ R
d.

The PDEs methods

The proofs of Theorem I and Theorem II are based on a priori estimates for solutions

to PDEs. On one hand for the proof of Theorem I we need to show that the correctors

are uniformly small for µ-almost all ω, and this follows from a maximal inequality for

solutions to elliptic PDEs. On the other hand in order to demonstrate Theorem II we

need to control the oscillations of the fundamental solution of a parabolic PDE.

Maximal inequality and sublinearity of the correctors. A key step in the proof of

the QFCLT is to show that the correctors χ = (χ1, . . . , χd) : Rd × Ω → R
d are locally

sublinear, namely that

lim sup
ǫ→0

sup
|x|≤R

ǫ|χ(x/ǫ, ω)| = 0, ∀R > 0, µ-a.s.

This helps to conclude that when we decompose the process into the sum of a martin-

gale part and correctors the latter are converging to zero in distribution.

To obtain a priori estimates on the correctors χ we exploit the fact that they are

solutions of a Poisson equation, which is formally given by

∇ · (aω(x)∇χk(x, ω)) = ∇ · (aω(x)∇πk(x)), (9)

where πk(x) := xk is the projection to the kth-coordinate.

The equation above has been studied extensively and generalized in many direc-

tions, also beyond the linear case. For an introduction, see for example the monographs

[Eva10], [GT01] and for recent developments in the theory see [HKM06].
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If the matrix aω is uniformly elliptic and bounded, uniformly in ω ∈ Ω, namely if

c−1|ξ|2 ≤ 〈aω(x)ξ, ξ〉 ≤ c|ξ|2

for some c ≥ 1, it is natural to look for weak solutions to (9) in the classical Sobolev

space of square integrable functions with square integrable weak derivatives. It is a

classical result due to Moser [Mos61] that an elliptic Harnack inequality holds and a

result from Nash [Nas58] and De Giorgi [De 57] that solutions are Hölder continuous.

The situation changes dramatically if the coefficients are degenerate. In the most

typical situation there is a positive weight θ : Rd → R and a constant c > 1 such that

θ(x)|ξ|2 ≤ 〈aω(x)ξ, ξ〉 ≤ c θ(x)|ξ|2.

In this setting one looks for solutions to equation (9) in the weighted Sobolev space

W 1,2(Rd, θ) which is the set of weakly differentiable functions u : Rd → R such that

∫

Rd

|u|2θdx <∞, and

∫

Rd

|∇u|2θdx <∞,

we refer to [HKM06], [Zhi98] for more information on weighted Sobolev spaces. It was

shown in [FKS82] that in order to have local regularity of solutions to (9) it is enough

to have weights which are volume doubling, namely such that there exists a constant

C > 0 for which
∫

B2R(x)

θ(y) dy ≤ C

∫

BR(x)

θ(y) dy, ∀R > 0, ∀x ∈ R
d,

and which satisfy weighted Sobolev and Poincaré inequalities. This weights are known

in general as p-admissible (See [HKM06]), but for our discussion of the linear operator

Lω = ∇ · (aω∇ ) it is enough to look at 2-admissible weights.

Remark (Volume doubling). In our setting it is not possible to expect the volume doubling

property for small balls. The ergodic theorem ensures only that for all x ∈ R
d and µ-almost

all ω ∈ Ω there exist Rω
0 (x) > 0 and a dimensional constant C > 0 such that for all

R > Rω
0 (x)

∫

B2R(x)

Λω(y) dy ≤ C

∫

BR(x)

Λω(y) dy,

being BR(x) the ball of center x and radius R. We remark that the constant Rω
0 (x) cannot

be taken uniformly in x ∈ R
d, and supx∈Rd Rω

0 (x) may be infinite.

Examples of 2-admissible weights are the functions in the Muckenhaupt’s class A2,

we refer to [FKS82], [HKM06], [Tor12] and to the original research paper [Muc72] for

an exhaustive treatment on the subject. Here we briefly recall that the class A2 is the

set of all non-negative functions θ : Rd → [0,∞] for which there exists a constant C > 0

such that

sup
R>0

sup
x∈Rd

(

1

|BR(x)|

∫

BR(x)

θ(y) dy

)(

1

|BR(x)|

∫

BR(x)

θ−1(y) dy

)

≤ C. (10)

10



It is well known that weights in the class A2 are volume doubling and satisfy a weighted

Sobolev inequality. To be more precise, denote by θ(B) :=
∫

B
θdx, then there exist

constants C, δ > 0 such that for all 1 ≤ k ≤ d/(d− 1) + δ

(

1

θ(B)

∫

B

|u|2kθdx
)

1
k

≤ C|B| 2d 1

θ(B)

∫

B

|∇u|2θdx
(

≤ C|B| 2d E(u, u)
θ(B)

)

(11)

being B any ball in R
d and u ∈ C∞

0 (B).

Working with admissible weights has the advantage of being able to state Hölder

continuity results for weak solutions to (9). It is still an open problem the identification

of the optimal conditions that a weight has to satisfy so that the weak solutions are

continuous, see the survey paper [Cav08] for details.

Many authors relied on Muckenhaupt’s classes and weighted Sobolev spaces to

prove homogenization results. We quote [DASC92] for the periodic case and [EPPW06]

for the ergodic case. In the latter the weights are assumed to belong to a Muckenhaupt

class for almost all the realizations of the environment.

In our paper, to prove the sublinearity of the corrector, we assume that the coeffi-

cient aω(x) satisfies

λω(x)|ξ|2 ≤ 〈aω(x)ξ, ξ〉 ≤ Λω(x)|ξ|2, µ-a.s.

and Eµ[λ
−q], Eµ[λ

p] <∞ with 1/p+1/q < 2/d. In this case, the weights λω(x) := λ(τxω)

and Λω(x) := Λ(τxω) do not belong to any of the classes mentioned above, since, as

explained in the remark above, in general the measures λω(x)dx and Λω(x)dx are not

volume doubling. The ergodicity of the environment and the fact that Eµ[λ
−1],Eµ[Λ]

are finite ensure only that

sup
x∈Rd

lim sup
R→∞

1

|BR(x)|

∫

BR(x)

1

λω(y)
dy <∞, sup

x∈Rd

lim sup
R→∞

1

|BR(x)|

∫

BR(x)

Λω(y)dy <∞,

µ-almost surely, and, contrary to (10), it is not possible to interchange the supremum

and the limit staying finite. Another characterizing feature of our model is that we don’t

assume Λω ≤ cλω.

We cannot expect regularity for solutions to (9), however, we show that the er-

godicity of the environment and the moment conditions (a.2) are enough to obtain

a quenched invariance principle, this is done in the same spirit of [FK97] where an

unbounded but uniformly bounded away from zero non-symmetric case is considered.

Moser’s method to derive a maximal inequality for solutions to (9) is based on two

steps. One wants first to get a Sobolev inequality to control some Lρ-norm in terms

of the Dirichlet form and then control the Dirichlet form of any solution by a lower

moment. This sets up an iteration which leads to control the supremum of the solution

on a ball by a lower norm on a slightly bigger ball. In the uniformly elliptic and bounded

case this is rather standard and it is possible to control the L2d/(d−2)-norm of a solution

by its L2-norm through the classical Sobolev inequality. In the case of Muckenhaupt’s

weights the iteration can be set using the Sobolev inequality (11) on the weighted

Sobolev space.
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In our situation we are able to control locally on balls the ρ-norm of a solution

by its 2p/(p − 1)-norm, with ρ = 2qd/(q(d − 2) + d). For Moser’s iteration we need

ρ > 2p/(p− 1) which is equivalent to the condition 1/p+ 1/q < 2/d. Indeed, by means

of Hölder’s inequality and the standard Sobolev inequality, for a ball B of radius R > 0

and center x ∈ R
d, we can write

(

1

|BR(x)|

∫

BR(x)

|u|ρdy
)

2
ρ

≤ Csob

(

1

|BR(x)|

∫

BR(x)

(λω)−qdy

)
1
q

|BR(x)|
2
d
Eω(u, u)

|BR(x)|
.

The Sobolev inequality above must be compared with (11). In opposition to (11), the

constant in front of the inequality is strongly dependent on x ∈ R
d and R > 0. There-

fore, the estimates we derive in Chapter 2 to control the Dirichlet form of a solution

by its 2p/(p− 1)-norm, although following from very well established arguments, are a

necessary step in order to clarify the dependence of the constants on

1

|BR(x)|

∫

BR(x)

(λω(y))−qdy,
1

|BR(x)|

∫

BR(x)

(Λω(y))pdy.

The maximal inequality which we obtain in Chapter 2 behaves nicely in the scaling

limit, thanks to the ergodic theorem, and this will be enough to state the sublinearity

of the correctors.

Remark. It is believed that the optimal condition for a quenched invariance principle to

hold is Eµ[λ
−1], Eµ[Λ] < ∞. In periodic environment this has been proven recently in

[BM15] using ideas coming from harmonic analysis and Muckenhaupt’s weights. The

authors consider a generator in divergence form given by Lu = eV∇ · (e−V∇u), where

V : Rd → R is periodic and measurable such that eV + e−V is locally integrable. Their

argument relies on a time change and on the Sobolev inequality

(
∫

Td

|u|rw dx
)

2
r

≤ C

∫

Td

|∇u|2e−V dx

where T
d is the d-dimensional torus, u ∈ C1(Td) centered, r > 2 and w is expressed as an

Hardy-Littlewood maximal function.

In this setting it is not possible to use Moser’s iteration technique to prove the sublin-

earity of the corrector on balls, since to bound the right hand side by the Ls(Td, w) norm

for some s < r would require further assumptions on the integrability of eV + e−V . In fact,

they don’t prove sublinearity of the correctors on balls but along the path of the process.

This approach relies on a global uniform upper bound for the density of the process, which

can be established due to the compactness of the periodic environment, and the fact that

the process of the environment seen from the particle is just the projection of the diffusion

on the torus Td.

Parabolic Harnack inequality and Local Central Limit Theorem. The proof of The-

orem II contains as its main ingredient a parabolic Harnack inequality for solutions to

the “formal” parabolic equation

∂tu(t, x)−
1

Λω(x)
∇ · (aω(x)∇u(t, x)) = 0, t ∈ (0,∞), x ∈ R

d. (12)
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It is well known that when x 7→ aω(x) and x 7→ Λω(x) are bounded and bounded away

from zero, uniformly in ω ∈ Ω, then a parabolic Harnack inequality holds for solutions

to (12), this is a celebrated result due to Moser [Mos64]. He showed that there is a

positive constant CPH , which depends only on the uniform bounds on a and Λ, such

that for any positive weak solution of (12) on (t, t+R2)× BR(x) we have

sup
(s,z)∈Q−

u(s, z) ≤ CPH inf
(s,z)∈Q+

u(s, z)

where Q− = (t+ 1/4R2, t+ 1/2R2)× BR/2(x) and Q+ = (t+ 3/4R2, t+ R2)× BR/2(x).

The parabolic Harnack inequality plays a prominent role in the theory of partial differ-

ential equations, in particular to prove Hölder continuity for solutions to (12), as it was

observed by Nash [Nas58] and De Giorgi [De 57], or to prove Gaussian bounds for the

fundamental solution of (12) as done by Aronson [Aro67]. It is remarkable that such

results do not depend neither on the regularity of a nor of Λ.

We shall exploit the stability of Moser’s method to derive a parabolic Harnack in-

equality also in the case of degenerate and possibly unbounded coefficients. The tech-

nique is quite flexible and can also be applied to discrete space models for which we

refer to [ADS15a] and [ADS15b].

Similarly to the derivation of the maximal inequality for the Poisson equation, with

Moser’s iteration technique we are able to bound the L∞-norm of a caloric function u

by its Lα-norm for some finite α > 0, on a slightly larger ball. Since the same holds

for u−1, what is left to do is to link the Lα-norm of u and the Lα-norm of u−1. In

the uniformly elliptic case this is achieved by means of the exponential integrability of

BMO functions, hence with John-Niremberg inequality. In the present work we exploit

an abstract lemma due to Bombieri and Giusti [BG72] (See Lemma 3.2.1 below) for

which application, besides the maximum inequality for u, we will need to establish

weighted Poincaré inequalities.

Following the classic proof of Moser, with some extra care due to the different expo-

nents, we get a local parabolic Harnack inequality for solutions to (12) in our setting.

In the uniformly elliptic and bounded case the constant in front of the Harnack inequal-

ity depends only on the uniform bounds on a and Λ. In our setting we cannot expect

that to be true for general weights, and the constant will strongly depend on the center

and the radius of the ball, in particular we don’t have any control for small balls, so

that a genuine Hölder continuity result like the one of Nash is not given. Luckily, in the

diffusive limit, the ergodic theorem helps to control constants and to prove Theorem II.

Remark. Given a speed measure θ : Ω → (0,+∞) one can also consider the Dirichlet form

(Eω,F θ,ω) on L2(Rd, θω) where Eω is given by (6) and F θ,ω is the closure of of C∞
0 (Rd) in

L2(Rd, θω) with respect to Eω + (·, ·)θω . This corresponds to the formal generator

Lωu(x) =
1

θω(x)
∇ · (aω(x)∇u(x)). (13)

One can show along the same lines of the proof for θ = Λ that if

Eµ[θ
r] <∞, Eµ[λ

−q] <∞, Eµ[Λ
pθ1−p] <∞,
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where p, q, r ∈ (1,∞] are such that

1

r
+

1

q
+

1

p− 1

r − 1

r
<

2

d
,

then the parabolic Harnack inequality still works, in particular a quenched local central

limit theorem can still be derived in this situation.

Observe that in the case θ = Λ we find back the familiar 1/r + 1/q < 2/d while in the

case θ ≡ 1, r = ∞ the condition reads 1/(p− 1) + 1/q < 2/d.

Remark. One particular example which arises from the general form (13) is the one with

θ = eV
ω(x) and aω(x) = e−V ω(x)Id, being Id the d-dimensional identity matrix. The genera-

tor corresponding to this choice reads

Lωu(x) = eV
ω(x)∇ · (e−V ω(x)∇u(x)).

Remark. Despite the fact that condition 1/p + 1/q < 2/d given by (a.2) seems not to be

sharp for a quenched invariance principle to hold, it is morally optimal to state Theorem

II. Indeed in the discrete space setting it was shown that if 1/p + 1/q > 2/d, then there

exists an ergodic environment for which the quenched local central limit theorem does not

hold [ADS15a][See Theorem 5.4]. One could possibly construct a counterexample also in

the continuous by exploiting the same ideas given in [ADS15a].

Description of the content of the thesis. We have divided the thesis into two parts,

the first being focused on Partial Differential Equations theory and the second being

about diffusions in random environment. The first part is interesting on its own and

will be used heavily to prove the results in the second part.

Part I. Here we deal with a priori estimates for solutions to Partial Differential Equa-

tions. We present a deterministic model, which will correspond to a diffusion where we

look at a fixed random environment.

In Chapter 1 we will review some classical results in Sobolev spaces theory and

extend the classical Sobolev, Nash and Poincaré inequalities for weighted spaces. The

inequalities obtained there will be local, in the sense that the constants involved will

strongly depend on the choice of the center and the radius of the ball of interest.

In Chapter 2 we will derive a priori estimates for weak solutions to degenerate

elliptic equations. The main result of the chapter is a maximal inequality which will

be used to prove the quenched invariance principle in Chapter 5. The inequality is

obtained with Moser iteration technique.

In Chapter 3 we will derive a priori estimates for weak solutions to degenerate ho-

mogeneous parabolic equations. The main result of the chapter is a local parabolic

Harnack inequality which will be applied in Chapter 6 to prove the quenched Local

Central Limit Theorem.

Part II. This part is devoted to diffusions in degenerate and unbounded random

environment.
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In Chapter 4 we address the subtle question of constructing a diffusion associated

to the formal generator (5). This requires the theory of Dirichlet forms which will be

presented to the reader in some generality. The general theory discussed in this chapter

will find a precise application to the generator (5).

In Chapter 5 we study symmetric diffusions in stationary and ergodic random envi-

ronment. The chapter is devoted to the construction of the correctors and to the proof

of their sublinearity. This result will lead to a proof of a quenched invariance princi-

ple, namely, the convergence in distribution of the process ǫX·/ǫ2 to a non degenerate

Brownian motion as ǫ→ 0.

In Chapter 6 we prove that, provided that a quenched invariance principle holds,

the density of the process ǫX·/ǫ2 converges uniformly on compacts to a non-degenerate

Gaussian density.

Finally, in the Conclusions chapter we will comment the results and present some of

the natural problems and questions one could possibly address.
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Part I

A priori estimates for solutions to

degenerate PDEs





1

Sobolev type inequalities

In the first section we give some basic definitions and we collect, for the reader conve-

nience, some facts from the classical theory of Sobolev spaces and some concepts from

classical analysis which will be extensively used in the manuscript. Most of the atten-

tion will be put in recalling the classical Sobolev inequality and Sobolev embedding

theorems. In Section 1.2 we introduce the notation and the spaces related to the sym-

metric form obtained formally integrating by parts the operator L = div(a(x)∇·). In

sections 1.3, 1.4 and 1.5 we will finally extend the classical Sobolev, Nash and Poincaré

inequalities to some weighted spaces using only local integrability of the coefficients

and Hölder inequality. This plan is carried out in order to get a priori estimates for

solutions to degenerate elliptic and parabolic partial differential equations in the next

chapters.

1.1 Basic definitions and notation

1.1 Classical analysis. Let U be an open domain in R
d and θ : U → R be a non-

negative measurable function. If 1 ≤ r < ∞, then we define the real Banach space

Lr(U, θ) to be the vector space of measurable functions u : U → R for which

‖u‖r,θ :=
(
∫

U

|u(x)|rθ(x)dx
)1/r

is finite. We identify two functions which coincide outside a null set for the measure

mθ(dx) := θ(x)dx without any further comment. The space L∞(U, θ) is defined to be

the space of measurable functions u for which

‖u‖∞,θ = min{λ : mθ{|u| > λ} = 0}

is finite. It can be shown that

‖u‖∞,θ = lim
r→∞

‖u‖r,θ (1.1)

whenever u ∈ Lr(U, θ) for all large enough r. When θ ≡ 1, the measure mθ coincides

with the Lebesgue measure and we will simply write Lr(U) for Lr(U, θ) and ‖ · ‖r for

‖ · ‖r,θ.



Sobolev type inequalities

Remark 1.1.1. For our applications θ is strictly positive almost everywhere, which implies

that θ(x)dx is equivalent to the Lebesgue measure, and therefore that L∞(U, θ) coincides

with L∞(U).

If r ∈ [1,∞], then we define Lr
loc(U, θ) to be the vector space of measurable functions

u : U → R whose restriction u|K to any compact K ⊂ U belongs to Lr(K, θ).

1.2 Sobolev Spaces. Here we recall some of the theory on weak differentiability and

Sobolev spaces. For a complete treatment on the subject we refer to [Eva10], [GT01],

[SC02].

Let U be an open bounded domain in R
d and α ∈ N

d a multi-index. Denote by

Dα = ∂α1 · · · ∂αd and by |α| = α1+ · · ·+αd. We say that a function u ∈ L1
loc(U) has weak

αth-derivative if there exists a function v ∈ L1
loc(U) such that

∫

U

uDαη dx = (−1)|α|
∫

U

vη dx, ∀η ∈ C∞
0 (U),

where C∞
0 (U) is the set of all infinitely differentiable functions with compact support in

U . We write Dαu := v and note that Dαu is uniquely determined up to sets of measure

zero, accordingly, pointwise relations involving weak derivatives will be understood to

hold almost everywhere. We denote byW 1(U) the set of weakly differentiable functions

in U .

The next classical result allows to extend most of the properties true for classical

derivatives to weak derivatives. For the proof we refer to [GT01, Theorem 7.4].

Theorem 1.1.2. Let u, v be locally integrable on U . Then v = Dαu if and only if there

exists a sequence of C∞(U) functions {un}n∈N such that Dαun → v and un → u in L1
loc(U).

By means of Theorem 1.1.2 we can easily prove that the product rule D(uv) =

uDv+vDu holds for all u, v ∈ W 1(U) provided that uv, vDu+uDv ∈ L1
loc(U). The next

proposition concerns the chain rule for weakly differentiable functions.

Proposition 1.1.3. Let Φ : R → R be a piecewise C1 function, i.e. a continuous function

with piecewise continuous first derivative. Assume further ‖Φ′‖∞ <∞. If u ∈ W 1(U) then

Φ◦u ∈ W 1(U). Furthermore, letting L the set of corner points of Φ, D(Φ◦u) = Du(Φ′ ◦u)
whenever u ∈ L, D(Φ ◦ u) = 0 otherwise.

Let 1 ≤ r ≤ ∞ and k a non-negative integer. We denote by

W k,r(U) := {u ∈ L1
loc(U) : Dαu ∈ Lr(U), ∀|α| ≤ k}.

The space W k,r(U) is clearly a linear space which becomes a Banach space once it is

endowed with the norm

‖u‖Wk,r(U) :=
∑

|α|≤k

‖Dαu‖Lr(U).

Another Banach space is the set W k,r
0 (U), which arises taking the closure of C∞

0 (U) in

W k,r(U).
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Remark 1.1.4. The spaces W k,r(U) and W k,r
0 (U) do not coincide when U is bounded. If

U = R
d then they coincide.

Local spacesW k,r
loc (U) can be defined to consist of functions which belong toW k,r(U ′)

for all U ′ compact subset of U .

The case in which r = 2 is special since the norm ‖u‖Wk,2(U) is associated to a

scalar product, so that W k,2(U) and W k,2
0 (U) are indeed Hilbert spaces. In the case

r = ∞ Sobolev and Lipschitz spaces are related; in particular W k,∞
loc (U) coincide with

Ck−1,1(U) and W k,∞(U) with Ck−1,1(U) for sufficiently smooth ∂U .

The next classical result states that smooth functions are dense in Sobolev spaces.

Theorem 1.1.5. The subspace C∞(U) ∩W k,r(U) is dense in W k,r(U).

This result shows that we could have characterized W k,r(U) as the completion of

C∞(U) with respect to the norm ‖ · ‖Wk,r(U), this is useful in many situations. If the

domain U is sufficiently smooth, for example has C1-boundary, then the same theorem

holds with C∞(U) replaced by the smaller C∞(U).

A very handy characterization of Sobolev spaces is the so called “absolutely continu-

ous on lines” characterization due to Nikodym [MS11, Section 1.1.3]. Let U be an open

set in R
d and 1 ≤ r ≤ ∞. If a function is in W 1,r(U), then, possibly after modifying

the function on a set of measure zero, the restriction to almost every line parallel to

the coordinate directions in R
d is absolutely continuous, therefore almost everywhere

differentiable; furthermore, the classical derivative along the coordinates directions are

in Lr(U). Conversely, if the restriction of a function u to almost every line parallel to the

coordinate directions is absolutely continuous, then the pointwise gradient ∇u exists

almost everywhere, and u belongs to W 1,r(U) provided u and |∇u| are both in Lr(U).

In particular, in this case the weak partial derivatives of u and the pointwise partial

derivatives of u agree almost everywhere.

Classical Sobolev inequality and embedding theorems. We state here the classical

Sobolev inequality as it is presented in [SC02, Theorem 1.5.2] for later reference.

Theorem 1.1.6. Let B be an open ball of Rd. Fix 1 ≤ r < d and let q = rd/(d− r). There

exists a constant C(d, r) such that for all functions u ∈ C∞
0 (B)

‖u‖Ls(B) ≤ C(d, r)|B| 1d+ 1
s
− 1

r ‖∇u‖Lr(B) (1.2)

for all 1 ≤ s ≤ q. When u is a smooth function in B, u ∈ C∞(B), we have instead

‖u− (u)B‖Ls(B) ≤ C(d, r)|B| 1d+ 1
s
− 1

r ‖∇u‖Lr(B) (1.3)

where (u)B := 1
|B|

∫

B
udx is the average of u on the ball B.

Inequality (1.2) can be generalized to any bounded domain U in R
d. The question

if this still remains true for (1.3) is more delicate and requires a subtle analysis on the

regularity of the boundary of U , moreover we cannot expect that the constant does not

depend on the domain.
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Notice that Theorem 1.1.6 holds whenever r < d, what can we say about the size of

smooth functions when r > d? We have the following theorem, for the proof we refer

to [SC02][Theorem 1.4.2].

Theorem 1.1.7. Let U be an open bounded domain in R
d. Take r > d, then there exists a

constant C(d, r) such that for all u ∈ C∞
0 (U)

‖u‖∞ ≤ C(d, r)|U | 1d− 1
r ‖∇u‖Lr(U). (1.4)

It is clear that it is possible to extend by approximation (1.2) and (1.4) for functions

in W 1,r
0 (U). These two results combined allows to state embeddings for Sobolev spaces.

Theorem 1.1.6 tells us that W 1,r
0 (U) is continuously embedded in Ldr/(d−r)(U) whenever

r < d, on the other hand, Theorem 1.1.7 states that W 1,r
0 (U) is continuously embedded

in C0(U) if r > n.

A further refinement is obtained through a theorem due to Morrey which shows

that it is possible to improve the embedding for r > d into the set of Hölder continuous

functions. More precisely, there exits a constant C(d, r) such that for any function

u ∈ W 1,r
0 (U) and any ball BR of radius R > 0

max
U∩BR

u− min
U∩BR

u ≤ C(d, r)Rα‖∇u‖Lr(U),

where α = 1 − d/r. Using the previous results iteratively it is possible to prove the

following embedding theorems.

Theorem 1.1.8. Let U be a bounded domain in R
d then,

(i) if kr < d, the space W k,r
0 (U) is continuously embedded in Lr∗(U) being r∗ = dr/(d−

kr), and compactly embedded in Lq(U) for any q < r∗;

(ii) if 0 ≤ m < k−d/r < m+1, the space W k,r
0 (U) is continuously embedded in Cm,α(U)

being α = k − d/r −m, and compactly embedded in Cm,β(U) for any β < α.

In general W k,r
0 (U) cannot be replaced by W k,r(U) in the theorem above. However,

this replacement is possible when the domain U is regular enough, e.g. if U has a

Lipschitz boundary.

Theorem 1.1.9. Let U be a C0,1 domain in R
d then,

(i) if kr < d, the space W k,r(U) is continuously embedded in Lr∗(U) being r∗ = dr/(d−
kr), and compactly embedded in Lq(U) for any q < r∗;

(ii) if 0 ≤ m < k−d/r < m+1, the space W k,r(U) is continuously embedded in Cm,α(U)

being α = k − d/r −m, and compactly embedded in Cm,β(U) for any β < α.

Remark 1.1.10. For the application we have in mind k = 1 and the set U is just a ball

B ⊂ R
d, which clearly has a smooth boundary.
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1.3 Hölder’s inequality. In order to extend some of the classical inequalities valid for

the flat space to spaces with weighted measure mθ(x) = θ(x)dx, the most effective tool

we exploited is Hölder’s inequality. This inequality can be stated in great generality and

it is an indispensable instrument for the study of Lr-spaces.

Given r ∈ [1,∞], we denote by r∗ = r/(r − 1) the Hölder’s conjugate, namely the

only real number such that
1

r
+

1

r∗
= 1.

The classical Hölder’s inequality states that if u, v : U → R are measurable functions,

then

‖uv‖1,θ ≤ ‖u‖r,θ‖v‖r∗,θ. (1.5)

A slightly more sophisticated version, which is very useful at times, states that if ν ∈
(0, 1) and r, r1, r2 ∈ [1,∞] are such that

1

r
=

ν

r1
+

1− ν

r2
,

then

‖uv‖r,θ ≤ ‖u‖νr1,θ‖v‖1−ν
r2,θ

. (1.6)

For proofs of all these statements we refer to your favorite book in analysis, for example

see [Fol99]. We will apply Hölder’s inequality several times, the next lemma shows a

typical application for us, since it relates the flat space L1
loc(R

d) with the weighted space

Lr(Rd, θ).

Lemma 1.1.11. Let θ−1/(r−1) ∈ L1
loc(R

d). Then, Lr(Rd, θ) ⊂ L1
loc(R

d) and un → u in

Lr(Rd, θ) implies un → u in L1
loc(R

d).

Proof. Take any compact K ⊂ R
d, then the proof is all about Hölder’s inequality

∫

K

|u|dx =

∫

K

|u|θ1/rθ−1/rdx ≤
(
∫

Rd

|u|rθdx
)1/r(∫

K

θ−1/(r−1)dx

)1/r∗

,

and from this it is easy to conclude.

1.2 Symmetric forms

In this section we introduce some notation and we prove a few properties for the sym-

metric form which originates from the formal generator Lu(x) = div(a(x)∇u(x)).

Assumption b.1. Fix d ≥ 2. We are given a symmetric matrix a : Rd → R
d×d and

λ,Λ : Rd → [0,∞] such that λ−1,Λ ∈ L1
loc(R

d) and for almost all x ∈ R
d and ξ ∈ R

d

λ(x)|ξ|2 ≤
d

∑

i,j

aij(x)ξjξi ≤ Λ(x)|ξ|2.
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Let θ : Rd → [0,+∞). We can define a symmetric bilinear form E on L2(Rd, θ) by

E(u, v) :=
d

∑

i,j

∫

Rd

aij(x)∂iu(x)∂jv(x) dx, u, v ∈ C∞
0 (Rd). (1.7)

Observe that such a bilinear form is well defined as soon as Λ ∈ L1
loc(R

d) and θ ∈
L1
loc(R

d). Indeed, it suffices to show that for u ∈ C∞
0 (Rd), ‖u‖2,θ and E(u, u) are finite,

and clearly

∫

Rd

|u|2θdx ≤ ‖u‖2∞
∫

suppu

θdx, E(u, u) ≤ ‖∇u‖2∞
∫

suppu

Λdx

are finite being supp u a compact set.

We denote by E1(·, ·) := E(·, ·) + (·, ·)θ, where (·, ·)θ is the scalar product induced by

‖ · ‖2,θ. Then, the space C∞
0 (Rd) is pre-Hilbert with respect to the scalar product E1. The

next proposition shows that (C0(R
d), E1) can be completed to become an Hilbert space.

