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Abstract

Brain-Computer Interfaces can suffer from a large varianceof the subject condi-
tions within and across sessions. For example vigilance fluctuations in the indi-
vidual, variable task involvement, workload etc. alter thecharacteristics of EEG
signals and thus challenge a stable BCI operation. In the present work we aim to
define features based on a variant of the common spatial patterns (CSP) algorithm
that are constructedinvariant with respect to such nonstationarities. We enforce
invariance properties by adding terms to the denominator ofa Rayleigh coefficient
representation of CSP such as disturbance covariance matrices from fluctuations
in visual processing. In this manner physiological prior knowledge can be used
to shape the classification engine for BCI. As a proof of concept we present a
BCI classifier that is robust to changes in the level of parietal α-activity. In other
words, the EEG decoding still works when there are lapses in vigilance.

1 Introduction

Brain-Computer Interfaces (BCIs) translate the intent of asubject measured from brain signals di-
rectly into control commands, e.g. for a computer application or a neuroprosthesis ([1, 2, 3, 4, 5, 6]).
The classical approach to brain-computer interfacing isoperant conditioning([2, 7]) where a fixed
translation algorithm is used to generate a feedback signalfrom the electroencephalogram (EEG).
Users are not equipped with a mental strategy they should use, rather they are instructed to watch
a feedback signal and using the feedback to find out ways to voluntarily control it. Successful BCI
operation is reinforced by a reward stimulus. In such BCI systems the user adaption is crucial and
typically requires extensive training. Recentlymachine learning techniqueswere applied to the BCI
field and allowed to decode the subject’s brain signals, placing the learning task on the machine side,
i.e. a general translation algorithm is trained to infer thespecific characteristics of the user’s brain
signals [8, 9, 10, 11, 12, 13, 14]. This is done by a statistical analysis of a calibration measurement
in which the subject performs well-defined mental acts like imagined movements. Here, in principle
no adaption of the user is required, but it is to be expected that users will adapt their behaviour
during feedback operation. The idea of the machine learningapproach is that a flexible adaption
of the system relieves a good amount of the learning load fromthe subject. Most BCI systems are
somewhere between those extremes.
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Although the proof-of-concept of machine learning based BCI systems1 was given some years ago,
several major challenges are still to be faced. One of them isto make the systeminvariant to non
task-related fluctuations of the measured signals during feedback. These fluctuations may be caused
by changes in the subject’s brain processes, e.g. change of task involvement, fatigue etc., or by
artifacts such as swallowing, blinking or yawning. The calibration measurement that is used for
training in machine learning techniques is recorded during10-30 min, i.e. a relatively short period
of time and typically in a monotone atmosphere, so this data does not contain all possible kinds of
variations to be expected during on-line operation.
The present contribution focusses on invariant feature extraction for BCI. In particular we aim to
enhance the invariance properties of the common spatial patterns (CSP, [15]) algorithm. CSP is the
solution of a generalized eigenvalue problem and has as sucha strong link to the maximization of a
Rayleigh coefficient, similar to Fisher’s discriminant analysis. Prior work by Mika et al. [16] in the
context of kernel Fisher’s discriminant analysis containsthe key idea that we will follow: noise and
distracting signal aspects with respect to which we want to make our feature extractor invariant is
added to the denominator of a Rayleigh coefficient. In other words, our prior knowledge about the
noise type helps to re-design the optimization of CSP feature extraction. We demonstrate how our
invariant CSP (iCSP) technique can be used to make a BCI system invariant to changes in the power
of the parietalα-rhythm (see Section 2) reflecting, e.g. changes in vigilance. Vigilance changes
are among the most pressing challenges when robustifying a BCI system for long-term real-world
applications.
In principle we could also use an adaptive BCI, however, adaptation typically has a limited time
scale which might not allow to follow fluctuations quickly enough. Furthermore online adaptive BCI
systems have so far only been operated with 4-9 channels. We would like to stress that adaptation and
invariant classification are no mutually exclusive alternatives but rather complementary approaches
when striving for the same goal: a BCI system that is invariant to undesired distortions and non-
stationarities.

