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Abstract. We study a compact invariant convex set E in a polar rep-
resentation of a compact Lie group. Polar rapresentations are given by
the adjoint action of K on p, where K is a maximal compact subgroup
of a real semisimple Lie group G with Lie algebra g = k ⊕ p. If a ⊂ p
is a maximal abelian subalgebra, then P = E ∩ a is a convex set in a.
We prove that up to conjugacy the face structure of E is completely
determined by that of P and that a face of E is exposed if and only if
the corresponding face of P is exposed. We apply these results to the
convex hull of the image of a restricted momentum map.

The boundary of a compact convex set is the union of its faces. Among
the faces, the simplest ones are the exposed ones. They are given by the
intersection of the convex set with a supporting hyperplane. In [3, 4] we

studied the convex hull Ô of a K-orbit O in p, where p is given by the
Cartan decomposition g = k⊕ p of a reductive Lie algebra g and K acts on
p by the adjoint representation. In this paper we use the results of [4] and
show that a substantial part of them holds for any K–invariant compact
convex set E of p. More precisely we study the faces of E. We show in
Proposition 1.2 that for a face F of E there exists a subalgebra s ⊂ p such
that F is a subset of ps = {x ∈ p : [x, s] = 0} and F is invariant with
respect to the action of Ks = {h ∈ K : Ad(h)(s) = s}, where Ad denotes
the adjoint representation.

If we fix a maximal abelian subalgebra a ⊂ p, then the set P = E ∩ a is
convex and invariant with respect to the action of the normalizer NK(a) =
{h ∈ K : Ad(h)(a) = a} of a in K. The NK(a)–action on P induces an
action on the set of faces of P . Similarly K acts on the set of faces of E.
Denote these sets by F (P ) respectively by F (E). If σ is a face of P , let σ⊥

denote the orthogonal complement in a of the affine hull of σ (see Section
1). Our main result is

Theorem 0.1. The map F (P )→ F (E), σ 7→ Kσ⊥ · σ is well–defined and
induces a bijection between F (P )/NK(a) and F (E)/K.
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An application of Theorem 0.1 is the following result.

Theorem 0.2. The faces of E are exposed if and only if the faces of P are
exposed.

Interesting K–invariant compact subsets of p often arise as images of re-
stricted momentum or gradient mappings. More precisely, let U be a com-
pact connected Lie group which acts by biholomorphism and in a Hamilton-
ian fashion on a compact Kähler manifold Z with momentum map µ : Z −→
u. Let G ⊂ UC be a connected Lie subgroup of UC which is compatible with
respect to the Cartan decomposition of UC. This means that G is a closed
subgroup of UC such that G = K exp(p), where K = U ∩G and p = g ∩ iu
[13, 15]. Let X ⊂ Z be a G-invariant compact subset of Z. We have the
restricted momentum map or the gradient map µp : X −→ p in the sense of

[13] (see also Section 3) and we denote by E = µ̂p(X) the convex hull of the
K-invariant set µp(X). If a is a maximal abelian subalgebra of p and π is
the orthogonal projection onto a, then µa = π ◦ µp : X −→ a is the gradient

map with respect to A = exp(a). Since P = E ∩ a = µ̂a(X) is a convex
polytope (Proposition 3.1), we deduce the following.

Theorem 0.3. All faces of µ̂p(X) are exposed.

A reformulation of Theorem 3.1 is that the faces of E correspond to
maxima of components of the gradient map. This observation will be used
to realize a close connection between the faces of E and parabolic subgroups
of G. More precisely, for any face F ⊂ E let XF := µ−1p (F ) and let QF =
{g ∈ G : g · XF = XF }. Then XF is the set of maximum points of an
appropriately chosen component of the gradient map and QF is a parabolic
subgroup of G.

If X is a G-stable compact submanifold of Z, then for any face F , one
can construct an open neighbourhood X−F of XF in X, which is an analogue
of an open Bruhat cell. Moreover there is a smooth deformation retraction
of X−F onto XF . See Theorem 3.1 for more details.