Proposition 1.2.1. Assume (b.1) and that θ, θ−1 ∈ L1
loc(R

d). Then the symmetric form E
with domain C∞

0 (Rd) is closable, namely if un is a sequence in C∞
0 (Rd) such that E(un −

um, un − um) → 0 as n,m→ ∞ and ‖un‖2,θ → 0, then E(un, un) → 0 as n→ ∞.

Proof. As a first remark notice that θ−1, λ−1 ∈ L1
loc(R

d) gives that λ > 0 and θ > 0 almost

everywhere. The proof is an adaptation of an argument given in [Röc93, Chapter II,

example 3b] where more general conditions are given, and it is divided in two steps.

We first look at the diagonal case, and then we extend the proof to our situation.

First step (λ = Λ). Define

Eλ(u, v) :=
∫

Rd

〈∇u,∇v〉λdx, u, v ∈ C∞
0 (Rd).

Notice that Eλ(un − um, un − um) → 0 as n,m → ∞ implies that ∂iun is a Cauchy se-

quence in the complete space L2(Rd, λ), for all i = 1, . . . , d, in particular there exist

vi ∈ L2(Rd, λ) such that ∂iun → vi in L2(Rd, λ). On the other hand observe that conver-

gence in L2(Rd, λ) or in L2(Rd, θ) implies convergence in L1
loc(R

d) since λ−1 and θ−1 are

locally integrable. Indeed, for any compact K ⊂ R
d we have by Hölder inequality

∫

K

|u|dx ≤
(
∫

K

λ−1dx

)1/2

‖u‖2,λ

and similarly for θ. Next take any test function η ∈ C∞
0 (Rd), by integrating by parts

against η, we have
∫

Rd

η∂iundx = −
∫

Rd

∂iηundx. (1.8)

By the remark above both un → 0 and ∂iun → vi in L1
loc(R

d), therefore we can pass to

the limit in (1.8) and get that for all η ∈ C∞
0 (Rd)

∫

Rd

ηvidx = 0,
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which implies that vi = 0 almost everywhere and in particular that Eλ(un, un) → 0.

Second step (General case). As a consequence of (b.1) we have that Eλ(u, u) ≤ E(u, u)
for all u ∈ C∞

0 (Rd). Therefore, the previous step implies that Eλ(un, un) → 0 as n→ ∞.

In particular there exists a subsequence such that ∇unk
→ 0 almost everywhere. By

Fatou’s lemma

0 ≤ E(un, un) ≤ lim inf
k→∞

d
∑

i,j

∫

Rd

aij∂i(un − unk
)∂j(un − unk

)dx

= lim inf
k→∞

E(un − unk
, un − unk

).

This end the proof since the quantity on the right hand side can be made arbitrarily

small for n large.

Remark 1.2.2. More general conditions for the conclusions of Proposition 1.2.1 to hold

are known in the literature, one is the Hamza condition which can be found for example

in [Röc93]. In the application to diffusion in random environment the local integrability

is readily granted by the moment conditions on the environment.

The importance of Proposition 1.2.1 is that the symmetric form E with domain

C∞
0 (Rd) admits a closed extension in L2(Rd, θ), the smallest closed extension is ob-

tained by taking as domain the limits of the E1-Cauchy sequences.

We denote by F θ the completion of C∞
0 (Rd) in L2(Rd, θ) with respect to E1, when

θ ≡ 1 we will omit it from the notation and simply write F .

Lemma 1.2.3. Let assume (b.1) and that θ, θ−1 ∈ L1
loc(R

d). Then F θ ⊂ W 1,1
loc (R

d), and for

all u ∈ Fθ

E(u, u) =
d

∑

i,j

∫

Rd

aij(x)∂iu(x)∂ju(x) dx.

where the derivatives ∂iu are taken in the weak sense.

Proof. If u ∈ Fθ then by definition there exists a sequence un ∈ C∞
0 (Rd) such that un →

u with respect to E1, in particular un → u in L1
loc(R

d) and there exist vi, i = 1, . . . , d such

that ∂iun → vi in L1
loc(R

d). This shows that for any smooth test function η ∈ C∞
0 (Rd)

∫

Rd

∂iηudx = lim
n→∞

∫

Rd

∂iηundx = − lim
n→∞

∫

Rd

η∂undx = −
∫

Rd

ηvidx,

therefore u is weakly differentiable with weak derivative ∂iu = vi, it follows that F θ ⊂
W 1,1

loc (R
d). For the second part we know that E(un, un) → E(u, u) and we observe that

along a subsequence ∇unk
→ ∇u almost everywhere, hence by Fatou’s lemma

∣

∣

∣

∣

(
∫

Rd

〈a∇u,∇u〉dx
)1/2

− E(un, un)1/2
∣

∣

∣

∣

2

≤ lim inf
k→∞

∫

Rd

〈a(∇un −∇unk
),∇un −∇unk

〉dx

and the right hand side is arbitrarily small for n large. Thus, E(u, u) =
∫

Rd〈a∇u,∇u〉dx,

which is what we wanted to prove.
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We define F θ
loc to be the set of functions which are locally in F θ, namely, u ∈ Fθ

loc if

for all balls B ⊂ R
d there exist u ∈ Fθ such that u ≡ u on B.

In the same way we defined a quadratic form (E ,F θ) on L2(Rd, θ), we can consider

the quadratic form E on C∞
0 (B) where B is a ball of R

d. The same conclusion of

Proposition 1.2.1 holds and we denote by F θ
B the completion of C∞

0 (B) in L2(B, θ) with

respect to E1. Moreover, similarly to the lemma above one can show that F θ
B ⊂ W 1,1

0 (B).

1.3 Sobolev inequalities

In the next three sections we will be interested in controlling Lr-norms of functions

u ∈ F θ by E(u, u). In some sense this is a natural generalization of the theory of

Sobolev spaces where the energy norm
∫

Rd |∇u|2dx is replaced by E(u, u).
To be more precise we aim to extend Sobolev, Poincaré and Nash type inequali-

ties for the symmetric form E . The first and the second provide an effective tool for

deriving local estimates for solutions to elliptic and parabolic degenerate partial differ-

ential equations, while the latter will be used to prove the existence of a kernel for the

semigroup associated to E on L2(Rd,Λ) or L2(Rd).

In this particular section we will state local Sobolev inequalities for the symmetric

form E on the flat space L2(Rd) and on the weighted space L2(Rd,Λ). We shall see that

the constants appearing in the inequalities are strongly dependent on averages of λ and

Λ and in particular on the ball where we focus our analysis.

Assumption b.2. We assume that there exist p, q ∈ [1,∞) with 1/p + 1/q < 2/d such

that λ−1 ∈ Lq
loc(R

d) and Λ ∈ Lp
loc(R

d).

Assumptions (b.1) and (b.2) must be compared with (a.1) and (a.2) in the introduc-

tion. Roughly speaking, (b.1) and (b.2) are the “deterministic” versions of (a.1) and

(a.2) respectively if we think that we are looking at a particular fixed environment.

Lemma 1.3.1. Assume (b.1) and (b.2), then

‖1Bλ−1‖−1
q ‖∇u‖22q/(q+1) ≤ E(u, u) ≤ ‖1BΛ‖p‖∇u‖22p/(p−1). (1.9)

In particular W
1,2p/(p−1)
0 (B) ⊂ FB ⊂ W

1,2q/(q+1)
0 (B) and the embeddings are continuous.

Proof. The proof of the second statement is a direct consequence of (1.9) and on the

fact that L2p/(p−1)(B) ⊂ L2(B) ⊂ L2q/(q+1)(B), with the embeddings being continuous.

We are left with the proof of (1.9). By Hölder’s inequality with exponents q and

q/(q + 1) and by (b.1) we can obtain the left hand side as follows

‖∇u‖22q/(q+1) =
(

∫

B

|∇u|
2q
q+1λ

q
q+1λ−

q
q+1 dx

)
q+1
q

≤ ‖1Bλ−1‖q
∫

B

|∇u|2λdx ≤ ‖1Bλ−1‖q E(u, u),
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on the other hand with Hölder’s inequality with exponents p and p/(p− 1) we get

E(u, u) ≤
∫

B

|∇u|2Λdx ≤ ‖1BΛ‖p‖∇u‖22p/(p−1).

Let B ⊂ R
d be an open bounded set. For a function u : B → R, r ≥ 1 and a weight

θ : B → R we denote

‖u‖r,B :=

(

1

|B|

∫

B

|u(x)|r dx
)

1
r

, ‖u‖r,B,θ :=

(

1

|B|

∫

B

|u(x)|r θ(x)dx
)

1
r

.

In the sequel we shall use the symbol . to say that the inequality ≤ holds up to a

multiplicative positive and finite constant depending only on the dimension d ≥ 2, or

p, q as appearing in Assumption (b.2).

In the next proposition it is enough to assume Λ ∈ L1
loc(R

d) and λ−1 ∈ Lq
loc(R

d).

Proposition 1.3.2 (Local Sobolev inequality). Fix an open ball B ⊂ R
d. Then for all

u ∈ FB

‖u‖2ρ,B . CB
S |B| 2d E(u, u)

|B| , (1.10)

where CB
S := ‖λ−1‖q,B and

ρ :=
2qd

q(d− 2) + d
, (1.11)

is the Sobolev conjugate of 2q/(q + 1).

Proof. We start proving (1.10) for u ∈ C∞
0 (B). Since ρ, as defined in (1.11), is the

Sobolev conjugate of 2q/(q + 1), by the classical Sobolev inequality (Theorem 1.1.6) it

follows that

‖u‖ρ . ‖∇u‖2q/(q+1),

where it is clear that we are integrating over B. By inequality (1.9) we have

‖∇u‖22q/(q+1) ≤ ‖1Bλ−1‖q E(u, u),

which leads to (1.10) for u ∈ C∞
0 (B) after averaging over the ball B. By approximation,

the inequality is easily extended to u ∈ FB. Indeed it suffices to consider a sequence

un ∈ C∞
0 (B) such that un → u almost surely and E(un, un) → E(u, u), and to pass to the

limit with Fatou’s lemma.

Proposition 1.3.3 (Local weighted Sobolev inequality). Fix a ball B ⊂ R
d. Then for all

u ∈ FΛ
B

‖u‖2ρ/p∗,B,Λ . CB,Λ
S |B| 2d E(u, u)

|B| , (1.12)

being CB,Λ
S := ‖λ−1‖q,B‖Λ‖2p

∗/ρ
p,B .

Proof. The proof follows readily from Hölder’s inequality

‖u‖2ρ/p∗,B,Λ ≤ ‖u‖2ρ,B‖Λ‖2p
∗/ρ

p,B

and the previous proposition.
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Remark 1.3.4. From these two Sobolev inequalities, it follows that the domains FB and

FΛ
B coincide for all balls B ⊂ R

d. This can be deduced from (1.10), (1.12) and the fact

that due to (b.2) we have ρ, ρ/p∗ > 2.

Inequalities with cutoffs. Since assumptions (b.1) and (b.2) only assure local integra-

bility of λ−1 and Λ, we will need to work with functions that are locally in F or FΛ and

with cutoff functions. We recall that a function u belongs to F θ
loc, if for all balls B ⊂ R

d

there exists uB ∈ F θ such that u ≡ uB almost surely on B. It follows immediately from

Remark 1.3.4 that FΛ
loc = Floc whenever (b.2) is satisfied.

Let B ⊂ R
d be a ball, a cutoff on B is a function η ∈ C∞

0 (B), such that 0 ≤ η ≤ 1.

for u, v ∈ Fθ
loc we define the bilinear form

Eη(u, v) =
∑

i,j

∫

Rd

aij(x)∂iu(x)∂jv(x)η
2(x) dx. (1.13)

Lemma 1.3.5. Let B ⊂ R
d and consider a cutoff η ∈ C∞

0 (B) as above. Then for all

u ∈ Floc we have that ηu ∈ FB.

Proof. Take u ∈ FΛ
loc = Floc, then there exists ū ∈ FΛ such that u = ū on B with B ⊂ B.

Let {un}N ⊂ C∞
0 (Rd) be such that un → ū with respect to E + (·, ·)Λ. Clearly ηun ∈ FΛ

B

and ηun → ηū = ηu in L2(B,Λ). Moreover

E(ηun − ηum, ηun − ηum)

≤ 2

∫

B

〈a∇(un − um),∇(un − um)〉dx+ 2

∫

B

〈a∇η,∇η〉|un − um|2dx

≤ 2E(un − um, un − um) + 2‖∇η‖2∞
∫

B

|un − um|2Λdx.

Hence ηun is Cauchy in L2(B,Λ) with respect to E + (·, ·)Λ, which implies that ηu ∈ FΛ
B

(and hence ηu ∈ FB by Remark 1.3.4).

The above lemma shows that we can localize functions in Floc using cutoffs. We

remark that if 1/p + 1/q > 2/d we cannot say a priori that given u ∈ F and a cutoff

η ∈ C∞
0 (B) then ηu ∈ FB.

Proposition 1.3.6 (Local Sobolev inequality with cutoff). Fix a ball B ⊂ R
d and a cutoff

function η ∈ C∞
0 (B) as above. Then for all u ∈ Floc

‖ηu‖2ρ,B . CB
S |B| 2d

[Eη(u, u)
|B| + ‖∇η‖2∞‖u‖22,B,Λ

]

, (1.14)

and, for the weighted version

‖ηu‖2ρ/p∗,B,Λ . CB,Λ
S |B| 2d

[Eη(u, u)
|B| + ‖∇η‖2∞‖u‖22,B,Λ

]

. (1.15)

Proof. We prove only (1.14), being (1.15) obtained by it through Hölder’s inequality as

in the proof of Proposition 1.3.3. Take u ∈ Floc, by Lemma 1.3.5 ηu ∈ FB, therefore we

can apply (1.10) and get

‖ηu‖2ρ,B . CB
S |B| 2−d

d E(ηu, ηu).
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To get (1.14) it suffices to compute with the product rule ∇(ηu) = u∇η + η∇u and we

easily estimate

E(ηu, ηu) =
∫

Rd

〈a∇(ηu),∇(ηu)〉dx

≤ 2

∫

Rd

〈a∇u,∇u〉η2dx+ 2

∫

Rd

〈a∇η,∇η〉|u|2dx

≤ 2Eη(u, u) + 2‖∇η‖2∞‖1Bu‖22,Λ.

Concatenating the two inequalities and writing ‖1Bu‖22,Λ = |B| ‖u‖22,B,Λ gives

‖ηu‖2ρ,B . CB
S |B| 2−d

d

[

Eη(u, u) + |B|‖∇η‖2∞‖u‖22,B,Λ

]

.

Collecting |B| in the right hand side ends the proof.

1.4 Nash inequalities

In Chapter 4 we will present more in general the theory of symmetric forms. In par-

ticular we will see in Theorem 4.2.4 and Proposition 4.2.5 that to the symmetric form

(E ,F θ) on L2(Rd, θ) it is associated a strongly continuous symmetric markovian semi-

group {P θ
t : t > 0}. The same remains true for the symmetric form (E ,F θ

B) on L2(B, θ)

and in this case we denote by {PB,θ
t : t > 0} its strongly continuous symmetric marko-

vian semigroup.

The local Nash inequalities follow as an easy corollary of the Sobolev inequalities

(1.10) and (1.12) and provide a machinery to prove that the semigroups mentioned

above admit transition kernels.

Proposition 1.4.1 (Nash inequalities). Let B ⊂ R
d be a ball. Then for all u ∈ FB we

have

‖u‖2+
2
µ

2,B . CB
S |B| 2−d

d E(u, u)‖u‖
2
µ

1,B, (1.16)

where µ :=
(

2
d
− 1

q

)−1

> 0, and

‖u‖2+
2
γ

2,Λ,B . CB,Λ
S |B| 2−d

d E(u, u)‖u‖
2
γ

1,Λ,B, (1.17)

where γ := p−1
p

(

2
d
− 1

p
− 1

q

)−1

> 0.

Proof. We prove only (1.16) being the other completely analogous. By Hölder’s in-

equality

‖u‖2,B ≤ ‖u‖θρ,B‖u‖1−θ
1,B

with θ ∈ (0, 1) and
1

2
= (1− θ) +

θ

ρ
.

Now solve for θ, use (1.10) to estimate ‖u‖ρ,B and the result is obtained.
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Note that the condition 1/p + 1/q < 2/d is important to have µ and γ positive,

in particular γ ≥ d/2, with the equality holding if p = q = ∞. It is well known

[Dav90], [SC02, Theorem 4.4.1] that Nash inequality (1.17) for the Dirichlet form

(E ,FΛ
B) implies the ultracontractivity of the semigroup PB,Λ

t associated to E on L2(B,Λ).

Therefore PB,Λ
t has a density pB,Λ

t (x, y) with respect to Λ(x)dx which satisfies

sup
x,y∈B

pB,Λ
t (x, y) . t−γ

[

CB
S |B| 2d− 1

γ

]γ

, (1.18)

where it is once more worthy to notice that 2/d − 1/γ ≥ 0, with the equality holding

for the non-degenerate situation.

1.5 Poincaré inequalities

Let B ⊂ R
d be a ball. Given a measurable weight θ : B → [0,∞), we denote by

(u)θB :=

∫

B

u θdx
/

∫

B

θdx

the average of u with respect to the measure θ(x)dx. If θ is constant we simply write

(u)B. Moreover, for u ∈ Floc we denote by

EB(u, u) :=
∫

B

〈a∇u,∇u〉 dx,

the restriction of E to B.

Proposition 1.5.1 (Poincaré inequalities). Let B ⊂ R
d be a ball. If u ∈ Floc, then

‖u− (u)B‖22,B . CB
P |B| 2−d

d EB(u, u), (1.19)

being CB
P := ‖λ−1‖d/2,B, and

‖u− (u)ΛB‖22,B,Λ . CB,Λ
P |B| 2−d

d EB(u, u), (1.20)

being CB,Λ
P := ‖Λ‖p̄,B‖λ−1‖q̄,B with p̄, q̄ ∈ [1,∞] such that 1/p̄+ 1/q̄ = 2/d.

Proof. (1.19) follows easily from Hölder’s inequality and the standard Sobolev inequal-

ity (1.3). We now prove (1.20) for u ∈ C∞(B), the final result can be obtained by

approximation. As first remark, notice that

‖u− (u)ΛB‖22,B,Λ = inf
a∈R

‖u− a‖22,B,Λ

≤ ‖Λ‖p̄,B inf
a∈R

‖u− a‖22p̄∗,B ≤ ‖Λ‖p̄,B‖u− (u)B‖22p̄∗,B.

By the classical Sobolev inequality (1.3) and by Hölder’s inequality

‖u− (u)B‖22p̄∗,B . |B| 2d‖∇u‖2β,B ≤ ‖λ−1‖q̄,B|B| 2−d
d EB(u, u),

where β is such that 2p̄∗d/(d+2p̄∗) = β = 2q̄/(q̄+1), which is true whenever 1/p̄+1/q̄ =

2/d. Concatenating the two inequalities leads to the result.
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In order to get mean value inequalities for weak solutions to elliptic or parabolic

PDEs and from that an Harnack inequality, we will need a Poincaré inequality with a

radial cutoff. We consider a cutoff function η : Rd → [0,∞) which is supported in a ball

B = B(x0, R) of radius R > 0 and center x0 ∈ R
d and which is a radial function, namely,

η(x) := Φ(|x− x0|) where Φ is some non-increasing, non-negative càdlàg function non

identically zero on (R/2, R].

Proposition 1.5.2 (Poincaré inequalities with radial cutoff). Let B ⊂ R
d be a ball of

radius R > 0 and center x0 ∈ R
d and let η be a radial cutoff as above. If u ∈ Floc, then

‖u− (u)η
2

B ‖2,B,η2 .MBCB
P |B| 2−d

d Eη(u, u) (1.21)

where MB = Φ(0)/Φ(r/2), and

‖u− (u)Λη
2

B ‖2,B,Λη2 .MB,ΛCB,Λ
P |B| 2−d

d Eη(u, u), (1.22)

where MB,Λ :=MB‖Λ‖1,B/‖Λ‖1,B/2.

Proof. We give the proof only for (1.22) being (1.21) a consequence of it taking Λ ≡ 1.

We want to apply [DM13, Theorem 1]. Accordingly, we define a functional Ψ(u, s) :

L2(Rd,Λ)× (R/2, R] → [0,∞] by the position

Ψ(u, s) = CBs,Λ
P |Bs|

2
d

∫

Bs

a∇u · ∇udx.

for u ∈ FΛ, and Ψ(u, s) = ∞ otherwise, where Bs := B(x0, s).

Such functional satisfies Ψ(u + c, s) = Ψ(u, s) for all c ∈ R and u ∈ L2(Rd,Λ).

Furthermore,

‖u− (u)Bs‖22,Λ . Ψ(u, s)

for every s ∈ (R/2, R] and u ∈ FΛ by the Poincaré inequality (1.20). Using the fact

that CBs,Λ
P . CB,Λ

P , being s ∈ (R/2, R], it follows from Theorem 1 in [DM13] that there

exists M > 0 such that

‖u− (u)Λη
2

B ‖2,η2 .M

∫ R

R/2

Ψ(u, s)ν(ds)

.MCB,Λ
P |B| 2d

∫ R

R/2

∫

B

a∇u · ∇u1Bsdx γ(ds)

=MCB,Λ
P |B| 2d

∫

B

η2a∇u · ∇udx.

Here γ(ds) is a non-zero positive σ-finite Borel measure on (R/2, R] such that

η2(x) =

∫ R

R/2

1Bs(x) ν(ds)

as in [DM13]. According to [DM13, Theorem 1], M is explicitly given by

M :=
‖Λ‖1,BΦ(0)

‖Λ‖1,B/2Φ(1/2)
,

where we recall that η(x) := Φ(|x − x0|) for some non-increasing, non-negative càdlàg

function Φ non identically zero on (R/2, R]. Of course such an inequality is local and

we can extend it for u ∈ Floc.
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2

Elliptic second order linear PDEs

As we have briefly discussed in the introduction, our proof of the quenched invariance

principle for the diffusion formally associated to Lωu(x) = div(aω(x)∇u(x)) is based on

the sublinearity of the correctors. This can be proved since the corrector is constructed

in such a way that for any fixed environment it is a local weak solution of an equation

of the type

Lu(x) = div(a(x)∇f(x)). (2.1)

We use this information to derive a maximal inequality for the correctors, namely

we aim to control the supremum on any ball of any solution by a lower moment on a

slightly bigger ball.

The technique we are going to exploit goes back to Moser [Mos61] who derived an

elliptic Harnack inequality for positive weak solutions to (2.1) in the case of uniformly

elliptic and bounded coefficients. Moser’s method to derive a maximal inequality for

solutions to (2.1) is based on two steps. One wants first to get a Sobolev inequality to

control some Lρ-norm in terms of the Dirichlet form and then control the Dirichlet form

of any solution by a lower moment. This sets up an iteration which leads to control the

supremum of the solution on a ball by a lower norm on a slightly bigger ball. In the

uniform elliptic and bounded case this is rather standard and it is possible to control the

L2d/(d−2)-norm of a solution by its L2-norm through the classical Sobolev inequality. In

our case we are able to control locally on balls the ρ-norm of a solution by its 2p/(p−1)-

norm, with ρ = 2qd/(q(d − 2) + d), for this we rely on the Sobolev inequalities (1.10)

and (1.14). For the Moser iteration we need ρ > 2p/(p − 1) which is equivalent to the

condition 1/p+ 1/q < 2/d.

In contrast with the classical result for uniformly elliptic operators, the constants in

front of the estimates we get are not uniform either in the radius or the center of the

ball in which we focus our analysis since they will depend on averages of λ−q and Λp

in such a ball. Therefore, although the proofs follow very well established arguments,

they are a necessary step to understand and control the constants precisely.



Elliptic second order linear PDEs

2.1 Maximal inequality for Poisson equation

Let f : Rd → R be some function with essentially bounded weak derivatives. We say

that u ∈ Floc is a solution (subsolution or supersolution) of the Poisson equation, if

E(u, φ) = −
∫

Rd

〈a∇f,∇φ〉dx (≤ or ≥) (2.2)

for all φ ∈ C∞
0 (Rd), φ ≥ 0. For a ball B ⊂ R

d, we say that u ∈ Floc is a solution

(subsolution or supersolution) of the Poisson equation in B if (2.2) is satisfied for all

test functions φ ∈ FB, φ ≥ 0. Notice that the weak formulation (2.2) is obtained by

(2.1) integrating by parts against the test function φ.

In order to get a maximal inequality for solutions to (2.2) we will use Moser’s it-

eration scheme. To obtain the iteration step, we shall test (2.2) for φ = u2α−1η2 with

α ≥ 1 and η a cutoff function in B. One technical issue that arises in working with

solutions which are not smooth is that one must be careful in taking powers. Indeed, in

general u2α−1 is not weakly differentiable and therefore it is not clear that φ ∈ FB. In

order to circumvent this problem, we shall consider power-like functions which have a

linear growth after a certain height and then we will let the height go to infinity. The

following Lemma shows that this kind of functions are suitable to be test functions for

(2.2).

Lemma 2.1.1. Let G : (0,∞) → (0,∞) be a Lipschitz function with Lipschitz constant

LG > 0. Assume also that limt↓0G(t) = 0. Take u ∈ F , u ≥ ǫ, for some ǫ > 0 then

G(u) ∈ F .

Proof. The result follows observing that G(u)/LG is a normal contraction of u ∈ F , and

by Lemma 4.1.4.

For the proof of next proposition we follow the argument of [SC02, Lemma 2.2.1],

with obvious modifications due to the degeneracy of the coefficients and the technical

difficulty of dealing with an inhomogeneous equation.

Proposition 2.1.2. Let u ∈ Floc be a subsolution of (2.2) in B. Let η ∈ C∞
0 (B) be a cutoff

function, 0 ≤ η ≤ 1. Then for all α ≥ 1

‖ηu+‖2ααρ,B . α2CB
E |B| 2d

[

‖∇η‖2∞‖u+‖2α2αp∗,B + ‖∇f‖2∞‖u+‖2α−2
2αp∗,B

]

, (2.3)

where CB
E := ‖λ−1‖q,B‖Λ‖p,B.

Proof. We can assume u ∈ F2B since we shall look only inside B and u ∈ Floc. We build

here a function G to be a prototype for a power function. Let G : (0,∞) → (0,∞) be a

piecewise C1 function such that G′(s) is bounded by a constant say C > 0. Assume also

that G has a non-negative, non-decreasing derivative G′(x) and lims↓0G(s) = 0. Define

H(s) ≥ 0 by H ′(s) =
√

G′(s) and lims↓0H(s) = 0. Observe that we have

G(s) ≤ sG′(s), H(s) ≤ sH ′(s).
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Maximal inequality for Poisson equation

Let η be a cutoff in B as in the statement of the theorem. Then, by Lemma 2.1.1 and

Lemma 1.3.5, it follows that

φ = η2(G(u+ + ǫ)−G(ǫ)) ∈ FB.

In particular, φ is a proper test function for the Poisson equation (2.2). In order to

lighten the notation we denote Gǫ(x) := G(x++ǫ)−G(ǫ) and Hǫ(x) := H(x++ǫ)−H(ǫ)

and we further observe that for all

Gǫ(x) ≤ x+G′
ǫ(x), Hǫ(x) ≤ x+H ′

ǫ(x).

Since u is a subsolution to (2.2) in B, we have by definition

E(u, η2Gǫ(u)) ≤ −
∫

Rd

〈a∇f,∇(η2Gǫ(u))〉dx. (2.4)

Consider first the left hand side and observe that

E(u, η2Gǫ(u)) =

∫

Rd

〈a∇u+,∇u+〉G′
ǫ(u)η

2dx+ 2

∫

Rd

〈a∇u,∇η〉Gǫ(u)ηdx.

Since ∇Hǫ(u) = ∇u+H ′
ǫ(u) = ∇u+G′

ǫ(u)
1/2, it follows

∫

Rd

〈a∇u+,∇u+〉G′
ǫ(u)η

2dx = Eη(Hǫ(u), Hǫ(u)),

and moving everything else on the right hand side of (2.4), taking the absolute value,

we have

Eη(Hǫ(u), Hǫ(u)) ≤ 2

∫

Rd

|〈a∇u,∇η〉Gǫ(u)η|dx+
∫

Rd

|〈a∇f,∇(Gǫ(u)η
2)〉|dx. (2.5)

The first term is estimated using Gǫ(u) ≤ u+G′
ǫ(u) and by Cauchy-Schwartz inequality.

(We use also the fact that u+∇u = u+∇u+).

∫

Rd

|〈a∇u,∇η〉Gǫ(u)η|dx ≤
∫

Rd

|〈a∇u+,∇η〉G′
ǫ(u)u

+η|dx

≤Eη(Hǫ(u), Hǫ(u))
1
2‖G′

ǫ(u)(u
+)2‖

1
2
1,Λ‖∇η‖∞.