2 Neurophysiology and Experimental Paradigms

Neurophysiological background. Macroscopic brain activity during resting wakefulness contains
distinct ‘idle’ rhythms located over various brain areas, e.g. the parietalα-rhythm (7-13 Hz) can
be measured over the visual cortex [17] and theµ-rhythm can be measured over the pericentral
sensorimotor cortices in the scalp EEG, usually with a frequency of about 8–14 Hz ([18]). The
strength of the parietalα-rhythm reflects visual processing load as well as attentionand fatigue
resp. vigilance.
The moment-to-moment amplitude fluctuations of these localrhythms reflect variable functional
states of the underlying neuronal cortical networks and canbe used for brain-computer interfacing.
Specifically, the pericentralµ- andβ rythms are diminished, or even almost completely blocked, by
movements of the somatotopically corresponding body part,independent of their active, passive or
reflexive origin. Blocking effects are visible bilateral but with a clear predominance contralateral to
the moved limb. This attenuation of brain rhythms is termed event-related desynchronization (ERD)
and the dual effect of enhanced brain rhythms is called event-related synchronization (ERS) (see
[19]).
Since a focal ERD can be observed over the motor and/or sensory cortex even when a subject is only
imagining a movement or sensation in the specific limb, this feature can be used for BCI control: The
discrimination of the imagination of movements of left handvs. right hand vs. foot can be based on
the somatotopic arrangement of the attenuation of theµ and/orβ rhythms. However the challenge
is that due to the volume conduction EEG signal recorded at the scalp is a mixture of many cortical
activities that have different spatial localizations; forexample, at the electrodes over the mortor
cortex, the signal not only contains theµ-rhythm that we are interested in but also the projection of
parietalα-rhythm that has little to do with the motor-imagination. Tothis end,spatial filteringis an
indispensable technique; that is to take a linear combination of signals recorded over EEG channels
and extract only the component that we are interested in. In particular the CSP algorithm that
optimizes spatial filters with respect to discriminabilityis a good candidate for feature extraction.

Experimental Setup. In this paper we evaluate the proposed algorithm on off-linedata in which
the nonstationarity is induced by having two different background conditions for the same primary

1Note: In our exposition we focus on EEG-based BCI systems that does not rely on evoked potentials (for
an extensive overview of BCI systems including invasive and systems based on evoked potentials see [1]).

2



−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0

0.1

0.2

0.3

0.4

0.5 Figure 1: Topographies ofr2–values (multiplied by
the sign of the difference) quantifying the difference
in log band-power in the alpha band (8–12 Hz) be-
tween different recording sessions:Left: Difference
betweenimag_moveand imag_lett. Due to lower
visual processing demands, alpha power in occipi-
tal areas is stronger inimag_lett. Right: Difference
betweenimag_moveandsham_feedback. The latter
has decreased alpha power in centro-parietal areas.
Note the different sign in the colormaps.

