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INVARIANT ALGEBRAIC SURFACES AND

HOPF-BIFURCATION OF A FINANCE MODEL

MURILO R. CÂNDIDO1, JAUME LLIBRE1 AND CLAUDIA VALLS2

Abstract. Recently there are several works studying the finance model

ẋ = z + x(y − a), ẏ = 1− by − x2, ż = −x− cz

where a, b and c are positive parameters. The first objective of this paper
is to show that this model exhibits one small amplitude periodic solution
emerging from a Hopf bifurcation at the equilibrium point (0, 1/b, 0)
and in the second one we show that this system does not have invariant
algebraic surfaces for any value of the parameters.

1. Introduction and statement of the main results

We consider the following polynomial differential system in R
3

ẋ = z + x(y − a),

ẏ = 1− by − x2,

ż = −x− cz,

(1)

where a, b and c are real positive parameters and the dot denotes derivative
with respect to the time t. This model has been intensively investigated
(see, for instance, [1, 2, 4, 5, 8, 10]. It describes the time variation of these
state variables: the interest rate x, the investment demand y and the price
index z. Here a is the saving amount, b is the cost per investment and c is
the elasticity of demand of commercial market. Changes in x come from an
excess of investment over savings and the structural adjustment from good
prices. Changes in y are in proportion to the rate of investment and to an
inversion with the cost of investment and interest rates. Finally, changes in
z are controlled by inflation rates.

The first objective of the present paper is to study the Hopf bifurcation
which exhibits the polynomial differential system (1). We recall that a Hopf
bifurcation in R

3 takes place in an equilibrium point with eigenvalues of
the form ±ωi and λ, with ω, λ ∈ R. The Hopf bifurcation theory is well
understood (see [6]). Our analysis of the Hopf bifurcation will be directly
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computing the first Liapunov coefficient and also using averaging theory to
overcome the cases in which the first Liapunov coefficient is zero.

System (1) has at most the following tree equilibrium points

P =

(
0,

1

b
, 0

)
,

P± =

(
∓
√

c− b(ac+ 1)

c
, a+

1

c
,±
√

c− b(ac+ 1)

c3

)
, if c− b(ac+ 1) > 0.

We can check that P is a Hopf point of system (1) with bifurcation parameter

a = (1 − bc)/b and has eigenvalues b and ±ic, where c =
√
1− c2 with

c < 1. The proof is immediate by computing directly the eigenvalues at
each equilibrium point. We expect to have small-amplitude limit cycles
branching from this fixed point. This is the main result of this paper.

Theorem 1. Let

(a, b, c) ∈ R
3 with a =

1− bc

b
> 0 and 0 < c < 1.

For a sufficiently close to the bifurcation value ā, the following statements

hold. The first Liapunov constant is

l1 = −(3b+ 4c)(b− 2c) + 8

8bc
(
b2 + 4c2

) ̸= 0.

(i) If l1 > 0, system (1) has a supercritical Hopf bifurcation at the equi-

librium point P , i.e., the point P is a weak focus of system (1) re-

stricted to the central manifold of P and the limit cycle that emerges

from P is stable.

(ii) If l1 < 0, system (1) has a subcritical Hopf bifurcation at the equilib-

rium point P , i.e., the point P is a weak focus of system (1) restricted
to the central manifold of P and the limit cycle that emerges from P
is unstable.

Theorem 1 is proved in section 2. To compute the first Liapunov constant
we use a result in [6]. We note that there are three situations in which the
first Liapunov coefficient does not provide results, i.e. when

(a) b =
2

5

√
2

3
and c =

2

5

√
6,

(b) b =
c

3
− 1

3

√
25c2 − 24 and

2
√
6

5
< c < 1,

(c) b =
c

3
+

1

3

√
25c2 − 24 and

2
√
6

5
< c < 1.

In cases (a)− (c) higher order Liapunov’s coefficient would be necessary to
describe the existence of periodic solutions emerging from the singular point
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P . In the next result we show that the averaging method can be used to
overcome this difficulty.