In view of the chain rule and the triangular inequality, the second term is controlled by

∫

Rd

|〈a∇f,∇u+〉G′
ǫ(u)η

2|dx+ 2

∫

Rd

|〈a∇f,Gǫ(u)η∇η〉|dx,

whose terms can be respectively estimated by

∫

Rd

|〈a∇f,∇u+〉G′
ǫ(u)η

2|dx ≤ ‖∇f‖∞‖1BG′
ǫ(u)‖

1
2
1,ΛEη(Hǫ(u), Hǫ(u))

1
2

and by
∫

Rd

|〈a∇f,∇η〉Gǫ(u)η|dx ≤ ‖∇η‖∞‖∇f‖∞‖Gǫ(u)1B‖1,Λ.
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Putting everything together in (2.5) we end up with the estimate

Eη(Hǫ(u), Hǫ(u)) ≤ 2‖G′
ǫ(u)(u

+)2‖
1
2
1,Λ‖∇η‖∞Eη(Hǫ(u), Hǫ(u))

1
2

+ ‖∇f‖∞‖1BG′
ǫ(u)‖

1
2
1,ΛEη(Hǫ(u), Hǫ(u))

1
2

+ 2‖∇η‖∞‖∇f‖∞‖Gǫ(u)1B‖1,Λ,

which after averaging over B gives, up to a universal constant,

Eη(Hǫ(u), Hǫ(u))

|B| .‖G′
ǫ(u)(u

+)2‖1,B,Λ‖∇η‖2∞ + ‖∇f‖2∞‖G′
ǫ(u)‖1,B,Λ

+ ‖∇η‖∞‖∇f‖∞‖Gǫ(u)‖1,B,Λ. (2.6)

At this point, it is important to observe that Hǫ(u) ∈ F so that we can apply the

Sobolev’s inequality (1.14) with cutoff function η, namely

‖ηHǫ(u)‖2ρ,B . CB
S |B| 2d

[Eη(Hǫ(u), Hǫ(u))

|B| + ‖∇η‖2∞‖Hǫ(u)‖22,B,Λ

]

.

Concatenating (1.14) and (2.6) yields

‖ηHǫ(u)‖2ρ,B . CB
S |B| 2d

[

‖∇η‖2∞‖H ′
ǫ(u)

2u2‖1,B,Λ + ‖∇f‖2∞‖H ′
ǫ(u)

2‖1,B,Λ

+ ‖∇η‖∞‖∇f‖∞‖Gǫ(u)‖1,B,Λ + ‖∇η‖2∞‖Hǫ(u)‖22,B,Λ

]

.

Finally, it is time to fix a H,G as power-like function. Namely, for α ≥ 1 we define

HN(x) :=

{

xα, x ≤ N,

αNα−1x+ (1− α)Nα, x > N,

which corresponds in taking

GN(x) =

∫ x

0

H ′
N(s)

2 ds.

The functions GN(x), HN(x) satisfy the properties needed by G,H, moreover HN(x) ↑

Figure 2.1: the function HN and GN with α = 2.
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xα and GN(x) ↑ α2

2α−1
x2α−1 pointwise as N goes to infinity. Therefore, letting N → ∞

and using the monotone convergence theorem, we obtain

‖η(u+ + ǫ)α‖2ρ,B . CB
S |B| 2d

[

(α2 + 1)‖(u+ + ǫ)2α‖1,B,Λ‖∇η‖2∞

+ α2‖∇f‖2∞‖(u+ + ǫ)2α−2‖1,B,Λ +
α2

2α− 1
‖∇η‖∞‖∇f‖∞‖(u+ + ǫ)2α−1‖1,B,Λ

]

.

Taking the limit as ǫ→ 0, using ‖ · ‖1,B,Λ ≤ ‖Λ‖p,B‖ · ‖p∗,B and CB
E = CB

S ‖Λ‖p,B, we get

‖η(u+)α‖2ρ,B . CB
E |B| 2d

[

(α2 + 1)‖(u+)2α‖p∗,B‖∇η‖2∞

+ α2‖∇f‖2∞‖(u+)2α−2‖p∗,B +
α2

2α− 1
‖∇η‖∞‖∇f‖∞‖(u+)2α−1‖p∗,B

]

.

By Jensen’s inequality it holds

‖u+‖(2α−2)p∗,B ≤ ‖u+‖2αp∗,B, ‖u+‖(2α−1)p∗,B ≤ ‖u+‖2αp∗,B.

Therefore, we can rewrite

‖ηu+‖2ααρ,B . CB
E |B| 2d

[

(α2 + 1)‖u+‖2α2αp∗,B‖∇η‖2∞

+ α2‖∇f‖2∞‖u+‖2α−2
2αp∗,B +

α2

2α− 1
‖∇η‖∞‖∇f‖∞‖u+‖2α−1

B,2αp∗,B

]

.

Finally, using α ≥ 1 and absorbing the mixed product into the two squares we obtain

exactly (3.17).

Clearly the same result also holds, with the same constant, for supersolutions with

u+ replaced by u−. It is then clear that we can get the same type of inequality for

solutions to (2.2). This is the content of the next corollary.

Corollary 2.1.3. Let u ∈ Floc be a solution of (2.2) in B. Let η ∈ C∞
0 (B) be a cutoff

function. Then, for all α ≥ 1

‖ηu‖2ααρ,B . α2CB
E |B| 2d

[

‖∇η‖2∞‖u‖2α2αp∗,B + ‖∇f‖2∞‖u‖2α−2
2αp∗,B

]

. (2.7)

Proof. The proof is trivial since u is both a subsolution and a supersolution of (2.2).

Moreover, u = u+ − u− and ‖u+‖r,B ∨ ‖u−‖r,B ≤ ‖u‖r,B.

Theorem 2.1.4. Let d ≥ 2. Fix a point x0 ∈ R
d and R > 0. Denote by B(R) the ball

of center x0 and radius R. Suppose that u is a solution in B(R) of (2.2), and assume

that |∇f | ≤ Cf/R. Then for any p, q ∈ [1,∞) such that 1/p + 1/q < 2/d, there exist

κ := κ(q, p, d) ∈ (1,∞), γ := γ(q, p, d) ∈ (0, 1] and C1 := C1(q, p, d, Cf ) > 0 such that

‖u‖∞,B(σ′R) ≤ C1

(

1 ∨ CB(R)
E

(σ − σ′)2

)κ

‖u‖γρ,B(σR) ∨ ‖u‖ρ,B(σR), (2.8)

for any fixed 1/2 ≤ σ′ < σ ≤ 1.
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Proof. We are going to apply inequality (2.7) iteratively. For fixed 1/2 ≤ σ′ < σ ≤ 1,

and k ∈ N define

σk = σ′ + 2−k+1(σ − σ′).

It is immediate that σk − σk+1 = 2−k+1(σ − σ′) and that σ1 = σ, furthermore σk ↓ σ′.

We have already observed that ρ > 2p∗, where p∗ is the Hölder’s conjugate of p. Set

αk := (ρ/2p∗)k, k ≥ 1, clearly αk > 1 for all k ≥ 1. Finally consider a cutoff ηk
which is constant and equal to one on B(σk+1r) and ηk = 0 on ∂B(σkR), assume that

ηk has a linear decay on B(σkR) \ B(σk+1R), namely choose ηk in such a way that

‖∇ηk‖∞ ≤ 2k/((σ − σ′)R).

Figure 2.2: nested balls B(σkR).

An application of Corollary 2.1.3 and of the relation αkρ = 2αk+1p
∗, yields for a

constant C > 0 which depends only on the dimension, Cf and p, q, and which may

change from line to line,

‖u‖2αk+1p∗,B(σk+1R) ≤
(

C
22kα2

k|B(σkR)|
2
dC

B(σkR)
E

(σ − σ′)2R2

)
1

2αk ‖u‖γk2αkp∗,B(σkR)

≤
(

C
22kα2

kC
B(σkR)
E

(σ − σ′)2

)
1

2αk ‖u‖γk2αkp∗,B(σkR)

where γk = 1 if ‖u‖2αkp∗,B(σkr) ≥ 1 and γk = 1 − 1/αk otherwise. We can iterate the
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inequality above from k = 1 to k = j and get

‖u‖2αj+1p∗,B(σj+1R) ≤
j
∏

k=1

(

C
(ρ/p∗)2kC

B(σR)
E

(σ − σ′)2

)
1

2αk ‖u‖
∏j

k=1 γk
ρ,B(σR) .

Observe that κ := 1
2

∑

1/αk <∞,
∑

k/αk <∞ and that

‖u‖2αjp∗,B(σ′R) ≤
( |B(σkR)|
|B(σ′R)|

)
1

2αjp
∗

‖u‖2αjp∗,B(σjR) ≤ K‖u‖2αjp∗,B(σjR),

for some dimensional constant K and all j ≥ 1. We also remark that C
B(σR)
E . 1∨CB(R)

E .

Hence, taking the limit as j → ∞, gives the inequality

‖u‖B(σ′R),∞ ≤ C1

(

1 ∨ CB(R)
E

(σ − σ′)2

)κ

‖u‖
∏∞

k=1 γk
B(σR),ρ ,

for some finite C1 > 0 which depends only on p, q, Cf and the dimension. Finally, define

γ :=
∞
∏

k=1

(1− 1/αk),

then, 0 < γ ≤ ∏∞
k=1 γk ≤ 1 and the above inequality can be written as

‖u‖∞,B(σ′R) ≤ C1

(

1 ∨ CB(R)
E

(σ − σ′)2

)κ

‖u‖γρ,B(σR) ∨ ‖u‖ρ,B(σR).

which is (2.8).

Since functions u ∈ Floc are in Lρ
loc(R

d) by the Sobolev inequality (1.10), it follows

by Theorem 2.1.4 that subsolutions u ∈ Floc in B of (2.2) are locally bounded in B.

The previous inequality can be improved. This is what the next Corollary is about. For

the proof we follow the argument of [SC02][Theorem 2.2.3].

Corollary 2.1.5. Suppose that u satisfies the assumptions of Theorem 2.1.4. Then, for

all α ∈ (0,∞) and for any 1/2 ≤ σ′ < σ < 1 there exist C2 := C2(q, p, d, Cf ) > 0,

γ′ := γ′(γ, α, ρ) and κ′ := κ′(κ, α, ρ), such that

‖u‖∞,B(σ′R) ≤ C2

(

1 ∨ CB(R)
E

(σ − σ′)2

)κ′

‖u‖γ′

α,B(σR) ∨ ‖u‖α,B(σR). (2.9)

Proof. From inequality (2.8) we get

‖u‖B(σ′R),∞ ≤ C1

(

1 ∨ CB(R)
E

(σ − σ′)2

)κ

‖u‖γρ,B(σR) ∨ ‖u‖ρ,B(σR),

hence, the result follows immediately for α > ρ by means of Jensen’s inequality. For

α ∈ (0, ρ) we use again an iteration argument. Consider σk = σ − 2−k(σ − σ′). By

Hölder’s inequality we get

‖u‖ρ,B(σkR) ≤ ‖u‖θα,B(σkR)‖u‖1−θ
∞,B(σkR)
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with θ = α/ρ. An application of inequality (2.8) gives

‖u‖∞,B(σk−1R) ≤ 22κkJ‖u‖γkθα,B(σR)‖u‖
γk−γkθ
∞,B(σkR), (2.10)

here γk = 1 if ‖u‖ρ,B(σkR) ≥ 1, γk = γ otherwise and

J := C

(

1 ∨ CB(R)
E

(σ − σ′)2

)κ

,

where C is a constant depending on C1 that can be taken greater than one.

Iterating (2.10) from k = 1 up to k = i, via similar computations as in the proof of

Theorem 2.1.4, we get

‖u‖∞,B(σ′R) . (J22κ)
∑i

k=1 k(1−θ)k−1
(

‖u‖γθ
∑i

k=1(γ−γθ)k−1

α,B(σR) ∨ ‖u‖θ
∑i

k=1(1−θ)k−1

α,B(σR)

)

‖u‖βi

∞,B(σR)

where βi → 0 as i → ∞. This gives the desired result taking the limit as i → ∞. In

particular we get γ′ = γθ/(1− γ + γθ).

2.2 Comments on the elliptic Harnack inequality

In this section we make few comments on the elliptic Harnack inequality. We look at

positive weak solutions u of the equation

div(a(x)∇u(x)) = 0, (2.11)

on the euclidean ball B ⊂ R
d.

The classical elliptic Harnack inequality states that if the matrix a(x) is symmetric,

uniformly elliptic and bounded, then for all positive weak solutions to (2.11) there

exists a constant CEH which depends only on the ellipticity constant and the dimension

such that

sup
B/2

u ≤ CEH inf
B/2

u. (2.12)

We stress that CEH does not depend on the ball B. The Harnack inequality (2.12) has

the remarkable consequence to imply Hölder continuity for positive weak solutions to

(2.11), that is, there exist CHC > 0 and α > 0, which depend only on the ellipticity

constant and the dimension, such that

sup
x,y∈B/2

|u(x)− u(y)|
|x− y|α ≤ CHCR

−α‖u‖∞,B

where R is the radius of the ball B.

Following the strategy illustrated in [SC02, Chapter 2], it is possible to prove an

elliptic Harnack inequality for positive weak solutions to (2.11) also in the case in

which x 7→ a(x) satisfies only (b.1) and (b.2). However, the Harnack inequality so

obtained would be not of much use to prove Hölder regularity of solutions. Indeed it

would have the form

sup
B/2

u ≤ CB
EH inf

B/2
u.
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and the constant CB
EH would depend on averages of λ−q and Λp on the ball B, in

particular in general it won’t be uniform in the choice of B. This makes it impossible

to use it to control the oscillations for small balls, unless further assumptions are given

on λ and Λ.
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Parabolic second order linear PDEs

3.1 Caloric Functions

For this section we will follow [BGK12]. Let θ : Rd → R be a non-negative function

such that θ−1, θ are locally integrable on R
d. Consider again the symmetric form E on

L2(Rd, θ) with domain F θ introduced in Section 1.2,

E(u, v) :=
∑

i,j

∫

Rd

aij(x)∂iu(x)∂jv(x) dx. (3.1)

We recall that F θ is the completion of C∞
0 (Rd) in L2(Rd, θ) with respect to E1 := E +

(·, ·)θ. Given an open subset G of Rd we will denote by F θ
G the completion of C∞

0 (G) in

L2(G, θ) with respect to E1.

Definition 3.1.1 (Caloric functions). Let I ⊂ R and G ⊂ R
d an open set. We say that a

function u : I → F θ is a subcaloric (supercaloric) function in I × G if t → (u(t, ·), φ)θ is

differentiable in t ∈ I for any φ ∈ L2(G, θ) and

d

dt
(u, φ)θ + E(u, φ) ≤ 0, (≥) (3.2)

for all non-negative φ ∈ Fθ
G. We say that a function u : I → Fθ is a caloric function in

I ×G if it is both sub- and supercaloric.

It is clear from the definition that if a function is subcaloric on I × G than it is

subcaloric on I ′ ×G′ whenever I ′ ⊂ I and G′ ⊂ G.

Moreover, observe that if PG
t is the semigroup associated to (E ,F θ) on L2(G, θ)

and f ∈ L2(G, θ), for a given open set G ⊂ R
d, then the function u(t, ·) = PG

t f(·)
is a caloric function on (0,∞) × G. To complete the picture we state the following

maximum principle which appeared in [GHL09]. For a real number x ∈ R we denote

by x+ = x ∨ 0.

Lemma 3.1.2. Fix T ∈ (0,∞], a set G ⊂ R
d and let u : (0, T ) → Fθ

G be a subcaloric

function in (0, T ) × G which satisfies the boundary condition u+(t, ·) ∈ F θ
G, ∀t ∈ (0, T )

and u+(t, ·) → 0 in L2(G, θ) as t→ 0. Then u ≤ 0 on (0, T )×G.
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As a corollary of this lemma we have the super-mean value inequality for subcaloric

functions.

Corollary 3.1.3. Fix T ∈ (0,∞], an open set G ⊂ R
d and f ∈ L2(G, θ) non-negative. Let

u : (0, T ) → Fθ
G be a non-negative subcaloric function on (0, T )×G such that u(t, ·) → f

in L2(G, θ) as t→ 0. Then for any t ∈ (0, T )

u(t, ·) ≥ PG
t f, in G.

In particular for 0 < s < t < T

u(t, ·) ≥ PG
t−su(s, ·), in G.

In order to prove maximal inequalities for sub- and supercaloric functions with

parabolic partial we shall need the following technical lemma.

Lemma 3.1.4. Let F : R → R be a twice differentiable function with bounded second

derivative and positive first derivative. Assume that F ′(0) = 0. Then for any caloric

(subcaloric, supercaloric) function u we have

d

dt
(F (ut), φ)θ + E(ut, F ′(ut)φ) = 0, (≤, ≥)

for all φ ∈ C∞
0 (Rd), φ > 0 and t > 0.

Proof. Let us prove the lemma when u is a caloric function, the proof for sub- and

supercaloric functions is analogous. By Lemma 2.1.1 F ′(ut) ∈ F θ since F ′′ is bounded

and F ′(0) = 0. Therefore,

d

dt
(F (ut), φ)Λ = lim

h↓0

1

h
(F (ut+h)− F (ut), φ)θ

= lim
h↓0

[

1

h
(F ′(ut)(ut+h − ut), φ)Λ +

1

h
(R(ut+h − ut), φ)θ

]

,

where |R(x)| ≤ ‖F ′′‖∞|x|2 is the remainder in the Taylor’s expansion around zero. The

first summand converges to −E(ut, F ′(ut)φ) since ut solves (3.2) and F ′(ut)φ ∈ F θ is

non-negative. It remains to show that the second summand goes to zero. For that

notice that

1

h
|(R(ut+h − ut), φ)θ| ≤ h‖φ‖∞‖F ′′‖∞‖(ut+h − ut)h

−1‖22,θ → 0

as h→ 0.

3.2 An abstract lemma

Similarly to the derivation of the maximal inequality for the Poisson equation, with

Moser’s iteration technique we are able to bound the L∞-norm of a caloric function

u by its Lα-norm for some finite α > 0, on a slightly larger parabolic ball. Since the
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same holds for u−1, what is left to obtain a parabolic Harnack inequality is to link the

Lα-norm of u and the Lα-norm of u−1. In the uniformly elliptic case this is achieved by

means of the exponential integrability of BMO functions, hence with John-Niremberg

inequality. In the present work we exploit an abstract lemma due to Bombieri and

Giusti (See Lemma 3.2.1 below) for which application, besides the maximal inequality

for u and u−1, we will need the weighted Poincaré inequalities established in Section

1.5.

Lemma 3.2.1 (Bombieri-Giusti [BG72]). Consider a collection of measurable subsets Uσ,

0 < σ ≤ 1, of a fixed measure space (X ,M) endowed with a measure γ, such that Uσ′ ⊂ Uσ

whenever σ′ < σ. Fix δ ∈ (0, 1). Let κ and K1, K2 be positive constants and 0 < α0 ≤ ∞.

Let u be a positive measurable function on U := U1 which satisfies

(
∫

Uσ′

|u|α0 dγ

)
1
α0 ≤

(

K1(σ − σ′)−κγ(U)−1
)

1
α
− 1

α0

(
∫

Uσ

|u|α dγ
)

1
α

(3.3)

for all σ, σ′ and α such that 0 < δ ≤ σ′ < σ ≤ 1 and 0 < α ≤ min{1, α0/2}. Assume

further that u satisfies

γ(log u > ℓ) ≤ K2 γ(U)ℓ
−1 (3.4)

for all ℓ > 0. Then
(
∫

Uδ

|u|α0 dγ

)
1
α0 ≤ CBG γ(U)

1
α0 ,

where CBG depends only on δ, κ, a lower bound on α0 and increasingly on K1, K2.

Proof. The proof of Bombieri-Giusti’s lemma can be found in [SC02, Lemma 2.2.6].

The rest of the chapter will be devoted to establish the mean value inequalities (3.3)

and (3.4) for u and u−1 with Uσ = (s− σR2, s)×B(x, σR) for some fixed parabolic ball

(s−R2, s)×B(x,R) ⊂ R
d, we will follow the rather classical argument given in [SC02,

Chapter 5]. These inequalities together with Lemma 3.2.1 will give the parabolic Har-

nack inequality.

3.3 Mean value inequalities for subcaloric functions

We will look at the equation (3.2) for θ = Λ. This corresponds to the formal parabolic

equation

∂tu(t, x)−
1

Λ(x)
div(a(x)∇u(t, x)) = 0.

We recall here the assumptions (b.1) and (b.2) which we made on x 7→ a(x). We will

assume them throughout the chapter without any further comment.

Assumption b.1. Fix d ≥ 2. We are given a symmetric matrix a : Rd → R
d×d and

λ,Λ : Rd → [0,∞] such that λ−1,Λ ∈ L1
loc(R

d) and for almost all x ∈ R
d and ξ ∈ R

d

λ(x)|ξ|2 ≤
d

∑

i,j

aij(x)ξjξi ≤ Λ(x)|ξ|2.

45



Parabolic second order linear PDEs

Assumption b.2. We assume that there exist p, q ∈ [1,∞) with 1/p + 1/q < 2/d such

that λ−1 ∈ Lq
loc(R

d) and Λ ∈ Lp
loc(R

d).

Remark 3.3.1. All the estimates which we will derive in this chapter can possibly be

obtained also for general θ, following the same strategy, provided that

θ ∈ Lr
loc(R

d), λ−1 ∈ Lq
loc(R

d), θ
1
p
−1Λ ∈ Lp

loc(R
d)

where p, q, r ∈ (1,∞] are such that

1

r
+

1

q
+

1

p− 1

r − 1

r
<

2

d
.

To avoid the same type of technical problems that we faced in Chapter 2, we shall

assume that our positive subcaloric functions u are locally bounded. It turns out that

any positive subcaloric function is locally bounded; this can be proved repeating the

argument below with the same type of technicalities appearing in Proposition 2.1.2.

Proposition 3.3.2. Consider I = (t1, t2) ⊂ R and a ball B ⊂ R
d. Let u be a locally

bounded positive subcaloric function in Q = I × B. Take cutoffs η ∈ C∞
0 (B), 0 ≤ η ≤ 1

and ζ : R → [0, 1], ζ ≡ 0 on (−∞, t1]. Set ν = 2− 2p∗/ρ. Then for all α ≥ 1

‖ζη2u2α‖νν,I×B,Λ . CB,Λ
S

|B| 2d
|I|1−ν

[

α(‖ζ ′‖∞ + ‖∇η‖2∞)
]ν

‖u2α‖ν1,I×B,Λ. (3.5)

Proof. Since ut > 0 is locally bounded, the power function | · |2α : R → R with α ≥ 1

satisfies the assumptions of Lemma 3.1.4. Thus, for η ∈ C∞
0 (B) as above we have

d

dt
(u2αt , η

2)Λ + 2α E(ut, u2α−1
t η2) ≤ 0, t ∈ I. (3.6)

We can estimate

E(ut, u2α−1
t η2) = 2

∫

Rd

ηu2α−1
t 〈a∇ut,∇η〉 dx+ (2α− 1)

∫

Rd

η2u2α−2
t 〈a∇ut,∇ut〉 dx

≥ 2α− 1

α2
Eη(uαt , uαt )−

2‖∇η‖∞
α

Eη(uαt , uαt )1/2‖1Bu2αt ‖1/21,Λ,

by means of Young’s inequality 2ab ≤ (ǫa2 + b2/ǫ), choosing a = Eη(uαt , uαt )1/2, b =

‖∇η‖∞‖1Bu2αt ‖1/21,Λ and ǫ = 1/2α and exploiting that α ≥ 1, we get

E(ut, u2α−1
t η2) ≥ (1/2α)Eη(uαt , uαt )− 2‖∇η‖2∞‖1Bu2αt ‖1,Λ.

Plugging the estimate above in (3.6) we deduce

d

dt
‖(uαt η)2‖1,Λ + Eη(uαt , uαt ) ≤ 4α‖∇η‖2∞‖1Bu2αt ‖1,Λ.

We now take a smooth cutoff in time ζ : R → [0, 1], ζ ≡ 0 on (−∞, t1], where we recall

that I = (t1, t2). We multiply the inequality above by ζ and integrate in time. This

yields

ζ(t)‖(uαt η)2‖1,Λ +

∫ t

t1

ζ(s)Eη(uαs , uαs ) ds ≤ 4α
[

‖ζ ′‖∞ + ‖∇η‖2∞
]

∫ t

t1

‖1Bu2αs ‖1,Λ ds,
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after averaging in space and taking the supremum for t ∈ I we obtain

sup
t∈I

ζ(t)‖(ηuαt )2‖1,B,Λ+

∫

I

ζ(s)
Eη(uαs , uαs )

|B| ds . α
[

‖ζ ′‖∞+‖∇η‖2∞
]

∫

I

‖u2αs ‖1,B,Λ ds. (3.7)

We use (3.7) together with (1.15) to get (3.5). Observe that ν = 2−2p∗/ρ is greater

than one, since ρ > 2p∗ by the condition 1/p + 1/q < 2/d. Using Hölder’s inequality

(1.6) and some easy manipulation yields

‖(ηuαs )2‖νν,B,Λ ≤ ‖ηuαs ‖2ρ/p∗,B,Λ‖(ηuαs )2‖ν−1
1,B,Λ.

We can then integrate this inequality against ζ(s)ν over I and obtain

1

|I|

∫

I

ζ(s)ν‖η2u2αs ‖νν,B,Λ ds ≤
(

sup
s∈I

ζ(s)‖(ηuαs )2‖1,B,Λ

)ν−1 1

|I|

∫

I

ζ(s)‖ηuαs ‖2ρ/p∗,B,Λ ds.

(3.8)

In view of the Sobolev inequality (1.15) we have

‖ηuαs ‖2ρ/p∗,B,Λ . CB,Λ
S |B| 2d

[Eη(uαs , uαs )
|B| + ‖∇η‖2∞‖u2αs ‖1,B,Λ

]

,

by (3.7) we can bound each of the two factors on the right hand side of (3.8). We end

up with the following iterative step

‖ζη2u2α‖νν,I×B,Λ . CB,Λ
S

|B| 2d
|I|1−ν

[

α(‖ζ ′‖∞ + ‖∇η‖2∞)
]ν

‖u2α‖ν1,I×B,Λ,

which is what we wanted to prove.

The main idea is to use Moser’s iteration technique on a sequence of parabolic balls;

the iteration step is provided by Proposition 3.3.2 once we choose proper cutoffs η, ζ

and a proper parameter α. Fix a τ > 0, let x ∈ R
d, and R > 0. Consider also a

parameter δ ∈ (0, 1). Then we define the parabolic balls (see Figure 3.1)

Q(τ, x, s, R) = Q = (s− τR2, s)× B(x,R),

Qδ = (s− δτR2, s)× B(x, δR).

Clearly Qδ ⊂ Q for all δ ∈ (0, 1).

Theorem 3.3.3. Fix τ > 0 and let 1/2 ≤ σ′ < σ ≤ 1. Let u be a positive subcaloric

function on Q = Q(τ, x, s, R). Then there exists a positive constant C3 := C3(d, p, q) such

that

sup
Qσ′

u(t, z) ≤ C3(C
B,Λ
S )

1
2ν−2 τ

1
2

[

1 + τ−1

(σ − σ′)2

]
ν

2ν−2

‖u‖2,Qσ ,Λ, (3.9)

where ν = 2− 2p∗/ρ.

Proof. We want to apply (3.5) with a suitable sequence of cutoffs ηk and ζk, k ∈ N. Set

σk = σ′ + 2−k(σ − σ′), δk = 2−k−1(σ − σ′)
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Figure 3.1: orthogonal projections of Q and Qδ.

then σk − σk+1 = δk. Consider a cutoff ηk : Rd → [0, 1], such that supp ηk ⊂ B(x, σkR)

and ηk ≡ 1 on B(x, σk+1R), moreover assume that ‖∇η‖∞ ≤ 2/(Rδk). Take also a cutoff

in time ζ : R → [0, 1], ζk ≡ 1 on Iσk+1
= (s − σk+1τR

2, s), ζk ≡ 0 on (−∞, s − σkτR
2)

and ‖ζ ′‖∞ ≤ 2/(R2τδk). Let αk = νk with ν = 2− 2p∗/ρ as above. Then, an application

of (3.5) and using the fact that αk+1 = ναk yields

‖u‖2αk+1,Qσk+1
,Λ ≤

{

c(d)CB,Λ
S τ ν−1

[αk(1 + τ−1)22k

(σ − σ′)2

]ν
}

1
2αk+1

‖u‖2αk,Qσk
,Λ, (3.10)

where we used the fact that σk/σk+1 < 2, and that σk ∈ [1/2, 1]. This is the starting

point for Moser’s iteration. Iterating inequality (3.10) from k = 0 up to k = j we get at

the price of a constant C3 > 0 which depends on p, q and the dimension

‖u‖2αj ,Qσj ,Λ
≤ C3(C

B,Λ
S )

1
2ν−2 τ

1
2

[

1 + τ−1

(σ − σ′)2

]
ν

2ν−2

‖u‖2,Qσ ,Λ,

where we exploited the fact that
∑∞

k=0 1/αk = ν/(ν−1) and that
∑∞

k=0 k/αk <∞. From

the inequality above we easily get, taking C3 larger if needed,

‖u‖2αj ,Qσ′ ,Λ ≤ C3(C
B,Λ
S )

1
2ν−2 τ

1
2

[

1 + τ−1

(σ − σ′)2

]
ν

2ν−2

‖u‖2,Qσ ,Λ,

and taking the limit as j → ∞ gives the result

sup
Qσ′

u(t, z) ≤ C3(C
B,Λ
S )

1
2ν−2 τ

1
2

[

1 + τ−1

(σ − σ′)2

]
ν

2ν−2

‖u‖2,Qσ ,Λ.

Corollary 3.3.4. Fix τ > 0 and let 1/2 ≤ σ′ < σ ≤ 1. Let u be a positive subcaloric

function in Q = Q(τ, x, s, R). Then there exists a positive constant C4 := C4(q, p, d) which

depends only on the dimension and on p, q such that for all α > 0

sup
Qσ′

u(t, z) ≤ C42
2
α2

ν
ν−1 (CB,Λ

S )
1

αν−α τ
1
α

[

1 + τ−1

(σ − σ′)2

]
ν

αν−α

‖u‖α,Qσ ,Λ. (3.11)
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Proof. To prove (3.11) one can follow the same approach in [SC02][Theorem 2.2.3]

with the only difference that we will consider parabolic balls Qσ instead of balls. Ob-

serve that for α > 2 this is just an application of Jensen’s inequality.

We remark that (3.11) is not good for the application of Bombieri-Giusti’s Lemma

3.2.1 since 2
2
α

ν
ν−1 is exploding as α approaches zero. To get rid of this problem we

develop in the next section the same type of inequalities for supercaloric functions.