task. The ultimate challenge will be on-line feedback with strong fluctuations of task demands etc,
a project envisioned for the near future.
We investigate EEG recordings from 4 subjects (all from whomwe have an ‘invariance measure-
ment’, see below). Brain activity was recorded from the scalp with multi-channel amplifiers using
55 EEG channels.
In the ‘calibration measurement’ all 4.5–6 seconds one of 3 different visual stimuli indicated for 3
seconds which mental task the subject should accomplish during that period. The investigated men-
tal tasks were imagined movements of the left hand, the righthand, and the right foot. There were
two types of visual stimulation: (1:imag_lett) targets were indicated by letters (L, R, F) appearing at
a central fixation cross and (2:imag_move) a randomly moving small rhomboid with either its left,
right or bottom corner filled to indicate left or right hand orfoot movement, respectively. Since the
movement of the object was independent from the indicated targets, target-uncorrelated eye move-
ments are induced. Due to the different demands in visual processing, the background brain activity
can be expected to differ substancially in those two types ofrecordings. The topography of the
r2–values (bi-serial correlation coefficient of feature values with labels) of the log band-power dif-
ference betweenimag_moveandimag_lettis shown in the left plot of Fig. 2. It shows a pronounced
differene in parietal areas.
A sham_feedbackparadigm was designed in order to charaterize invariance properties needed for
stable real-world BCI applications. In this measurement the subjects received a fake feedback se-
quence which was preprogrammed. The aim of this recording was to collect data during a large
variety of mental states and actions that arenot correlated with the BCI control states (motor im-
agery of hands and feet). Subjects were told that they could control the feedback in some way that
they should find out, e.g. with eye movements or muscle activity. They were instructed not to per-
form movements of hands, arms, legs and feet. The type of feedback was a standard 1D cursor
control. In each trial the cursor starts in the middle and should be moved to either the left or right
side as indicated by a target cue. When the cursor touched the left or right border, a response (correct
or false) was shown. Furthermore the number of hits and misses was shown. The preprogrammed
‘feedback’ signal was constructed such that it was random inthe beginning and then alternating peri-
ods of increasingly more hits and periods with chance level performance. This was done to motivate
the subjects to try a variety of different actions and to induce different states of mood (satisfaction
during ‘successful’ periods and anger resp. disfavor during ‘failure’). The right plot of Fig. 2 visual-
izes the difference in log band-power betweenimag_moveandsham_feedback. A decreased alpha
power in centro-parietal areas duringsham_feedbackcan be observed. Note that this recording in-
cludes much more variations of background mental activity than the difference betweenimag_move
andimag_lett.

3 Methods

Common Spatial Patterns (CSP) Analysis. The CSP technique ([15]) allows to determine spatial
filters that maximize the variance of signals of one condition and at the same time minimize the
variance of signals of another condition. Since variance ofband-pass filtered signals is equal to band-
power, CSP filters are well suited to discriminate mental states that are characterized by ERD/ERS
effects ([20]). As such it has been well used in BCI systems ([8, 14]) where CSP filters are calculated
individually for each subject on the data of a calibration measurement.
Technically the Common Spatial Pattern (CSP) [21] algorithm gives spatial filters based on a dis-
criminative criterion. LetX1 andX2 be the (time× channel) data matrices of the band-pass filtered
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EEG signals (concatenated trials) under the two conditions(e.g., right-hand or left-hand imagination,
respectively2) andΣ1 andΣ2 be the corresponding estimates of the covariance matricesΣi = X⊤

i Xi .
We define the two matricesSd andSc as follows:

Sd = Σ(1) −Σ(2) : discriminative activity matrix,

Sc = Σ(1) +Σ(2) : common activity matrix.

The CSP spatial filterv ∈ R
C (C is the number of channels) can be obtained by extremizing the

Rayleigh coefficient:

{max, min}v∈RC
v⊤Sdv
v⊤Scv

. (1)

This can be done by solving a generalized eigenvalue problem.

Sdv = λScv. (2)

The eigenvalueλ is bounded between−1 and 1; a large positive eigenvalue corresponds to a pro-
jection of the signal given byv that has large power in the first condition but small in the second
condition; the converse is true for a large negative eigenvalue. The largest and the smallest eigen-
values correspond to the maximum and the minimum of the Rayleigh coefficient problem (Eq. (1)).
Note thatv⊤Sdv = v⊤Σ1v− v⊤Σ2v is the average power difference in two conditions that we want
to maximize. On the other hand, the projection of the activity that is common to two classesv⊤Scv
should be minimized because it doesn’t contribute to the discriminability. Using the same idea from
[16] we can rewrite the Rayleigh problem (Eq. (1)) as follows:

min
v∈RC

v⊤Scv, s.t. v⊤Σ1v−v⊤Σ2v = λ ,

which can be interpreted as finding the minimum normv with the condition that the average power
difference between two conditions to beλ . The norm is defined by the common activity matrixSc.
In the next section, we extend the notion ofSc to incorporate any disturbances that is common to
two classes that we can measure a priori.
In this paper we callfilter the generalized eigenvectorsv j ( j = 1, . . . ,C) of the generalized eigenvalue
problem (Eq. (2)) or a similar problem discussed in the next section. Moreover we denote byV the
matrix we obtain by putting theC generalized eigenvectors into columns, namelyV = {v j}