Theorem 2. Consider the differential system (1) with 0 < c < 1, a2 ̸= 0
and a = a+ ε2a2. Assume that

a2

(
4c
(
1− e−

2πb

c

) (
b2 + 2c2

) (
b2 − bc+ 2c2

)
− 8πl1

(
b3 + 4bc2

)2 )
> 0.(2)

Then for |ε| > 0 sufficiently small, system (1) has a periodic solution bifur-

cating from the equilibrium point P .

We note that for the values (a)–(c) condition (2) holds and consequently
Theorem 2 shows the existence of a Hopf bifurcation in the cases not covered
by Theorem 1. In fact for condition (a) the inequality (2) becomes

112 a2
5625

(
e
−4

√

2

3
π − 1

)
> 0.

Moreover, for condition (b) the inequality (2) writes a2 p(c) > 0 with

p(c) =
8

81

√
1− c2

(
5c2 − 6− c

√
25c2 − 24

)

(
c
(
4c+

√
25c2 − 24

)
− 3
)
e
−

2π(
√

25c2−24+c)
3

√
1−c2 .

We notice that p(c) ̸= 0 for all
2
√
6

5
< c < 1. Mainly p(c) = 0 if and only

if c = −1, thus in the cases (a) and (b) we can always choose a convenient
a2 ∈ R such that condition (2) holds. By a similar argument the same holds
for condition (c).

Theorem 2 is proved in section 3.

The second objective of this paper is to study the existence of invariant
algebraic surfaces for system (1). We recall that the study of invariant
objects is one of the main tools in dynamical systems. To introduce the
definition of invariant algebraic surface, let f(x, y, z) be a real polynomial
in the variables x, y, z. We say that f is Darboux polynomial of system (1)
if it satisfies

∂f

∂x
(z + x(y − a)y) +

∂f

∂y
(1− by − x2)− ∂f

∂z
(x+ cz) = Kf

for some real polynomial K(x, y, z) of degree at most one, which is called
the cofactor of f . If f(x, y, z) is Darboux polynomial and then the surface
f = 0 is invariant and it is called an invariant algebraic surface. We note
that if a solution of (1) has a point on an invariant algebraic surface, then
the whole solution is contained in it.

The second main theorem is the following.

Theorem 3. System (1) has no invariant algebraic curves.
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The proof of Theorem 3 is given in section 4. We have also included some
appendix with the results that we shall use to prove Theorems 1 and 2.

2. Proof of Theorem 1

The proof will be done using Lemma 6. Recall that the bifurcation co-
efficient is ā = (1 − bc)/b, and the eigenvalues are ±ic = ±i

√
1− c2 and

b.

The characteristic polynomial of the Jacobian matrix of system (1) at P
is

−λ3 +
λ2(1− b(a+ b+ c))

b
+ λ

(
−a(b+ c)− bc+

c

b

)
− b(ac+ 1) + c = 0.

Let λ(a) be a real root of the characteristic polynomial. It depends contin-
uously on a and we can write

(3)
dλ

da
(a) = − b(λ(a) + b)(λ(a) + c)

2λ(a)(b(a+ b+ c)− 1) + ab(b+ c) + 3bλ(a)2 + (b2 − 1) c
.

Let λ(ā) = ic. Taking a = ā in (3) we have

Re

(
dλ

da
(ā)

)
=

(c− c) (c− b)

2c(b− 2c)
̸= 0.

Thus, in order to apply Lemma 6 accordingly with the arguments in Section
5.1, we need to calculate

A =




c 0 1
0 −b 0
−1 0 −c


 ,

and the multilinear functionsB(x,y) = (x2y1,+x1y2, 2x1x2, 0) and C(x,y, z) =
(0, 0, 0). We also obtain the eigenvectors

p =

(
− i

c
, 0,

c− i

c

)
, q =

1

2
(−c− ic, 0, 1) .

In this case the first Liapunov coefficient (see (13))

l1 =
1

2ω
Re
(
−2p̄ ·B(q, A−1 ·B(q, q̄)) + p̄B(q̄, (2ωiIn −A)−1B(q, q))

)

is equal to

l1 = −(3b+ 4c)(b− 2c) + 8

8bc
(
b2 + 4c2

) .

