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ABS3STRACT

A complete set of independent gauge invariant and
Lorentz covariant tensors which carry the maximal amount of
kinematics and which are either even or odd under the dis-
crete symmetries and crossing is given for virtual photon
scattering off polarized nucleons. The remaining kinematics
is explicitly shown in the amplitudes. A great variety of
different processes of physical interest may be described
with this set by taking the adequate limits. The possible

connections among these different limits are now open.
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It is our purpose %o undertake and, hopefully, solve a problem
which is by now "eclassical” and which has been many times a "preliminary
exercise" to the dispersive ireatment of Compton scattering on polarized
3), Meyer 4)].

This approach requires analyticity of the amplitudes in certain regions of

nuclecns Iéee, .., Prange ! , Hearn and Leader 2 y Gourdin

the complex plane of the variable for which the relation is written. But
analyticity i1s an assumption on the dynamics, the amplitudes for which it

is postulated should therefore be free from kinematical zeros, constraints
and singularities. Our interest points into a different direction, but it
also requires a clean separation of kinematics and dynamies : it is related
to the connections which exist between real photon processes (Compton
scattering) and virtual forward photon processes (whose absorptive parts

are given by deep inelastic electron scattering) on nucleons due to the

fact that both are limits of the same general process of virtual Compton
scattering on polarized nucleons and that they have both again a common
limit.ifor spin averaged nucleons, see SI]. The commutativity of these
limits depends essentially on the analytic structure of the amplitudes and

we arrive thus %o the same requirement cf knowing how to write the tensor
for virtual Compfton scattering on polarized nucleons in terms of a basis
which exhibits all the kinematics. Purthermore, different limits of this
tensor are responsible for a great variety of interactions invelving leptons,
photons and nucleons, as the two-photon contribution to lepton-nucleon scat-
tering, the same but for the bound sysienm [@hich is by now the most important
missing contribution to the hyperfine splitting of the hydrcgene atom, see,

€.8.5 6)], the Bethe-Heitler scattering, etc.

To our knowled§e, the closest approach to this problem has been

*
glven by Perrottet 7):8), .

He gives a basis of gauge-invariant tensors,

but which exhibit poles in the masses of the two photons, introduced preci-
sely by the gauge projectors. Due to these unphysical poles, the amplitudes
have kinematical zeros and constraints and as a consequence the real photon
1imit cannot be taken without explicitly finding these kinematical zeros

and constraints. It is cur aim to solve this problem by directly constructing
a basis of gauge-invariani teasors, free from poles and minimel. The conse-
quence of not having poles is that the amplitudes are free from kinematical

zeros and constraints. That the basis is minimal means that any other pole

R A o e Y e R el e e i L bl e e L Y S et ek e o . Y e = e e e o

The author thanks E. de Rafael for calling his attention to these refe-

rences and to M.C. Perroitet for sending him a copy of his thesis.
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free basis may be obtained from this one in such a way that none of the
elements of the matrix which transforms the minimal basis into the other
cne has a pele in any of the invariants. This ensures that the amplitudes

are free from kinematical singularities.

Let us denote by k and p (k! and p’) the four-momenta of
the incoming (outgoing) photon and nucleon and by n and = (n' and o)

the corresponding spin indices, and let us define

P = 2 F
K z
_ ks k
H = 5 (1)

and

”

MUy ] T,y (4K, 8] i) €1k T) (28 5P ek p k)

= <Npy'l /{A‘,’,ﬂ’)/ T1ythml ¥ipy)) (2)

AY) *
where ¢ (k,m) (¢ ®(k',m')) is the polarization vector of the incoming
(outgoing)} photon and u(p,m) {(i(p',n')) is the four-spinor of the incoming
(outgoing) nucleon. Our =zim is to expand Tv“(k,k',P) in terms of a complete

v
set of independent tensors, Ti“(k,k',P),

TPk P) = S TP, 8) A (R K08 2K) )

in such a way that each one is Lorentz covariant and gauge invariant by itself,
even or odd under the discrete symmetries and crossing and carries all the ki-
nematics (which means that the basis is minimal and pole free). As a consequence