C
j=1 ∈

R
C×C and callpatternsthe row vectors of the inverseA = V−1. Note that a filterv j ∈ R

C has its
corresponding patterna j ∈ R

C; a filterv j extracts only the activity spanned bya j and cancels out all
other activities spanned byai (i 6= j); therefore a patterna j tells what the filterv j is extracting out
(see Fig. 2).
For classification the features of single-trials are calculated as the log-variance in CSP projected
signals. Here only a few (2 to 6) patterns are used. The selection of patterns is typically based on
eigenvalues. But when a large amount of calibration data is not available it is advisable to use a
more refined technique to select the patterns or to manually choose them by visual inspection. The
variance features are approximately chi-square distributed. Taking the logarithm makes them similar
to gaussian distributions, so a linear classifier (e.g., linear discriminant analysis) is fine.
For the evaluation in this paper we used the CSPs corresponding the the two largest and the two
smallest eigenvalues and used linear disciminant analysisfor classification. The CSP algorithm,
several extentions as well as practical issues are reviewedin detail in [15].

Invariant CSP. The CSP spatial filters extracted as above are optimized for the calibration mea-
surement. However, in online operation of the BCI system different non task-related modulations
of brain signals may occur which are not suppressed by the CSPfilters. The reason may be that
these modulations have not been recorded in the calibrationmeasurement or that they have been so
infrequent that they are not consistently reflected in the statistics (e.g. when they are not equally
distributed over the two conditions).
The proposed iCSP method minimizes the influence of modulations that can be characterized in
advance by a covariance matrix. In this manner we can code neurophysiological prior knowledge

2We use the term covariance for zero-delay second order statistics between channels and not for the statis-
tical variability. Since we assume the signal to be band-pass filtered, the second order statistics reflects band
power.

4



or further information such as the tangent covariance matrix ([22]) into such a covariante matrixΞ.
In the following motivation we assume thatΞ is the covariance matrix of a signal matrixY. Using

the notions from above, the objective is then to calculate spatial filtersv(1)
j such that var(X1v(1)

j ) is

maximized and var(X2v(1)
j ) and var(Yv(1)

j ) are minimized. Dually spatial filtersv(2)
j are determined

that maximize var(X2v(2)
j ) and minimize var(X1v(2)

j ) and var(Yv(2)
j ).

Pratically this can be accomplished by solving the following two generalized eigenvalue problems:

V(1)⊤Σ1V
(1) = D(1) and V(1)⊤((1−ξ )(Σ1 +Σ2)+ξ Ξ)V(1) = I (3)

V(2)⊤Σ2V
(2) = D(2) and V(2)⊤((1−ξ )(Σ1 +Σ2)+ξ Ξ)V(2) = I (4)

whereξ ∈ [0,1] is a hyperparameter to trade-off the discrimination of the training classes (X1,
X2 ) against invariance (as characterized byΞ). Section 4 discusses the selection of parame-

ter ξ . Filters v(1)
j with high eigenvaluesd(1)

j provide not only high var(X1v(1)
j ) but also small

v(1)
j

⊤
((1−ξ )Σ2 +ξ Ξ)v(1)

j = 1− (1−ξ )d(1)
j , i.e. small var(X2v(1)

j ) andsmall var(Yv(1)
j ). The dual

is true for the selection of filters fromv(2)
j .

Note that forξ = 0.5 there is a strong connection to the one-vs-rest strategy for 3-class CSP ([23]).

Features for classification are calculated as log-varianceusing the two filters from each ofv(1)
j and

v(2)
j corresponding to the largest eigenvalues. Note that the idea of iCSP is in the spirit of the

invariance constraints in (kernel) Fisher’s Discriminantproposed in [16].