3.4 Mean value inequalities for supercaloric functions

Theorem 3.4.1. Fix τ > 0 and let 1/2 ≤ σ′ < σ ≤ 1. Let u be a positive supercaloric

function in Q = Q(τ, x, s, R). Then there exists a positive constant C5 := C5(p, q, d) which

depends only on the dimension and on p, q such that for all α ∈ (0,∞)

sup
Qσ′

u(t, z)−α ≤ C5(C
B,Λ
S )

1
ν−1 τ

[

1 + τ−1

(σ − σ′)2

]
ν

ν−1

‖u−1‖αα,Qσ ,Λ, (3.12)

where ν = 2− 2p∗/ρ.

Proof. We can always assume that u > ǫ by considering the supersolution u+ǫ and then

sending ǫ to zero at the end of the argument. Applying Lemma 3.1.4 with the function

F (x) := −|x|−β and β > 0 we obtain

− d

dt
‖η2u−β

t ‖1,Λ + β E(u−β−1
t η2, ut) ≥ 0,

which after some manipulation gives

− d

dt
‖η2u−β

t ‖1,Λ − 4
β + 1

β
Eη2(u−β/2

t , u
−β/2
t )− 4

∫

Rd

a∇η · ∇(u
−β/2
t )ηu

−β/2
t dx ≥ 0.

By means of Young’s inequality 4ab ≤ 3a2 + 2b2/3 and using the fact that (β + 1)/β > 1

we get after averaging

d

dt
‖η2u−β

t ‖1,B,Λ +
Eη2(u−β/2

t , u
−β/2
t )

|B| . ‖∇η‖2∞‖u−β
t ‖1,B,Λ.

We now integrate against a time cutoff ζ : R → [0, 1] to obtain something similar to

(3.7). Hence the same approach as in Proposition 3.3.2 applies and we deduce

‖ζη2u−β‖νν,I×B,Λ . CB,Λ
S

|B| 2d
|I|1−ν

[

‖ζ ′‖∞ + ‖∇η‖2∞
]ν

‖u−β‖ν1,I×B,Λ.

Moser’s iteration technique with βk = νkα and α > 0 and the same argument of Theo-

rem 3.3.3 will finally yield

sup
Qσ′

u(t, z)−α ≤ C5(C
B,Λ
S )

1
ν−1 τ

[

1 + τ−1

(σ − σ′)2

]
ν

ν−1

‖u−1‖αα,Qσ ,Λ.
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We introduce the following parabolic ball. Given x ∈ R
d, R > 0, τ > 0 and s ∈ R,

δ ∈ (0, 1), we note

Q′
δ = Q′

δ(τ, x, s, R) = (s− τR2, s− (1− δ)τR2)× B(x, δR).

Theorem 3.4.2. Fix τ > 0 and let 1/2 ≤ σ′ < σ ≤ 1. Let u be a positive supercaloric

function on Q = Q(τ, x, s, R). Fix 0 < α0 < ν. Then there exists a positive constant

C6 := C6(q, p, d, α0) which depends only on the dimension, on p, q and on α0 such that for

all 0 < α < α0ν
−1 we have

‖u‖α0,Q′
σ′ ,Λ ≤

{

C6τ(1 + τ−1)
ν

ν−1

[

1 ∨ CB,Λ
S

(σ − σ′)2

]
ν

ν−1

}(1+ν)(1/α−1/α0)

‖u‖α,Q′
σ ,Λ (3.13)

where ν = 2− 2p∗/ρ.

Proof. Assume u is supercaloric on Q = I×B. Applying Lemma 3.1.4 with the function

F (x) := |x|β with β ∈ (0, 1) we get

d

dt
‖η2uβt ‖1,Λ + β E(uβ−1

t η2, ut) ≥ 0

which after some manipulation gives

d

dt
‖η2uβt ‖1,Λ + 4

β − 1

β
Eη(uβ/2t , u

β/2
t ) + 4

∫

Rd

a∇η · ∇(u
β/2
t )ηu

β/2
t dx ≥ 0.

Note that (β − 1) is negative. If we take 0 < β < α0ν
−1 then we have

1− β

β
> 1− β > 1− α0/ν =: ǫ,

this yields after Young’s inequality

− d

dt
‖η2uβt ‖1,Λ + ǫ Eη(uβ/2t , u

β/2
t ) ≤ A‖∇η‖2∞‖1Buβt ‖1,Λ,

where A is a constant possibly depending on q, p, α0 and d which will be changing

throughout the proof. Here we introduce a difference with respect to the previous

proofs, the time cutoff ζ : R → [0, 1], ζ ≡ 0 on (t2,∞], where I = (t1, t2), is zero at the

top of the time interval and not at the bottom. This gives after integrating

ζ(t)‖η2uβt ‖1,Λ +

∫ t2

t

ζ(s)Eη(uβ/2s , uβ/2s ) ds ≤ A
[

‖ζ ′‖∞ + ‖∇η‖2∞
]

∫ t2

t

‖1Buβs‖1,Λ ds,

which has the same flavor of (3.7). Starting from this inequality, and repeating the

argument we used for subcaloric functions, we end up with

‖ζη2uβ‖νν,I×B,Λ ≤ ACB,Λ
S

|B| 2d
|I|1−ν

[

‖ζ ′‖∞ + ‖∇η‖2∞
]ν

‖uβ‖ν1,I×B,Λ. (3.14)

The idea is now to iterate inequality (3.14) with an appropriate choice of exponents,

parabolic balls and cutoffs. We follow closely the argument in [SC02, Theorem 2.2.5].
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Exponents: we define the exponents αi := α0ν
−i and βj = αiν

j−1 for j = 1, . . . , i.

Observe that 0 < βj < α0ν
−1 and thus we are in a setting where (3.14) is applicable.

Parabolic balls: for j = 1, . . . , i we fix σj − σj+1 = 2−j−1(σ − σ′), σ0 = σ and set

Iσj
= (s− τR2, s− (1− σj)τR

2), Q′
σj

= Iσj
× B(x, σjR).

Cutoffs: for j = 1, . . . , i we define the cutoffs ηj : Rd → [0, 1] such that supp ηj ⊂
B(x, σjR), ηj ≡ 1 on B(x, σj+1R) and ‖∇ηj‖∞ ≤ 2/(Rδj), and the cutoffs ζj : R → [0, 1],

ζj ≡ 1 on Iσj+1
, ζj ≡ 0 on (s− (1− σj)τR

2,∞) and ‖ζ ′j‖∞ ≤ 2/(R2τδj).

We are ready to apply (3.14) for j = 1, . . . , i and the choices above.

‖uαiν
j‖1,Q′

σj
,Λ ≤ ACB,Λ

S τ ν−1
[(1 + τ−1)22j

(σ − σ′)2

]ν

‖uαiν
j−1‖ν1,Q′

σj−1
,Λ,

which after an iteration from j = 1 to j = i gives

‖u‖α0

α0,Q′
σi
,Λ ≤ 22

∑i−1
j=0(i−k)νj

{

ACB,Λ
S τ ν−1

[ 1 + τ−1

(σ − σ′)2

]ν
}

∑i−1
j=0 ν

j

‖uαi‖νi1,Q′
σ ,Λ
.

Now observe that

i−1
∑

j=0

(i− j)νj ≤ C(ν)(α0/αi − 1),
i−1
∑

j=0

νj =
νi − 1

ν − 1
=
α0/αi − 1

ν − 1
,

where C(ν) > 0 is a constant which depends on ν but not on i. This yields the following

inequality

‖u‖α0,Q′
σ′ ,Λ ≤

{

Aτ(1 + τ−1)
ν

ν−1

[

1 ∨ CB,Λ
S

(σ − σ′)2

]
ν

ν−1

}1/αi−1/α0

‖u‖αi,Q′
σ ,Λ,

where the constant A depends only on α0, q, p and the dimension d ≥ 2. Replacing

A by A ∨ 1, we can assume it greater than one. Finally, we extend the inequality for

α ∈ (0, α0ν
−1). Let i ≥ 2 be an integer such that αi ≤ α < αi−1, then from the relation

1/αi − 1/α0 ≤ (1 + ν)(1/α− 1/α0) and by means of Jensen’s inequality we deduce

‖u‖α0,Q′
σ′ ,Λ ≤

{

Aτ(1 + τ−1)
ν

ν−1

[

1 ∨ CB,Λ
S

(σ − σ′)2

]
ν

ν−1

}(1+ν)(1/α−1/α0)

‖u‖α,Q′
σ ,Λ,

which is what we wanted to prove.

3.5 Mean value inequalities for the logarithm

In this section we derive mean value inequalities for log u where u is a positive su-

percaloric function on Q = (s − τR2, s) × B(x,R), with τ > 0 fixed. We denote by

mΛ(dx) := Λ(x)dx and by γΛ := dt⊗mΛ.
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Theorem 3.5.1. Fix τ > 0, κ ∈ (0, 1) and δ ∈ [1/2, 1). For any s ∈ R, R > 0 and

any positive supercaloric function u on Q = (s − τR2, s) × B(x,R), there exist a positive

constant C7 := C7(q, p, d, δ) and a constant k := k(u, κ) > 0 such that for all ℓ > 0

γΛ{(t, z) ∈ K+ | log ut < −ℓ− k} ≤ C7m
Λ(B)

[

MB,Λ|B| 2d (CB,Λ
P ∨ τ 2)

]

ℓ−1, (3.15)

and

γΛ{(t, z) ∈ K− | log ut > ℓ− k} ≤ C7m
Λ(B)

[

MB,Λ|B| 2d (CB,Λ
P ∨ τ 2)

]

ℓ−1, (3.16)

where K+ = (s− κτR2, s)× B(x, δR) and K− = (s− τR2, s− κτR2)× B(x, δR).

Proof. The argument of the proof is quite classical and we adopt the strategy presented

in Theorem 5.4.1 of [SC02]. We can always assume ut ≥ ǫ and then send ǫ to zero in our

estimates, since ut + ǫ is still a supercaloric function. We denote as usual B := B(x,R).

By Lemma 3.1.4

d

dt
(η2,− log ut)Λ ≤ E(u−1

t η2, ut) = −Eη(log ut, log ut) + 2

∫

〈a∇η,∇ut〉ηu−1
t dx (3.17)

≤ −Eη(log ut, log ut) + 2Eη(log ut, log ut)1/2‖∇η‖∞‖1B‖1/21,Λ

≤ −1

2
Eη(log ut, log ut) + 2mΛ(B)‖∇η‖2∞,

where in the last inequality we exploited Young’s inequality 2ab ≤ (1/2a2 + 2b2). The

cutoff function η must be on the form used in (1.22), namely a radial cutoff. We take

η(z) := (1− |x− z|/R)+

where x,R are the center and the radius of the ball B as by assumption. We note

wt(z) := − log ut(z), Wt := (wt)
Λη2

B ,

then the weighted Poincaré inequality (1.22) reads

|B|
‖η2Λ‖1

‖wt −Wt‖22,B,Λη2 .MB,ΛCB,Λ
P |B| 2d E(wt, wt)

2‖η2Λ‖1
,

rewriting (3.17) with the above estimate we get

∂tWt +
|B|

‖η2Λ‖1

(

MB,ΛCB,Λ
P |B| 2d

)−1

‖wt −Wt‖22,B,Λη2 . ‖∇η‖2∞
mΛ(B)

‖η2Λ‖1
.

By the fact that (1−δ)2mΛ(B(x, δr)) ≤ ‖η2Λ‖1 ≤ mΛ(B) and ‖∇η‖2∞ . |B|− 2
d , it follows

∂tWt +
(

mΛ(B)MB,ΛCB,Λ
P |B| 2d

)−1
∫

δB

|wt −Wt|2 Λdx ≤ cMB,Λ|B|− 2
d (3.18)

for some constant c > 0 depending only on the dimension and δ. Observe that we fixed

δ ∈ [1/2, 1) to stay away from the boundary ofB. What we have above resembles closely
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what is given in [SC02, Theorem 5.4.1], except for the dependence of the constants on

B. Let us introduce the following auxiliary functions

w̄t := wt − cMB,Λ|B|− 2
d (t− s′), W̄t := Wt − cMB,Λ|B|− 2

d (t− s′),

where s′ = s−κτR2 and c > 0 is the constant appearing in (3.18). We can now rewrite

(3.18) as

∂tW̄t +
(

mΛ(B)MB,ΛCB,Λ
P |B| 2d

)−1
∫

δB

|w̄t − W̄t|2 Λdx ≤ 0. (3.19)

Now set k = k(u, κ) := W̄s′ and define for ℓ > 0 the two sets

D+
t (ℓ) := {z ∈ B(x, δR) | w̄(t, z) > k + ℓ},

D−
t (ℓ) := {z ∈ B(x, δR) | w̄(t, z) < k − ℓ}.

Since ∂tW̄t ≤ 0 we have for t > s′ that w̄t − W̄t > ℓ + k − W̄t ≥ ℓ on D+
t (ℓ). Using this

in (3.19) we obtain

∂tW̄t +
(

mΛ(B)MB,ΛCB,Λ
P |B| 2d

)−1

|ℓ+ k − W̄t|2mΛ(D+
t (ℓ)) ≤ 0, (3.20)

or equivalently

−
(

mΛ(B)MB,ΛCB,Λ
P |B| 2d

)

∂t|ℓ+ k − W̄t|−1 ≥ mΛ(D+
t (ℓ)). (3.21)

Integrating from s′ to s yields, for γΛ = dt⊗mΛ,

γΛ{(t, z) ∈ K+ | w̄(t, z) > k + ℓ} ≤ mΛ(B)
(

MB,ΛCB,Λ
P |B| 2d

)

ℓ−1.

Recall that − log ut = w̄t + cMB,Λ|B|− 2
d (t− s′), therefore

γΛ{(t, z) ∈ K+ | log ut + cMB,Λ|B|− 2
d (t− s′) < −k − ℓ} ≤ mΛ(B)

(

MB,ΛCB,Λ
P |B| 2d

)

ℓ−1.

Finally,

γΛ{(t, z) ∈ K+ | log ut < −k − ℓ}
≤ γΛ{(t, z) ∈ K+ | log ut + cMB,Λ|B|− 2

d (t− s′) < −k − ℓ/2}
+ γΛ{(t, z) ∈ K+ | cMB,Λ|B|− 2

d (t− s′) > ℓ/2}
. mΛ(B)

(

MB,ΛCB,Λ
P |B| 2d

)

ℓ−1 +mΛ(B)
(

τ 2MB,Λ|B| 2d
)

ℓ−1

. mΛ(B)
[

MB,Λ|B| 2d (CB,Λ
P ∨ τ 2)

]

ℓ−1,

where in the second but last step we used Markov’s inequality and the fact that κ < 1.

Working with D−
t (ℓ) and K− and using similar arguments proves the second inequality.
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3.6 Parabolic Harnack inequality

We have all the tools to apply effectively Lemma 3.2.1 to a positive function u which

is caloric in the parabolic ball Q(τ, s, x, R) = (s − τR2, s) × B(x,R). This will finally

provide us the parabolic Harnack inequality. Fix δ ∈ (0, 1) and τ > 0. For x ∈ R
d, s ∈ R

and R > 0 denote

Q− = (s− (3 + δ)τR2/4, s− (3− δ)τR2/4)× B(x, δR), (3.22)

Q′
− = (s− τR2, s− (3− δ)τR2/4)× B(x, δR),

Q+ = (s− (1 + δ)τR2/4, s)× B(x, δR).

Then we have the following.

Theorem 3.6.1. Fix τ > 0 and δ ∈ [1/2, 1). Fix α0 ∈ (0, ν). Let u be any positive caloric

function on Q = (s− τR2, s)× B(x,R). Then we have

‖u‖α0,Q′
−,Λ . C8 inf

Q+

u(t, z), (3.23)

where the constant C8 depends increasingly on CB,Λ
S , CB,Λ

P ,MB,Λ, and on τ, p, q, α0, d, δ.

Proof. For the proof we follow the argument presented in [SC02, Theorem 5.4.2]. Take

k := k(u, κ) corresponding to κ = 1/2 in Theorem 3.5.1. Set v = eku and

U = (s− τR2, s− 1/2τR2)× B(x,R), Uσ = (s− τR2, s− (3− σ)τR2/4)× B(x, σR).

By Theorem 3.4.2 it follows that

‖v‖α0,Uσ′ ,Λ ≤
{

C6τ(1 + τ−1)
ν

ν−1

[

1 ∨ CB,Λ
S

(σ − σ′)2

]
ν

ν−1

}(1+ν)(1/α−1/α0)

‖v‖α,Uσ ,Λ

for all 1/2 ≤ σ′ < σ ≤ 1 and all α ∈ (0, α0ν
−1), in particular notice that α0ν

−1 > α0/2

and that α0/2 < ν/2 < 1 since ν ∈ (1, 2). By Theorem 3.5.1 we have that

γΛ{(t, z) ∈ U | log v > ℓ} ≤ C7 γ
Λ(U)τ−1

[

MB,Λ(CB,Λ
P ∨ τ 2)

]

ℓ−1.

Bombieri-Giusti’s Lemma 3.2.1 is applicable and we deduce

‖eκu‖α0,Q′
−,Λ . CB,Λ

BG

where CB,Λ
BG depends increasingly on CB,Λ

S , CB,Λ
P ,MB,Λ, and on τ, p, q, α0, d.

On the other hand we can now fix

V = (s− 1/2τR2, s)× B(x,R), Vσ = (s− (1 + σ)τR2/4, s)× B(x, σR)

and apply Theorem 3.4.1 to v = e−ku−1 where k is the same constant as above, this

produces

sup
Vσ′

v(t, z) ≤
{

C5(C
B,Λ
S )

1
ν−1 τ

[

1 + τ−1

(σ − σ′)2

]
ν

ν−1
}1/α

‖v‖α,Vσ ,Λ,
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for all α > 0 and 1/2 ≤ σ′ < σ ≤ 1. Since by Theorem 3.5.1 we have

γΛ{(t, z) ∈ V | log v > ℓ} ≤ C7 γ
Λ(V )τ−1

[

MB,Λ(CB,Λ
P ∨ τ 2)

]

ℓ−1,

then Bombieri-Giusti’s lemma is applicable and yields

sup
Q+

e−κu−1 . CB,Λ
BG

for some CB,Λ
BG which we can assume to be the same as before taking the maximum of

the two. Putting the two inequalities together gives the result.

Theorem 3.6.2 (Parabolic Harnack inequality). Fix τ > 0 and δ ∈ [1/2, 1). Let u be any

positive caloric function in Q = (s− τR2, s)× B(x,R). Then we have

sup
Q−

u(t, z) ≤ CB,Λ
PH inf

Q+

u(t, z), (3.24)

where the constant CB,Λ
PH depends increasingly on CB,Λ

S , CB,Λ
P ,MB,Λ, and on τ, p, q, d, δ.

Proof. It follows from the previous theorem for positive supercaloric functions and

Corollary 3.3.4.

In the classical situation of uniformly elliptic and bounded coefficients, or in the

case of Muckenhaupt’s weights, the constant CB,Λ
PH in front of the parabolic Harnack

inequality can be taken uniformly in B. As a result one can prove that any caloric

function is Hölder continuous, both in time and space.

Since we are interested in the diffusive scaling of caloric functions u, for us it will

be enough to control oscillations of u(t/ǫ2, x/ǫ) in the limit as ǫ → 0. This translates in

assuming a good behavior of the constant C
B(x/ǫ,R/ǫ),Λ
PH as ǫ→ 0.

As we know, C
B(x/ǫ,R/ǫ),Λ
PH depends on averages of λ−q and Λp on B(x/ǫ, R/ǫ), there-

fore to get a good control over the constants and make proper use of (3.24) we will

need to assume something like

sup
x∈Rd

lim sup
ǫ→0

1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

Λp(x) + λ−q(x) dx <∞.

This assumption will be made more precise in Chapter 6.
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4

Elements of Dirichlet forms theory

One of the major technical issue we faced in our work is the complete absence of

regularity of the conductivity matrix a. Since the entries x 7→ aij(x) are not supposed

to be either continuous or weakly differentiable, the operator in divergence form

Lu(x) := div(a(x)∇u(x))

is not well defined. In order to overcome this problem and associate a diffusion process

to this “formal” generator we had to take a weak approach, namely, we considered the

bilinear form E obtained by L formally integrating by parts (u,−Lv)L2(Rd)

E(u, v) :=
∫

Rd

〈a∇u,∇v〉 dx, u, v ∈ C∞
0 (Rd). (4.1)

In this chapter we discuss the general theory behind this weak approach, the by now

well known Dirichlet Forms theory, and we will explore the link between Dirichlet forms

and stochastic processes. In particular we consider the bilinear form given in (4.1) and

already introduced in Section 1.2 as our guiding example. For an exhaustive treatment

on Dirichlet Forms we refer to the celebrated book of M. Fukushima, Y. Oshima and M.

Takeda [FOT94].

4.1 Basic Definitions

Dirichlet form theory has seen a wide spread appreciation in both the analytic and

probabilistic community. This success is due to the rich interplay between the theory of

strongly continuous semigroups and stochastic processes. The analytic part goes back

to the seminal work of A. Beurling and J. Deny [BD59], while the more probabilistic

part was initiated by the fundamental work of M. Fukushima [FOT94] and M.L. Silver-

stein [Sil74] combining Dirichlet forms and symmetric Markov processes. The theory

developed by the above mentioned authors dealt with locally compact spaces, and in

this chapter we will be mostly interested in this case. More recently much of the at-

tention has shifted to infinite dimensional spaces with weaker topological assumptions,

see for example [Röc93] for an introduction.



Elements of Dirichlet forms theory

For our purposes it is enough to work with locally compact separable spaces. Let

(X ,B,m) be a σ-finite measure space, where X is a locally compact separable metric

space and m is a positive Radon measure on X such that supp[m] = X . Let L2(X ,m)

consist of the square integrable B-measurable extended real functions on X . It is well

known that L2(X ,m) endowed with the inner product

(u, v)m :=

∫

X
u(x)v(x)m(dx), u, v ∈ L2(X ,m)

is a Hilbert space.

For the application we have in mind, X will mostly be R
d or an open subset of Rd,

m a measure absolutely continuous with respect to the Lebesgue measure on R
d of the

form m(dx) = θ(x) dx and B the usual Borel σ-algebra.

Definition 4.1.1. E is called a symmetric form on L2(X ,m) with domain D if the follow-

ing conditions hold

• E : D ×D → R, where D is a dense linear subspace of L2(X ,m),

• E(u, v) = E(v, u), E(u+ w, v) = E(u, v) + E(w, v), c E(u, v) = E(cu, v), E(u, u) ≥ 0,

for all u, v, w ∈ D and c ∈ R.

One trivial example of symmetric form is the inner product (·, ·)m on L2(X ,m) which

is defined on the whole space L2(X ,m). An other example, and actually the most

important for this thesis, is the symmetric form (cf. Section 1.2) defined by

E(u, v) :=
∫

Rd

〈a∇u,∇v〉 dx, u, v ∈ C∞
0 (Rd)

on L2(Rd, θ) with domain D = C∞
0 (Rd).

Given a symmetric form E with domain D on L2(X ,m), the position Eα(u, v) :=

E(u, v) + α(u, v)m defines a new symmetric form on L2(X ,m) for each α > 0. Observe

that D is a pre-Hilbert space with inner product Eα, moreover Eα and Eβ define equiv-

alent metrics on D for different α, β > 0. If D is complete with respect to this metric,

then (E ,D) is said to be closed. In other words, a symmetric form E is said to be closed

if Cauchy sequences in D with respect to E1 have limiting points in D, that is,

• un ∈ D, E1(un − um, un − um) → 0 as n,m → ∞ implies that there exists u ∈ D
such that E1(un − u, un − u) → 0 as n→ ∞.

Clearly if a symmetric form is closed, then (D, Eα) is a real Hilbert space for all α > 0.

Given two symmetric forms E (1) and E (2), with domains D1 and D2, we say that E (2)

is an extension of E (1) if D1 ⊂ D2 and E (1) ≡ E (2) on D1 × D1. We say that a symmetric

form E is closable if it has a closed extension.

Remark 4.1.2. The bilinear form E on L2(Rd, θ) with domain C∞
0 (Rd) introduced in

Section 1.2, and given above for the reader’s convenience, is closable thanks to Proposition

1.2.1. We denoted by (E ,F θ) its smallest closed extension on L2(Rd, θ).
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So far we didn’t define what is a Dirichlet form, in order to do that we need a

further concept. A symmetric form E on L2(X ,m) with domain D is called a Markovian

symmetric form if for each ǫ > 0 there exists a real function φǫ(t), t ∈ R such that φǫ(t) =

t, for all t ∈ [0, 1], −ǫ ≤ φǫ(t) ≤ 1+ǫ, for all t ∈ R and 0 ≤ φǫ(t
′)−φǫ(t) ≤ t′−t whenever

t < t′ with the property that if u ∈ D, then φǫ(u) ∈ D and E(φǫ(u), φǫ(u)) ≤ E(u, u).

Figure 4.1: graph of t→ φǫ(t).

Proposition 4.1.3. Assume (b.1) and that θ, θ−1 ∈ L1
loc(R

d), then the symmetric form

given by (4.1) with domain C∞
0 (Rd) on L2(Rd, θ) is Markovian on L2(Rd, θ).

Proof. For each ǫ > 0 we have to construct an infinitely differentiable function φǫ which

satisfies the conditions above. If this were possible, clearly for all u ∈ C∞
0 (Rd) we would

have φǫ(u) ∈ C∞
0 (Rd), ∇φǫ(u) = φ′

ǫ(u)∇u and 0 ≤ φ′
ǫ ≤ 1 so that

E(φǫ(u), φǫ(u)) =

∫

Rd

〈a∇φǫ(u),∇φǫ(u)〉dx =

∫

Rd

〈a∇u,∇u〉(φ′
ǫ(u))

2dx ≤ E(u, u).

It remains to construct φǫ. This can be done by mollifying the non-smooth function

ψǫ(t) = ((−ǫ) ∨ t) ∧ (1 + ǫ) with the standard infinitely differentiable mollifier

ηδ(t) :=

{

δ−1 exp(−1/(1− (t/δ)2)), |t| < δ,

0, |t| ≥ δ,

with δ < ǫ.

Lemma 4.1.4. Let (E ,D) be a closed symmetric form on L2(X ,m). E is Markovian if and

only if for all u ∈ D and v normal contraction of u we have v ∈ D and E(v, v) ≤ E(u, u).
Here v is called normal contraction of u if

|v(x)− v(y)| ≤ |u(x)− u(y)|, |v(x)| ≤ |u(y)|, ∀x, y ∈ X .

Proof. The fact that the condition is sufficient follows choosing φǫ(t) = (0 ∨ t) ∧ 1 and

does not depend on the fact that E is closed. The necessity is more involved and we

refer to [Röc93] and [BH91] for a proof in full generality.
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We are ready to give the most important definition of this chapter.

Definition 4.1.5. A Dirichlet form (E ,D) on L2(X ,m) is a closed and Markovian sym-

metric form on L2(X ,m).

Let C0(X ) be the set of compactly supported continuous functions on X . A core of

a symmetric form E is by definition a subset C of D ∩ C0(X ) such that C is dense in D
with respect to E1 and in C0(X ) with respect to the uniform norm.

Definition 4.1.6. A symmetric form (E ,D) on L2(X ,m) is said to be regular if it possesses

a core. A core C is said to be standard if C is a linear subspace of C0(X ) and for any

ǫ > 0 there exists a function φǫ satisfying the condition above such that φǫ(u) ∈ C for all

u ∈ C. By a special standard core we mean a standard core C which is a dense subalgebra

of C0(X ), and such that for any compact set K and relatively compact open set G with

K ⊂ G there is u ∈ C which is non-negative, u = 1 on K and u = 0 on X \G.

For a m-measurable function u the support of the measure u(x)m(dx) will be de-

noted by supp[u]. Clearly, if u ∈ C(X ) then supp[u] is just the closure of of the set of

points x ∈ X where u is not zero.

Definition 4.1.7. We say that a symmetric form E is local if for any u, v ∈ D with disjoint

compact support E(u, v) = 0. E is said to be strongly local if for any u, v ∈ D with compact

support and such that v is constant on a neighborhood of supp[u], then E(u, v) = 0.

Remark 4.1.8. It is clear that the Dirichlet form E on L2(Rd, θ) with domain C0(R
d) and

defined by (4.1) has a special standard core C simply given by C∞
0 (Rd). In particular it is

regular. Moreover, it is immediate to see that it is a strongly local symmetric form as well.

4.2 Dirichlet forms and Markovian semigroups

In this section we want to link closed symmetric forms with the infinitesimal generators,

resolvents and semigroups on L2-spaces. The following definitions are very well known,

we include them for sake of completeness.

Definition 4.2.1. A family of symmetric bounded operators {Tt : t > 0} on L2(X ,m) is

called a semigroup if

(i) (semigroup property) Tt ◦ Ts = Tt+s for all s, t ∈ (0,∞),

(ii) (contraction property) (Ttu, Ttu)m ≤ (u, u)m for all u ∈ L2(X ,m).

The semigroup is said strongly continuous if in addition

(iii) (Ttu− u, Ttu− u)m → 0 as t→ 0 for all u ∈ L2(X ,m).

Definition 4.2.2. A resolvent on L2(X ,m) is a family of symmetric bounded operators

{Gα : α > 0} from L2(X ,m) into itself such that

(i) (resolvent equation) Gα −Gβ + (α− β)GαGβ = 0 for all α, β > 0
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(ii) (contraction property) (αGαu, αGαu)m ≤ (u, u)m for all α > 0 and u ∈ L2(X ,m).

The semigroup is said strongly continuous if in addition

(iii) (αGαu− u, αGαu− u)m → 0 as α → +∞ for all u ∈ L2(X ,m).

Definition 4.2.3. A generator L of a strongly continuous semigroup {Tt : t > 0} on

L2(X ,m) is defined by

Lu := lim
t↓0

Ttu− u

t
,

whenever the limit exists in L2(Rd,m). We denote by D(L) the set of u ∈ L2(X ,m) for

which such limit exists.

