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performs better than the already classical balanced truncation method
even when its static matrix gain is optimized, procedure which involves
greater computational efforts. Our method performs particularly well
when approximations of large scale flexible structures are considered
and we believe that it is a real alternative to determine reduced order
models of this important class of linear time invariant systems.
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Invariant Approximations of the Minimal Robust
Positively Invariant Set

S. V. Raković, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne

Abstract—This note provides results on approximating the minimal ro-
bust positively invariant (mRPI) set (also known as the 0-reachable set) of
an asymptotically stable discrete-time linear time-invariant system. It is as-
sumed that the disturbance is bounded, persistent and acts additively on the
state and that the constraints on the disturbance are polyhedral. Results are
given that allow for the computation of a robust positively invariant, outer
approximation of the mRPI set. Conditions are also given that allow one to
a priori specify the accuracy of this approximation.

Index Terms—Invariant approximations, linear systems, robust control,
set invariance.

I. INTRODUCTION

Set invariance plays a fundamental role in control [1]. The focus of
this note is on the minimal robust positively invariant (mRPI) set, also
often referred to as the 0-reachable set [2], i.e., the set of states that
can be reached from the origin under a bounded state disturbance. The
mRPI set is important for performance analysis and synthesis of con-
trollers for uncertain systems [1, Secs. 6.4-6.5] and for computing the
maximal robust positively invariant (MRPI) set [3]. Set invariance is
fundamental in the synthesis of reference governors [4], [5] and predic-
tive controllers [6]–[9] with guaranteed invariance, stability and con-
vergence properties. The mRPI set is also a suitable target set in robust
time-optimal control [10]–[13] and plays an integral part in a novel ro-
bust predictive control method, recently proposed in [14].
Despite the wide-spread use of the mRPI set in control, there are still

a number of unresolved issues. As pointed out in [1, Secs. 6.4-6.5] and
the survey paper [2], one of the more important outstanding problems
is how to compute an exact representation of the mRPI set. To the best
of our knowledge, the only results that allow for the exact computation
of the mRPI set are given in [13, Th. 3] and [15, Sec. 3.3], where the
restrictive assumption is made that the system dynamics are nilpotent.
For the more general case, where the dynamics are not nilpotent, it

is only possible to compute an approximation to the mRPI set and the
reader is referred to [1, Secs. 6.4-6.5] and [2] for a review of methods
on how this can be achieved. However, though these methods allow for
the approximation of the mRPI set, they do not allow for the compu-
tation of an invariant approximation to the mRPI set. Since reference
governors, predictive controllers, and time-optimal controllers use in-
variant sets, it is important that the approximation of the mRPI set be
invariant. The approximation methods reviewed in [1, Secs. 6.4-6.5]
and [2] are clearly inadequate for our purpose. Hence, the aim of this
note is to provide a solution to this problem by providing a number
of new results that allow for the computation of a robust positively in-
variant approximation of the mRPI set. We also give results that allow
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one to specify a priori an upper bound on the error of this approxima-
tion.

This note is organized as follows. Section II is concerned with defi-
nitions, existing results and the problem formulation. Section III deals
with the problem of calculating a robust positively invariant (RPI) ap-
proximation of the mRPI set for linear systems with bounded state dis-
turbances. Section IV shows how the results can be implemented ef-
ficiently if the disturbance set is a polytope; an illustrative example is
also provided. Finally, Section V presents some conclusions. In order
to keep the presentation as transparent as possible, all proofs are given
in the Appendix. A more detailed exposition and extension of the re-
sults in this note can be found in the technical report [16].

NOTATION: Let
�
= f0; 1; 2; . . .g be the set of nonnegative integers

and +
�
= f1; 2; . . .g. Let n

p (r)
�
= fx 2 nj kxkp � rg be a p-norm

ball in n, where r � 0. Given two sets U and V , such that U � n

and V � n, the Minkowski (vector) sum is defined by U � V
�
=

fu + vju 2 U ; v 2 Vg, int(U) denotes the interior of U . Given the
sequence of sets fUi � ngbi=a, we denote

b

i=a
Ui

�
= Ua�� � ��Ub.