Acknowledgements. The first two authors are grateful to the Fakultät
für Mathematik of Ruhr-Universität Bochum for the wonderful hospitality
during several visits. They also wish to thank the Max-Planck Institut für
Mathematik, Bonn for excellent conditions provided during their visit at
this institution, where part of this paper was written.

1. Group theoretical description of the faces

We start by recalling the basic definitions and results regarding convex
bodies. For more details see e.g. [18]. Let V be a real vector space with
scalar product 〈·, ·〉. A convex body E ⊂ V is a convex compact subset of V .
Let Aff(E) denote the affine span of E. The interior of E in Aff(E) is called
the relative interior of E and is denoted by relintE. By definition a face
of E is a convex subset F ⊂ E such that x, y ∈ E and relint[x, y] ∩ F 6= ∅
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implies [x, y] ⊂ F . A face distinct from E and ∅ is called a proper face. The
extreme points of E are the points x ∈ E such that {x} is a face. We will
denote by extE the set of the extreme points of E. The set extE completely
determines the convex body E since the convex hull of extE coincides with
E and it is the smallest subset of E with this property. If F is a face
of E, we denote by Dir(F ) the vector subspace of V defined by Aff(F ), i.e.
Aff(F ) = p+Dir(F ). We call Dir(F ) the direction of F . Every vector β ∈ V
defines an exposed face F = Fβ(E) = {x ∈ E : 〈x, β〉 = maxy∈E〈y, β〉} with

Dir(Fβ(E)) ⊂ {β}⊥. In general not all faces of a convex set are exposed, see
Fig. 1 for an example. For any exposed face F the set

CF = {β ∈ V : F = Fβ(E)}, (1)

is a convex cone. The faces of E are closed. If F1 and F2 are faces of E and
they are distinct, then relintF1 ∩ relintF2 = ∅. Moreover the convex body
E is the disjoint union of the relative interiors of its faces (see [18, p. 62]).

We are interested in invariant convex bodies in polar representations. A
theorem of Dadok [6] asserts that we can restrict ourselves to the following
setting.

Let g be a semisimple Lie algebra with a Cartan involution θ and let B
be the Killing form of g. Then g = k⊕ p, is the eigenspace decomposition of
g in 1 and −1 eigenspaces of θ and they are orthogonal under B. Moreover,
B restricted to k, respectively p, is negative definite, respectively positive
definite. In the sequel we denote 〈·, ·〉 = B|p×p

which is a K-invariant scalar
product. Out object of study will be a K-stable convex body E ⊂ p. For
for any A,B ⊂ p we set

AB := {η ∈ A : [η, ξ] = 0, for all ξ ∈ B}
GB := {g ∈ G : Ad g(ξ) = ξ, for all ξ ∈ B},

KB := K ∩GB.

where Ad denotes the adjoint representation. In the sequel we denote by
k · x = Ad(k)(x) the action of K on p by linear isometries.

Faces of K–invariant convex bodies in p are closely connected to orbits
of subgroups of K which are given as centralizers. More precisely for any
nonzero β in p we have the Cartan decomposition gβ = kβ ⊕ pβ of the Lie
algebra of the centralizer Gβ of β in G.

Proposition 1.1. Let F = Fβ(E) be an exposed face of E. Then

a) F ⊂ pβ and F is Kβ–stable;
b) Dir(F ) ⊂ β⊥, where ⊥ is in p.

Proof. If x ∈ Fβ(E), then K̂ · x ⊂ E since E is K-invariant. Moreover, we
have

max
y∈E
〈y, β〉 = max

y∈K̂·x
〈y, β〉 = 〈x, β〉.
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Corollary 3.1 in [4] implies Fβ(K̂ · x) ⊂ pβ. Therefore x ∈ pβ. This proves
a). Part b) follows since F is contained in an affine hyperplane orthogonal
to β. �

For an arbitrary face of E we have the following.