What is remarkable, and also well established, is that these three concepts are inti-

mately linked. Indeed, given a strongly continuous semigroup {Tt}t>0 we can associate

to it a strongly continuous resolvent {Gα}α>0 by the Bochner integral

Gαu :=

∫ ∞

0

e−αtTtu dt

and vice versa given {Gα}α>0 one can find back the semigroup by the formula

Ttu = lim
β→∞

e−βt

∞
∑

n=0

(tβ)n

n!
(βGβ)

nu.

Moreover, the generator L of {Tt}t>0 can be also obtained by Lu = αu − G−1
α u with

D(L) = Gα(L
2(X ,m)) and given a non-positive definite self-adjoint operator L on

L2(X ,m) we can associate to it a strongly continuous resolvent with the position Gαu =

(α− L)−1u.

To summarize, there is a one to one correspondence among the family of non-

positive definite self-adjoint operators on L2(X ,m), the family of strongly continuous

semigroups, and the family of strongly continuous resolvents.

One of the most important result in the theory of closed symmetric forms is that

they also fit in this picture.

Theorem 4.2.4. There is a one to one correspondence between the family of closed sym-

metric forms on L2(X ,m) and the family of non-positive definite self-adjoint operators L

on L2(X ,m). The correspondence is determined by

{

D ⊂ D(L)

E(u, v) = (−Lu, v)m, u ∈ D(L), v ∈ D.

Proof. Again, for the proof we refer to [FOT94, Theorem 1.3.1].

More can be said if the closed symmetric form (E ,D) on L2(X ,m) is also Marko-

vian, and therefore a Dirichlet form. A bounded linear operator S on L2(X ,m) is called

Markovian if 0 ≤ Su ≤ 1 m-almost everywhere whenever 0 ≤ u ≤ 1 m-almost every-

where.
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Proposition 4.2.5. Let (E ,D) be a closed symmetric form on L2(X ,m). Let {Tt : t > 0}
and {Gα : α > 0} be the strongly continuous semigroup and the strongly continuous

resolvent on L2(X ,m) which are associated with E as above. Then the followings are

equivalent

(i) E is a Dirichlet form,

(ii) Tt is Markovian for all t > 0,

(iii) αGα is Markovian for all α > 0.

Remark 4.2.6. As a consequence of the above Proposition and Theorem 4.2.4 there is a

one to one correspondence between Dirichlet Forms and Markovian semigroups.

4.3 Closability and smallest closed extension

In this section we show that the markovianity and the local property of a symmetric

form are preserved under the operation of taking the smallest closed extension. Since

this is all classical theory of Dirichlet forms we state the results without proof, the

interested reader can refer to [FOT94, Chapter 3] or [Röc93].

Theorem 4.3.1. Suppose that E is a closable Markovian symmetric form on L2(X ,m).

Then its smallest closed extension E is again Markovian and hence a Dirichlet form.

Theorem 4.3.2. Assume that a closable Markovian symmetric (E ,D) on L2(X ,m) form

satisfies the following conditions (i) and (ii):

(i) D is a dense subalgebra of C0(X ),

(ii) for any compact set K and relatively compact open set G ⊃ K there exists a non

negative function u such that u = 1 on K and u = 0 on X \G.

If E has the local property, then so does its smallest closed extension E . Furthermore, E is

a regular Dirichlet form possessing D as its special standard core.

Remark 4.3.3. It is easy to see that under the assumptions of Theorem 4.3.2 the smallest

closed extension E enjoys the strong local property whenever E does.

As a result of the above theorems and the subsequent remark we can finally com-

plete the information on the symmetric form (E ,F θ) on L2(Rd, θ). Let us condense this

information in the following proposition.

Proposition 4.3.4. Let θ : Rd → [0,+∞) be a measurable function such that θ, θ−1 ∈
L1
loc(R

d) and assume (b.1). Then the symmetric form

E(u, v) :=
∫

Rd

〈a∇u,∇v〉 dx, u, v ∈ C∞
0 (Rd)

on L2(Rd, θ) is closable. Moreover, its smallest closed extension (E ,F θ) on L2(Rd, θ) is a

strong local Dirichlet form possessing C∞
0 (Rd) as its special standard core.

Proof. It follows from Theorem 4.3.1, Theorem 4.3.2 and the various remarks in the

previous sections of this chapter.
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4.4 Symmetric Markov processes

One of the most beautiful and important result in Dirichlet form theory is the link

between stochastic processes and symmetric forms.

A Hunt process is a Markov process which possesses very useful properties such as

the right continuity of sample paths, the quasi-left continuity and the strong Markov

processes. One important feature of Hunt processes is that there is a one to one corre-

spondence between regular Dirichlet forms and equivalent symmetric Hunt processes

(for more on Hunt processes we refer to [FOT94, Appendix A.2]).

Theorem 4.4.1 (Theorem 7.2.2 in [FOT94]). The following conditions are equivalent to

each other for a regular Dirichlet form (E ,D) on L2(X ,m):

(i) E possesses the local property;

(ii) there exists an m-symmetric diffusion process on (X ,B(X )) whose Dirichlet form is

the given one E .

We say that two m-symmetric Hunt processes are equivalent if they possess a com-

mon properly exceptional1 set outside which their transition semigroups coincide.

Next theorem helps us to state a uniqueness result about Hunt processes M which

share the same regular Dirichlet form (E ,D) on L2(X ,m).

Theorem 4.4.2 (Theorem 4.2.8 in [FOT94]). Let M1 and M2 be two m-symmetric Hunt

processes with a common regular Dirichlet form (E ,D) on L2(X ,m). Then M1 and M2

are equivalent.

By the two theorems and under the assumptions of Proposition 4.3.4, it follows that

there exists a θ-symmetric diffusion process associated to (E ,F θ), which is uniquely

identified up to a properly exceptional set. In the next section we show that with

further assumptions on the coefficients we can choose one particular version whose

transition probability kernel is regular.

4.1 Example: minimal diffusion process. In the context of diffusions in random

environment we would like to be able to fix a common starting position for almost all

realizations of the environment, or alternatively to start the process from all possible

positions x ∈ R
d. This is not possible in general for the process associated to (E ,F θ)

defined in Section 1.2 unless we assume stronger conditions on the local behavior of

the coefficients λ and Λ. What we need is that the transition kernel pθt (x, y) of the

diffusion associated to (E ,F θ) is jointly continuous in x, y for all t > 0. Assumption

(b.3) below provides such regularity. We stress that this is not an optimal condition for

local regularity and one may assume as well that λ and Λ are locally (but not globally)

in some Muckenhaupt’s class. More about a possible generalization to the case in which

(b.3) is not satisfied will be discussed in Chapter 7.

1A set N ⊂ X is called properly exceptional for a process (X,Px) if N is Borel, it has Lebesgue

measure zero, and Px(Xt ∈ N or Xt− ∈ N for some t ≥ 0) = 0 for all x ∈ X \ N .
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Assumption b.3. We assume that x 7→ λ−1(x), x 7→ Λ(x) ∈ L∞
loc(R

d).

Recall that the resolvent Gθ,B
α restricted to the ball B ⊂ R

d of a process M
θ :=

(Xθ
t ,P

θ
x, ζ

θ) is defined by

Gθ,B
α u(x) := E

θ
x

[
∫ τB

0

e−αtu(Xθ
t ) dt

]

, u ≥ 0

being τB = inf{t > 0 : Xθ
t /∈ B} the exit time from B. When θ ≡ 1 we will, as usual,

drop it from the notation.

Theorem 4.4.3. Assume (b.1), (b.3), and θ, θ−1 ∈ L∞
loc(R

d). Denote C∞(B) the set of

continuous functions vanishing at the boundary. Then, there exists a unique standard

diffusion process Mθ := (Xθ
t ,P

θ
x, ζ

θ), x ∈ R
d whose resolvent Gθ,B

α restricted to any open

bounded set B satisfies

Gθ,B
α u ∈ C∞(B), u ∈ Ls(B, θ), ∀s > d

and Gθ,B
α C∞(B) is dense in C∞(B).

Proof. For a proof see for example [Ich78], [Kun70], [Tom82], it basically relies on the

classical regularity results of Stampacchia for solutions to elliptic partial differential

equations with uniformly elliptic and bounded coefficients. First one builds diffusion

processes killed when exiting from bounded domains, then the processes so obtained

are “glued” together to originate a diffusion process on the whole R
d which can start

from every point.

From now on we will consider only the process M
θ constructed in Theorem 4.4.3.

Fix a ball B ⊂ R
d and consider the semigroup associated to the process above killed

when exiting from B, that is,

P θ,B
t f(x) := Ex[f(X

θ
t ), t < τB].

By Theorem 4.4.3 and Hille-Yoshida’s Theorem, P θ,B
t C∞(B) ⊂ C∞(B). Such a property

turns out to be very handy to remove all the ambiguities about exceptional sets and to

construct a transition kernel pθ,Bt (x, y) for P θ,B
t which is jointly continuous in x, y. This

is a consequence of the next theorem whose proof is a minor variation of [BBCK09,

Theorem 2.1].

Theorem 4.4.4. Let Tt be the semigroup on L2(X ,m) such that TtC∞(X ) ⊂ C∞(X ).

Assume that

‖Ttu‖∞,m ≤M(t)‖u‖1,m, (4.2)

for all u ∈ L1(X ,m), t > 0 and some lower semicontinuous function M(t) on (0,∞). Then

there exists a positive symmetric kernel kt(x, y) defined on (0,∞)×X × X such that

(i)

Ttu(x) =

∫

X
u(y)kt(x, y)m(dy),

for all x ∈ X , t > 0,
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(ii) for every t, s > 0 and x, y ∈ X

kt+s(x, y) =

∫

X
kt(x, z)ks(z, y)m(dz),

(iii) kt(x, y) ≤M(t) for every t > 0 and x, y ∈ X ,

(iv) for every fixed t > 0, kt(x, y) is jointly continuous in x, y ∈ B.

Proof. The proof is analogous to the one presented in [BBCK09, Theorem 2.1]. One

uses TtC∞(X ) ⊂ C∞(X ) to remove all the ambiguities due to properly exceptional sets.

Let {uk : k ∈ N} ⊂ C0(X ) be dense both in L1(X ,m) and in L2(X ,m). The inequality

(4.2) yields

sup
x∈X

|Ttuk − Ttuh| ≤M(t)‖uk − uh‖1,m,

since C0(X ) is dense in L1(X ,m) it follows that Ttu is continuous for all u ∈ L1(X ,m)

and that

|Ttu(x)| ≤M(t)‖u‖1,m
for all x ∈ X and t > 0. Therefore, for all t > 0 and all x ∈ X there is an integrable

kernel y → ht(x, y) defined m-almost surely on X such that

Ttu(x) =

∫

X
ht(x, y)u(y)m(dy), ∀u ∈ L1(X ,m), (4.3)

and ht(x, y) ≤M(t), for m-almost all y ∈ X .

From the semigroup property TtTs = Tt+s it follows that

ht+s(x, y) =

∫

X
ht(x, z)hs(z, y)m(dy)

for all x ∈ X , all t, s > 0 and for m-almost all y ∈ X . By the symmetry of Tt we get that

for all t > 0

ht(x, y) = ht(y, x),

for m-almost all x, y ∈ X . Now we construct a kernel kt(x, y) which is defined for all

x, y ∈ X . For all t > 0 and x, y ∈ X , we define for any s < t/3

kt(x, y) :=

∫

X
hs(x, z)

(

∫

X
ht−2s(z, w)hs(y, w)m(dw)

)

m(dz).

It is clear that the above definition is independent on the choice of s and that kt(x, y) =

kt(y, x) for all x, y ∈ X . By the semigroup property and (4.3) we get for φ ≥ 0

Ttφ(x)

=

∫

X

(
∫

X
hs(x, z)

(

∫

X
ht−2s(z, w)hs(w, y)m(dw)

)

m(dz)

)

φ(y)m(dy)

=

∫

X

(
∫

X
hs(x, z)

(

∫

X
ht−2s(z, w)hs(y, w)m(dw)

)

m(dz)

)

φ(y)m(dy)

=

∫

X
kt(x, y)φ(y)m(dy).
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Thus kt(x, y) coincides with ht(x, y) m-almost surely on X × X , in particular kt(x, y) ≤
M(t) for every t > 0 and x, y ∈ X . One can show that (ii) and (iii) are satisfied

proceeding exactly as in [BBCK09, Theorem 2.1].

We see that if we choose m(dx) = θ(x)dx and we assume (b.1), (b.3) we immedi-

ately get the existence of a transition kernel pθ,Bt (x, y) for the semigroup P θ,B
t , jointly

continuous in x, y ∈ B. Indeed assumption (4.2) is easily satisfied by (b.3). In the next

proposition we prove the existence of a transition kernel pθt (x, y) for the semigroup P θ
t

of Mθ by a localization argument.

Proposition 4.4.5. Assume (b.1), (b.3) and θ, θ−1 ∈ L∞
loc(R

d). Consider the semigroup

P θ
t associated to the minimal diffusion M

θ. Then, there exists a transition kernel pθt (x, y)

defined on (0,∞)× R
d × R

d associated to P θ
t ,

P θ
t f(x) =

∫

Rd

f(y)pθt (x, y)θ(y) dy, ∀x ∈ R
d, t > 0.

Moreover, for all t > 0 and x, y ∈ R
d

pθ,BR
t (x, y) ր pθt (x, y) R → ∞

being the limit increasing in R.

Proof. The proof comes from the the fact that for all balls B ⊂ R
d the semigroup

PB,θ
t satisfies (4.2), which means that P θ

t is locally ultracontractive and from [GT12,

Theorem 2.12].

As a further consequence of assumption (b.3), more precisely from the fact that λ is

locally bounded from below we can prove that Mθ is an irreducible process.

Proposition 4.4.6. Assume (b.3) and assume θ−1, θ ∈ L∞
loc(R

d). Then the process M
θ is

irreducible.

Proof. It follows immediately from [FOT94, Corollary 4.6.4] and the fact that the Brow-

nian motion on R
d is a irreducible process.

In the next theorem we clarify the relation between M and M
θ, namely we show

that they are one the time change of the other.

Theorem 4.4.7 (Time change). Assume (b.3) and assume θ−1, θ ∈ L∞
loc(R

d). Define M̂ =

(X̂t,Px) by

X̂t := Xτt , τt = inf

{

s > 0;

∫ s

0

θ(Xu) du > t

}

.

Let f : Rd → R being any positive and measurable function. Then, P̂tf(x) := Ex[f(Xτt)] =

P θ
t f(x) for almost all x ∈ R

d, t > 0.

Proof. According to Theorem 6.2.1 of [FOT94], P̂tf(x) = P θ
t f(x) coincide for almost

all x ∈ R
d and t > 0.
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There is a natural time change θ : Rd → R≥0 which makes the process M
θ conser-

vative. Namely we pick θ ≡ Λ. The condition we give will be suitable in the setting of

ergodic environment.

Proposition 4.4.8. Assume that

lim sup
R→∞

1

|B(0, R)|

∫

B(0,R)

Λ(x) dx <∞.

Then the process MΛ is conservative.

Proof. The proof is an application of Theorem 5.7.3 in [FOT94], with (in the notation

of that theorem) ρ(x) = |x| and m(dx) = Λ(x) dx. Observe that from [FOT94, Chapter

3]

ν〈ρ〉
2 = 2

∑

i,j

xixj
|x|2 aij(x)dx,

hence the density of ν〈ρ〉 with respect to m(dx) = Λ(x)dx can be bounded as follows

2
∑

i,j

xixj
|x|2

aij(x)

Λ(x)
≤ 2.

This implies in particular that Mρ(R+r) ≤ 2. According to [FOT94, Theorem 5.7.3]

we have to prove that for all T > 0 and any R > 0

lim inf
r→∞

(
∫

B(0,R+r)

Λdx

)

ℓ

(

r
√

Mρ(R + r)T

)

= 0, (4.4)

where ℓ(t) := 1√
2π

∫∞
t
e−x2/2 dx. Next observe that

ℓ

(

r
√

Mρ(R + r)T

)

=
1√
2π

∫ ∞

r√
Mρ(R+r)T

e−x2/2 dx ≤ 1√
2π

∫ ∞

r√
2T

e−x2/2 dx ≤
√
T√
πr
e−

r2

4T .

Clearly, using the assumption, (4.4) is satisfied, and accordingly the proposition is true.

If the generator L = div(a(x)∇·) were well defined and associated to a stochastic

process Xt, then u(Xt) would be a martingale for all functions u such that Lu = 0,

as can be seen by a direct application of Itô’s formula. Functions u such that Lu = 0

are called L-harmonic. In the case where not enough regularity on the coefficients is

given, the weaker approach of Dirichlet forms provides an analogous characterization.

A function u ∈ Dloc is said to be E-harmonic on X if

E(u, v) = 0, ∀v ∈ C,
2ν〈u〉 is the energy measure of u, defined to be the only positive radon measure such that

∫

Rd

v(x) dν〈u〉(dx) = 2E(uv, v)− E(u2, v), v ∈ C∞
0
(Rd).

69



Elements of Dirichlet forms theory

being C a special standard core for D. Roughly speaking, if a function u is E-harmonic

and Xt is the process associated to (E ,D) on L2(X ,m), then u(Xt) is a martingale. For

a more precise description of the link between E-harmonic functions and martingales

we refer to [FOT94, Chapter 5].

In the sequel, we will use the following theorem due to Fukushima [FNT87, Theo-

rem 3.1].

Theorem 4.4.9. Fix a point x0 ∈ R
d and assume the following conditions for a conserva-

tive process N = (Zt,Px) associated to (E ,F) on L2(Rd) and for a function u : Rd → R.

(i) The transition semigroup Pt of N satisfies Pt1A(x0) = 0 for all t > 0 and A ⊂ R
d

with Cap(A)3 = 0.

(ii) u ∈ Floc, u is continuous and E-harmonic.

(iii) Let ν〈u〉 be the energy measure of u. We assume that ν〈u〉 is absolutely continuous

with respect to the Lebesgue measure ν〈u〉 = fdx and that the density function f

satisfies

Ex0

[
∫ t

0

f(Zs) ds

]

<∞, t > 0.

Then Mt = u(Zt)− u(Z0) is a Px0-square integrable martingale with

〈M〉t =
∫ t

0

f(Zs) ds, t > 0, Px0 -a.s.

Proof. For the proof see [FNT87, Theorem 3.1].

3[FOT94, Chapter 2]
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5

Quenched Central Limit Theorem

5.1 The random environment

By a stationary and ergodic random environment, we mean a probability space (Ω,G, µ)
on which is defined a group of transformations {τx}x∈Rd acting on Ω such that

(i) µ(τxA) = µ(A) for all A ∈ G and any x ∈ R
d;

(ii) if A ∈ G and τxA = A for all x ∈ R
d, then µ(A) ∈ {0, 1};

(iii) the function (x, ω) → τxω is B(Rd)⊗ G-measurable.

The transformations τx : Ω → Ω form a group in the sense that they satisfy τx◦τy = τx+y

for all x, y ∈ R
d and τ0 = idΩ. We will denote by Eµ the expectation with respect to the

probability measure µ.

Given a measurable function u : Ω → R, we call the stationary field associated to u

the function u : Rd × Ω → R defined by u(x;ω) := u(τxω). As a general convention we

denote by bold letters the random variables and by the corresponding normal letter the

random field associated. Moreover, we will often write uω instead of u(·;ω) to shorten

the notation. The measurability in x ∈ R
d of u(x;ω), µ-almost surely, follows from (iii)

above.

The following lemma, despite its simplicity, it is extremely important to relate mo-

ment conditions on the environment to integrability properties of the stationary field.

Lemma 5.1.1. Fix r > 0. Let u ∈ Lr(Ω, µ), then the function x 7→ uω(x) := u(τxω)

belongs to Lr
loc(R

d), for µ-almost all ω ∈ Ω.

Proof. Let K ⊂ R
d be any open bounded domain. Then, by stationarity and Fubini’s

theorem

Eµ[|u|r] =
1

|K|

∫

K

Eµ[|u|r] dx =
1

|K|

∫

K

Eµ[|u(x;ω)|r] dx

=
1

|K| Eµ

[
∫

K

|u(x;ω)|r dx
]

<∞.

It follows that
∫

K
|u(x;ω)|r dx < ∞ µ-almost surely. The µ-null set where this is true

may depend on K, nevertheless, since we can cover Rd by a countable number of balls,

it follows that uω ∈ Lr
loc(R

d) for µ-almost all ω ∈ Ω.
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As a consequence of ergodicity (see (ii)) we have the following theorem, whose

proof can be found in [KLO12, Theorem 11.18].

Theorem 5.1.2. Let φ ∈ L1(Rd), and u ∈ L1(Ω, µ), then

lim
ǫ→0

ǫd
∫

Rd

φ(ǫx)u(τxω) dx = Eµ[u]

∫

Rd

φ dx

in the L1(Ω, µ) sense. If additionally φ is compactly supported and bounded, then the

convergence holds µ-almost surely as well.

Remark 5.1.3. As an immediate consequence of Theorem 5.1.2 we have that for any

u ∈ L1(Ω, µ) and any ball BR ⊂ R
d of radius R

lim
R→∞

1

|BR|

∫

BR

u(τxω) dx = Eµ[u]

in L1(Ω, µ) and µ-almost surely. In words, Theorem 5.1.2 states that given a stationary

and ergodic random field the expected value of the field in a point can be estimated by the

spatial averages around that point.

The random environment (Ω,G, µ) comes naturally with a differential structure by

exploiting the translations {τx}x∈Rd . Next lemma goes in this direction.

Lemma 5.1.4. The group {τx}x∈Rd on Ω defines a group of strongly continuous unitary

operators {Tx}x∈Rd on Lr(Ω, µ) for all r ∈ [1,∞), by the position Txu = u ◦ τx.

Proof. The proof is similar in spirit to what we proved in the previous lemma. By

stationarity Eµ[|Txu|r] = Eµ[|u|r] from which it follows that {Tx}x∈Rd is an unitary group

of operators on Lr(Ω, µ) for all r ≥ 1. Let us now prove the strong continuity. Fix any

ball B ⊂ R
d and for u ∈ L∞(Ω, µ), by stationarity and Fubini’s theorem

Eµ[|Txu− u|r] = 1

|B|

∫

B

Eµ[|Txu− u|r] dz

=
1

|B|

∫

B

Eµ[|u(x+ z, ω)− u(z, ω)|r] dz

= Eµ

[

1

|B|

∫

B

|u(x+ z, ω)− u(z, ω)|r dz
]

.

By continuity of translations in Lr(B, dx) for r ∈ [1,∞) [Fol99, Proposition 8.5], we

have that
∫

B

|u(x+ z, ω)− u(z, ω)|r dz → 0, µ-almost surely.

We can now conclude using dominated convergence, and density of bounded functions

in Lr(Ω, µ).

By Lemma 5.1.4, {Tx}x∈Rd is a group of strongly continuous contraction operators,

their generators correspond to differentiation in the canonical directions ei, i = 1, . . . , d.

Define for i = 1, . . . , d

Diu := lim
h→0

Theiu− u

h
,

whenever the limit exists in L2(Ω, µ). Denote by D(Di) the domain of Di, that is, the

set of functions u ∈ L2(Ω, µ) for which such limit exists.
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Lemma 5.1.5. Let u,v ∈ D(Di), then Eµ[Diu] = 0 and Eµ[vDiu] = −Eµ[uDiv].

Proof. By stationarity, and the fact that convergence in L2(Ω, µ) implies convergence in

mean,

Eµ[Diu] = lim
h→0

Eµ

[

Theiu− u

h

]

= lim
h→0

Eµ[Theiu]− Eµ[u]

h
= 0.

Again, by stationarity

Eµ[vDiu] = lim
h→0

Eµ

[

v
Theiu− u

h

]

= − lim
h→0

Eµ

[

u
T−heiv − v

−h

]

= −Eµ[uDiv].

We introduce now a set of “smooth” bounded functions in
⋂

i D(Di), they have the

property that the stationary random fields associated are smooth in the classical sense.

We define

C∞
b (Ω) :=

{

∫

Rd

u(τxω)φ(x) dx : u ∈ L∞(Ω, µ), φ ∈ C∞
0 (Rd)

}

. (5.1)

Lemma 5.1.6. C∞
b (Ω) is dense in Lr(Ω, µ) for all r ∈ [1,∞) and C∞

b (Ω) ⊂ ⋂D(Di).

Moreover, if v ∈ C∞
b (Ω), then vω(·) := v(τ.ω) ∈ C∞

b (Rd) for µ-almost all ω ∈ Ω and the

following implication holds

v(ω) =

∫

Rd

u(τxω)φ(x)dx⇒ Div(ω) = −
∫

Rd

u(τxω)∂iφ(x)dx. (5.2)

In particular, ∂iv
ω(·) = Div(τ.ω), µ-almost surely.

Proof. It is clear that C∞
b (Ω) ⊂ L∞(Ω, µ). We start proving the density. It suffices to

show that any v ∈ L∞(Ω, µ) can be approximated by functions in C∞
b (Ω) in Lr(Ω, µ) for

r ≥ 1. Take any positive mollifier φ ∈ C∞
0 (Rd), such that

∫

Rd φdx = 1 and ǫ > 0. Define

vǫ(ω) := ǫ−d

∫

Rd

φ(x/ǫ)v(τxω) dx.

By definition vǫ ∈ C∞
b (Ω), furthermore

Eµ[|vǫ − v|r] ≤ Eµ

[
∫

Rd

φ(x)|v(τǫxω)− v(ω)|r dx
]

=

∫

suppφ

φ(x)Eµ[|Tǫxv − v|r] dx

which goes to zero as ǫ→ 0 by the continuity of translations Tǫx and by the dominated

convergence theorem.

The fact that vω(·) := v(τ.ω) ∈ C∞
b (Rd) for µ-almost all ω ∈ Ω is clear since vω(x) =

[u(τ.ω)∗ φ̃](x) is the convolution with the smooth function φ̃(x) = −φ(−x), in particular

Dαvω = u(τ.ω)∗Dαφ̃, where Dα := ∂α1
1 · · · ∂αd

d . We now prove (5.2), for h→ 0, we have

to compute

Eµ

∣

∣

∣

∣

h−1

∫

Rd

[u(τx+heiω)− u(τxω)]φ(x)dx+

∫

Rd

u(τxω)∂iφ(x)dx

∣

∣

∣

∣

2

= Eµ

∣

∣

∣

∣

h−1

∫

Rd

u(τxω)[φ(x− hei)− φ(x) + ∂iφ(x)h]dx

∣

∣

∣

∣

2

≤ |Kφ|Eµ[|u|2]
∫

Rd

∣

∣

∣

φ(x− hei)− φ(x)

h
+ ∂iφ(x)

∣

∣

∣

2

dx→ 0,
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since φ ∈ C∞
0 (Rd). Here Kφ is a compact set large enough to contain suppφ(· − hei) for

all small enough, say h ≤ 1.

5.2 Diffusions in random environment

We want to construct diffusions associated to the formal generator

Lωu(x) = div(a(x, ω)∇u(x)) (5.3)

for µ-almost all ω ∈ Ω. To be more precise we assume that a(x, ω) := a(τxω) where

a : Ω → R
d×d is symmetric and such that there exist Λ and λ G-measurable, positive

and finite, satisfying the following assumptions.

Assumption a.1. For µ-almost all ω ∈ Ω and ξ ∈ R
d

λ(ω)|ξ|2 ≤ 〈a(ω)ξ, ξ〉 ≤ Λ(ω)|ξ|2

Assumption a.2. There exist p, q ∈ [1,∞] satisfying 1/p+ 1/q < 2/d such that

Eµ[λ
−q] <∞, Eµ[Λ

p] <∞,

Assumption a.3. As functions of x, λ−1(τxω),Λ(τxω) ∈ L∞
loc(R

d) for µ-almost all ω ∈ Ω.

Assumption (a.1) and (a.2) imply (b.1) and (b.2) for µ-almost all ω ∈ Ω. Indeed by

translation we can rewrite

λ(x, ω)|ξ|2 ≤ 〈aω(x, ω)ξ, ξ〉 ≤ Λω(x, ω)|ξ|2,

for almost all x ∈ R
d, all ξ ∈ R

d, µ-almost surely. Moreover, by Lemma 5.1.1, Eµ[λ
−q] <

∞, Eµ[Λ
p] <∞ give λ−1(·, ω) ∈ Lq

loc(R
d) and Λ(·, ω) ∈ Lp

loc(R
d) for µ-almost all ω ∈ Ω.

More is known on the behavior of λ−q and Λp. The ergodicity of the environment

and Theorem 5.1.2 entail

lim
R→∞

1

|B(x,R)|

∫

B(x,R)

λ−q(x, ω) dx = Eµ[λ
−q] (5.4)

and

lim
R→∞

1

|B(x,R)|

∫

B(x,R)

Λp(x, ω) dx = Eµ[Λ
p] (5.5)

µ-almost surely and in L1(Ω, µ), which will be crucial in controlling constants in the

estimates derived in Chapter 2 and Chapter 3.

To associate a diffusion to (5.3) we shall exploit Dirichlet form theory. Let us con-

sider the following bilinear form

Eω(u, v) :=
∑

i,j

∫

Rd

aωij(x)∂iu(x)∂jv(x)dx, u, v ∈ C∞
0 (Rd),

74



Diffusions in random environment

Throughout this chapter we will look at two Dirichlet forms determined by Eω above.

One is the Dirichlet form (Eω,Fω) on L2(Rd) where Fω is the completion of C∞
0 (Rd) in

L2(Rd) with respect to Eω
1 . The second is the Dirichlet form (Eω,FΛ,ω) on L2(Rd,Λω)

where FΛ,ω is the completion of C∞
0 (Rd) in L2(Rd,Λω) with respect to Eω

1 .