A Theoretical Investigation of iCSP by Influence Analysis. As mentioned, iCSP is aiming at
robust spatial filtering against disturbances whose covarianceΞ can be anticipated from prior knowl-
edge. Influence analysis is a statistical tool with which we can assess robustness of inference proce-
dures [24]. Basically, it evaluates the effect in inferenceprocedures, if we add a small perturbation
of O(ε), whereε ≪ 1. For example, influence functions for the component analyses such as PCA
and CCA have been discussed so far [25, 26]. We applied the machinery to iCSP, in order to check
whether iCSP really reduces influence caused by the disturbance at least in local sense. For this
purpose, we have the following lemma (its proof is included in the Appendix).

Lemma 1 (Influence of generalized eigenvalue problems) Letλk and wk be k-th eigenvalue and
eigenvector of the generalized eigvenvalue problem

Aw= λBw, (5)

respectively. Suppose that the matrices A and B are perturbed with small matricesε∆ andεP where
ε ≪ 1. Then the eigenvalues̃wk and eigenvectors̃λk of the purterbed problem

(A+ ε∆)w̃ = λ̃ (B+ εP)w̃ (6)

can be expanded asλk + εχk +o(ε) and wk + εψk +o(ε), where

χk = w⊤
k (∆−λkP)wk, ψk = −Mk(∆−λkP)wk−

1
2
(w⊤

k Pwk)wk, (7)

Mk := B−1/2(B−1/2AB−1/2−λkI)+B−1/2 and the suffix ’+’ denotes Moore-Penrose matrix inverse.

The generalized eigenvalue problem eqns (3) and (4) can be rephrased as

Σ1v = d{(1−ξ )(Σ1 +Σ2)+ξ Ξ}v, Σ2u = c{(1−ξ )(Σ1 +Σ2)+ξ Ξ}u.

For simplicity, we consider here the simplest perturbationof the covariances asΣ1 → Σ1 + εΞ and
Σ2 → Σ1 + εΞ. In this case, the perturbation matrices in the lemma can be expressed as∆1 = Ξ,
∆2 = Ξ, P = 2(1− ξ )Ξ. Therefore, we get the expansions of the eigenvalues and eigenvectors as
dk + εχ1k, ck + εχ2k, vk + εψ1k anduk + εψ2k, where

χ1k = {1−2(1−ξ )dk}v⊤k Ξvk, χ2k = {1−2(1−ξ )ck}u⊤k Ξuk, (8)

ψ1k = −{1−2(1−ξ )dk}M1kΞvk− (1−ξ )(v⊤k Ξvk)vk, (9)

ψ2k = −{1−2(1−ξ )ck}M2kΞuk− (1−ξ )(u⊤k Ξuk)uk, (10)
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Figure 2: Comparison of CSP and iCSP on test data with artificially increasedoccipital alpha. The upper plots
show the classifier output on the test data with different degrees of alphaadded (factorsα= 0, 0.5, 1, 2). The
lower panel shows the filter/pattern coefficients topographically mapped on the scalp from original CSP (left)
and iCSP (right). Here the invariance property was defined with respectto the increase in the alpha activity in
the visual cortex (occipital location) using an eyes open/eyes closed recording. See Section 3 for the definition
of filter and pattern.

M1k := Σ−1/2(Σ−1/2Σ1Σ−1/2 − dkI)+Σ−1/2, M2k := Σ−1/2(Σ−1/2Σ2Σ−1/2 − dkI)+Σ−1/2, andΣ :=
(1− ξ )(Σ1 + Σ2)+ ξ Ξ. The implication of the result is the following. Ifξ = 1− 1

2dk
(resp. ξ =

1− 1
2ck

) is satisfied, theO(ε) term χ1k (resp.χ2k) of thek-th eigenvalue vanishes and also thek-th
eigenvector does coincide with the one for the original problem up toε order, because the first term
of ψ1k (resp.ψ2k) becomes zero (we note thatdk andck also depend onξ ).