2

the invariant amplitudes Ai(kz,k' yk+k',P*E} are not related to each other by

the discrete symmetries and crossing but satisfy certain symmetry conditions in
terms of the four independent invariants ka, k'z, kek'y PK and are free from

all kirematical zeros, constraints and singularities.
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Tet us first state the discrete symmetries and the crossing rela-

tions. Parity conservation implies

T”ﬂ{k,k!,f}‘ ) Tyﬁ{kt"ltfrjﬁ (4)

*
where kMTz kM, yoy”yo = ¥*" and " means complex adjoint ). Time reversal

plus parity gives

»T -
Tuﬂ{k;&{'f/ :'Z+ Tﬂ {’r’:k;[/f . (5)

where ‘z+yuz = y”‘T and T means transposed. TFhoton crossing gives

— v >t L ‘_ |
I ﬂ(k:k.f!j' ZIO T /"i A’,f}/"z . (6)

and finally nucleon crossing plus charge conjugation implies

Ttk 2) = po C T' (&, k,~L] "y (1)

where CyﬁC+=:—y“T. The hermiticity of the electromagnetic current has been
used in order tc obtain this last condition, which incidéntélly (althbugh
expected on physical grounds) does not give anything whiéh had not already
been given by the other three. There is still another kind of restrictions,

due to positivity, for the abgsorptive part of the tensor. These have been

extensively studied by De Rujula and de Rafael 9).

We start by writing down all the tensors which satisfy (4), are
XK
either even or odd under (5) and (6), form a system of generators , are

pole free and minimal in the sense described above. This, one may do with
four independent veciors, e.g., kM, ktH, P* and ¥ (but not with
%y 1P instead of ome of those) giving (indices wu) will be under-

o B6

stood always for all fensors from now on).
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% - _
) Our metric is g00:=+1, gll=:-1, 1=1,2,3 and our Dirac matrices satisfy

0123
€

= =T,

v : abwd N
v y“+~y v =2g". PFurther y5==-(1/4£) g Yo¥pYyYs With

¥*
) Ihis means that any other tensor may be written in terms of these ones.

They do not form & basis as they do not need to be independent. The

author acknowledges clarifying comments by R. Stora on this and other points.
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where k::Kuy' and use has been made of the Dirac equation in eliminating

£ and P! as the tensors have to be understood always between the four
spinors of the nuclecns. It is clear that two of these 34 tensors have to

be dependent on the other ones, as with four vectors and one scalar matrix
one can construct only 32 independent tensors, the superfluous twe coming
from the non-commutativity of the +y matrices. The choice of the two
tensors to be eliminated in a way that it transforms the system of generators
intco a minimal basis has created certain difficulties for a time [éee
Perrottet 7)’8) and references therein for details and the solutioé]. The
relations between the tensors are given in these last references and has been _
checked by the author [@n view of discrepancies between different papers, see

again Perrottet 7 ’8.]. They will be reproduced here for completeness in
terme of our tensors ané our invariants



2(T, - Ty) - th~ ¥ Ty *Zf‘ﬁfas'Zs/”Z”Z?}

¢, gt
-2HEH 7;3 L /’,72 k.*- = A?fLé' } 7;9 = 0 (9)

and

T-T)e 2 (kb k) (7] - X 70 7)
-nfr-wwr-;’-/m"*m//m T -1 B
2K Ty *"*'l/ To- Ty ) =L (¥ d-tak) (T v ) U°
~[(eK]+ ;} (KK~ k)] Ty r Lol =0

4

which show immediately that.only T17, T19 or T,. can be eliminated due

28
to (9) and or due to (10) There is one convenient ‘choice, the

12 13
reasons will be glven later, and this is to ellmlnate ' and T This

ensures freedom from kinematics up to this stage, There1zs one symmetry
condition left : gauge invariance. It is well known that gauge invariance,
l.2., vav ==k'“TV =0, gives constraints on the amplitudes. The only way
to avoid this is to have a basis of gauge invariant tensors. The method of
how to construct this gauge invariant basis, pole free and minimai, or
equivalently, how to introduce gauge invariance without spoiling the freedom
from kinematical singularities, zeros and constrainis of the invariant

amplitudes was given by Bardeen and Tung 10)

for real photon processes. It
may be extended to virtual photon processes which we are interested in and

the essenitial steps are the following ones.