We have already observed that (a.1), (a.2) and (a.3) imply (b.1), (b.2) and (b.3), for

µ-almost all ω ∈ Ω. Therefore, by Theorem 4.4.3, we have the existence, for µ-almost all

ω ∈ Ω, of two minimal diffusion processes, Mω = (Xω
t ,P

ω
x , ζ

ω) and M
Λ,ω = (XΛ,ω

t ,PΛ,ω
x ),

respectively associated to (Eω,Fω) and (Eω,FΛ,ω). Note that MΛ,ω is conservative µ-a.s.

by Proposition 4.4.8 and (5.5), the fact that also M
ω is conservative will be proved at

the end of next section.

Denote by P ω
t the transition semigroup associated to M

ω and by pωt (x, y) its transi-

tion kernel with respect to dx. Analogously, denote by PΛ,ω
t the transition semigroup

associated to M
Λ,ω and by pΛ,ωt (x, y) its transition kernel with respect to Λω(x)dx.

Lemma 5.2.1 (Translation Property for killed process). Fix a ball B ⊂ R
d. Then for

µ-almost all ω ∈ Ω

pB−z,τzω
t (x− z, y − z) = pB,ω

t (x, y), (5.6)

pΛ,B−z,τzω
t (x− z, y − z) = pΛ,B,ω

t (x, y),

for all t ≥ 0, x, y ∈ B and z ∈ R
d.

Proof. We prove property (5.6) only for the transition kernel pB,ω
t , being the other to-

tally equivalent. It is known in [FOT94, Chapter 1] that the resolvent GB,ω
α is uniquely

determined by the following equation

Eω
α (G

B,ω
α f, v) =

∫

B

f(x)v(x) dx,

for all f ∈ L2(B), v ∈ Fω
B. On the other hand

Eω
α (G

B,ω
α f, v) =

∫

B−z

f(x+ z)v(x+ z) dx

= Eτzω
α

([

GB−z,τzω
α f(·+ z)

]

, v(·+ z)
)

= Eω
α

([

GB−z,τzω
α f(·+ z)

]

(· − z), v
)

,

for all f ∈ L2(B), v ∈ Fω
B. Hence, for µ-almost all ω ∈ Ω

[

GB−zτzω
α f(·+ z)

]

(x− z) = GB,ω
α f(x), a.a x ∈ B, ∀z ∈ R

d.

Moving from the resolvent to the semigroup we get the relation

[PB−z,τzω
t f(·+ z)](x− z) = PB,ω

t f(x),

for all f ∈ C∞(B). The equality is true for all x ∈ B and for all z ∈ R
d by the Feller

property, µ-almost surely. Finally it is easy to derive the equality for the transition

kernel and get

pB−z,τzω
t (x− z, y − z) = pB,ω

t (x, y), (5.7)

for all z ∈ R
d, and almost all x, y ∈ B, µ-almost surely. Using the joint continuity of

pB,ω
t (x, y) in x and y (cf. (iv) Theorem 4.4.4) we get (5.7) for all z ∈ R

d, x, y ∈ B,

µ-almost surely.
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Lemma 5.2.2 (Translation Property). For µ-almost all ω ∈ Ω

pτzωt (x− z, y − z) = pωt (x, y), (5.8)

pΛ,τzωt (x− z, y − z) = pΛ,ωt (x, y),

for all t ≥ 0 and x, y, z ∈ R
d

Proof. It follows from the previous lemma, passing to the limit. Namely, take an in-

creasing sequence of balls Bn ↑ R
d, then we have

pτzωt (x− z, y − z) = lim
n→∞

pBn−z,τzω
t (x− z, y − z)

= lim
n→∞

pBn,ω
t (x, y) = pωt (x, y).

5.3 Environment process

We shall first construct the environment process for M
Λ.ω = (XΛ,ω

t ,PΛ,ω
x ), x ∈ R

d,

since we know that M
Λ.ω is conservative µ-almost surely by Proposition 4.4.8. From

this construction and the ergodic theorem we will prove that also the process M
ω is

conservative µ-almost surely.

For a fixed ω ∈ Ω, we define a stochastic process on Ω by

ψΛ,ω
t (ω̃) := τXΛ,ω

t (ω̃)ω, t ≥ 0

where ω̃ is a point of the sample space of the diffusion M
Λ,ω. The process ψΛ,ω

t under

the measure P
Λ,ω
x is Ω-valued and it is known as the environment process. First, we

describe the semigroup associated to ψΛ,ω
t under P

Λ,ω
0 . Take any positive and bounded

G-measurable function f : Ω → R and observe that

P
Λ
t f(ω) := E

Λ,ω
0 [f(τXΛ,ω

t
ω)] = PΛ,ω

t f(τ.ω)(0) =

∫

Rd

f(τyω)p
Λ,ω
t (0, y)Λ(τyω) dy

Proposition 5.3.1. {PΛ
t }t≥0 is a symmetric strongly continuous semigroup on L2(Ω,Λ),

the process t→ ψΛ,ω
t is ergodic with respect to Λdµ.

Proof. The proof of the contractivity and the symmetry of {PΛ
t }t≥0 on L2(Ω,Λ) follows

from the stationarity of the environment and by (5.8), it is standard and can be found

in [Osa83], [ZKO94]. We want to prove that PΛ
t is strongly continuous on L2(Ω,Λ). We

shall show that for all f ∈ C∞
b (Ω)

lim
t→0

Eµ[|PΛ
t f − f |2Λ] = 0.

Recall that C∞
b (Ω) ⊂ L2(Ω,Λ) densely and that f ∈ C∞

b (Ω) is identified by u ∈ L∞(Ω)

and φ ∈ C∞
0 (Rd) as follows

f(ω) =

∫

Rd

u(τxω)φ(x) dx.
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We first show that

lim
t→0

Eµ[|PΛ
t f − f |Λ] = 0.

This follows from the calculation below,

Eµ[|Ptf − f |Λ]

= Eµ

[

∣

∣

∣

∫

Rd

∫

Rd

u(τx+yω)φ(x)p
Λ,ω
t (0, y)Λ(τyω)dxdy −

∫

Rd

u(τzω)φ(z)dz
∣

∣

∣
Λ(ω)

]

= Eµ

[

∣

∣

∣

∫

Rd

∫

Rd

u(τzω)φ(x)p
Λ,ω
t (0, z − x)Λ(τz−xω)dxdz −

∫

Rd

u(τzω)φ(z)dz
∣

∣

∣
Λ(ω)

]

≤
∫

Rd

Eµ

[
∣

∣

∣

∣

∫

Rd

φ(x)pΛ,ωt (0, z − x)Λ(τz−xω)dx− φ(z)
∣

∣

∣
|u(τzω)|Λ(ω)

]

dz

≤ ‖u‖∞ Eµ

[
∫

Rd

|PΛ,ω
t φ̂(z)− φ̂(z)|Λ(τzω)dz

]

→ 0, as t→ 0,

where φ̂(x) := φ(−x), since PΛ,ω
t is a strongly continuous semigroup on L2(Rd,Λω) and

φ̂ ∈ L2(Rd,Λω). This implies, by Markov’s inequality, that

lim
t→0

Eµ[1|PΛ
t f−f |>δΛ] = 0, ∀δ > 0, f ∈ C∞

b (Ω)

In particular we have

Eµ[|PΛ
t f − f |2Λ] ≤ δ2 Eµ[Λ] + Eµ[|PΛ

t f − f |21|PΛf−f |>δΛ]

≤ δ2 Eµ[Λ] + 2‖f‖2∞ Eµ[1|PΛ
t f−f |>δΛ]

from which the conclusion follows. Since C∞
b (Ω) is dense in L2(Ω,Λ) and P

Λ is a

bounded operator, the proof of strong continuity is over.

The proof of the ergodicity of the process t → ψΛ,ω
t with respect to Λdµ can also be

found in [Osa83] and it is based on the irreducibility of the process XΛ,ω
t , which was

proven in Proposition 4.4.6.

Proposition 5.3.2 (Ergodic Theorem). For all functions u ∈ Lp(Ω,Λ), p ≥ 1, set

u(x, ω) = u(τxω), then

lim
t→∞

1

t

∫ t

0

u(XΛ,ω
s , ω) ds = Eµ[uΛ], P

Λ,ω
x -a.s, a.a. x ∈ R

d

for µ-almost all ω ∈ Ω.

Proof. In order to have the result stated, observe that the measure Qτxω
0 induced by

P
Λ,τxω
0 through ψΛ,τxω

t on the space of Ω-valued trajectories coincide with the measure

Qω
x induced by P

Λ,ω
x through ψΛ,ω

t . It is then easy to show that for any ball B ⊂ R
d the

two measures
∫

Ω

Qω
0 (·)dµ =

1

|B|

∫

B×Ω

Qτxω
0 (·)dxdµ =

1

|B|

∫

Ω×B

Qω
x(·)dµdx

coincide; in the first equality we used the stationarity of the environment. The fact that

the limiting relation hold
∫

Qω
0 (·)dµ-almost surely follows immediately from Proposition

5.3.1, then the result follows.
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We use Proposition 5.3.2 to control the explosion time of M
ω = (Xω

t ,P
ω
x , ζ

ω) in

terms of the time changed process MΛ,ω.

Theorem 5.3.3. Let Mω = (Xω
t ,P

ω
x , ζ

ω), x ∈ R
d, be the minimal diffusion constructed in

section 3.1. Then such a diffusion is conservative for all starting points.

Proof. We consider the time change

τt := inf
{

s > 0 :

∫ s

0

1

Λ(XΛ,ω
u , ω)

du > t
}

,

and define the process Y ω
t = XΛ,ω

τt . We know from Theorem 4.4.7 that Y ω
t is equivalent

to Xω
t , since they possess the same Dirichlet form. It is not difficult to see that the

explosion time of Y ω
t equals

∫∞
0

1

Λ(XΛ,ω
u ,ω)

du [FOT94, see Chapter 6]. By Proposition

5.3.2,

lim
t→∞

1

t

∫ t

0

1

Λ(XΛ,ω
s , ω)

ds = Eµ[Λ
−1Λ] = 1, P

Λ,ω
x -a.s, a.a. x ∈ R

d

for µ-almost all ω ∈ Ω. It follows that Y ω
t is conservative for almost all starting points

x ∈ R
d, µ-almost surely. Denote by P Y,ω the transition semigroup of the process Y ω

t .

By Theorem 4.4.7, P ω
t 1(x) = P Y,ω

t 1(x) = 1 for almost all x ∈ R
d, and since M

ω is our

minimal diffusion, then P ω
t 1(x) = 1 for all x ∈ R

d. We can pass from almost all to

all x ∈ R
d since the minimal diffusion satisfies property (4.2.9) in [FOT94], namely

P ω
t (x, dy) is absolutely continuous with respect to the Lebesgue measure for each t > 0

and each x ∈ R
d (see Theorem 4.5.4 in [FOT94]).

For the rest of the chapter we will completely forget about the time changed process.

Following the construction in this section it is possible to obtain an environment process

for the minimal diffusion M
ω = (Xω

t ,P
ω
x), namely the process t → τXω

t
ω =: ψω

t , with

semigroup Pt given by

Ptf(ω) :=

∫

Rd

f(τyω)p
ω
t (0, y) dy

Proposition 5.3.4. {Pt}t≥0 defines a symmetric strongly continuous semigroup on L2(Ω, µ),

and t→ ψω
t is ergodic with respect to µ.

Proof. Analogous to Proposition 5.3.1.

5.4 Construction of the corrector

4.1 The space L2(a). Fix a stationary and ergodic random medium (Ω,G, µ, {τx}x∈Rd)

as in Section 5.1. In the construction of the corrector we rely only on assumption

(a.1) and Eµ[λ
−1], Eµ[Λ] finite being. We recall that (a.1) requires that there exist

λ,Λ : Ω → [0,∞] such that for almost all ξ ∈ R
d and µ-almost surely

λ(ω)|ξ|2 ≤ 〈a(ω)ξ, ξ〉 ≤ Λ(ω)|ξ|2,

being a a symmetric d-dimensional matrix.
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Remark 5.4.1. From Eµ[λ
−1], Eµ[Λ] finite and (a.1), it easily follows that 0 < λ ≤ Λ <∞

µ-almost surely.

In order to construct the corrector, or more precisely its gradient, we introduce the

following space

L2(a) :=
{

V : Ω → R
d : Eµ[〈aV, V 〉] <∞

}

Such a space is clearly a pre-Hilbert space with the scalar product

Θ(U, V ) := Eµ[〈aU, V 〉].

Since L2(a) is isometric to L2(Ω, µ)d through the map Ψ : L2(Ω, µ)d → L2(a) given by

Ψ(V ) = a−1/2V , it is also complete and accordingly an Hilbert space. Given a real non-

negative random variable θ on Ω we denote by Lr(Ω, θ) the Lr-space with respect to the

measure θdµ.

Lemma 5.4.2. Assume (a.1) and Eµ[λ
−1], Eµ[Λ] <∞, then we have the following contin-

uous embeddings

L∞(Ω, µ)d ⊂ L2(Ω,Λ)d ⊂ L2(a) ⊂ L2(Ω, λ)d ⊂ L1(Ω, µ)d

Proof. Indeed, we have by (a.1)

Eµ[|V |2λ] ≤ Eµ[〈aV, V 〉] ≤ Eµ[|V |2Λ]

and by Hölder inequality

Eµ[|V |]2 ≤ Eµ[λ
−1]Eµ[|V |2λ], Eµ[|V |2Λ] ≤ Eµ[Λ]‖V ‖2∞.

Notice that in the two inequalities above we need Eµ[λ
−1], Eµ[Λ] < ∞. These inequali-

ties together give the continuous embeddings we were looking for.

Remark 5.4.3. It follows immediately by this lemma that constant functions belong to

L2(a). In particular the functions πk : Ω → R
d, πk(ω) ≡ ek, with k = 1, . . . , d are in

L2(a), here ek are the canonical coordinate directions in R
d.

Remark 5.4.4. Observe that it is not true in general that Tx maps L2(Ω, λ) into itself.

4.2 Weyl’s decomposition. For v ∈ C∞
b (Ω) we can define ∇v = (D1v, . . . , Ddv) and

it is clear that ∇v ∈ L2(a), being ∇v ∈ L∞(Ω, µ). We define the space of potential L2
pot

to be the closure of {∇v|v ∈ C∞
b (Ω)} in L2(a). As an immediate consequence of this

definition we have the following lemma.

Lemma 5.4.5. Let U ∈ L2
pot. Then U satisfies the following properties

(i) Eµ[Ui] = 0 for all i = 1, . . . , d.

(ii) for all η ∈ C∞
0 (Rd) and i, j = 1, . . . , d

∫

Rd

Ui(τxω)∂jη(x) dx =

∫

Rd

Uj(τxω)∂iη(x) dx,

for µ-almost all ω ∈ Ω.
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Proof. Let start with (i). For functions of the type ∇u with u ∈ C∞
b (Ω), this follows

immediately by Lemma 5.1.6 and Lemma 5.1.5.

For a general U ∈ L2
pot, we find a sequence of functions un ∈ C∞

b (Ω) such that

∇un → U in L2(a), hence in L1(Ω, µ)d by Lemma 5.4.2. It follows that

Eµ[U ] = lim
n→∞

Eµ[∇un] = 0.

We now prove (ii). Consider again u ∈ C∞
b (Ω). Then x 7→ uω(x) is infinitely many

times differentiable, µ-almost surely by Lemma 5.1.6. Integrating by parts we get
∫

Rd

Diu
ω(x)∂jη(x) dx = −

∫

Rd

uω(x)∂i∂jη(x) dx,

finally switch the partial derivatives and conclude
∫

Rd

Diu
ω(x)∂jη(x) dx =

∫

Rd

Dju
ω(x)∂iη(x) dx.

For a general U ∈ L2
pot take approximations and use the fact that ∇un → U in L2(a)

implies that along a subsequence Diun(·;ω) → Ui(·;ω) in L1
loc(R

d) µ-almost surely.

Since L2(a) is an Hilbert space and L2
pot is by construction a closed subspace, we can

write immediately

L2(a) = L2
pot ⊕ (L2

pot)
⊥.

We want to decompose the bounded functions {πk}dk=1, where πk is the unit vector in

the kth-direction. Since πk ∈ L2(a), for each k = 1, . . . , d, there exist functions Ξk ∈ L2
pot

and Rk ∈ (L2
pot)

⊥ such that πk = Ξk + Rk. By definition of orthogonal projection we

have

Eµ[〈aΞk, V 〉] = Eµ[〈aπk, V 〉], ∀V ∈ L2
pot

Remark 5.4.6. By the fact that {∇v : v ∈ C∞
b (Ω)} is dense in L2

pot and by definition of

orthogonal projection, it follows in particular that

Eµ[〈a(Ξk − πk),Ξ
k − πk〉] = inf

v∈C∞
b (Ω)

Eµ[〈a(∇v − πk),∇v − πk〉].

Proposition 5.4.7. Set dij := 2Eµ[〈a(Ξi − πi),Ξ
j − πj〉]. Then the matrix {dij}i,j is

positive definite.

Proof. Take any ξ ∈ R
d, then

∑

i,j

dijξiξj = 2Eµ

[

〈a
(

∑

i

ξiΞ
i − ξ

)

,
∑

j

ξjΞ
j − ξ〉

]

.

Clearly
∑

i ξiΞ
i ∈ L2

pot. Moreover by linearity
∑

i ξiΞ
i is the orthogonal projection of

the constant function πξ : ω → ξ, and πξ ∈ L2(a). By means of the characterization in

Remark 5.4.6 we can write

∑

i,j

dijξiξj = inf
v∈C∞

b (Ω)
2Eµ[〈a(∇v − ξ),∇v − ξ〉] ≥

d
∑

i=1

inf
v∈C∞

b (Ω)
2Eµ[λ|Div − ξi|2]

=
d

∑

i=1

|ξi|2 inf
v∈C∞

b (Ω)
2Eµ[λ|Div − 1|2], (5.9)
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so that we end up with a basic one dimensional problem. Observe that by Hölder’s

inequality we have

Eµ[λ|Div − 1|2] ≥ E[λ−1]−1
Eµ[(Div − 1)]2 = E[λ−1]−1

for all v ∈ C∞
b (Ω) since by Lemma 5.1.5 we have that Eµ[Div] = 0.

Therefore (5.9) is bounded from below by 2
∑d

i=1 |ξi|2 Eµ[λ
−1]−1 = 2|ξ|2 Eµ[λ

−1]−1

and we get the bound
∑

i,j

dijξiξj ≥ 2Eµ[λ
−1]−1|ξ|2

which is what we wanted to proof.

By means of Weyl’s decomposition we were able to project πk onto the abstract

space L2
pot obtaining Ξk. For k = 1, ..., d we define the corrector in direction k to be the

function χk : Rd × Ω → R given by

χk(x, ω) :=
d

∑

j=1

∫ 1

0

xjΞ
k
j (τtxω) dt. (5.10)

Proposition 5.4.8. For k = 1, ..., d the function x 7→ χk(x, ω) is well defined, and it

belongs to L1
loc(R

d), moreover χk(0, ω) = 0 µ-almost surely and Eµ[χ
k(x, ω)] = 0 for all

x ∈ R
d.

Proof. First observe that the function t→ Ξk(τtxω) is measurable for µ-almost all ω ∈ Ω

and all x ∈ R
d. We want to check that if Ξ̃k is another version of Ξk, then Ξk(τtxω) =

Ξ̃k(τtxω) for almost all t ∈ [0, 1], almost all x ∈ R
d, µ-almost surely. This is easily

achieved noticing that

Eµ

[
∫

B

∫

[0,1]

|Ξk(τtxω)− Ξ̃k(τtxω)| dtdx
]

=

∫

B

∫

[0,1]

Eµ[|Ξk(τtxω)− Ξ̃k(τtxω)|] dtdx

=

∫

B

∫

[0,1]

Eµ[|Ξk(ω)− Ξ̃k(ω)|] dtdx = 0,

being B any bounded domain in R
d. We now check that x 7→ χk(x, ω) belongs to

L1
loc(R

d), µ-almost surely; take a ball B ⊂ R
d of radius R, then

Eµ

[
∫

B

|χk| dx
]

≤
d

∑

j=1

∫ 1

0

∫

B

|xj|Eµ[|Ξk
j (τtxω)|] dt . |B|R Eµ[|Ξk|] <∞

which gives the result. It is obvious by definition of χk, Fubini theorem and Lemma

5.4.5 that χk(0, ω) = 0 µ-almost surely and Eµ[χ
k(x, ω)] = 0 for all x ∈ R

d.

The key result about the corrector is listed here below, and states that χk is weakly

differentiable in k and that the gradient is identified by Ξk.

Proposition 5.4.9. For k = 1, ..., d the function x 7→ χk(x, ω) is weakly differentiable

µ-almost surely and ∂iχ
k(x, ω) = Ξk

i (τxω).
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Proof. Let η ∈ C∞
0 (Rd) be any test function and compute

∫

Rd

χk(x, ω)∂iη(x) dx =

∫

Rd

d
∑

j=1

∫ 1

0

xjΞ
k
j (τtxω) dt ∂iη(x) dx.

By switching the order of integration and applying the change of variables y = tx we

get
∫ 1

0

d
∑

j=1

∫

Rd

Ξk
j (τyω)

yj
td+1

∂iη
(y

t

)

dydt.

Next observe that for j 6= i,

yj
td+1

∂iη
(y

t

)

= ∂i

(yj
td
η
(y

t

))

,

which together with property (ii) of Lemma 5.4.5 gives

∫

χk(x, ω)∂iη(x) dx =

∫

Ξk
i (τyω)

∫ 1

0

∑

j 6=i

∂j

(yj
td
η
(y

t

))

+
yi
td+1

∂iη
(y

t

)

dtdy.

Finally, observe that for y 6= 0 and exploiting that η has compact support we have

∫ 1

0

∑

j 6=i

∂j

(yj
td
η
(y

t

))

+
yi
td+1

∂iη
(y

t

)

dt = −
∫ 1

0

d

dt

(

η
(y

t

) 1

td−1

)

dt = −η(y).

This ends the proof since it follows that

∫

Rd

χk(x, ω)∂iη(x) dx = −
∫

Rd

Ξk
i (x;ω)η(x) dx. (5.11)

One may think that the set of ω for which (5.11) holds, depends on η. Since C∞
0 (Rd) is

separable we can remove such ambiguity considering a countable dense subset {ηn}n∈N
of C∞

0 (Rd).

Remark 5.4.10. The field χk(x, ω) is not stationary as can be deduced by the fact that

χk(0, ω) = 0, nonetheless its gradient is a stationary random field.

4.3 Harmonic coordinates and Poisson equation. Now that we have the corrector

we want to construct a weak solution to the Poisson equation Lωu = 0 for µ-almost

all ω ∈ Ω. For k = 1, ..., d, we define the harmonic coordinates to be the functions

yk : R
d × Ω → R given by yk(x, ω) := xk − χk(x, ω).

Given the Dirichlet form (Eω,Fω) on L2(Rd), we say that a function u ∈ Fω
loc is Eω-

harmonic if Eω(u, φ) = 0, ∀φ ∈ C∞
0 (Rd). To show that yk(x, ω) are Eω-harmonic we

first have to show that yk(·, ω) ∈ Fω
loc, µ-almost surely. Our proof of this fact requires

Sobolev’s embedding theorems and (a.2), namely that for 1/p + 1/q < 2/d Eµ[λ
−q],

Eµ[Λ
p] <∞.

Let us start with a simple consequence of (a.2).
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Lemma 5.4.11. Assume (a.1) and (a.2), then we have the following continuous embed-

dings

L2p/(p−1)(Ω, µ)d ⊂ L2(Ω,Λ)d ⊂ L2(a) ⊂ L2(Ω, λ)d ⊂ L2q/(q+1)(Ω, µ)d.

Proof. Indeed, we have by (a.1)

Eµ[|V |2λ] ≤ Eµ[〈aV, V 〉] ≤ Eµ[|V |2Λ]

and by Hölder inequality

Eµ[|V |2Λ] ≤ Eµ[Λ
p]1/p E[|V |2p∗ ]1/p∗ , E[|V |2q/(q+1)](q+1)/q ≤ Eµ[λ

−q]1/q Eµ[|V |2λ] .

Notice that in the two inequalities above we exploited Eµ[λ
−q], Eµ[Λ

p] < ∞. Clearly,

these inequalities give the continuous embeddings we were looking for.

Proposition 5.4.12. Assume (a.1) and (a.2), then the corrector χk(·, ω) ∈ Fω
loc for µ-

almost all ω ∈ Ω. In particular, yk(·, ω) ∈ Fω
loc for µ-almost all ω ∈ Ω.

Proof. By construction, there exists a sequence {un}n∈N ⊂ C∞
b (Ω) such that ∇un → Ξk

in L2(a). This implies that for any ball B ⊂ R
d along a subsequence if necessary

∫

B

〈aω(x)(∇un(τxω)−∇χk(x, ω)),∇un(τxω)−∇χk(x, ω)〉 dx→ 0, (5.12)

µ-almost surely. Observe that gn(x, ω) = un(τxω)− un(ω) belongs to C∞(Rd) and satis-

fies

gn(x, ω) =
d

∑

i=1

∫ 1

0

xj∂jun(τtxω) dt.

We first prove that that gn → χk in W 1,2q/(q+1)(B) for any ball B ⊂ R
d. The convergence

of ∇gn → ∇χk in L2q/(q+1)(B) follows directly by (5.12) above and assumption (a.2).

By Lemma 5.4.11 one sees easily that gn → χk in L2q/(q+1)(B). We claim that ηgn → ηχk

in L2(Rd) with respect to Eω
1 , for any function η ∈ C∞

0 (Rd) and µ-almost surely, which

by definition proves χk(·, ω) ∈ Fω
loc. Indeed

∫

Rd

〈a∇(ηgn)−∇(ηχk),∇(ηgn)−∇(ηχk)〉 dx ≤

2

∫

B

〈a∇gn −∇χk,∇gn −∇χk〉 dx+ 2‖∇η‖2∞
∫

B

Λ|gn − χk|2 dx→ 0

where the last integral goes to zero by gn → χk in W 1,2q/(q+1)(B), and by means of the

Sobolev’s embedding theorem W 1,2q/(q+1)(B) →֒ L2p∗(B).

Theorem 5.4.13. For k = 1, .., d, the harmonic coordinates x 7→ yk(x, ω) are Eω-harmonic

µ-almost surely with respect to the Dirichlet form (Eω,Fω) on L2(Rd).

Proof. We have to prove that µ-almost surely, for all φ ∈ C∞
0 (Rd)

Eω(yk, φ) =
∑

i,j

∫

Rd

aij(x, ω)∂iy
k(x, ω)∂jφ(x) dx = 0.
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By construction of the corrector, the stationarity of the environment and the fact that

TxC
∞
b (Ω) = C∞

b (Ω), we have that

∑

i,j

Eµ[aij(x, ω)∂iy
k(x, ω)Dju(ω)] = 0, ∀x ∈ R

d, ∀u ∈ C∞
b (Ω).

Now fix φ ∈ C∞
0 (Rd) and integrate against the equality above. We deduce that for all

u ∈ C∞
b (Ω)

0 =
∑

i,j

∫

Rd

φ(x)Eµ[aij(x, ω)∂iy
k(x, ω)Dju(ω)] dx

=
∑

i,j

Eµ

[

aij(0, ω)∂iy
k(0, ω)

∫

Rd

Dju(τ−xω)φ(x) dx
]

= Eµ

[

u(ω)
∑

i,j

∫

Rd

aij(x, ω)∂iy
k(x, ω)∂jφ(x) dx

]

.

We know from Lemma 5.1.6 that C∞
b (Ω) ⊂ Lr(Ω, µ) for all r ≥ 1 densely. Using the

same strategy of that proof, we denote by ψ a standard compactly supported mollifier

and for A ∈ G we note

un(ω) := nd

∫

Rd

1A(τxω)ψ(nx) dx

then un → 1A in L1(Ω, µ) as n → ∞, in particular, along a subsequence if necessary,

un → 1A for µ almost all ω ∈ Ω and by construction |un| ≤ 1. Furthermore,

∑

i,j

∫

Rd

aij(x, ω)∂iy
k(x, ω)∂jφ(x) dx

is in L1(Ω, µ), being ∇yk(x, ω) ∈ L2
pot, therefore, by the dominated convergence theorem

we can prove that for all A ∈ G

Eµ

[

1A(ω)
∑

i,j

∫

Rd

aij(x, ω)∂iy
k(x, ω)∂jφ(x) dx

]

= 0.

We can conclude that

∑

i,j

∫

Rd

aij(x, ω)∂iy
k(x, ω)∂jφ(x) dx = 0, µ-a.s. (5.13)

which ends the proof. To be precise, one should observe that C∞
0 (Rd) is separable,

which ensures that (5.13) is satisfied for all φ ∈ C∞
0 (Rd), µ-almost surely.

Remark 5.4.14. Observe that we didn’t use the neither (a.2) nor (a.3) in the construction

of the gradients of the correctors and of the harmonic coordinates, nor in showing that the

Poisson equation is satisfied. The only important assumption was that E[λ−1] and E[Λ] are

finite. However we needed (a.2) to grant that the harmonic coordinates belong to Fω
loc. We

claim that assumption (a.2) can be dropped if we look at a time changed process, namely

if we ask that the harmonic coordinates are Eω-harmonic with respect to (Eω,F θ,ω) on

L2(Rd, θω) for an appropriate choice of θω.
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Harmonic coordinates and martingales

So far, in this section, we didn’t exploit the fact that the random environment

(Ω,G, µ) is ergodic. Such a property can be used to obtain an upper bound on in-

tegrals of the harmonic coordinates in the diffusive limit, as we show in the remark

below.