The setMW
�
= fw(�)jw(k) 2 W; 8k 2 g is the set of all infinite

sequences whose elements take on values in W � n (equivalently,
MW is the set of all maps w : ! W ).

II. PRELIMINARIES AND EXISTING RESULTS

We consider the following autonomous discrete-time linear time-in-
variant (DLTI) system:

x
+ = Ax + w (1)

where x 2 n is the current state, x+ is the successor state, and w 2
n is an unknown disturbance. We make the standing assumption that

A 2 n�n is a strictly stable matrix (all the eigenvalues of A are
strictly inside the unit disk). The disturbancew is contained in a convex
and compact setW � n that contains the origin. Since the system is
time-invariant, current time can always be taken to be zero. We denote
by �(k; x; w(�)) the solution to (1) at time instant k, given that the
initial state (at time 0) is x and the infinite disturbance sequence is
w(�)

�
= fw(0);w(1); . . .g.

First, we recall the following well-known definition [1].
Definition 1 (RPI Set): The set 
 � n is a robust positively in-

variant (RPI) set of (1) if Ax + w 2 
 for all x 2 
 and all w 2 W ,
i.e., if and only if A
 �W � 
.

Given a set X , the solution satisfies �(k; x; w(�)) 2 X at all time
instants k 2 and for all allowable disturbance sequences w(�) 2
MW if and only if there exists an RPI set 
 that is contained inX and
the initial state x is in 
 [1].

Definition 2 (Minimal RPI Set): The mRPI set F1 of (1) is the RPI
set in n that is contained in every closed RPI set of (1).

It is possible to show [3, Sec. IV] that the mRPI set F1 exists, is
unique, compact and contains the origin and that the zero initial condi-
tion response of (1) is bounded by F1, i.e. �(k; 0; w(�)) 2 F1 for all
w(�) 2 MW and all k 2 . It follows, from linearity and asymptotic
stability of (1), that F1 is the limit set of all trajectories of (1).

In order to quantify a “good” approximation, we introduce the fol-
lowing definition.

Definition 3 ("-Approximations): Given a scalar " > 0 and a set

 � n, the set � � n is an outer "-approximation of 
 if 
 �
� � 
 � n

p (") and it is an inner "-approximation of 
 if � � 
 �
� � n

p (").
For all s 2 +, let the (convex and compact) set Fs be defined by

Fs
�
=

s�1

i=0

A
i
W F0

�
= f0g: (2)

Each Fs is contained in F1 and if A is strictly stable, then Fs ! F1
as s ! 1 [3, Sec. IV], i.e., for every " > 0, there exists an s 2
such that Fs is an inner "-approximation of F1. Clearly, the mRPI set
F1 is given by

F1 =

1

i=0

A
i
W: (3)

It is generally impossible to obtain an explicit characterization of F1
using (3) [2]. However, as noted in [15, Sec. 3.3] and [3, Rem. 4.2],
if there exist an integer s 2 + and a scalar � 2 [0; 1) such that
As = �I , then F1 = (1� �)�1Fs. It follows [13, Th. 3] that if A is
nilpotent with index s (As = 0), then F1 = Fs. IfA is strictly stable,
but not nilpotent, then there does not exist a finite s such thatFs = F1.
As a consequence, none of the sets in the sequence fFsjs 2 g are RPI
sets and it is impossible to compute an RPI, inner approximation of the
mRPI set F1.

III. APPROXIMATIONS OF THE MINIMAL ROBUST POSITIVELY
INVARIANT SET

In this section, we address the problem of computing an RPI, outer
approximation of the mRPI set F1 when A is not nilpotent. We also
address the problem of computing an RPI, outer "-approximation of
the mRPI set F1 for a given " > 0.
Before proceeding, we make a clear distinction between the results

reported in the recent conference paper [17] and this note. By applying
the standard algorithm of [3], the authors of [17] propose to compute
the maximal robust positively invariant set (MRPI) contained in (1 +
")Fs, for a given " > 0 and s 2 . This set, if nonempty, is an RPI,
outer approximation of the mRPI set F1. For a given " > 0, the al-
gorithm is based on incrementing the integer s until the MRPI set con-
tained in (1+")Fs is nonempty. This recursive calculation is necessary,
since the authors clearly state in [17, Rem. 6] that they do not have a cri-
terion for the a priori determination of the integer s such that the MRPI
set contained in (1+ ")Fs is nonempty. In contrast to this method, we
propose to compute an RPI, outer approximation of the mRPI set F1
by first computing a sufficiently large s, computing Fs and scaling the
latter by a suitable amount. The proposed method does not rely on the
computation of MRPI sets and thus is simpler and probably more effi-
cient than the procedure reported in [17]. Our first result is as follows.