So the theorem follows directly from Lemma 6.
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3. Proof of Theorem 2

We first do a reescaling of the system by doing (x, y, z) = ε(x̄, ȳ, z̄). Then
we do the linear change of coordinates

(x̄, ȳ, z̄) = (X,Z − cY − cZ) ,

obtaining the system

Ẋ =− cY + εX(Z)− ε2a2X,

Ẏ =cX − ε
cXZ

c
+ ε2

a2cX

c
,(4)

Ż =− bZ − εX2.

Then we consider the cylindrical coordinates X = r cos θ, Y = r sin θ, Z = z
in system (4) and we take θ as the new independent variable. In this way
we obtain a differential system of the form

(5) (r′, z′) = F0(r, z) + εF1(r, z, θ) + ε2F2(r, z, θ) +O(ε3),

where the prime denotes the derivative with respect to θ, and

F0(r, z) =

(
0,−bz

c

)
, Fi(r, z, θ) =

(
F 1
i (r, z, θ), F

2
i (r, z, θ)), i = 1, 2

with

F 1
1 (r, z, θ) = rz cos θ

(
cos θ

c
− c sin θ

c2

)
,

F 2
1 (r, z, θ) = − cos θ(bcz2 + c2r2)

cos θ

c3/2
− bcz2 sin θ,

F 1
2 (r, z, θ) =

r cos θ

c5

(
a2cc

3 sin θ + c2 cos θ
(
−a2c

2 + cz2 cos(2θ)
)

+
(
1− 2c2

)
cz2 sin θ cos2 θ

)
,

F 2
2 (r, z, θ) =

z cos θ

2c5

(
2a2bc

3 sin θ + bc2 cos θ
(
2a2c+ z2 cos(2θ)− z2

)

+ 2c cos3 θ
(
−c2r2 − bcz2

)
+ 2c sin θ cos2 θ

(
−c2r2 − 2bcz2

) )
.

Now we use (16) to obtain the following averaged functions of system (5):

g0(r, z) =
(
0,
(
1− e

2πb

c

)
z
)
, gi(r, z) = (g1

i (r, z),g
2
i (r, z)), i = 1, 2
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with

g1
1(r, z) =

(
1− e−

2πb

c

) rz((b+ c)(b− 2c) + 2)

2πb
(
b2 + 4c2

) ,

g2
1(r, z) =

(
e−

4πb

c − e−
2πb

c

) 1

2πbc2
(
b2 + 4c2

)
(
− c2r2

(
b2 + 2c2

)
e

2πb

c

− bz2
(
b2c+ 2cc2 + bc

) )
,

g1
2(r, z) = r

((
1− e−

2πb

c

) z((b+ c)(b− 2c) + 2)

b
(
b2 + 4c2

) − πa2
c

)
,

g2
2(r, z) =

e−
4πb

c

bc3
(
b2 + 4c2

)
(
e

2πb

c

(
bz
(
πa2bc

(
b2 + 4c2

)
− cz(b2c+ bc+ 2cc2)

)

+c3r2
(
b2 + 2c2

))
+ c3r2

(
−b2 + c2

)
e

4πb

c + bcz2
(
b2c+ (2c+ b)c2

) )
.

The function g0(z) vanishes on the the graph Z = {(r, 0) : r > 0}. Hence,
we apply Theorem 7 to system (5) with

∆α = 1− e
2πb

c ̸= 0.

Computing the bifurcation functions we get

f1(r) = 0,

f2(r) = −πa2r

c
+

r3

4b2c (b2 − 4c2 + 4)2

( (
4c
(
b2 + 2c2

) (
b2 − bc+ 2c2

)

−πb
(
b2 + 4c2

) (
3b2 − 2bc+ 8c2

))
− 4c

(
b2 + 2c2

)

e−
2πb

c

(
b2 − bc+ 2c2

) )
.

Let

r̄ = 2b
(
b2 + 4c2

)
e

πb

c

√
a2π

N

where

N = 4c
(
b2 − 2c2 + 2

)
((b+ c)(b− 2c) + 2)

(
e

2πb

c − 1
)
− πb

(
b2 − 4c2 + 4

)

((3b+ 4c)(b− 2c) + 8)e
2πb

c .