Remark 5.4.15. Define ykǫ (x, ω) := ǫyk(x/ǫ, ω) and let BR ⊂ R
d be any ball of radius

R > 0, then an application of the ergodic theorem (Theorem 5.1.2) yields

lim
ǫ→0

∫

BR

〈a(x/ǫ, ω)∇ykǫ (x, ω),∇ykǫ (x, ω)〉 dx

= lim
ǫ→0

ǫ−d

∫

BR/ǫ

〈a(x, ω)∇yk(x, ω),∇yk(x, ω)〉 dx

= |BR|Eµ[〈a(πk − Ξk), πk − Ξk〉] <∞, (5.14)

which in view of (a.2) implies that

lim sup
ǫ→0

‖∇ykǫ ‖22q/(q+1),BR
≤ Eµ[〈a(πk − Ξk), πk − Ξk〉] <∞, µ-a.s.

and by Sobolev embedding theorem (Theorem 1.1.9) implies that

lim sup
ǫ→0

‖ykǫ ‖ρ,BR
<∞, µ-a.s., (5.15)

being ρ = 2qd/(q(d− 2) + d) the Sobolev conjugate of 2q/(q + 1).

5.5 Harmonic coordinates and martingales

If Lωu = div(aω∇u) were well defined and associated to Xω
t , then Lωy(x, ω) = 0 would

imply that y(Xω
t , ω) is a martingale by Itô’s formula. In our case we lack the regular-

ity to use the theory coming from stochastic differential equations and we must rely

on Dirichlet forms technique. We have proved in Theorem 5.4.13 that yk(x, ω) is Eω-

harmonic, which in a weaker sense, is analogous to say that yk is Lω-harmonic.

We want to apply Theorem 4.4.9 to the function

u(x, ω) =
∑

k

λky
k(x, ω),

being Eω-harmonic for µ-almost all ω ∈ Ω, and to the minimal diffusion process M
ω =

(Xω
t ,P

ω
x), x ∈ R

d. We fix the starting point to be x0 = 0. Some attention is required to

check that every assumption of Theorem 4.4.9 is satisfied for µ-almost all ω ∈ Ω.

By construction, since M
ω = (Xω

t ,P
ω
x), x ∈ R

d is the minimal diffusion for almost

all ω ∈ Ω, it follows that Pt1A(0) =
∫

A
pωt (0, y) dy = 0 whenever the Lebesgue measure

of A is zero. Therefore since every set with zero capacity has Lebesgue measure zero

[FOT94, See page 68] assumption (i) holds.

Assumption (ii) is satisfied µ-almost surely in view of Proposition 5.4.12, Theorem

5.4.13 and (a.3), which ensures the continuity of x 7→ yk(x, ω) for µ-almost all ω ∈ Ω
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by classical results in elliptic partial differential equations with locally uniformly elliptic

and bounded coefficients [GT01].

Let us prove (iii). According to [FOT94, Theorem 3.2.2] and using the fact that

yk are weakly differentiable, the density ρu(x, ω) of ν〈u〉 with respect to the Lebesgue

measure is given by

ρu(x, ω) = 2
∑

i,j

∂iu(x, ω)∂ju(x, ω) aij(x, ω)

= 2
∑

k,h

λkλh

(

∑

i,j

∂iy
k(x, ω)∂jy

h(x, ω) aij(x, ω)
)

,

which we can rewrite as ρu(x, ω) = 2〈q(x, ω)λ, λ〉, with

qhk(ω) :=
∑

i,j

∂iy
k(0, ω)∂jy

h(0, ω) aij(ω) =
∑

i,j

(Ξk
i (ω)− δik)(Ξ

h
j (ω)− δjh) aij(ω).

Next, using the fact that µ is the invariant measure for the environment process, we

compute

∫

Ω

E
ω
0

[
∫ t

0

ρu(X
ω
s , ω) ds

]

dµ = 2

∫

Ω

E
ω
0

[
∫ t

0

〈q(ψω
s )λ, λ〉 ds

]

dµ = 2t

∫

Ω

〈q(ω)λ, λ〉 dµ

which is finite by construction, since Ξk ∈ L2(a) for all k = 1, ..., d. In particular (iii) is

satisfied. It follows the following theorem:

Theorem 5.5.1. Assume (a.1), (a.2) and (a.3). Then for µ-almost all ω ∈ Ω, the process

t→ y(Xω
t , ω) is a P

ω
0 -square integrable martingale with quadratic covariation given by

〈yk(Xω
t , ω), y

h(Xω
t , ω)〉t = 2

∫ t

0

∑

i,j

aij(X
ω
s , ω)(∂iχ

k(Xω
s , ω)− δik)(∂jχ

h(Xω
s , ω)− δjh) ds

Proof. Above.

5.6 Proof of the quenched invariance principle

In Section 5.4 we constructed the functions χ, y : Rd × Ω → R
d in a way that we can

decompose the process Xω as

Xω
t = y(Xω

t , ω) + χ(Xω
t , ω),

in particular, we proved in Theorem 5.5.1 that y(Xω
t , ω) is a P

ω
0 -square integrable mar-

tingale martingale. In order to get a quenched invariance principle for the process

ǫXω
t/ǫ2 we will need to prove that ǫχ(Xω

t/ǫ2 , ω) is converging to zero in law and that the

quadratic variation of the martingale ǫy(Xω
t/ǫ2 , ω) is converging to a constant µ-almost

surely as ǫ→ 0.

As first result on the decay of the correctors we have the following lemma.
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Lemma 5.6.1. For all R > 0 and for µ-almost all ω ∈ Ω

lim
ǫ→0

‖ǫyk(x/ǫ, ω)− xk‖2p∗,BR
= lim

ǫ→0
‖ǫχk(x/ǫ;ω)‖2p∗,BR

= 0.

Proof. Set for convenience of notation

yǫ(x, ω) := ǫy(x/ǫ, ω), χǫ(x, ω) := ǫχ(x/ǫ, ω).

To prove the lemma it is enough to show that for any η ∈ C∞
0 (BR) we have

lim
ǫ→0

∫

Rd

ykǫ (x, ω)η(x) dx =

∫

Rd

xkη(x) dx.

Indeed the above property implies the weak convergence ykǫ ⇀ xk in L2(BR). This

gives the strong convergence in L2p∗(BR), because W 1,2q/(q+1)(BR) is compactly embed-

ded in L2p∗(BR) (Theorem 1.1.9 and 2p∗ < ρ) and the family {yǫ}ǫ>0 is bounded in

W 1,2q/(q+1)(BR) by (5.14).

Since ∂jy
k(x;ω) = δjk − Ξk

j (τxω),and Eµ[Ξ
k
j ] = 0, the ergodic theorem implies that

for each δ > 0 arbitrary, µ-almost surely, there exists ǫ(ω) > 0 such that for all ǫ, s > 0

with s > ǫ/ǫ(ω)
∣

∣

∣

∣

∑

j

∫

BR

∂jy
k
ǫ (sx, ω)xjη(x) dx−

∫

Rd

xkη(x) dx

∣

∣

∣

∣

≤ δ. (5.16)

Notice that
∫

Rd

ykǫ (x, ω)η(x) dx =
∑

j

∫

BR

∫ 1

0

∂jy
k
ǫ (tx, ω)xjη(x) dt dx

=
∑

j

∫ 1

0

∫

BR

∂jy
k
ǫ (tx, ω)xjη(x) dx dt. (5.17)

We split the right hand side of (5.17) in the sum

∑

j

∫ ǫ/ǫ(ω)

0

∫

BR

∂jy
k
ǫ (tx, ω)xjη(x) dx dt+

∑

j

∫ 1

ǫ/ǫ(ω)

∫

BR

∂jy
k
ǫ (tx, ω)xjη(x) dx dt,

now we estimate each of the two terms. We can rewrite the second term as

(1− ǫ/ǫ(ω))

∫

BR

xjη(x) dx+

∫ 1

ǫ/ǫ(ω)

rǫ/t dt,

where the second integral is bounded by δ, in view of (5.16). For what concerns the

first part, we can easily compute

∑

j

∫ ǫ/ǫ(ω)

0

∫

BR

∂jy
k
ǫ (tx)xjη(x) dx = ǫ/ǫ(ω)

∫

BR

ǫ(ω)yk(x/ǫ(ω))η(x) dx.

Hence the first part is bounded by c · (ǫ/ǫ(ω)) for some constant c > 0. Finally, this

yields

lim sup
ǫ→0

∣

∣

∣

∣

∫

Rd

ykǫ (x, ω)η(x) dx−
∫

Rd

xkη(x) dx

∣

∣

∣

∣

≤ δ

with δ arbitrarily chosen.
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Proposition 5.6.2 (Sublinearity of the correctors.). For all R > 0,

lim
ǫ→0

sup
|x|≤R

ǫ|χ(x/ǫ, ω)| = 0, µ-a.s. (5.18)

Proof. Observe that χk
ǫ (x, ω) := ǫχk(x/ǫ, ω) is a solution on B = B(0, R) for all ǫ > 0

and R > 0 of

∑

i,j

∫

B

aωij(x/ǫ)∂iχ
k
ǫ (x, ω)∂jφ(x) dx =

∑

i,j

∫

B

aωij(x/ǫ)∂ifk(x)∂jφ(x) dx,

where fk(x) = xk and φ ∈ C∞
0 (B). Clearly |∇fk(x)| ≤ 1 for all x ∈ R

d and uniformly in

ǫ > 0. By Lemma 5.6.1, we get that

lim
ǫ→0

‖χk
ǫ (x;ω)‖2p∗,BR

= 0.

Therefore, we can obtain 5.18 applying (2.9) with α = 2p∗,

‖χk
ǫ‖∞,B(R) ≤ C2

[

1 ∨ CB(2R/ǫ)
E

]κ′

‖χk
ǫ‖γ

′

2p∗,B(2R) ∨ ‖χk
ǫ‖2p∗,B(2R)

which goes to zero as ǫ→ 0 by Lemma 5.6.1. Notice that we can bound

C
B(2R/ǫ)
E = ‖λ−1‖q,B(2R/ǫ)‖Λ‖p,B(2R/ǫ),p,

by a constant, by means of (a.2) and the ergodic theorem.

We can now turn to the proof of Theorem I, namely of the quenched invariance

principle for the diffusions ǫXω
t/ǫ2 .

Proof Theorem I. With the help of Proposition 5.6.2 the proof of this theorem is very

similar to [FK97, Theorem 1], the main difference being the quadratic variation of the

martingale part.

We only sketch (i) being totally analogous of [FK97, Theorem 1, part (i)]. We prove

that there exist deterministic constants dhk such that for µ-almost all ω ∈ Ω

lim
t→∞

E
ω
0 [X

ω
h (t)X

ω
k (t)]

t
= dhk.

The processXω
t can be decomposed as the sum of y(Xω

t , ω) and χ(Xω
t , ω). We proved

in Theorem 5.5.1 that Mω
t = y(Xω

t , ω) is a P
ω
0 -square integrable continuous martingale

whose quadratic variation is given by

〈Mω
h ,M

ω
k 〉t =

∫ t

0

2
∑

i,j

aij(X
ω
s , ω)(∂iχ

k(Xω
s , ω)− δik)(∂jχ

h(Xω
s , ω)− δjh) ds.

In particular, it follows that

E
ω
0 [M

ω
h (t)M

ω
k (t)]

t
=

2

t

∫ t

0

E
ω
0

[

〈a(Xω
s , ω)(∇χk(Xω

s , ω)− ek),∇χh(Xω
s , ω)− eh〉

]

ds

=
2

t

∫ t

0

Ps[〈a(Ξk − ek),Ξ
h − eh〉](ω) ds,
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Proof of the quenched invariance principle

where we recall that Pt is the semigroup of the environmental process t→ ψω
t = τXω

t
ω.

Since the environmental process is ergodic and stationary with respect to µ as proved

in Proposition 5.3.4, it follows by an application of Birkoff’s ergodic theorem that

lim
t→∞

E
ω
0 [M

ω
h (t)M

ω
k (t)]

t
= 2Eµ[〈a(Ξk − ek),Ξ

h − eh〉] =: dhk (5.19)

µ-almost surely. At this point one proceeds exactly as in [FK97] with the help of Propo-

sition 5.6.2, to transfer statement (5.19) from the martingale Mω(t) to the process

Xω(t).

We prove part (ii) of the Theorem I. Again, we make use of the decomposition

ǫXω
t/ǫ2 = ǫy(Xω

t/ǫ2 , ω) + ǫχ(Xω
t/ǫ2 , ω).

and the fact that M ǫ,ω = ǫy(Xω
t/ǫ2 , ω) is a P

ω
0 -square integrable continuous martingale

µ-almost surely. Its quadratic variation is given by

〈M ǫ,ω
h ,M ǫ,ω

k 〉t = ǫ

∫ t/ǫ2

0

2
∑

i,j

aij(X
ω
s , ω)(∂iχ

k(Xω
s , ω)− δik)(∂jχ

h(Xω
s , ω)− δjh) ds.

An application of the ergodic theorem for the environmental process shows that

lim
ǫ→0

〈M ǫ,ω
h ,M ǫ,ω

k 〉t = dhkt,

P
ω
0 -almost surely, but also in the L1-sense for almost all ω ∈ Ω. We can now apply

the central limit for martingales [Hel82, Theorem 5.4] to conclude that the martingale

M ǫ,ω converges in distribution under P
ω
0 to a Wiener measure with covariances given

by D = {dhk}dh,k=1 for µ-almost all ω ∈ Ω. The matrix is non degenerate by Proposition

5.4.7.

It remains to show that the correctors ǫχ(Xω
t/ǫ2 , ω) converge to zero in probability.

For that the sublinearity of the corrector will play a major role.

Let T > 0 be a fixed time horizon. We claim that for all δ > 0

lim
ǫ→0

P
ω
0

(

sup
0≤t≤T

|ǫχ(Xω
t/ǫ2 , ω)| > δ

)

= 0, µ-a.s. (5.20)

Denote by τ ǫ,ωR the exit time of ǫXω
t/ǫ2 from the ball B of radius R > 1 centered at the

origin. Observe that

lim sup
ǫ→0

P
ω
0

(

sup
0≤t≤T

|ǫχ(Xω
t/ǫ2 , ω)| > δ

)

≤ lim sup
ǫ→0

P
ω
0

(

sup
0≤t≤τǫ,ωR

|ǫχ(Xω
t/ǫ2 , ω)| > δ

)

+ lim sup
ǫ→0

P
ω
0

(

sup
0≤t≤T

|ǫXω
t/ǫ2 | > R

)

.

Let us show that both contributions converge to zero as ǫ→ 0.

First addendum: By Proposition 5.6.2

lim
ǫ→0

sup
0≤t≤τǫ,ωR

|ǫχ(Xω
t/ǫ2 , ω)| = 0.
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and therefore µ-almost surely

lim sup
ǫ→0

P
ω
0

(

sup
0≤t≤τǫ,ωR

|ǫχ(Xω
t/ǫ2 , ω)| > δ

)

= 0.

Second addendum: we use again Proposition 5.6.2 to say that there exists ǭ(ω) > 0,

which may depend on ω such that for all ǫ < ǭ(ω) we have sup0≤t≤τǫ,ωR
|ǫχ(Xω

t/ǫ2 , ω)| < 1.

For such ǫ we have µ-almost surely

P
ω
0

(

sup
0≤t≤T

|ǫXω
t/ǫ2 | ≥ R

)

= P
ω
0

(

τ ǫ,ωR ≤ T
)

= P
ω
0

(

τ ǫ,ωR ≤ T, sup
0≤t≤τǫ,ωR

|ǫy(Xω
t/ǫ2 , ω)| > R− 1

)

≤ P
ω
0

(

sup
0≤t≤T

|ǫy(Xω
t/ǫ2 , ω)| > R− 1

)

.

Since ǫy(Xω
·/ǫ2 , ω) converges in distribution under Pω

0 to a non-degenerate Brownian mo-

tion with deterministic covariance matrix given by D we have that [CZ95, Proposition

1.16] there exist positive constants c1, c2 independent on ω such that

lim sup
ǫ→0

P
ω
0

(

sup
0≤t≤T

|ǫy(Xω
t/ǫ2 , ω)| > R− 1

)

≤ c1e
−c2R,

from which it follows

lim sup
ǫ→0

P
ω
0

(

sup
0≤t≤T

|ǫXω
t/ǫ2 | > R

)

≤ c1e
−c2R.

Therefore

lim sup
ǫ→0

P
ω
0

(

sup
0≤t≤T

|ǫχ(Xω
t/ǫ2 , ω)| > δ

)

≤ c1e
−c2R

and since R > 1 was arbitrary, the claim (5.20) follows, namely the corrector converges

to zero in probability under Pω
0 , µ-almost surely.

The claim (5.20) combined with the fact that ǫy(X·/ǫ2 , ω) satisfies an invariance prin-

ciple µ-almost surely implies also that the family ǫXω
·/ǫ2 under Pω

0 satisfies an invariance

principle µ-almost surely with the same limiting law.

As a simple consequence of the quenched invariance principle above and a time-

change technique we can easily derive a quenched invariance principle for a larger

family of processes.

Corollary 5.6.3. Let θ : Ω → R be a G-measurable function and assume that θ(τ.ω),

θ(τ.ω)
−1 ∈ L∞

loc(R
d) for µ-almost all ω ∈ Ω and that Eµ[θ],Eµ[θ

−1] < ∞. Let M
θ,ω :=

(Xθ,ω
t ,Pθ,ω

x ), x ∈ R
d the minimal diffusion process associated to (Eω,F θ,ω) on L2(Rd, θdx).

Then, for µ-almost all ω ∈ Ω, the laws of the processes ǫXθ,ω
t/ǫ2 over C([0,∞),Rd) converge

weakly as ǫ → 0 to a Wiener measure with covariance matrix given by D/Eµ[θ], where D

was given in Theorem I.
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Proof of the quenched invariance principle

Proof. Let us define the time change

X̂ω
t := Xω

τωt
, τωt = inf

{

s > 0; Aω
s :=

∫ s

0

θ(Xω
u , ω) du > t

}

To get asymptotic for ǫ2At/ǫ2 it is easy by means of the ergodic theorem for the environ-

mental process. We can prove as in [BM15, Lemma 15] that

lim
ǫ→0

sup
s∈[0,t]

|ǫ2Aω
s/ǫ2 − sEµ[θ]| = 0, P

ω
x -a.s, a.a. x ∈ R

d, (5.21)

for µ-almost all ω ∈ Ω. Observe that ǫX̂ω
Aω(t/ǫ2) = ǫXω

t/ǫ2, then the convergence in distri-

bution for ǫX̂ω
t/ǫ2 under P

ω
x , for almost all x ∈ R

d, for µ-almost all ω ∈ Ω follows from

Theorem I and (5.21). On the other hand the processes X̂ω
t and Xθ,ω

t are equivalent,

since they possess the same Dirichlet form, see Theorem 6.2.1 in [FOT94]. Hence the

same convergence holds for ǫXθ,ω
t/ǫ2.
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6

Quenched local Central Limit Theorem

6.1 A deterministic version of ergodicity

In this first section we put aside the random environment and we discuss a set of

assumptions on the weights x 7→ λ(x) and x 7→ Λ(x) which grant a local central limit

theorem for the fundamental solution of equation (3.2) introduced in Chapter 3.

Recall that equation (3.2) is the weak formulation of the ill posed

∂tu(t, x)−
1

Λ(x)
div(a(x)∇u(t, x)) = 0.

We assume that (b.1) and (b.2) are satisfied. As we know from Chapter 3, positive

caloric functions satisfy a local parabolic Harnack inequality (cf. Theorem 3.6.2)

sup
Q−

u(t, z) ≤ CB,Λ
PH inf

Q+

u(t, z),

where the constant CB,Λ
PH depends increasingly on CB,Λ

S , CB,Λ
P ,MB,Λ. We recall here the

explicit form of these constants (cf. Chapter 2):

• CB,Λ
S := ‖λ−1‖q,B‖Λ‖2p

∗/ρ
p,B ,

• CB,Λ
P := ‖λ−1‖q̄,B‖Λ‖p̄,B where p̄ ≤ p and q̄ ≤ q are such that 1/p̄+ 1/q̄ = 2/d,

• MB,Λ := ‖Λ‖1,B/‖Λ‖1,B/2.

Observe that the constants depend on averages over B of λ−1 and Λ. Before embark-

ing in the proof of a local central limit theorem, we show that if for large balls the

averages of λ−1 and Λ are bounded, then we can derive on-diagonal upper bounds and

control the oscillations of the transition kernel pΛt (x, y) of the semigroup PΛ
t associated

to (E ,FΛ) on L2(Rd,Λ). Next assumption goes exactly in this direction.

Assumption c.1. For the same p, q as in assumption (b.2)

lim sup
R→∞

1

|B(0, R)|

∫

B(0,R)

Λp + λ−q dz <∞.
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Lemma 6.1.1. Under (c.1), for all x ∈ R
d

lim sup
R→∞

1

|B(x,R)|

∫

B(x,R)

Λp + λ−q dz <∞,

and the limit does not depend on x.

Proof. Observe that for R > |x|, B(0, R − |x|) ⊂ B(x,R) ⊂ B(0, R + |x|), therefore the

following inequality holds

(

R− |x|
R

)d
1

|B(0, R− |x|)|

∫

B(0,R−|x|)
Λp + λ−q dz

≤ 1

|B(x,R)|

∫

B(x,R)

Λp + λ−q dz

≤
(

R + |x|
R

)d
1

|B(0, R + |x|)|

∫

B(0,R+|x|)
Λp + λ−q dz,

and taking the limit R → +∞ both sides gives the result.

Lemma 6.1.2. Assume (c.1). Then, there exist finite positive constants C∗,Λ
S , C∗,Λ

P and

M∗,Λ, independent of x ∈ R
d such that

lim sup
R→∞

C
B(x,R),Λ
S = C∗,Λ

S , lim sup
R→∞

C
B(x,R),Λ
P = C∗,Λ

P ,

sup
x∈Rd

lim sup
R→∞

MB(x,R),Λ =M∗,Λ.

In particular, for all δ > 0 and x ∈ R
d there exists s(x, δ) ≥ 1 such that for all R > s(x, δ)

C
B(x,R),Λ
S < C∗,Λ

S (1 + δ), C
B(x,R),Λ
P < C∗,Λ

P (1 + δ), MB(x,R),Λ < M∗,Λ(1 + δ).

Proof. The existence of a finite limit for C
B(x,R),Λ
S and C

B(x,R),Λ
P as R → ∞ is a direct

consequence of (c.1). In the case of MB(x,R),Λ one must be slightly more careful since

‖Λ‖1,B/2 appears in the denominator. It suffices to observe that

lim sup
R→∞

MB(x,R),Λ ≤ lim sup
R→∞

‖Λ‖1,B(x,R)

‖Λ‖1,B(x,R/2)

≤ lim sup
R→∞

‖Λ‖1,B(x,R)‖Λ−1‖1,B(x,R/2) <∞.

The independence of the limits from x ∈ R
d can be obtained as in Lemma 6.1.1. The

second statement is an immediate consequence of the first part.

Through (c.1) and Lemma 6.1.2 we are provided with some control over the con-

stants above for large balls, therefore we can apply Theorem 3.3.3 to obtain a global

on-diagonal heat kernel upper bound, as it is done in the next proposition.

Proposition 6.1.3. Let f ∈ L2(Rd,Λ), and assume that (b.1), (b.2) and (c.1) are satisfied,

then there exists a constant C9 := C9(q, p, d, C
∗,Λ
S ) > 0 such that for all x ∈ R

d and t > 0

the following inequality holds

Ptf(x) ≤ C9t
−γ(s(0, 1) + |x|+

√
t)γ−d/2

∫

Rd

(s(0, 1) + |y|+
√
t)γ−d/2|f(y)|Λ(y)dy.

where γ was defined in 1.17 and s(x, δ) was defined in Lemma 6.1.2.

94



A deterministic version of ergodicity

Proof. We want to apply Theorem 3.3.3. Fix τ ∈ (0, 2], x = 0, R > 0, s = τR2, σ = 1

and σ′ = 1/2. It follows that

Q1 = (0, τR2)× B(0, R), Q1/2 = τR2(1/2, 1)× B(0, R/2).

We choose R := s(0, 1) + 2|z| +
√
t where s(0, 1) was defined in Lemma 6.1.2. In this

way C
B(0,R),Λ
S ≤ 2C∗,Λ

S and we can read inequality (3.9) for u(s, z) := PΛ
s f(z) as follows

sup
Q1/2

PΛ
s f(z) ≤ c(C∗,Λ

S )γ/2
τ−γ/2

Rd/2
‖f‖2,Λ,

with c = c(p, q, d) changing throughout the proof. By definition of R we can find

τ ∈ (0, 2] such that 3/4τR2 = t and in particular such that (t, z) ∈ Q1/2. This gives

PΛ
t f(z) ≤ ct−γ/2(s(0, 1) + |z|+

√
t)γ−d/2‖f‖2,Λ,

for all z ∈ R
d and t > 0, where now c = c(p, q, d, C∗,Λ

S ) depends on C∗,Λ
S as well. Set

bt(z) = (s(0, 1) + |z|+
√
t)γ−d/2. It follows that

‖b−1
t PΛ

t f‖∞ ≤ ct−γ/2‖f‖2,Λ,

from which ‖b−1
t PΛ

t ‖2→∞ ≤ ct−γ/2. By duality we get ‖PΛ
t b

−1
t ‖1→2 ≤ ct−γ/2. Hence

‖PΛ
t f‖2,Λ ≤ ct−γ/2‖btf‖1,Λ.

Now it is left to use the semigroup property and classical techniques [Dav90, Chapter

2] to finally get the bound.

It is now standard to get global on-diagonal estimates for the kernel pΛt (x, y) of the

semigroup PΛ
t associated to (E ,FΛ) on L2(Rd,Λ). Namely we obtain that for almost all

x, y ∈ R
d and for all t > 0

pΛt (x, y) ≤ C9 t
−γ(s(0, 1) + |x|+

√
t)γ−d/2(s(0, 1) + |y|+

√
t)γ−d/2. (6.1)

Remark 6.1.4. By Lemma 6.1.2 it follows that there exists C∗,Λ
PH < ∞ and RPH(x) ≥ 1

such that for all R ≥ RPH(x) we have C
B(x,R),Λ
PH ≤ C∗,Λ

PH .

Theorem 6.1.5 (Hölder continuity). Let x ∈ R
d, and RPH(x) ≥ 1 as above. Let R >

RPH(x) and
√
t ≥ R. Define t0 := t + 1 and R0 :=

√
t0. If u is a positive caloric function

on (0, t0)× B(x,R0) then for all z, y ∈ B(x,R) we have

u(t, z)− u(t, y) ≤ c

(

R√
t

)θ

sup
[3t0/4,t0]×B(x,

√
t0/2)

u, (6.2)

where θ, c are constants which depend only on C∗,Λ
PH .

Proof. Set Rk := 2−kR0 and let

Qk := (t0 −R2
k, t0)× B(x,Rk),
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Q−
k and Q+

k be accordingly defined as in (3.22) with δ = 1/2 and τ = 1,

Q−
k := (t0 − 7/8R2

k, t0 − 5/8R2
k)× B(x, 1/2Rk), Q+

k := (t0 − 1/4R2
k, t0)× B(x, 1/2Rk).

Notice that Qk+1 ⊂ Qk and actually Qk+1 = Q+
k . We set

vk =
u− infQk

u

supQk
u− infQk

u
.

Clearly vk is a caloric on Qk, in particular 0 ≤ vk ≤ 1 and

osc(vk, Qk) := sup
Qk

vk − inf
Qk

vk = 1.

This implies that replacing vk by 1 − vk if necessary supQ−
k
vk ≥ 1/2. Now for all k

such that Rk ≥ RPH(x) we can apply the parabolic Harnack inequality with common

constant C∗,Λ
PH and get

1

2
≤ sup

Q−
k

vk ≤ C∗,Λ
PH inf

Q+
k

vk.

Since by construction Q+
k = Qk+1, we deduce that

osc(u,Qk+1) =
supQk+1

u− infQk+1
u

osc(u,Qk)
osc(u,Qk)

=

(

supQk+1
u− infQk

u

osc(u,Qk)
− inf

Qk+1

vk

)

osc(u,Qk),

which yields osc(u,Qk+1) ≤ (1− δ) osc(u,Qk) with δ−1 = 2C∗,Λ
PH . We can now iterate the

inequality up to k0 such that Rk0 ≥ R > Rk0+1 and get

osc(u,Qk0) ≤ (1− δ)k0−1 osc(u,Q+
0 ).

Finally since B(x,R) ⊂ B(x,Rk0), t ∈ (t0 −R2
k0
, t0) and −k0 ≤ log2(R/

√
t) + 1 the claim

is proved.

Starting from (6.2) and knowing that pΛt (z, ·) is positive and caloric on the whole R
d

for almost all z ∈ R
d we get the following corollary.

Corollary 6.1.6. Let x ∈ R
d, and RPH(x) ≥ 1 as above. Let R > RPH(x) and

√
t ≥ R.

Then we have that for almost all o ∈ R
d

sup
z,y∈B(x,R)

|pΛt (o, z)− pΛt (o, y)| ≤ c

(

R√
t

)θ

t−d/2, (6.3)

where θ, c are positive constants which depend only on C∗,Λ
PH .

Proof. We have just to bound the right hand side of (6.2). Define t0 = t + 1 as in the

previous theorem. By Harnack inequality applied to the caloric function pΛt (o, ·) we

have

sup
[3t0/4,t0]×B(x,

√
t0/2)

pΛs (o, u) ≤ C∗,Λ
PH inf

[3/2t0,7/4t0]×B(x,
√
t0/2)

ps(o, u)

≤ C∗,Λ
PH

[

|B(x,
√
t0/2)|‖Λ‖1,B(x,

√
t0/2)

]−1
∫

B(x,
√
t0/2)

pΛt̄ (o, u)Λ(u) du,
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where t̄ ∈ [3/2t0, 7/4t0].

Clearly
∫

B(x,
√
t0/2)

pΛt̄ (o, u)Λ(u) du ≤ 1. For
√
t0 > R > RPH(x), we can bound

‖Λ‖1,B(x,
√
t0/2) by a constant which does not depend on x or t0, hence we finally get

the desired bound.