a) Act with a gauge projector on both indices of each of the 32 tensors

which form a pole free, minimal basis,

. v o) -l
L Cw% a4 : |
/c'yﬂ: /?”— ﬁ’_//?”‘_ '-ﬁ-/r'/ 7;7’; LERARCHETS

leaving thus 18 independent, gauge invariant tensors which exhibit

gingle and double poles in k-k'f.,

b) FEliminate as many single and double péles as poSsible by.simply adding
to each tensor %:u linear combinations of the other ones with coef-
ficients which should not have poles., This leaves us with three pole
free tensors, 10 with only single poles and 5 with both single and

double poles.
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c) Muitiply the 5 tenscrs with essential but unphysical double poles in
k+k' by k'k' and apply again the procedure of b). 10 tensors with

essential single poles in k.k!' are left.

d) Multiply these 10 tensors by k.-k'.

The sc~obtained basis of gauge invariant tensors is expected to be

minimal and pole free by construction and is the fellowing one :

T kT -T,
7" r 7
7'-&1,"7 WS AR AL
z 2 z §
3__-{:-;(/7;4-& ( - N T, r o
2 d AL
7“-1.#/;*”'/ en T - BT ;T

s LK (E 4"’/: »f/fT 47T,
— 2 f‘ T g4t
72.—_[./{/2_1”&7;__{;_‘1'7;0.. 7’;,,/7
2
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Tos VT -98K 7 + k' Ty,

--;
Wy

(12)



A fundamental gquestion arises now. We have assumed, up %0 now,
that this minimal basis exists, but this is a fact which has to be proved *)f
As no general proof of this is known to u® and as in any case the most subtle
point of the procedure we have used to construct the svidently gauge invariant
and pole free basis (12) is that it is also minimal, we have to check this
explicitly. ZLet us only sketch the method. We would like to prove that
given any transformstion mairix tc another gauge invariant and pole free
basis, none ¢f its elements can have a pole., As an example, let us show it
fer all the elements of the first column. These elements multiply Ty but

T is the only element of the basis which carries S0 that a pole in the

Tss
flrst coiumn would appear necessarily as such attacheg to TE in the new
basis, which would then not be pole free, contrary to our assumption. An
extension of this method gives the following result * the basis (12) is not
minimal, there exists essentially three gauge invariant, pole free tensors
which can be obtained Irom our basis only with factors which carry a single

pole in k«k!

(A [z(z-n’}zr C 2R T - BH WY Ty - 2 EHY T -

2(PKITT, » 2K T, - N)’/# )Ty - LKE(V-KY T,

[

T gew [ /f-fr"/ To = 208k Ty » 1K 5] -
=2 (44 7; ~2PK Ty ¢ M/%—é”/ Ty * wm" To ~H LK

¢ n ﬂ

re

3

¥ o~ - (13)
7;1 . ‘MM [/4'( 4” /10 -Z/"'Ihil//ﬁ r LN /ﬂ/:

:—Z{kl.,.l,'}T fo}f /[r 'I-‘, ZI */‘i’/f 41? ZZ ZM!A, 23
4

k:_ 4" /r(*F? *?*_ *,g
P Ty LA L, A % Ty

The meaning of. these three relations is the following : as long
a8 we do not go to the point k-k' =0 the set of gauge invariant tenscrs (12)
forms a basis, although not a minimal one as there are three gauge invariant
tensors (13) whose amplitudes, once written in terms of the basis (12), show,
*) The author is very grateful to R. Stora who raised this most important
point and who sent him a counter-example {o the alleged "minimality" of

the basis (12).
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although explicitly and in a known manner, singularities in k.k'., At the
point k+k'=0, (12) is no longer a basis, as there are now three relations
(13) between the tensors of this basis but the tensors Tygr Tpy @nd T,

are then independent, so that a new basis may easily be consiructed. In
cases of physical interest, when k+k'=0 is reached through forward (k=1Xk')
real (k2==k12==o) scattering, this problem does not arise, as we will see

later on.