Note that if a2N > 0, then f2(r) = 0 has the positive solution r̄. Further-
more

f ′
2(r̄) =

2πa2
c

̸= 0,

and consequently, by Theorem 7(b), system (5) has a periodic solution bi-
furcating from the origin. The result follows going back through the changes
of coordinates.
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4. Proof of Theorem 3

Note that system (1) is invariant under the automorphism τ : R → R of
the form

τ(x) = −x, τ(y) = y, τ(z) = −z.

Moreover we have the following well-known proposition (for a proof see [7]).

Proposition 4. Let f = f(x, y, z) be an invariant algebraic surface of sys-

tem (1) with cofactor K. Then g = f · τ(f) is another invariant algebraic

surface of system (1) invariant by τ with cofactor K + τ(K).

We first prove Theorem 3 for invariant algebraic surfaces that are invariant
by τ . After that, we prove it for general invariant surfaces via Proposition
4. Hence, we shall first prove the following theorem.

Theorem 5. System (1) has no invariant algebraic surfaces that are invari-

ant by τ .

To prove Theorem 5 we recall that a polynomial g(X) with X ∈ R
n is said

to be weight homogeneous if there exists s = (s1, . . . , sn) ∈ N
n and m ∈ N

such that for all µ ∈ R \ {0}, g(µsX) = g(µs1x1, . . . , µ
snxn) = µmg(X),

where N the set of positive integers. We shall refer s to be the weight of g,
m the weight degree, X 7→ µsX the weight change of the variables.

Proof of Theorem 5. To prove Theorem 5 we do the change of variables and
the time-reversion

X = x, Y = y − a, Z = z, T = −t.

Then system (1) becomes

x′ = −z − xy,

y′ = −ã+ by + x2,

z′ = x+ cz,

(6)

where ã = 1− ab, the prime means derivative with respect the new time T
and we have renamed the new variables (X,Y, Z) again as (x, y, z).

Note that in order to prove Theorem 5 for system (1) it is sufficient to
prove it for system (6).

Now we do the change of variables

x = µ−1X, y = µ−1Y, z = Z, T = µτ.

Under this change of variables system (6) becomes

X ′ = −XY − µ2Z,

Y ′ = X2 + µbY − µ2ã,

Z ′ = X + µcZ,
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where the prime denotes the derivative of the variables with respect to τ .

Assume that f(x, y, z) is a Darboux polynomial of system (6) invariant by
τ with cofactorK(x, y, z). Without loss of generality we can assume that the
cofactor is invariant by τ (see Proposition 4) and so K(x, y, z) = k0 + k2y.
Set

F (X,Y, Z) = µℓf(µ−1X,µ−1Y, Z)

and

K(X,Y, Z) = µk(µ−1X,µ−1Y, Z),

where ℓ is the highest weight degree in the weight homogeneous components
of f in x, y and z with the weight (1, 1, 0). Assume that F =

∑m
i=0 µ

iFi

where Fi is a weight homogeneous polynomial in X,Y and Z with the weight
degree ℓ− i for i = 0, 1, . . . ,m and ℓ ≥ m. From the definition of a Darboux
polynomial we have

− (xy + µ2z)
m∑

i=0

µi∂Fi

∂x
+ (x2 + µby − µ2ã)

m∑

i=0

∂Fi

∂y

+ (x+ µcz)

m∑

i=0

µi∂Fi

∂z
= (k2y + µk0)

m∑

i=0

µiFi,

where we still use x, y, z instead of X,Y and Z. Equating the terms with µi

for i = 0, 1, . . . ,m+ 2 we get

L[F0] = k2yF0,

L[F1] = k2yF1 + k0F0 − by
∂F0

∂y
+ cz

∂F0

∂z
,

L[Fj ] = k2yFj + k0Fj−1 − by
∂Fj−1

∂y
− cz

∂Fj−1

∂z
+ z

∂Fj−2

∂x
+ ã

∂Fj−2

∂y
,

(7)

for j = 2, 3, . . . ,m + 2 where Fj = 0 for j > m and L is the linear partial
differential operator of the form

L = −xy
∂

∂x
+ x2

∂

∂y
+ x

∂

∂z
.

The system associated to the linear partial differential operator L is

x′ = −xy, y′ = x2, z′ = x.