4 Evaluation

Test Case with Constructed Test Data. To validate the proposed iCSP, we first applied it to
specifically constructed test data. iCSP was trained (ξ = 0.5) on motor imagery data with the invari-
ance characterized by data from a measurement during ‘eyes open’ (approx. 40 s) and ‘eyes closed’
(approx. 20 s). The motor imagery test data was used in its original form and variants that were
modified in a controlled manner: From another data set during‘eyes closed’ we extracted activity
related to increased occipital alpha activity (backprojection of 5 ICA components) and added this
with 3 different factors (α = 0.5, 1, 2) to the test data.
The upper plots of Fig. 2 display the classifier output on the constructed test data. While the per-
formance of the original CSP is more and more deteriorated with increased alpha mixed in, the
proposed iCSP method maintains a stable performance independent of the amount of increased al-
pha activity. The spatial filters that were extracted by CSP analysis vs. the proposed iCSP often
look quite similar. However, tiny but apparently importantdifferences exist. In the lower panel of
Fig. 2 the filter (v j ) pattern (a j ) pairs from original CSP (left) and iCSP (right) are shown. Thefilters
from two approaches resemble each other strongly. However,the correspondingpatternsreveal an
important difference. While the pattern of the original CSP has positive weights at the right occipital
side which might be susceptible toα modulations, the corresponding iCSP has not. A more detailed
inspection shows that both filters have a focus over the right(sensori-) motor cortex, but only the
invariant filter has a spot of opposite sign right posterior to it. This spot will filter out contributions
coming from occipital/parietal sites.

Model selection for iCSP. For each subject, a cross-validation was performed for different values
of ξ on the training data (sessionimag_move) and theξ resulting in minimum error was chosen.
For the same values ofξ the iCSP filters + LDA classifier trained onimag_movewere applied to
calculate the test error on data fromimag_lett. Fig. 3 shows the result of this procedure. The shape
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Figure 3: Modelselection and evaluation.Left subplots:Selection of hyperparameterξ of the iCSP method.
For each subject, a cross-validation was performed for different values of ξ on the training data (session
imag_move), see thin black line, and theξ resulting in minimum error was chosen (red circle). For the same
values ofξ the iCSP filters + LDA classifier trained onimag_movewere applied to calculate the test error
on data fromimag_lett(thick colorful line). Right plot: Test error in all four recordings for classical CSP
and the proposed iCSP (with model parameterξ chosen by cross-validation on the training set as described in
Section 4).

of the cross-validation error on the training set and the test error is very similar. Accordingly, the
selection of values for parameterξ is successful. For subjectzq ξ = 0 was chosen, i.e. classical
CSP. The case for subjectzkshows that the selection ofξ may be a delicate issue. For larges values
of ξ cross-validation error and test error differ dramatically. A choice ofξ > 0.5 would result
in bad performance of iCSP, while this effect could have not been predicted so severely from the
cross-validation of the training set.

Evaluation of Performance with Real BCI Data. For evaluation we used theimag_movesession
(see Section 2) as training set and theimag_lettsession as test set. Fig 3 compares the classification
error obtained by classical CSP and by the proposed method iCSP with model parameterξ chosen by
cross-validation on the training set as described above. Again an excellent improvement is visible.

5 Concluding discussion

EEG data from Brain-Computer Interface experiments are highly challenging to evaluate due to
noise, nonstationarity and diverse artifacts. Thus, BCI provides an excellent testbed for testing the
quality and applicability of robust machine learning methods (cf. the BCI Competitions [27, 28]).
Obviously BCI users are subject to variations in attention and motivation. These types of non-
stationarities can considerably deteriorate the BCI classifier performance. In present paper we pro-
posed a novel method to alleviate this problem.
A limitation of our method is that variations need to be characterized in advance (by estimating an
appropriate covariance matrix). At the same time this is also a strength of our method as neuro-
physiological prior knowledge about possible sources of non-stationarity is available and can thus
be taken into account in a controlled manner. Also the selection of hyperparameterξ needs more
investigation, cf. the case of subjectzk in Fig. 3. One strategy to pursue is to update the covariance
matrixΞ online with incoming test data. (Note that no label information is needed.) Online learning
(learning algorithms for adaptation within a BCI session) could also be used to further stabilize the
system against unforeseen changes. It remains to future research to explore this interesting direction.