Proposition 1.2. Let F ⊂ E be a face. Then there exists an abelian subal-
gebra s ⊂ p such that

a) F ⊂ ps and F is Ks–stable;
b) Dir(F ) ⊂ s⊥;

Proof. We may fix a maximal chain of faces F = F0 ( F1 ( · · · ( Fk = E
(see [3, Lemma 2]). If k = 0, then F = E and s = {0}. Assume the theorem
is true for a face contained in a maximal chain of length k. Then the claim
is true for F1 and consequently there exists s1 ⊂ p such that F1 ⊂ ps1 , F1 is
Ks1-stable and Dir(F1) ⊂ s⊥1 . F is an exposed face of F1. Let β′ ∈ ps1 such

that F = Fβ′(F1) and set s := Rβ′ ⊕ s1. Then F ⊂ ps, F is (Ks1)β
′

= Ks–

stable and Dir(F ) ⊂ s⊥. �

Let a ⊂ p be a maximal abelian subalgebra of p and let π : p −→ a be
the orthogonal projection onto a. Then P = E ∩ a is a convex subset of a
which is NK(a)–stable. The proof of the following Lemma is given in [7].

Lemma 1.1. (i) If E ⊂ p is a K–invariant convex subset, then E∩a = π(E)
and K · π(E) = E. (ii) If C ⊂ a is a NK(a)-invariant convex subset, then
K · C is convex and π(K · C) = C.

Lemma 1.2. Let U be a compact Lie group and let g ⊂ uC be a semisimple
θ-invariant subalgebra. Then any Lie subgroup with finitely many connected
components and with Lie algebra g is closed and compatible.

Proof. We fix an embedding U ↪→ U(n) such that the Cartan involution
X 7→ (X−1)∗ of GL(n,C) restricts to θ. Then G is closed in GL(n,C) (see
[16, p. 440] for a proof) and hence also in UC. Since g is θ-invariant, also
G is, and θ restricts to the Cartan involution of G. This shows that G is
compatible. �

If G ⊂ UC is compatible with Lie algebra g = k⊕p, then g is real reductive
and there is a nondegenerate K–invariant bilinear form B : g×g −→ R which
is positive definite on p, negative definite on k and such that B(k, p) = 0.
Indeed, fix a U -invariant inner product 〈 , 〉 on u. Let 〈 , 〉 denote also the
inner product on iu such that multiplication by i be an isometry of u onto
iu. Define B on uC imposing B(u, iu) = 0, B = −〈 , 〉 on u and B = 〈 , 〉 on
iu. Therefore B is AdUC–invariant and non-degenerate and its restriction
to g satisfies the above conditions.

Let q be a K–invariant subspace of p. Then [q, q] is a K–invariant linear
subspace of k and therefore an ideal of k. Since K is compact, we have the
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following K–invariant splitting k = [q, q]⊕ k′. In particular k′ is an ideal of k
commuting with [q, q]. Let p = q⊕ q′ be a K–invariant splitting of p. Since

B([q, q′], k) = B(q, [k, q′]) ⊂ B(q, q′) = 0,

this shows that [q, q′] = 0 and so [q′, [q, q]] = [q, [q, q′]] = 0. Moreover
p = q ⊕ q′ implies that h = [q, q] ⊕ q and h′ = k′ ⊕ q′ are compatible K–
invariant commuting ideal of g.

If a K–invariant linear subspace q ⊂ p is fixed, one gets decomposition of
g, and so of G. This is decomposition is the content of the next Proposition.
We will need it in the case where F ⊂ p is a K–invariant convex body and
q is such that Aff(F ) = x0 + q.

Proposition 1.3. Let G ⊂ UC be a compatible subgroup with Lie algebra
g = k ⊕ p and let q ⊂ p be a linear K–invariant subspace. Let g = h ⊕ h′

where h = [q, q]⊕ q and h′ = h⊥B . Then the following hold.

a) h and h′ are compatible K–invariant commuting ideal of g;
b) Let K1 be the connected Lie subgroup of G with Lie algebra k ∩ [h, h].