This system has the general solutions

x2 + y2 = d1, z − arctan

(
x

y

)
= d2

where d1 and d2 are constants of integration. According to this, we do the
change of variables

(8) u = x2 + y2, v = z − arctan

(
y

x

)
, w = y,
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whose inverse transformation is

(9) x = ±
√

u− w2, z = v + arctan

(
y

±
√
u− w2

)
, y = w.

In the following for simplicity we only consider the case x =
√
u− w2,

z = v + arctan

(
y√

u−w2

)
and y = w. In this paper we always use the

notation f to denote a function f(x, y, z) written in the variables u, v, w.

Under the changes of variables (8) the first equation of (7) becomes the
following ordinary differential equation (for fixed u, v):

(u− w2)
dF 0

dw
= k2wF 0.

This equation has the general solution

F 0 = (u− w2)k2/2G0(u, v),

where G0 is an arbitrary smooth function in the variables u and v. So, using
(9) we obtain

F0(x, y, z) = F 0(u, v, w) = xk2/2G0

(
x2 + y2, z − arctan

(
y

x

))
.

In order that F0 be a weight homogeneous polynomial, we must have that
G0 can only depend on x2+y2, and so G0 a polynomial in u. Since F0 must
be a polynomial and also must be invariant by τ , we must have that k2/2 is

even, i.e., k2 = 4k̃2. Moreover, taking into account that the weight degrees
of u and v in x, y, z are 1, 1 and 0, respectively. But F 0 does not depend on
v, we get that F0 should have weight degree ℓ = 2n. So, ℓ is even and

(10) F0 = α0x
2k̃2(x2 + y2)n−k̃2 , where α0 ∈ R \ {0}.

Now we compute F1. It follows from (7) that

L[F1] = 4k̃2yF1 + k0F0 − by
∂F0

∂y
− cz

∂F0

∂z

= 4k̃2yF1 + α0x
2k̃2(x2 + y2)n−k̃2−1(k0(x

2 + y2)− 2b(k̃2 − n)y2).

Using the transformations (8) and (9) and working in a similar way to solve
F 0, we get the following ordinary differential equation when u and v are
fixed:

(u− w2)
dF 1

dw
= 2k̃2wF 1 + α0u

n−k̃2−1(u− w2)k̃2(k0u− 2b(k̃2 − n)w2).

Solving this linear differential equation we get

F 1 = (u− w2)k̃2G1(u, v) + α0(u− w2)k̃2un−k̃2−1

(
(2b(n− k̃2)w

− (k0 − 2b(n− k̃2))
√
u arctan

( w√
u

))
,
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where G1 is a smooth function in the variables u, v. Hence,

F1 = α1x
2k̃2G1

(
x2 + y2, z − arctan

(y
x

))
+ α0x

2k̃2(x2 + y2)n−k̃2−1

×
(
2b(k̃2 − n)y − (k0 − 2b(n− k̃2))

√
x2 + y2 arctan

( y√
x2 + y2

))
.

In order that F1 be a weight homogeneous polynomial of weight degree 2n−1
we must have G1 = 0 and k0 = 2b(n− k̃2). Doing that we have

(11) F1 = 2bα0(k2 − n)x2k̃2(x2 + y2)n−k̃2−1y.

Now substituting F0 and F1 given in (10) and (11) into equation (7) we get

L[F2] = 2k̃2yF2 − 2α0x
2k̃2−1(x2 + y2)n−k̃2−2

(
(k̃2 − n)xy((ã− b2

− 2b2(k̃2 − n))x2 + (ã+ b2)y2)− (x2 + y2)(nx2 + k̃2y
2)z
)
.

Using the transformations (8) and (9) and working in a similar way to solve
F 1, we get the following ordinary differential equation when u and v are
fixed:

(u− w2)
dF 2

dw
= 2k̃2wF 2 + 2α0u

n−k̃2−2(u− w2)k̃2−1/2

(
b2(k̃2 − n)w

√
u− w2

(
(ã+ b2)w2 + (ã− b2 − 2b2(k̃2 − n))(u− w2)

)

− u(nu+ (k̃2 − n)w2)
(
v + arctan

( w√
u− w2

)))
.