Appendix: Proof of Lemma 1.

By substituting the expansions ofλ̃k andw̃k to Eq.(6) and taking theO(ε) term, we get

Aψk +∆wk = λkBψk +λkPwk + χkBwk. (11)

Eq.(7) can be obtained by multiplyingw⊤
k to Eq.(11) and applying Eq.(5). Then, from Eq.(11),

(A−λkB)ψk = −(∆−λkP)wk + χkBwk = −(A−λkB)Mk(∆−λkP)wk,

7



holds, where we used the constraintsw⊤
j Bwk = δ jk and

(A−λkB)Mk = ∑
j 6=k

Bwjw
⊤
j = I −Bwkw⊤

k . (12)

Eq.(12) can be proven by B−1/2AB−1/2−λkI = ∑ j 6=k λ jB1/2w jw⊤
j B1/2 and

(B−1/2AB−1/2−λkI)+ = ∑ j 6=k 1/λ jB1/2w jw⊤
j B1/2. Since span{wk} is the kernel of the operatorA− λkB,

ψk can be explained asψk = −Mk(∆− λkP)wk + cwk. By a multiplication withw⊤
k B, the constantc turns

out to bec = −w⊤
k Pwk/2, where we used the factw⊤

k BMk = 0⊤ andw⊤
k Bψk = −w⊤

k Pwk/2 derived from the

normalizatioñw⊤
k (B+ εP)w̃k = 1.

References
[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and

control”, Clin. Neurophysiol., 113: 767–791, 2002.

[2] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler, J. Perelmouter, E. Taub, and H. Flor, “A spelling
device for the paralysed”,Nature, 398: 297–298, 1999.

[3] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, R. Ramoser, A. Schlögl, B. Obermaier, and M. Pregenzer, “Current Trends in Graz
Brain-computer Interface (BCI)”,IEEE Trans. Rehab. Eng., 8(2): 216–219, 2000.

[4] J. del R. Millán,Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, 2002.

[5] E. A. Curran and M. J. Stokes, “Learning to control brain activity: A review ofthe production and control of EEG components for driving
brain-computer interface (BCI) systems”,Brain Cogn., 51: 326–336, 2003.

[6] G. Dornhege, J. del R. Millán, T. Hinterberger, D. McFarland, and K.-R. Müller, eds.,Toward Brain-Computer Interfacing, MIT Press,
Cambridge, MA, 2007.

[7] T. Elbert, B. Rockstroh, W. Lutzenberger, and N. Birbaumer, “Biofeedback of Slow Cortical Potentials. I”,Electroencephalogr. Clin.
Neurophysiol., 48: 293–301, 1980.

[8] C. Guger, H. Ramoser, and G. Pfurtscheller, “Real-time EEG analysis with subject-specific spatial patterns for a Brain Computer Interface
(BCI)”, IEEE Trans. Neural Sys. Rehab. Eng., 8(4): 447–456, 2000.

[9] B. Blankertz, G. Curio, and K.-R. Müller, “Classifying Single Trial EEG:Towards Brain Computer Interfacing”, in: T. G. Diettrich,
S. Becker, and Z. Ghahramani, eds.,Advances in Neural Inf. Proc. Systems (NIPS 01), vol. 14, 157–164, 2002.

[10] L. Parra, C. Alvino, A. C. Tang, B. A. Pearlmutter, N. Yeung, A. Osman, and P. Sajda, “Linear spatial integration for single trial detection
in encephalography”,NeuroImage, 7(1): 223–230, 2002.

[11] E. Curran, P. Sykacek, S. Roberts, W. Penny, M. Stokes, I. Jonsrude, and A.Owen, “Cognitive tasks for driving a Brain Computer
Interfacing System: a pilot study”,IEEE Trans. Rehab. Eng., 12(1): 48–54, 2004.