Then K1 exp(q) is a connected compatible subgroup of G and any two
maximal subalgebras of q are congiugate by an element of K1.

c) Let K2 be the connected Lie subgroup of G with Lie algebra k∩ [h′, h′].
Then any two maximal subalgebras of q′ are congiugate by an element
of K2.

Proof. We have proved (a) in the above discussion. Let b := [h, h]. Then
h = z(h) ⊕ b and b is semisimple. Denote by B the connected subgroup of
UC with Lie algebra b. By Lemma 1.2 B is a closed subgroup of UC. Set
zp := z(h) ∩ p and d := b⊕ a. Then d is a reductive Lie algebra and exp a is
a compatible abelian subgroup commuting with B. Thus D := B · exp a is
a connected closed subgroup with Lie algebra d. Moreover D ∩ U = B ∩ U
and exp(b ∩ p) · exp a = exp(b ∩ p ⊕ a) = exp(d ∩ p). This shows that D
is compatible. Since D ∩ U coincides with K1 and D is connected the last
statement in (b) follows from standard properties of compatible subgroups
(see e.g. Prop. 7.29 in [16]; note that a connected compatible subgroup
is a reductive group in the sense of [16, p. 446]). This proves (b). For
(c) the same argument applies more directly. It is enough to observe that
the connected Lie subgroup H ′′ ⊂ G with Lie algebra [h′, h′] is semisimple,
compatible and connected and that K2 = H ′′ ∩ U . �

Remark 1.1. The compatible subgroup G in the previous Proposition is
not assumed to be connected. Nevertheless the constructions in (b) and (c)
depend only on G0. Thus considering G0 in place of G makes no difference.

Lemma 1.3. Let g = g1 ⊕ g2 be a reductive Lie algebra and gi ideals. If
a ⊂ p is a maximal subalgebra, then ai := a ∩ pi is a maximal subalgebra of
pi and a = a1 ⊕ a2.

If σ is a face of P , let σ⊥ denote the orthogonal (inside a) to the direction
of the affine hull of σ.
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Lemma 1.4. Let F be a face and let s be as in Proposition 1.2. Let a ⊂ p
be a maximal abelian subalgebra containing s. Set σ := π(F ). Then σ is a

face of P , σ = F ∩ a and F = Kσ⊥ · σ. Moreover F is a proper face if and
only if F ∩ a is.

Proof. By Proposition 1.2 F ⊂ ps is a Ks–stable convex set. By Lemma 1.1
we get σ = π(F ) = F ∩a and this is a face P by [3, Lemma 11]. Since Dir(F )
is contained in the orthogonal complement of s, and Dir(σ) ⊂ Dir(F ), we

have Dir(σ) ⊂ a ∩ s⊥. Then σ⊥ ⊂ s. Hence Kσ⊥ · σ ⊂ Ks · σ ⊂ F . We

prove the reverse inclusion. If y ∈ F , then F ∩ K̂ · y is a face of K̂ · y. Set

σ̃ = π(F ∩ K̂ · y). We have σ̃ ⊂ σ and by Proposition 3.6 in [4] we also have

that F ∩ K̂ · y = K σ̃⊥ · σ̃. On the other hand, σ⊥ ⊂ σ̃⊥, so K σ̃⊥ ⊂ Kσ⊥ and

F ∩ K̂ · y = K σ̃⊥ · σ̃ ⊂ Kσ⊥ · σ.

This implies F = Kσ⊥ ·σ. Note that F is proper if σ is. It remains to prove
that σ is proper, when F is proper.