We are now compelled to ask & final quastion. Could it be that
a minimal basis exists but that Bardeen and Tung's procedure for cbtairning
it does not work in this case for unclear reasons ¢ It is not so and let
us explain it for the spin-independent tensors Ty to g and T1g (which
correspond to virtual pion Compton scattering). A minimal basis will have,
from gauge invariance, one tensor with energy dimensions 2 (which has to be
71) and four with energy dimensions 4, which therefore have to be related
to T to T through numerical coefficients, so that if one basis is minimal
so would be the other, contrary tc the facts. We have to conclude that for

the general case of virtual Compton scattering on polsrized nucleons, there

does not exist a basis of gauge invariant tensors which carry all the kinematics.

We have succeeded in‘showing explicitly all the kinematics, which
is contained in the 21 tensors of (12) and (13), we have failed, because of it
belng impossible, ¥0 put all the kinematics in a tensoriazl basis, having thus
amplitudes free from kinematies., We know, nevertheless, which is the analytic
structure of the amplitudes coming from the kinematiczl requirements, as it is
contained completely in (13). We therefore propose (12) as a basis which
carries the maximal amcunt of kinematics and show explicitly the analytic
structure of the amplitudes which still carry kinematics and which corres-

pond‘tO'the tensors

72,3,4,5,10,14,15,16
/- 22K / L it i
Az fq P ’ “";':l_,-' ﬁf, A 10 = ﬂm * m Am ’ yé. ‘/ Aﬂ
TS R TV £ 4"
/93 z /]-3 t Z W Aﬂ /9” - A;y 2k’ Azp - 2}71' 2

> D>
f t
S
I i
Y
X X
Ay 1 A {30
SRR
S
SR
>
-+ +
o Yl o )
-|=‘c"==a
&

(14)
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The amplitudes Ai’ 1=13400921 are now free from kinématics, conjectures
on dynsmics shonuld be formulated on them, any kind of limits of physical
interest may be taken in a straightforward way in (12), (13) and (14)_.
Before studying these limits let us state the symmetry structure of the

invariant amplitudes and their Born contributions.

rime reversal and crossing give, respectively,
BABK K, LK) = A (458 by LK) = A7 K 44, - 1Y)

A (KK LK) A, Yo Hr,l/r}-- /M"/m -M/
Ay (k] K kk, PH)= = A (K, K hE L] - A,/t,&" u’ —f/r/

Ay (K] 4"&1’1‘/{/-%,,/1”/.« 2 .//f/- -A,, //, /,"u -24)

(15

for 1=1,2,3,8,10,18,19,21 5 j=4,6,7,12,16,17 ;",¢=9',1-1,14,2'0 H m=.'5,‘13y15°

It is very useful to have the Born coritribﬁtio_‘né to fhe am;;litudes
in our basis. These are originated by the nucleon intermediéte' stétés iﬁ the
s and u chamnel and by the pion (and similarly the n meso_n) Jintermediate
state in the % channel. The residues at the poiés may then immediately be

obtained, With the following definition for the Borm terms -

T, 't p) -
[6("11‘;}’#* #{ S b!‘//lﬂ’{ %/,/]bk ?J[)f[ﬁ/kjl f /‘7/]% X/v]
HRW P -y B0 (K- Rp)] Fag u’ ZM [””/"*f”‘"f/’*' {/’7}
“’M%V__M A }6“"’”’3&;-4/{#-'. : "

AVLEP TN Y M
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where |, is the anomalous magnetic moment of the nuclecn and
5/0/3 5 /0} = 7 ;F/V et 4 S 3 for protons
5/0/: 0 f;}ﬂ’/-‘ f /I’W = "ff,s- for neutrons

(17)
11y 19,0 = - 0037

The regult is
T A ] - ; /F/r‘/f///‘//fr e 7]
8- "RNEETon [k 4leK) ) 1 5 * 7w

FE LA BUD BRI RO 7, 1 2 (BRI KU £06) 7,1

&1 hrr i W//[ﬁ’”’”f”ﬂ/ PR G ] GELYT
I B A AR ALY,
Tl i 55 7
- #5/&'/5/4’*/[-3’/7‘7; r 8T - PN T+ ’/};//
LT s R A
- dor gy 4 /:W"»jé-ﬁ-u; (9% = Tl "

.qﬂgﬂ

where use has been made of (9) and (10), showing again the correciness of

these two relations. It is clear from (18) that the amplitudes A
1=2,5,9,11,12,13,15,19,20,21 do not have a contribution coming from the
Born terms Eme has to look also at (13) to ensure this for the last three
ampli‘tudes:]- and the remaining ones show, apart from the typical Born factors,
coefficients which do not depend on the invariants (only on the nucleon mass

M) which is an additional check for their alleged freedom from kinematics.
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Let us stress here that Sthe procedure which led us to our basis
{(12) is not unigue. One could have taken different gauge projectors in a)
and different linear combinaticns in b) giving thus a different basis but
which, as is now clear, could be written as linear combinations of our 21

tensors T4 with pole free factors.