We want to stress that Corollary (6.1.6) is not a true Hölder continuity result, since

we cannot bound the variations for arbitrarily small balls, and indeed it is not even

possible to prove continuity of the density with this technique.

1.1 Diffusive scaling and LCLT. We are interested in controlling the oscillations of

caloric functions in the scaling (t, x) → (t/ǫ2, x/ǫ) as ǫ goes to zero. This means

that given a positive caloric function u : [0,∞) × R
d → [0,+∞) we are interested

in the behavior of u(t/ǫ2, x/ǫ). Clearly u(t/ǫ2, x/ǫ) is still caloric with respect to ∂t −
Λ(x/ǫ)−1 div(a(x/ǫ)∇·). It follows that we have to control the constants CB,Λ

S , CB,Λ
P ,

MB,Λ on moving balls B = B(x/ǫ, R/ǫ) in the limit ǫ → 0. With this in mind we

introduce the assumption below.

Assumption c.2. For the same p, q as appearing in (b.2)

sup
x∈Rd

lim sup
ǫ→0

1

|B(x/ǫ, 1/ǫ)|

∫

B(x/ǫ,1/ǫ)

Λp + λ−q dz <∞.

It is clear that assumption (c.2) implies (c.1); Indeed the latter can be obtained by

the former choosing x = 0.

Lemma 6.1.7. Let F : Rd → [0,+∞) and let δ, R0 > 0. Assume that

sup
x∈Rd

lim sup
ǫ→0

1

|B(x/ǫ, 1/ǫ)|

∫

B(x/ǫ,1/ǫ)

F dz =: K <∞. (6.4)

Then, there exists a constant ǫ1(x,R0, δ) > 0 such that for all x ∈ R
d and all ǫ <

ǫ1(x,R0, δ)

sup
R≥R0

1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

F dz < K(1 + δ).

Proof. Fix x ∈ R
d. First we observe that it is enough to prove the statement for R0 = 1

and x 6= 0, being the case R0 6= 1 completely analogous and the case x = 0 immediate.

Let 0 < δ0 < |x|. We split the supremum into two parts

sup
R≥1

1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

F dz

= sup
1≤R≤|x|/δ0

1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

F dz ∨ sup
R≥|x|/δ0

1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

F dz.
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We first deal with the second part.

sup
R≥|x|/δ0

1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

F dz

≤ sup
R≥|x|/δ0

(

1 +
|x|
R

)d
1

|B(0, (R + |x|)/ǫ)|

∫

B(0,(R+|x|)/ǫ)
F dz.

Recall that by (6.4), for all R > 0 there exists ǫ2(x,R, δ0) > 0 such that for all

ǫ < ǫ2(x,R, δ0)
1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

F dz < K(1 + δ0). (6.5)

In particular, recalling that R ≥ |x|/δ0 > 1, for all ǫ < ǫ2(0, 1, δ0)

sup
R≥|x|/δ0

1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

F dz ≤ K(1 + δ0)
d+1

The first part is a bit more delicate. For all ǫ > 0 define Ψǫ : [1,∞) → [0,∞) by

Ψǫ(R) :=
1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

F dz.

Let 1 ≤ R− < R+ ≤ R̄ := |x|/δ0 and R ∈ [R−, R+], then we have

Ψǫ(R)−Ψǫ(R+) ≤ dR̄2d−1 · 1

|B(x/ǫ, R̄/ǫ)|

∫

B(x/ǫ,R̄/ǫ)

Fdz · (R+ −R−)

and for all x ∈ R
d we can find ǫ2(x, R̄, δ0) > 0 such that for all ǫ < ǫ2(x, R̄, δ0)

Ψǫ(R)−Ψǫ(R+) ≤ dK(1 + δ0)R̄
2d−1(R+ −R−)

Now take a partition 1 = r0, ..., rm =: R̄ of in such a way that

|ri − ri−1| ≤ δ0/(dR̄
2d−1(1 + δ0))

for all i = 1, ...,m. Define ǫ3(x, δ0) := ǫ2(x, R̄, δ0) ∧mini=1,...,m ǫ2(x, ri, δ0) > 0. Then for

all x ∈ R
d and all ǫ ≤ ǫ3(x, δ0), we have that for all R ∈ [1, R̄]

1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

F dz = Ψǫ(R)

= Ψǫ(ri(R)) + (Ψǫ(R)−Ψǫ(ri(R))) ≤ K(1 + δ0) +Kδ0 = K(1 + 2δ0), (6.6)

where i(R) is such that 0 ≤ ri(R) − R ≤ δ0/(dR̄
2d−1(1 + δ0)). Putting together (6.5) and

(6.6), and defining ǫ1(x, δ0) := ǫ2(0, 1, δ0) ∧ ǫ3(x, δ0), we can deduce that for all x ∈ R
d

and all ǫ < ǫ1(x, δ0)

sup
R≥1

1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

F dz ≤ K(1 + 2δ0) ∧K(1 + δ0)
d+1.

Finally, the statement follows by an appropriate choice of δ0 small enough and taking

into account the dependence on R0 > 0 for the case R0 6= 1.
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Remark 6.1.8. Assumption (c.2) and Lemma 6.1.7 allow to control CB,Λ
S , CB,Λ

P , MB,Λ

uniformly on balls B = B(x/ǫ, R/ǫ) when ǫ is small enough . In particular, since CB,Λ
PH

depends increasingly on CB,Λ
S , CB,Λ

P , MB,Λ, for all x ∈ R
d and R0 > 0 we can find

ǫPH(x,R0) > 0 and a finite constant CΛ
PH independent of x, R0 such that for all ǫ <

ǫPH(x,R0) and r ≥ R0

C
B(x/ǫ,r/ǫ),Λ
PH ≤ CΛ

PH .

Lemma 6.1.9. Let R > 0 and t > 0 such that
√
t/2 ≥ R. Then, for all ǫ < ǫPH(x,R) we

have that for all x ∈ R
d

sup
z,y∈B(x,R)

ǫ−d|pΛt/ǫ2(o, z/ǫ)− pΛt/ǫ2(o, y/ǫ)| ≤ c

(

R√
t

)θ

t−d/2, (6.7)

where θ, c are positive constants which depend only on CΛ
PH .

Proof. The proof is very close to the one of Theorem 6.1.5. Take t ∈ I and set t0 := t+1,

R0 :=
√
t0. Observe that if ǫ < ǫPH(x,R), then for all r ≥ R

C
B(x/ǫ,r/ǫ),Λ
PH ≤ CΛ

PH .

Next we set Rk := 2−kR0,

Qk := ǫ−2(t0 −R2
k, t0)× B(x/ǫ, Rk/ǫ),

and Q−
k , Q+

k accordingly. Since for all k ∈ N such that Rk ≥ R, and all ǫ < ǫPH(x,R)

we have a common constant CΛ
PH for the Harnack inequality on the sets Qk, we can

proceed as in Theorem 6.1.5 and get for z, y ∈ B(x,R),

pΛt/ǫ2(o, z/ǫ)− pΛt/ǫ2(o, y/ǫ) ≤ c

(

R√
t

)θ

sup
[3t0/4,t0]×B(x,

√
t0/2)

pΛ·/ǫ2(o, ·/ǫ),

where θ, c are constants which depends only on CΛ
PH . At this point one proceeds as in

Corollary 6.1.6 to get the final result.

From the Hölder continuity estimates (6.7) we get the key tool to prove a local cen-

tral limit theorem. The statement of next proposition must be compared with [CH08,

Assumption 2].

Proposition 6.1.10. For almost all o ∈ R
d and all R > 0

lim
R0→0

lim sup
ǫ→0

sup
x,y∈B(o,R)
|x−y|<R0

sup
t∈I

ǫ−d|pΛt/ǫ2(o, x/ǫ)− pΛt/ǫ2(o, y/ǫ)| = 0.

Proof. Let us denote by t1 := inf I. Fix δ > 0 and set

R0 :=

√
t1
2

∧
(

t
d/2
1 δ

2c

)1/θ√
t1,

99
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being θ and c as appearing in (6.7). Since B(o, R) is compact we can cover it by a

finite set of balls {B(x,R0/2)}x∈X of radius R0/2 and centers x ∈ X ⊂ B(o, R). Take

ǭ := minx∈X ǫPH(x,R0). An application of (6.7) gives for all ǫ < ǭ

sup
x∈X

sup
|x−y|<R0

sup
t∈I

ǫ−d|pΛt/ǫ2(o, x/ǫ)− pΛt/ǫ2(o, y/ǫ)| ≤ c

(

R0√
t1

)θ

t
−d/2
1 ≤ δ

2
.

We can use this bound to conclude. Namely, fix any z ∈ B(o, R), and take x ∈ X such

that |z − x| < R0/2, then

sup
|z−y|≤R0/2

sup
t∈I

ǫ−d|pΛt/ǫ2(o, z/ǫ)− pΛt/ǫ2(o, y/ǫ)|

≤ sup
t∈I

ǫ−d|pΛt/ǫ2(o, x/ǫ)− pΛt/ǫ2(o, z/ǫ)|

+ sup
|y−x|≤R0

sup
t∈I

ǫ−d|pΛt/ǫ2(o, x/ǫ)− pΛt/ǫ2(o, y/ǫ)| ≤ δ

and this ends the proof since we showed that the bound is uniform in z ∈ B(o, R).

We finally give the main application of the computations we have developed in the

preceding sections. The approach we exploit is the one in [CH08, Theorem 1] (the

same approach is presented also in [BH09]).

We denote by kΣt (x), x ∈ R
d the Gaussian kernel with covariance matrix Σ ∈ R

d×d,

namely

kΣt (x) :=
1

√

(2πt)d detΣ
exp

(

−x · Σ
−1x

2t

)

.

We need here two further assumptions.

Assumption c.3. For almost all x ∈ R
d and all R > 0

lim
ǫ→0

1

|B(x/ǫ, R/ǫ)|

∫

B(x/ǫ,R/ǫ)

Λ dx =: aΛ <∞.

Assumption c.4. There exists a positive define symmetric matrix Σ such that for al-

most all o ∈ R
d, for any compact interval I ⊂ (0,∞), almost all x ∈ R

d and r > 0

lim
ǫ→0

1

ǫd

∫

B(x,r)

pΛt/ǫ2(o, y/ǫ) Λ(y/ǫ)dy →
∫

B(x,r)

kΣt (y) dy,

uniformly in t ∈ I.

Theorem 6.1.11. Fix a compact interval I ⊂ (0,∞) and R > 0. Assume (b.1), (b.2) and

(c.2), (c.3), (c.4), then for almost all o ∈ R
d

lim
ǫ→0

sup
x∈B(o,R)

sup
t∈I

|ǫ−dpΛt/ǫ2(o, x/ǫ)− a−1
Λ kΣt (x)| = 0.

100



A deterministic version of ergodicity

Proof. The proof presented here is a slight variation of the one in [CH08] due to the

fact that we work on R
d rather than on graphs. For x ∈ B(o, R) and R0 > 0 denote

J(t, ǫ) :=
1

ǫd

∫

B(x,R0)

pΛt/ǫ2(o, y/ǫ) Λ(y/ǫ)dy −
∫

B(x,R0)

kt(y) dy,

where kt := kΣt from assumption (c.4) is the Gaussian kernel with covariance matrix Σ.

Now, we can split J(t, ǫ) = J1(t, ǫ) + J2(t, ǫ) + J3(t, ǫ) + J4(t, ǫ) where

J1(t, ǫ) :=

∫

1
ǫ
B(x,R0)

[pΛt/ǫ2(o, y)− pΛt/ǫ2(o, x/ǫ)]Λ(y)dy,

J2(t, ǫ) :=

∫

1
ǫ
B(x,R0)

Λ(y)dy
[

pΛt/ǫ2(o, x/ǫ)− ǫda−1
Λ kt(x)

]

,

J3(t, ǫ) := kt(x)
[

ǫda−1
Λ

∫

1
ǫ
B(x,R0)

Λ(y)dy − |B(x,R0)|
]

,

J4(t, ǫ) :=

∫

B(x,R0)

(kt(x)− kt(y))dy.

Fix δ > 0. By the continuity of kt we can choose R0 ∈ (0, 1) small enough such that

sup
x,y∈B(0,R+1)

|x−y|≤R0

sup
t∈I

|kt(y)− kt(x)| ≤ δ, (6.8)

from which we can easily obtain the bound supt∈I |J4(t, ǫ)| ≤ δ|B(x,R0)|. Taking R0

smaller if needed, thanks to Proposition 6.1.10, we can find ǭ > 0 such that for all ǫ < ǭ

sup
x,y∈B(o,R+1)

|x−y|≤R0

sup
t∈I

1

ǫd
|pΛt/ǫ2(o, y/ǫ)− pΛt/ǫ2(o, x/ǫ)| ≤ δ, (6.9)

which immediately implies that supt∈I |J1(t, ǫ)| ≤ δ|B(x,R0)|. Furthermore, by assump-

tion (c.3) taking ǭ smaller if needed we get supt∈I |J3(t, ǫ)| ≤ δ|B(x,R0)| for all ǫ ≤ ǭ.

Finally, assumption (c.4) readily gives supt∈I |J(t, ǫ)| ≤ δ|B(x,R0)| for ǫ small enough.

These estimates can be then used to control |J2(t, ǫ)| for ǫ ≤ ǭ uniformly in t ∈ I.

Namely, one gets

sup
t∈I

|ǫ−dpΛt/ǫ2(o, x/ǫ)− a−1
Λ kt(x)| ≤ 4δ

(

ǫd

|B(x,R0)|

∫

1
ǫ
B(x,R0)

Λ(y)dy

)−1

and we can take ǭ even smaller to have by means of assumption (c.3)

(

ǫd

|B(x,R0)|

∫

1
ǫ
B(x,R0)

Λ(y)dy

)−1

≤ (δ + aΛ).

This implies that for almost all x ∈ Rd

lim
ǫ→0

sup
t∈I

|ǫ−dpΛt/ǫ2(o, x/ǫ)− a−1
Λ kt(x)| = 0.
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Consider now R > 0 and δ > 0, and let R0 ∈ (0, 1) be chosen as before. Since B(o, R) is

compact there exists a finite covering {B(z, R0)}z∈X of B(o, R) with X ⊂ B(o, R). Since

X is finite, there exists ǭ > 0 such that for all ǫ ≤ ǭ

sup
z∈X

sup
t∈I

|ǫ−dpΛt/ǫ2(o, z/ǫ)− a−1
Λ kt(z)| ≤ δ

Next if x ∈ B(o, r) then x ∈ B(z, r0) for some z ∈ X and we can write

sup
t∈I

|ǫ−dpΛt/ǫ2(o, x/ǫ)− a−1
Λ kt(x)| ≤ sup

t∈I
ǫ−d|pΛt/ǫ2(o, x/ǫ)− pΛt/ǫ2(o, z/ǫ)|

+ sup
t∈I

|ǫ−dpΛt/ǫ2(o, z/ǫ)− a−1
Λ kt(z)|

+ a−1
Λ sup

t∈I
|kt(x)− kt(z)|.

Since x, z ∈ B(o, R+1) and |x−z| ≤ R0, inequality (6.8) implies that the last addendum

is bounded by δ, the second term is also bounded uniformly by δ since z ∈ X . We can

finally bound the first term uniformly by δ by means of (6.9). This ends the proof.

6.2 Application to diffusions in random environment

In this section we finally apply Theorem 6.1.11 to obtain Theorem II.

Proof of Theorem II. By Theorem 6.1.11, it is enough to show that assumptions (b.1),

(b.2) and (c.2), (c.3), (c.4) are satisfied for µ-almost all realizations of the environment.

By construction (a.1) implies (b.1) for µ-almost all ω ∈ Ω. Assumption (a.2) together

with Lemma 5.1.1 gives easily (b.2), µ-almost surely. The ergodic theorem (cf. Theorem

5.1.2) is giving (c.2), (c.3); in particular the constant aΛ appearing in (c.3) is given by

Eµ[Λ]. Finally (c.4) for µ-almost all ω ∈ Ω follows directly from (a.4).

The second part of the statement follows readily since, if we assume that λω(·)−1

and Λω(·) are locally bounded for µ-almost all ω ∈ Ω, Theorem 6.1.11 holds for all

o ∈ R
d, µ-almost surely. Indeed, the density pΛ,ωt (x, y) is a continuous function of x and

y by classical results in PDE theory [GT01].
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Conclusions

7.1 Summary

In this manuscript we proved a quenched functional central limit theorem and a quenched

local central limit theorem for symmetric diffusions in a degenerate, stationary, ergodic

random environment. We showed it provided that the moment condition (a.2), namely

that Eµ[Λ
p] and Eµ[λ

−q] with 1/p+ 1/q < 2/d, is satisfied.

Despite the fact that our condition seems not to be optimal for a quenched in-

variance principle to hold, this is the case for a quenched central limit theorem (cf.

[ADS15a, Theorem 5.4] for a counterexample in the discrete setting). Both the proofs

of the quenched invariance principle and of the quenched central limit theorem relied

on a priori estimates for solutions to linear partial differential equations. On one hand,

with the help of the celebrated J. Moser’s iteration technique, we derived a maximal in-

equality for solutions to degenerate elliptic PDEs which in turn gives the sublinearity of

the correctors and with that the quenched invariance principle. On the other hand, re-

lying once again on Moser’s scheme, we obtained a parabolic Harnack inequality which

could be used to control the oscillations of solutions to parabolic PDEs. In particular, in

the diffusive limit, we were able to bound the oscillations of the transition densities of

our diffusion. This successively yielded the quenched local central limit theorem.

1.1 Main technical limitation. It is likely that in Theorem I assumption (a.3), namely

the fact that the realizations of the coefficients x 7→ λ−1(τxω) and x 7→ Λ(τxω) are lo-

cally bounded, can be relaxed. Indeed, the construction of the harmonic coordinates

and the proof of the maximal inequality for the correctors don’t rely on it. Moreover,

in the framework of Dirichlet form theory it is still possible, as we showed in Chap-

ter 4, to construct a diffusion process associated to Lω := div(aω(x)∇· ), for almost all

realizations of the environment, as soon as (λω)−1 and Λω are locally integrable. It is

well known that there is a properly exceptional set N ω ⊂ R
d such that the associated

process is uniquely determined up to the ambiguity of starting points in N ω, in our sit-

uation the set of exceptional points may depend on the realization of the environment,

and, for example, the measurability of ∪ω∈ΩN ω ×{ω} ⊂ R
d ×Ω, and the proof of prop-

erty (5.6) are very delicate issues, which require a very careful and technical analysis.

We assumed (a.3) to overcome this uncomfortable situation and remove any ambiguity
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due to the presence of exceptional sets in the Dirichlet form theory. One could possi-

bly approach the non-locally bounded case in a rigorous framework by considering the

abstract symmetric form

E(u, v) := Eµ

[
∫

Rd

〈a(τxω)∇u(x, ω),∇v(x, ω)〉 dx
]

,

with u, v ∈ D := C∞
0 (Rd)⊗L∞(Ω). Provided that (E,D) is closable in L2(Rd×Ω, dx⊗µ)

and quasi-regular (see [Röc93]), there would exist a dx ⊗ µ-symmetric Hunt process

associated to it, uniquely determined up to a properly exceptional set in R
d×Ω. Morally,

the process associated to the smallest closed extension of (E,D) on L2(Rd × Ω, dx⊗ µ)

would be (Xω
t , ω), whereXω

t is the diffusion associated to Lω and the second component

is constant in time.

An other problem that arises dropping (a.3) is that it is not a priori clear that

the process associated to Lω = div(aω(x)∇· ) is irreducible. In the case of locally

bounded coefficients this is absolutely trivial, since we can compare locally the pro-

cess with the Brownian motion (cf. Proposition 4.4.6). We can possibly overcome this

issue proving the quenched invariance principle for the process associated to LΛ,ω =

1/Λω(x) div(aω(x)∇· ). In this case, non-explosion would follow from Proposition 4.4.8

and irreducibility from the Harnack inequality (3.24). Given an invariance principle for

the process associated to LΛ,ω, we can always go back to the process on the flat space

through a time-change (cf. Corollary 5.6.3).

For what concerns Theorem II we stated it in a way that it would follow directly

once (a.1), (a.2) and a quenched invariance principle are satisfied.

7.2 Open problems

2.1 Beyond the p, q-condition. For symmetric diffusions in general stationary and

ergodic random environments moment conditions are a natural assumption to make

in order to prove a quenched invariance principle. We have seen in Section 5.4 that

Eµ[λ
−1], Eµ[Λ] < ∞ is sufficient to construct the harmonic coordinates, the correctors

and to prove that the limiting covariance matrix is non-degenerate (cf. Proposition

5.4.7). Additionally, in the framework of Dirichlet forms theory, we have seen in Chap-

ter 1 and Chapter 4 that first moments are enough to make sense of a diffusion process

associated to (Eω,Fω) on L2(Rd). It is common belief that first moments are a neces-

sary and sufficient condition for a quenched invariance principle to hold in a general

stationary and ergodic random environment.

A brilliant approach to possibly obtain this optimal condition seems to come from

[BM15], where the authors deal with the special case of periodic environment. The

very nice observation is that it is enough to prove the quenched invariance principle for

a time-change of the original process, and that it is not necessary to show sublinearity of

the correctors on balls and it is sufficient to show the sublinearity of the correctors along

the trajectories of the process. We also observed in Corollary 5.6.3 that the quenched

invariance principle is very stable under time-change, thus, following in spirit the idea

104



Open problems

Figure 7.1: in the shaded area the p, q-condition is satisfied.

of [BM15], one could look at

θ(ω) :=
1

MΛ−1(ω)
,

where M is the maximal operator

MΛ−1(ω) := sup
R>0

1

|B(0, R)|

∫

B(0,R)

Λ−1(τxω) dx.

At this point one should try to prove a quenched invariance principle for the diffusion

formally associated to

Lθ,ωu(x) :=
1

θω(x)
div(aω(x)∇u(x)),

being θω(x) := θ(τxω) as usual. The nice thing about the weight θω is that it is bounded

and belongs to some Muckenhaupt’s class. As it was shown in [BM15] with the help

of harmonic analysis for Muckenhaupt’s weights, also in this case one can obtain a

weighted Sobolev inequality of the type (1.12). It remains to understand how to take

advantage of it. In [BM15] it was used to get a uniform bound on the transition kernel

of the process, this seems not to work as nicely in the stationary and ergodic case due

to the fact that the environment process cannot be identified with the process itself

as in the periodic setting. Still the Sobolev inequality for the time-changed process

seems to be the right starting point to finally prove the quenched invariance principle

for environments with only the first moments.
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2.2 Non-symmetric diffusions. Throughout the whole manuscript the random field

{aω(x)}x∈Rd was assumed to be a symmetric matrix. This is a very convenient assump-

tion which allows us to work with symmetric Dirichlet forms rather than with non-

symmetric Dirichlet forms.

In [FK97] a non-symmetric divergence form operator is considered and a quenched

invariance principle is proved. More precisely the authors look at

Lωu(x) := div((I +H(x, ω))∇u(x)),

being H : Rd × Ω → R
d×d a stationary ergodic random field with smooth realizations,

most important H is assumed to be antisymmetric, with zero mean and unbounded.

Observe that the symmetric part is just the identity matrix, and therefore the coefficients

are bounded from below. The authors prove that the correctors are sublinear employing

Moser’s scheme. To be able to go through the iteration they require

Eµ[|H|p] <∞, p > d.

A more general model to consider would then be

Lωu(x) := div(A(x, ω))∇u(x)),

where A can be decomposed as A = a + H, being a symmetric and H antisymmetric.

It is clear that the same estimates as in [FK97] would go through in this situation

if we assume a to be bounded from below and from above, that Eµ[|H|p] < ∞, for

p > d and that Eµ[H] = 0. The situation is less transparent if we allow the symmetric

part a to be possibly degenerate and unbounded. The questions which naturally arise

are how to construct the corrector field and which moment conditions are required

to obtain its sublinearity? We believe that putting together the construction of the

corrector in Chapter 5 and the cutoff argument for the antisymmetric part provided in

[FK97] the construction of the correctors could be carried out. For what concerns the

sublinearity of the correctors we claim that to let Moser’s iteration working we need

a to satisfy the moment conditions as in (a.2), that is, Eµ[λ
−q] and Eµ[Λ

p] finite with

1/p+ 1/q < 2/d, and in addition we need E[|
√
a−1H|2p] to be finite. Observe that these

conditions coincide with the one in [FK97] for the special case a = I.

Provided that some regularity of the coefficients is given, in the non-symmetric case,

the diffusion coefficient is actually allowed to vanish in open sets, as it was proven in

the periodic environment by [ME08] and further extended and generalized in [FR09],

[SRP09], [PS11]. In these works the strong degeneracy of the diffusion coefficient is

compensated by the drift through the Hörmander’s condition; as a result the coefficients

need to be smooth enough.

2.3 Time dependent environments. A natural model to consider is the one where the

diffusion coefficients depend on time. In this case the random environment (Ω,G, µ) is

provided with the ergodic and stationary group of shifts {τt,x : (t, x) ∈ R
d+1}. It is well

known that if the coefficients are bounded from below and above, then a quenched

invariance principle holds for the diffusion associated to Lω = ∂t + div(a(t, x, ω)∇·);
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this is essentially [LOY98]. A result in the case of degenerate coefficients is provided

in [Rho07], here it is assumed that the coefficients a can be bounded from above and

below by time-independent coefficients. One may ask whether a quenched invariance

principle still holds in the more general case where the matrix a(t, x, ω) := a(τt,xω)

satisfies only (a.2). One problem which arises immediately is the construction of the

correctors. We may overcame this point using the techniques adopted in [FK99]. After

that could possibly show that the correctors are sublinear employing similar compu-

tations as in Chapter 3, in this case for inhomogeneous parabolic PDEs rather than

homogeneous. A major technical issue is to make sense of the stochastic process asso-

ciated to the operator Lω in the case that no regularity of the coefficients is assumed.

Unfortunately, processes with parabolic generators are out of the framework of sym-

metric Dirichlet forms and therefore one must rely on the more sophisticated theory of

time-dependent Dirichlet forms [Osh04].

2.4 Non-divergence form operators. To prove a quenched invariance principle for

diffusions in random environment, whose generator is not in divergence form is a quite

challenging problem. The major issue is that in general an invariant measure, abso-

lutely continuous with respect to the probability measure describing the “statistics” of

the environment, is not known. In 1982, Papanicolau and Varadhan [PV82] proved a

quenched central limit theorem for diffusions with a symmetric generator and without

drift term. More precisely, they considered

Lωu(x) :=
∑

i,j

aij(x, ω)∂i∂ju(x), (7.1)

where a : Rd × Ω → R
d×d is a stationary and ergodic random field. Furthermore, they

assumed that aij = aji and that there exists a constant c > 1 such that

c−1|ξ|2 ≤ 〈a(x, ω)ξ, ξ〉 ≤ c|ξ|2, ∀ξ, x ∈ R
d,

for almost all realizations of the environment. In this case the corresponding diffusion

is a martingale and therefore the question of proving the invariance principle can be

reduced to the problem of showing that the quadratic covariation of those martingales

converges. This can be achieved employing the ergodic theorem for the process of

the environment seen from the particle, provided that we know that the environment

process has a stationary ergodic distribution gdµ which is absolutely continuous with

respect to the environment measure µ. Indeed, we would have

lim
t→∞

1

t

∫ t

0

a(τXω
t
ω) dt = Eµ[ag], P

ω
0 -a.s, µ-a.s.

The main ingredient to show the existence of an ergodic invariant measure for

the environment process, which is absolutely continuous with respect to the environ-

ment measure, is given by the Alexandroff-Bakelman-Pucci inequality (ABP) [Puc66].

Loosely speaking, it allows to bound the L∞-norm of the solution u to Lωu = g by the

Ld-norm of g. Since one has the Ld-norm as an upper bound, there is room enough to
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plug in the weight Λ as soon as Eµ[Λ
p] < ∞ with p > d. This may provide a quenched

invariance principle also in the case of unbounded coefficients.

In the discrete setting this problem has been treated in [Law82] for the bounded

case, in [GZ12] for the degenerate and unbounded case and in [DGR] for the time-

dependent case. However, at the author’s best knowledge the degenerate case is still

open for diffusions in random environment.
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Sci. Fenn. Math. 38 (2013), 721–726.

[EP72] D. E. Edmunds and L. A. Peletier, A Harnack inequality for weak solutions of

degenerate quasilinear elliptic equations, Journal of the London Mathemati-

cal Society 2 (1972), no. 1, 21–31.

[EPPW06] J. Engström, L. E. Persson, A. Piatnitski, and P. Wall, Homogenization of

random degenerated nonlinear monotone operators, Glasnik matematički 41
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operators and integral functionals, Springer-Verlag, 1994.

Alberto Chiarini

Berlin, 26. Juni 2015

114


	Titlepage
	Introduction
	I A priori estimates for solutions to degenerate PDEs
	Sobolev type inequalities
	Basic definitions and notation
	Symmetric forms
	Sobolev inequalities
	Nash inequalities
	Poincaré inequalities

	Elliptic second order linear PDEs
	Maximal inequality for Poisson equation
	Comments on the elliptic Harnack inequality

	Parabolic second order linear PDEs
	Caloric Functions
	An abstract lemma
	Mean value inequalities for subcaloric functions
	Mean value inequalities for supercaloric functions
	Mean value inequalities for the logarithm
	Parabolic Harnack inequality


	II Central Limit Theorems
	Elements of Dirichlet forms theory
	Basic Definitions
	Dirichlet forms and Markovian semigroups
	Closability and smallest closed extension
	Symmetric Markov processes

	Quenched Central Limit Theorem
	The random environment
	Diffusions in random environment
	Environment process
	Construction of the corrector
	Harmonic coordinates and martingales
	Proof of the quenched invariance principle

	Quenched local Central Limit Theorem
	A deterministic version of ergodicity
	Application to diffusions in random environment

	Conclusions
	Summary
	Open problems