Let Aff(E) = xo+qE . Note that qE = {x−y : x, y ∈ Aff(E)} implies that
qE is K–invariant. Since K acts on p by isometries, we may assume that
xo is orthogonal to q. Note that xo is uniquely defined by this condition.
It follows that xo is a K fixed point and E = x0 + E1, where E1 is a K–
invariant convex body of qE . Proposition 1.3 applied to qE yields K1,K2

such that G1 = K1 exp(qE) is a connected compatible semisimple real Lie
group, K = K1 ·K2 and for any x ∈ E we have

K · x = K · (xo + x1) = xo +K · x1 = xo +K1 · x1 = K1 · x.

since qE is fixed pointwise by K2. By Lemma 1.3, a = aE ⊕ a′E , where aE is
a maximal abelian subalgebra of qE and a′E is a maximal abelian subalgebra
of q′E . Since π(E) = π(xo) + π(E1) and Dir(E1) = qE , it follows that the

direction of π(E) is aE . If σ = π(F ) = π(E) = E ∩ a, then σ⊥ = a′E and so

K1 ⊂ Ka′E . It follows that

F = Ka′E · (E ∩ a) = K1 · (E ∩ a) = K · (E ∩ a) = E.

where the last equality follows by Lemma 1.1. Hence, if F is proper, then
σ = π(F ) ( π(E) = E ∩ a. �

Proposition 1.4. Let F be a proper face and let s as in Proposition 1.2.
Let a ⊂ p be a maximal abelian subalgebra containing s. Then F is exposed
if and only if F ∩ a is.

Proof. Assume that there exists β ∈ p such that F = Fβ(E). Since F∩a = σ
is a proper face of P , the point β is not orthogonal to a. We have β =
β1 ⊕ β2, with β1 ∈ a different from zero and β2 orthogonal to a. Therefore
Fβ(E) ∩ a = Fβ1(E) ∩ a = Fβ1(P ) = σ. Now, assume that there exists

β ∈ a such that σ = Fβ(P ). Let F ′ := Fβ(E). By Proposition 1.1 F ′ ⊂ pβ.

Moreover a ⊂ pβ since β ∈ a. By Lemma 1.4 the intersection of a face with
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Figure 1.

a determines the face. Since F ′ ∩ a = Fβ(P ) = σ = F ∩ a we conclude that
F = F ′. Thus F is exposed. �

Remark 1.2. Given a Weyl–invariant convex body P ⊂ a, set E := K · P .
By Lemma 1.1 E is a K-invariant convex body in p and P = E ∩ a. Thus a
general P can be realized as E ∩a. A general Weyl–invariant convex body P
can have non–exposed faces. For example take G = UC = SL(2,C)×SL(2,C)
and K = SU(2) × SU(2). Then a = R2 and the Weyl group is isomorphic
to Z/2× Z/2 where the generators are given by the reflections on the axes.
The picture in Fig. 1 is a Weyl–invariant P with exactly 4 non–exposed
faces. By the Proposition also the corresponding body E ⊂ isu(2) ⊕ isu(2)
has non–exposed faces.

2. Proof of the main results

Let a ⊂ p and define the following map

Υ : F (P ) −→ F (E), σ 7→ Kσ⊥ · σ
Since σ is N

Kσ⊥ (a)-invariant, it follows from Lemma 1.1 that Υ(σ) is a face
of E.

Theorem 0.1. The map Υ induces a bijection between F (P )/NK(a) and
F (E)/K.

Proof. Set N := NK(a). We first show that Υ is N -equivariant. Let w ∈ N .

Then σ′ = wσ implies Kσ′⊥ = wKσ⊥w−1 and therefore Υ(σ′) = wΥ(σ).
This means that the map

Υ̃ : F (P )/N −→ F (E)/K, [σ] 7→ Kσ⊥ · σ
is well-defined. Next, we prove that Υ̃ is injective. Assume for some g ∈ K
g · F1 = F2 where F1 = Υ(σ1) and F2 = Υ(σ2). Since F2 = Kσ⊥2 · σ2,
the face F2 is a Kσ⊥2 –invariant convex body. Moreover σ2 ⊂ a ⊂ pσ