Solving this linear differential equation we get

F 2 = (u− w2)k̃2G2(u, v)− α0u
n−k2−2(u− w2)k̃2

(
2
(
(k2 − n)uv

− k2uw√
u− w2

)
arctan

( w√
u− w2

)
+ (k̃2 − n)u arctan

( w√
u− w2

)2

+ 2
(
− b2(k̃2 + k̃22 − 2k̃2n+ n(n− 1))w2 − k̃2uvw√

u− w2

)

− 1

2

(
(1 + ã+ b2)k̃2 − (ã+ b2)n

)
u log(w2 − u)

)
.

Hence

F2 = α2x
2k̃2(x2 + y2)n−k̃2−1 − α0x

2k̃2−1(x2 + y2)n−k̃2−2

(
x(x2 + y2)(k̃2 − n)

arctan
y

x

(
2z + arctan

y

x

)
+ 2b2(k̃2 + k̃22 − 2k̃2n+ n(n− 1))y2x

+ x(x2 + y2)(k̃2 + (ã+ b2)(k̃2 − n))(iπ + 2 log x) + 2k̃2y(x
2 + y2)z

)
.

Taking into account that F2 must be a weight-homogeneous polynomial of
degree 2n− 2 and that α0 ̸= 0 we must have that

k̃2 − n = 0 and k̃2 + (ã+ b2)(k̃2 − n) = 0,
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but this implies k̃2 = n = 0 which is not possible because then F0 would be a
constant, implying that the invariant algebraic surface would be a constant.
This concludes the proof of the theorem. �

Proof of Theorem 3. In view of Theorem 5 if f is an invariant algebraic
surface of system (1) then it cannot be invariant by τ . So, let f be an
invariant algebraic surface of system (1) which is not invariant by τ . In
view of Proposition 4, we get that g = f · τ(f) is an invariant algebraic
surface invariant by τ , in contradiction with Theorem 5. So, Theorem 3 is
proved. �

5. Appendix

5.1. Lyapunov coefficients. In this subsection, we present some basic no-
tions about Hopf bifurcations and Lyapunov coefficients. The theory of
Lyapunov coefficients can be found in [6, Chapters 3 and 10].

Consider the differential equation

(12) x′ = f(x,µ)

where x ∈ R
n and µ ∈ R

m are, respectively, vectors representing phase
variables and control parameters.

A Hopf point (x0,µ0) is an equilibrium point of (12) where the Jacobian
matrix A = fx(x0,µ0) has a pair of purely imaginary eigenvalues λ±(µ0) =
±iω, ω > 0 and admits no other eigenvalues with zero real part.

Denoting the variable x− x0 also by x we write

F (x) = f(x,µ0)

as

F (x) = Ax+
1

2
B(x,x) +

1

6
C(x,x,x) +O(||x||4)

where A = fx(0,µ0),

Bi(x,y) =

n∑

j,k=1

∂2Fi(ξ)

∂ξj∂ξk

∣∣∣∣∣
ξ=0

xjyk

and

Ci(x,y, z) =

n∑

j,k,l=1

∂3Fi(ξ)

∂ξj∂ξk∂ξl

∣∣∣∣∣
ξ=0

xjykzl.

Let p, q ∈ C
n be vectors such that

Aq = iωq, A⊺p = −iωp, q̄.q = p̄.q = 1,
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where A⊺ is the transposed of the matrix A. We define the first Lyapunov

coefficient as

l1 =
1

2ω
Re
(
p̄ · C(q, q, q̄)− 2p̄ ·B(q, A−1 ·B(q, q̄))

+ p̄B(q̄, (2ωiIn −A)−1B(q, q))
)
,

(13)

where In is the n× n identity matrix.

We have the following lemma from [6].

Lemma 6. Consider the differential system (12) having the Hopf point

(x0,µ0) and assume that l1 ̸= 0 and Re

(
dλ±

dµ

∣∣∣
µ=µ0

)
̸= 0. Then the fol-

lowing statements hold:

(i) If l1 > 0, the differential system (12) has a supercritical Hopf bifur-

cation at x0.

(ii) If l1 < 0, the differential system (12) has a subcritical Hopf bifurca-

tion at x0.

5.2. Averaging theory. In this subsection we present recent results in
averaging theory. For a general introduction to the averaging theory see the
book of Sanders, Verhulst and Murdock [9].