Theorem 1 (RPI Set): [18] If 0 2 int(W ), then there exists a finite
integer s 2 + and a scalar � 2 [0; 1) that satisfies

A
s
W � �W: (4)

If (4) is satisfied, then

F (�; s)
�
= (1� �)�1Fs (5)

is a convex, compact, RPI set of (1). Furthermore, 0 2 int(F (�; s))
and F1 � F (�; s).
It is easy to develop and implement an algorithm based on

Theorem 1. If W is a polytope, standard “off-the-shelf” optimization
and computational geometry software may be used (See Section IV).
Clearly, F (�; s), as defined previously, is an RPI, outer approxima-

tion of the mRPI set F1. However, the former could be a very poor
approximation of the latter. Therefore, we proceed to address the ques-
tion as to whether, in the limit, F (�; s) tends to the true mRPI set F1
if we choose s sufficiently large and/or choose � sufficiently small. For
this purpose, let

s
o(�)

�
= minfs 2 +jA

s
W � �Wg (6a)

�
o(s)

�
= minf� 2 jAs

W � �Wg (6b)
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be the smallest values of s and � such that (4) holds for a given� and s,
respectively. The minimum in (6a) exists for any choice of � 2 (0; 1)
and �o(s) 2 [0; 1) only if s is sufficiently large. The computation of
so(�) and �o(s) is easy if W is a polytope given by a set of affine
inequality constraints (See Section IV). Our next result is as follows.

Theorem 2 (Limiting Behavior of the RPI Approximation): If 0 2
int(W ), then

i) F (�o(s); s) ! F1 as s ! 1; and
ii) F (�; so(�)) ! F1 as � & 0.
Theorem 1 provides a way for the computation of an RPI, outer ap-

proximation of F1 and Theorem 2 establishes the limiting behavior
of this approximation. However, for a given pair (�; s) that satisfies
(4), it is not immediately obvious whether or not F (�; s) is a good
approximation of the mRPI set F1. Given a pair (�; s) satisfying the
conditions of Theorem 1, it can be shown (along similar lines as in the
proof of Theorem 3 in Appendix III) that if

" � �(1� �)�1 max
x2F

kxkp = �(1� �)�1min


jFs �
n
p ()

(7)
then F1 � F (�; s) � F1 � n

p ("). In other words, F (�; s) is an
RPI, outer "-approximation of F1 if " satisfies (7).

Though this observation allows one to determine a posteriori
whether or not F (�; s) is a good approximation of F1, it is perhaps
more useful to have a result that allows one to determine a priori
how large s and/or how small � need to be in order for F (�; s) to
be a sufficiently accurate approximation of F1. The following result
establishes that this is possible.

Theorem 3 (Error Bound): If 0 2 int(W ), then for all " > 0, there
exist an � 2 [0; 1) and an associated integer s 2 + such that (4) and

�(1� �)�1Fs �
n
p (") (8)

hold. Furthermore, if (4) and (8) are satisfied, then F (�; s) is an RPI,
outer "-approximation of the mRPI set F1.

Remark 1: Note that (7) and (8) are equivalent. IfW is a polytope
and p = 1, then it is not necessary to compute Fs in order to check
whether (8) holds (see Section IV).

It is straightforward to develop a conceptual algorithm based on The-
orem 3. Note that (4) provides a lower bound on � such that F (�; s) is
guaranteed to be RPI and contain F1. In addition, the conditions (7)
and (8) give an upper bound on � such that F (�; s) is guaranteed to be
an outer "-approximation of F1. The reader is referred to Algorithm 1
in Section IV for more details.