Tet us now comment on some particular cases of interest, whose
corresponding tensors are easily obtained taking the adequate limit in {12},
(13) and (14). It is important to know how many tensors actually contribute
to the physical processes, which means after contracting with the pelariza-
tion vector of the two (real or viritual) photons. Due tc the crthogonality
of a polarization vector o the ccrresponding four-momentum vector, this
limit corresponds just to eliminate from our original system of gensrators
(8) the elements T., i= 2,4,5,9,10,12,14,15,19,20,23,24,29,30. It turns
out that after doing this the 18 final gauge invariant tensors Ty 1=Tyaae,y18;
of (12) are still all independent. We will call this the physical limit. At
as dependent

this point the reason for not having chosen either T or

12 T19
tensors becomes clear. They do not contribute to the physical process and in
writing the physiczl tensor we would have had to use again relations (9) and
(10) (now only for the physical tensors) %o ensure independence, losing thus
the beautiful feature of (12) that it gives 31l limits taking into account
only (13) and (14) but no longer (9) and (10).

Another case of interest is k2=IK'2. This eliminates, due to
the symmetry requirements (15), the amplitudes 4, 1=5,9,11,13,14,15,20,
leaving in general 12 independent temscors which remain independent in the

physical limit. Taking now k2==k’2::0 there are still 12 genersl. indepen-

*)

dent tensors, but only six of them are physical s 88 it is well ¥mown. It
is easy to see, using again {9) and (10), that they are eguivalent to Bardeen
and Tung's 10). Incidentally this last case {(physical limit of k2::k'2=:0)

is the most general for which the remeining asmplitudes .are completely free

from kinematics {only Aé and A%6 still carry kinematics, but their cor-

responding tensors zre non»physical).

*) ———————————————
This does not agree with the resulis of Ref. 8). When cne or two photons

are real our counting of physical amplitudes agrees with his, although

" o [ L . TS WL | fw dadam marm e s wTe s aenld & cwan



3 Ailq, ka; p3.ps) = As(q, ka; p3. pa)

(p1k2) i (p2ps)® + (p2ps)® _ 2M?® + ¢* | (p2ps) _ _{pap4) :
(P1p2) (t— M%) (u— M?) k2 t-M?* u-M? ’

+ 8g2g%e}

(A.12)
where t = (g — p4)?, u = (g — p3)* are the usual Mandelstam invariants. We refer to
Appendix A of Ref. [7] for the high-energy approximation of the phase space (A.8).

The factorization formula {A.7) and the explicit results (A.9), (A.11), {A.12) can
be used for detailed theoretical (e.g. along the lines of Ref. [7]) and phenomenological
analyses as well as implemented in Monte Carlo event generators [15.

In this paper we limit ourselves to present a simple application, namely the analytic
evaluation of the perturbative contributions to the lepto-production cross section. In-
serting into eq. (A.7) the perturbative expansion of the gluon structure function F and
defining

0'3'(,0-, Qz/Mg;lw()/Qé) = Ui,Bom(ps Qz/M2)+ai.1—loop(ps Q2/M2,M2/Q§)+O(Of3) ) (A13)

the Born level and 1-loop contribution are respectively given by

4M20'5,Bom(p1 QZ/Mz) = &1(p’q/M1O) ’ (A14)
Q* M a, fLdz |. q M?
4!\/[ Ti1-loop (p, J\/f"’ Q2 = C‘A?/’; ? a, (.:‘:., JVI ) ln—Q—;-
d2k2 - q k'z " q (A15)
+ [ [°= (’""ATH ~6:(23p9)

= aal [Gp. Q*/4M*)In M? QG + ci(p, Q*/4M?)] .