We consider differential systems of the form

(14) ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x) + ε3F̃(t,x, ε),

with x in some open subset Ω of Rn, t ∈ [0,∞), ε ∈ [−ε0, ε0]. We assume

Fi and F̃ for i = 1, 2 are T–periodic in the variable t. Let x(t, z, 0) be the
solution of the unperturbed system

ẋ = F0(t,x),

such that x(0, z, 0) = z. We define M(t, z) the fundamental matrix of the
linear differential system

ẏ =
∂F0(t,x(t, z, 0))

∂x
y,

such that M(0, z) is the identity. The displacement map of system (14) is
defined as

(15) d(z, ε) = x(T, z, ε)− z.

In order to have d(z, ε) well defined we assume that for |ε| ̸= 0 sufficiently
small

(H) there exists an open set U ⊂ Ω such that for all z ∈ U the unique
solution x(t, z, ε) is defined on the interval [0, t(z,ε)) with t(z,ε) > T .
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The standard method of averaging for finding periodic solutions consists in
writing the displacement map (15) as a power series of ε in the following
way

d(z, ε) = g0(z) + εg1(z) + ε2g2(z) + ε3g̃(z, ε),

where, for i = 0, 1, 2, we have

gi(z) = M(T, z)−1yi(T, z)

i!
,

being

y0(t, z) =x(t, z, 0)− z,

y1(t, z) =M(t, z)

∫ t

0
M(τ, z)−1F1(τ,x(τ, z, 0))dτ,

y2(t, z) =M(t, z)

∫ t

0
M(τ, z)−1

[
2F2(τ,x(τ, z, 0))

+ 2
∂F1

∂x
(τ,x(τ,x, 0))y1(τ, z) +

∂2F0

∂x2
(τ,x(τ, z, 0))y1(τ, z)

2

]
dτ.(16)

Let π : Rm × R
n−m → R

m and π⊥ : Rm × R
n−m → R

n−m denote the
projections onto the first m and n−m coordinates, respectively. For a point
z ∈ U we also consider z = (a, b) ∈ R

m × R
n−m. Take the graph

(17) Z = {zα = (α, β(α)) : α ∈ V } ⊂ U

such that m < n, V is an open set of Rm and β : V → R
n−m is a C

2 function.

The next theorem provides sufficient conditions for the existence of peri-
odic solutions in the differential system (14).

Theorem 7 ([3, Theorem 1]). In addition to hypothesis (H) assume that

(i) the averaged function g0 vanishes on the graph (17), that is, g0(zα) =
0 for all α ∈ V , and

(ii) the Jacobian matrix

Dg0(zα) =

(
Λα Γα

Bα ∆α

)

where

Λα = Daπg0(zα), Γα = Dbπg0(zα),

Bα = Daπ
⊥g0(zα), ∆α = Dbπ

⊥g0(zα).

satisfies that det(∆α) ̸= 0 for all α ∈ V .
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We define the functions

f1(α) =− Γα∆
−1
α π⊥g1(zα) + πg1(zα),

f2(α) =
1

2
Γαγ2(α) +

1

2

∂2πg0
∂b2

(zα)γ1(α)
2 +

∂πg1
∂b

(zα)γ1(α) + πg2(zα),

γ1(α) =−∆−1
α π⊥g1(zα),

γ2(α) =−∆−1
α

(
∂2π⊥g0
∂b2

(zα)γ1(α)
2 + 2

∂π⊥g1
∂b

(zα)γ1(α) + 2π⊥g2(α)

)
.

Then the following statements hold.

(a) If there exists α∗ ∈ V such that f1(α
∗) = 0 and det (Df1(α

∗)) ̸= 0,
for |ε| ̸= 0 sufficiently small, then there is an initial condition z(ε) ∈
U such that z(0) = zα∗ and the solution x(t, z(ε), ε) of system (14)
is T -periodic.

(b) Assume that f1 ≡ 0. If there exists α∗ ∈ V such that f2(α
∗) = 0

and det (Df2(α
∗)) ̸= 0, then for |ε| ̸= 0 sufficiently small, there is

an initial condition z(ε) ∈ U such that z(0) = zα∗ and the solution

x(t, z(ε), ε) of system (14) is T -periodic.
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