A whole collection of RPI, outer "-approximations of the mRPI set
F1 can be computed; the complexity of F (�; s) is highly dependent
on the eigenstructure of A and the description of W . However, for a
given error bound ", it is usually a good idea to find the smallest value
of the integer s for which there exists an� 2 [0; 1) such that (4) and (8)
hold. This is because, for a given �, a lower value of s generally results
in a lower complexity for the description of F (�; s). In contrast, for a
given s, the value of � does not affect the complexity of F (�; s).

Remark 2 (Origin is in the Relative Interior of W ): The results in
this section can be extended to the more general case when the interior
of W is empty, but the relative interior of W contains the origin (see
[16]).

IV. EFFICIENT COMPUTATION IF W IS A POLYTOPE

This section presents results that allow for the efficient computation
of a priori upper bounds for the conditions presented in (4) and (8) to
hold. In particular, results are given that allow one to test whether or

notFs is contained in a given polyhedronX without having to compute
Fs explicitly. The interested reader is referred to [1], [3] and [16] for
information on the methods used to derive the results in this section.
The support function [3] of a setW � m, evaluated at a 2 m, is

defined as

hW (a)
�
= sup

w2W
a
T
w: (9)

If W is a polytope (bounded and closed polyhedron), then hW (a) is
finite. Furthermore, ifW is described by a finite set of affine inequality
constraints, then hW (a) can be computed by solving a linear program
(LP). Testing whether (4) and (8) hold can be implemented by eval-
uating the support function of W at a finite number of points [3], or
by solving a single Phase I LP [1, Lem. 4.1]. The set Fs (and hence
F (�; s)) is easily computed using standard computational geometry
software for computing the Minkowski sum of polytopes, such as [19]
and [20].

Remark 3: IfW
�
= fEd+ cj kdk1 � �g, where E 2 n�n and

c 2 n, then hW (a) = �kETak1 + aT c.
In order to be as general as possible, we will consider the case when

W is in the formW
�
= fw 2 njfTi w � gi; i 2 Ig, where fi 2 n,

gi 2 and I is a finite index set. Following a standard procedure [3],
it is possible to show that

A
s
W � �W () hW (As)T fi � �gi 8i 2 I: (10)

This observation allows for efficient checking of whether or not (4)
is satisfied. Hence, it permits the efficient computation of so(�) and
�o(s). For example, recall that W contains the origin in its interior if
and only if gi > 0 for all i 2 I . It follows that

�
o(s) = max

i2I

hW (As)T fi

gi
: (11)

It is also possible to check whether the set Fs is contained in a given
polyhedron X

�
= fx 2 njcTj x � dj ; j 2 J g, where cj 2 n,

dj 2 and J is a finite index set, without computing Fs explicitly

Fs � X ()

s�1

i=0

hW (Ai)T cj � dj 8j 2 J : (12)

Thus, F (�; s) � X , Fs � (1 � �)X , s�1
i=0

hW ((Ai)T cj)�
(1 � �)dj ; 8j 2 J .
One can also use the support function to compute a priori an error

bound on the approximation F (�; s) if the1-norm is used to define
the error bound, i.e., p = 1 in (8). Proceeding in a similar fashion as
before, it is possible to show that

M(s)
�
= min


fjFs �

n
1()g

= max
j2f1;...;ng

s�1

i=0

hW (Ai)Tej ;

s�1

i=0

hW �(Ai)Tej

(13)

where ej is the jth standard basis vector in n. If � 2 (0; 1), then (8)
is equivalent to Fs � ��1(1 � �)Bn

p ("). Hence, if p = 1 in (8),
straightforward algebraic manipulation yields

�(1� �)�1Fs � B
n
1(")() � �

"

("+M(s))
: (14)
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Fig. 1. Approximations of F : Sets F and F (�; s).

Clearly, (11) is an easily-computed lower bound and (14) is an
easily computed upper bound on � such that F (�; s) is an RPI, outer
"-approximation of the mRPI set F1. We are now in a position to
put together a prototype algorithm for computing an RPI, outer "-ap-
proximation of F1 if the 1-norm is used to bound the error. These
steps are outlined in Algorithm 1. In order to reduce computational
effort, note that in step 5 of Algorithm 1 it is not necessary to compute

s�2

i=0
hW ((Ai)T ej) and s�2

i=0
hW (�(Ai)T ej) at each iteration.