By using the matrix elements (A.11), (A.12) and performing the QQ phase space inte-
gration in eq. (A.9), we find the explicit form

AM? 73 80m(p, Q*/M?) = &2(p,q/M, 0)

. 1 Q?
=2waeéas@(;—l—4M2

)9/3’{[(1 nle— %pz)ﬁ(ﬁ') -1 —P] (A.16)

HB 49— (24 39)L(8N] 2L 4 (54 2£(3") (:ﬁg) } ,
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4M2[O'1,30m(,0, QZ/MZ) - UZ‘.Born(pa Qz/Mz)] =

21 A.17)
— 2 1, Q’ 2"Qi "y —2 P’ (
_waeQas(ﬂ(p 1 e pﬁj\/ﬂ pL(3) "+2fv12 .
where
o\ —1
g Jl—p(l _ fﬁz) 1 (A.18)

and L£(3) is the bremsstrahlung function in eq. {2.4). The result in egs. (A.16), (A.17)
agrees with previous calculations [5].

We should recall that the formula (A.15) does not give the exact one loop result.
It contains only the one loop contribution increasing with the energy and, eventually,
giving a constant factor at high energies. Other one loop effects, like Coulomb and
bremsstrahlung contributions relevant near threshold (and, so far, computed only for
the photo- and hadro-production cases [1-3,16]), are not included. We have analytically
evaluated the constant term at high energy (p — 0) and we find

2
H5a 13 46"5 1 (A-19)
ex(0,0) = 30uh [+ (§ ~ 135) 7@+ (1= 32) 1]
00 = x0,0) - Sy [ 21— (14 2) el
¢1(0,a) = ¢2(0,a) 3CAeQ T+ a [2a+ (1-}—4& J(a)| ,
4 1 1 1 1 3
a(0,0) = ca(0,a) = 3Cach 1= 2 = 3 + (40— 5. ) S = (1+ o) 1)
(A.20)
where
J(a L pYitatye
Ja(l+a) VIi+ta—Va
2
I(a) = 1 [_”_ _Le _—W (A.21)
a(l+a) 6 2 l+a—+a
s V1+a—/a fVI+a—+/a
+ 1 + 2L, ,
21+ a 2vV1+a
and Lig 1s the dilogarithm function
Liy(z) = —f”—" In(1 — z) . (A.22)
0z
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Eqs. (A.19) and (A.20) generalize the known results for photoproduction (1] taking
into account the photon offshellness. In particular we have

28 2 2 2
) 20 4e5 (Q° K M*)
0,Q¥4M* )y~ 877790
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Let us make a final comment on a point which has been discussed at length in this
Workshop. We refer to the question of the choice of the evolution scale for the gluon
structure function in heavy flavour production. Obviously, this problem cannot properly
be addressed at the Born level, i.e. before higher order corrections have been evaluated.
The k. -factorization formula (A.7) contains most of the higher order contributions. [t
turns out that the hard cross sections &, in eq. (A.7) have a kj-shape which is almost
constant for ki<max(Q?, M?) and then drops off rapidly (see Ref. [7] for a more detailed
discussion). It follows that the ks-integration of the unintegrated parton distribution
F(22,ke; Q3) in eq. (A.7) will lead to the gluon structure function G(z;, u?; Q2) evaluated
at the scale u? ~ Q? + M?. A different scale choice, like for instance p® ~ 3 (§ = (q+ k,)?
being the centre of mass energy of the hard subprocess) overestimates scaling violations
in the gluon density.
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure &:

Figure 9:

The heavy flavour photo-production process.

Heavy flavour photo-production at high-energy: (a) factorized structure of
the cross section in the Regge limit and (b) hard vertex cross section contri-
bution.

The hard vertex function An(+) for small values of N.

The k, -shape of the (normalized) N = 0-moment &n-o(k®/M?)/6n=0(0) of
the heavy flavour hard vertex.

The one-loop coefficient function for bottom quark production (M = 5 GeV,
A = 260 MeV).

Resummed (C) and one-loop (C1) coefficient functions for bottom quark
production in the small-p region (M =5 GeV, A = 260 MeV).

Resummed coefficient function C'!) for bottom quark production (M = 5
GeV, A = 260 MeV) after performing the matching with the one-loop result
c, |

The neutral current g contribution to heavy flavour lepto-production.

Born diagrams with off-shell incoming lines for hevy flavour lepto-production.
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