[12] J. del R. Millán, F. Renkens, J. M. no, and W. Gerstner, “Non-invasive brain-actuated control of a mobile robot by human EEG”,IEEE
Trans. Biomed. Eng., 51(6): 1026–1033, 2004.

[13] N. J. Hill, T. N. Lal, M. Schröder, T. Hinterberger, B. Wilhelm, F. Nijboer, U. Mochty, G. Widman, C. E. Elger, B. Schölkopf, A. Kübler,
and N. Birbaumer, “Classifying EEG and ECoG Signals without Subject Training for Fast BCI Implementation: Comparison of Non-
Paralysed and Completely Paralysed Subjects”,IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(6): 183–186,
2006.

[14] B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, and G. Curio, “The non-invasive Berlin Brain-Computer Interface: Fast Acqui-
sition of Effective Performance in Untrained Subjects”,NeuroImage, 37(2): 539–550, 2007.

[15] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Müller, “Optimizing Spatial Filters for Robust EEG Single-Trial Analysis”,
IEEE Signal Proc. Magazine, 2008, in press.

[16] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A. Smola, and K.-R. Müller, “Invariant Feature Extraction and Classification in Kernel
Spaces”, in: S. Solla, T. Leen, and K.-R. Müller, eds.,Advances in Neural Information Processing Systems, vol. 12, 526–532, MIT Press,
2000.

[17] H. Berger, “Über das Elektroenkephalogramm des Menschen”,Arch. Psychiat. Nervenkr., 99(6): 555–574, 1933.

[18] H. Jasper and H. Andrews, “Normal differentiation of occipital and precentral regions in man”,Arch. Neurol. Psychiat. (Chicago), 39:
96–115, 1938.

[19] G. Pfurtscheller and F. H. L. da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles”,Clin. Neuro-
physiol., 110(11): 1842–1857, 1999.

[20] Z. J. Koles, “The quantitative extraction and topographic mapping ofthe abnormal components in the clinical EEG”,Electroencephalogr.
Clin. Neurophysiol., 79(6): 440–447, 1991.

[21] K. Fukunaga,Introduction to statistical pattern recognition, Academic Press, Boston, 2nd edn., 1990.

[22] B. Schölkopf,Support vector learning, Oldenbourg Verlag, Munich, 1997.

[23] G. Dornhege, B. Blankertz, G. Curio, and K.-R. Müller, “Boosting bit rates in non-invasive EEG single-trial classifications by feature
combination and multi-class paradigms”,IEEE Trans. Biomed. Eng., 51(6): 993–1002, 2004.

[24] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel,Robust Statistics: The Approach Based on Influence Functions, Wiley,
New York, 1986.

[25] F. Critchley, “Influence in principal components analysis”,Biometrika, 72(3): 627–636, 1985.

[26] M. Romanazzi, “Influence in Canonical Correlation Analysis”,Psychometrika, 57(2): 237–259, 1992.

[27] B. Blankertz, K.-R. Müller, G. Curio, T. M. Vaughan, G. Schalk, J. R. Wolpaw, A. Schlögl, C. Neuper, G. Pfurtscheller, T. Hinterberger,
M. Schröder, and N. Birbaumer, “The BCI Competition 2003: Progress and Perspectives in Detection and Discrimination of EEG Single
Trials”, IEEE Trans. Biomed. Eng., 51(6): 1044–1051, 2004.

[28] B. Blankertz, K.-R. Müller, D. Krusienski, G. Schalk, J. R. Wolpaw, A. Schlögl, G. Pfurtscheller, J. del R. Millán, M. Schröder, and
N. Birbaumer, “The BCI Competition III: Validating Alternative Approachs to Actual BCI Problems”,IEEE Trans. Neural Sys. Rehab.
Eng., 14(2): 153–159, 2006.

8


	Introduction
	Neurophysiology and Experimental Paradigms
	Methods
	Evaluation
	Concluding discussion