These sums would have been computed at previous iterations. All
that is needed is to update these sums by computing and adding
hW ((As�1)T ej) and hW (�(As�1)Tej), respectively.

Algorithm 1 Computation of an RPI, outer
-approximation of the mRPI set
Require: , and
Ensure: such that

1: Choose any (ideally, set ).
2: repeat
3: Increment by one.
4: Compute as in (11) and set

.
5: Compute as in (13).
6: until
7: Compute as the Minkowski sum (2)
and scale it to give .

Our illustrative example is a double integrator

x
+ =

1 1

0 1
x+

1

1
u+ w (15)

with the additive disturbance W
�
= fw 2 2j kwk1 � 1g and u =

�[1:17 1:03]x. The sets Fs, for s = 1; 2; . . . ; 10, for the example are
shown in Fig. 1 together with the set F (1:9 � 10�5; 10) for which it
was required that " = 5 � 10�5 [see (8)]; it is clear that the sequence
fFsg is a monotonically nondecreasing sequence and it converges to
F1 and that F (1:9 � 10�5; 10) is a sufficiently good approximation of
F1, i.e., F (1:9 � 10�5; 10) satisfies that F1 � F (1:9 � 10�5; 10) �
F1 � 2

1(5 � 10�5).

V. CONCLUSION

The reported novel results complement existing results and permit
the efficient computation of an RPI, outer approximation of the min-
imal robust positively invariant set and allow one to specify a priori the
accuracy of the approximation. The presented results can be exploited
in the design of robust reference governors, predictive controllers and
time-optimal controllers for constrained, linear discrete-time systems
subject to additive, but bounded disturbances.

APPENDIX I
PROOF OF THEOREM 1

Existence of an s 2 + and an � 2 [0; 1) that satisfy (4) follows
from the fact that the origin is in the interior ofW and thatA is strictly
stable. Convexity and compactness of F (�; s) follows directly from
the fact that Fs (and, hence, F (�; s)) is the Minkowski sum of a finite
set of convex, compact sets. Let G(�; j; k)

�
= (1��)�1 k

i=j
AiW .

It follows that

AG(�; 0; s� 1)�W

= G(�; 1; s)�W (16a)

= (1� �)�1As
W �G(�; 1; s� 1)�W (16b)

� (1� �)�1�W �W �G(�; 1; s� 1) (16c)

= (1� �)�1�+ 1 W �G(�; 1; s� 1) (16d)

= (1� �)�1W �G(�; 1; s� 1)

= G(�; 0; s� 1): (16e)

In going from (16b) to (16c) we have used the fact that P � Q) P �
R � Q� R for arbitrary sets P � n, Q � n and R � n. Since
F (�; s) = G(�; 0; s � 1), it follows that AF (�; s)�W � F (�; s)
holds, hence, F (�; s) is RPI. It follows trivially from the definition of
the mRPI set that F (�; s) contains F1. Note also that 0 2 int(F1) if
0 2 int(W ).

APPENDIX II
PROOF OF THEOREM 2

In order to talk about limits of sets, we recall the definition of the
Haussdorff metric.

Definition 4 (Hausdorff Metric): If 
 and � are two nonempty,
compact sets in n, then the Hausdorff metric is defined as

�(
;�)
�
= max sup

!2�

d(!;
); sup
�2


d(�;�) (17)

where d(z;Z)
�
= infy2Z kz � ykp.

We also need the following intermediate result [16].
Lemma 1: If � is a convex and compact set in n containing the

origin and � 2 [0; 1), then �(�; (1 � �)�1�) � �(1 � �)�1M ,
where M

�
= supz2� kzkp is finite.

Recall that the sequence fFsg1s=0 is Cauchy [3, Sec. IV] so that
M1

�
= lims!1 supz2F kzkp is finite. Since Fs � F1, 8s 2 ,

we have thatM(s)
�
= supz2F kzkp �M1 <1 for all s 2 .

We can now proceed with the proof of Theorem 2.

i) It follows from Lemma 1 that �(Fs; F (�o(s); s)) =
�(Fs; (1 � �o(s))�1Fs)� �o(s)(1 � �o(s))�1M(s),
whereM(s) � M1 < 1 for all s 2 . Since �o(s)& 0
as s!1, we get that �(Fs; F (�o(s); s))! 0 as s!1.
However, since F (�o(s); s) � F1 � Fs for all s 2 and
Fs ! F1 as s!1, we conclude that F (�o(s); s)! F1
as s ! 1.
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ii) It follows from Lemma 1 that �(Fs (�); F (�; so(�))) =
�(Fs (�); (1 � �)�1Fs (�))� �(1 � �)�1M(so(�)),
where M(so(�)) � M1 < 1 for all � 2 (0; 1),
hence �(Fs (�); F (�; so(�))) ! 0 as � & 0. Note that
so(�)!1 as�& 0. SinceF (�; so(�)) � F1 � Fs (�)

for all � 2 (0; 1) and Fs (�) ! F1 as �& 0, we conclude
that F (�; so(�)) ! F1 as � & 0.

APPENDIX III
PROOF OF THEOREM 3

We refer to the proof of Theorem 2 for the definition of M1. Let
" > 0 and recall that 0 < M1 < 1 and Fs � F1 for all s 2 .
Since Fs and F1 are convex and contain the origin, it follows that
�(1 � �)�1Fs � �(1 � �)�1F1 for any s 2 and � 2 [0; 1).
Note that the inclusion �(1 � �)�1F1 � n

p (") is true if �(1 �
�)�1M1 � " or, equivalently, if � � "(" +M1)�1. Hence, (8) is
true for any s 2 and � 2 [0; ��], where ��

�
= "("+M1)�1 2 (0; 1).

Clearly, (4) is also true if we choose � 2 (0; ��] and s = so(�). This
establishes the existence of a suitable couple (�; s) such that (4) and
(8) hold simultaneously.

Let (�; s) be such that (4) and (8) are true. Since F (�; s) = (1 �
�)�1Fs is a convex and compact set that contains the origin,F (�; s) =
(1� �)�1Fs = (1 + �(1 � �)�1)Fs= Fs � �(1� �)�1Fs. Since
Fs � F1 � F (�; s) � Fs �

n

p (") � F1 �
n

p ("), it follows that
F (�; s) is an RPI, outer "-approximation of the mRPI set F1.
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An Algorithm for Sampling Subsets of With
Applications to Risk-Adjusted Performance

Analysis and Model (In)Validation

Mario Sznaier, Constantino M. Lagoa, and Maria Cecilia Mazzaro

Abstract—In spite of their potential to reduce computational complexity,
the use of probabilistic methods in robust control has been mostly limited
to parametric uncertainty, since the problem of sampling causal bounded
operators is largely open. In this note, we take steps toward removing this
limitation by proposing a computationally efficient algorithm aimed at uni-
formly sampling suitably chosen subsets of H . As we show in the note,
samples taken from these sets can be used to carry out model (in)validation
and robust performance analysis in the presence of structured dynamic
linear time-invariant uncertainty, problems known to be NP-hard in the
number of uncertainty blocks.

Index Terms—Model (in)validation, risk-adjusted control, robust perfor-
mance, sampling, structured uncertainty.

I. INTRODUCTION

Many problems arising in robust control have poor computational
properties. Examples are validating a system model and assessing its
robust performance properties in the presence of structured linear time
invariant dynamic uncertainty, both NP-hard in the number of uncer-
tainty blocks [4], [19]. Tractable relaxations are available, but can be
arbitrarily conservative [18].

Manuscript received February 9, 2004; revised October 19, 2004. Recom-
mended by Associate Editor E. Bai. This work was supported in part by the
National Science Foundation under Grants IIS-0117387, ECS-0115946, ECS-
0221562, and ITR-0312558.

The authors are with the Department of Electrical Engineering, The
Pennsylvania State University, University Park, PA 16802 USA (e-mail:
msznaier@frodo.ee.psu.edu).

Digital Object Identifier 10.1109/TAC.2005.843852

0018-9286/$20.00 © 2005 IEEE