⊥
2

and pσ
⊥
2 is Kσ⊥2 –invariant. Therefore F2 is contained in pσ

⊥
2 . It follows

that Aff(F2) = xo + qF2 , where qF2 is a Kσ⊥2 invariant subspace of pσ
⊥
2 ,

xo is a fixed Kσ⊥2 point and it is orthogonal orthogonal to qF2 . We apply

Proposition 1.3 to the group Gσ
⊥
2 and qF2 . Thus hF2 = [qF2 , qF2 ]⊕ qF2 and

its orthogonal complement in gσ
⊥
2 , that we denote by h′F2

, are commuting

ideal. The Proposition 1.3 also yields subgroups K1,K2 ⊂ Kσ2⊥ such that
any two maximal subalgebras in qF2 , respectively q′F2

, are interchanged by
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K1, respectively K2. Since σ2 ⊂ a, also Dir(σ2) ⊂ a and we may decompose
a = Dir(σ2) ⊕ σ⊥2 . But Dir(σ2) is contained also in qF2 since σ2 ⊂ F2. So
σ⊥2 ⊂ q⊥F2

∩ p = q′F2
. By dimension Dir(σ2) is a maximal subalgebra in qF2

and σ⊥2 is a maximal subalgebra in q′F2
. On other hand from g · F1 = F2 it

follows that g · Dir(σ1) ⊂ qF2 and g · σ⊥1 ⊂ qF2 , and they are also maximal
subalgebras in these spaces. By the Proposition 1.3 (b) and (c) there exist
k1 ∈ K1, k2 ∈ K2 such that

(k1g) ·Dir(σ1) = Dir(σ2)

(k2g) · σ⊥1 = σ⊥2 .

Since x0 is fixed by the larger group Kσ⊥2 it follows that k1gσ1 = σ2. More-
over k1k2 = k2k1 since [hF2 , h

′
F2

] = 0. For the same reason q′F2
is fixed

pointwise by K1 and qF2 is fixed pointwise by K2. Set k = k1k2 and w = kg.

Then k ∈ Kσ⊥2 and w ∈ K. We get

w ·Dir(σ1) = Dir(σ2)

w · σ⊥1 = σ⊥2 .

Thus w · a = a, i.e. w ∈ N . Since k ∈ Kσ⊥2 , w · F1 = (kg) · F1 = k · F2 =
F2. Since σ1 = (x0 + Dir(σ1)) ∩ F1 and similarly for F2, we conclude that

wσ1 = σ2. Finally we prove that Θ̃ is surjective. Let F ⊂ Ô be a face. Then
F ⊂ ps for some abelian subalgebra s ∈ p. Then there exists k ∈ K such

that k · a ⊂ ps. Therefore k−1 ·F ⊂ p(k
−1·s) and a ⊂ p(k

−1·s). By Proposition

1.4, k · F = Kσ⊥ · σ where σ = (k · F ) ∩ a and so Υ̃ is surjective. �

As an application of the above theorem and Proposition 1.4, we get the
following result.

Theorem 0.2. The faces of E are exposed if and only if the faces of P are
exposed.

Proof. By the above Theorem, the map σ 7→ Kσ⊥ · σ induces a bijection
between F (P )/N and F (E)/K. Hence, keeping in mind that if F1 = kF2,
then F1 is exposed if and only if F2, the result follows from Proposition
1.4. �

Remark 2.1. We have proven Theorems 0.1 and 0.2 under the assumption
that G is a connected real semisimple Lie group. From this it follows that
both theorems hold true for any connected compatible subgroup of UC, since
such a subgroup is real reductive in the sense of [16, p. 446] and thus it is
the product of a semisimple connected subgroup and an abelian subgroup, see
e.g. [16, p. 453].

3. Convex hull of the gradient map image

Let U be a compact connected Lie group and UC its complexification.
Let (Z, ω) be a Kähler manifold on which UC acts holomorphically. Assume
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that U acts in a Hamiltonian fashion with momentum map µ : Z −→ u∗.
Let G ⊂ UC be a closed connected subgroup of UC which is compatible with
respect to the Cartan decomposition of UC. This means that G is a closed
subgroup of UC such that G = K exp(p), where K = U ∩G and p = g ∩ iu
[13, 15]. The inclusion ip ↪→ u induces by restriction a K-equivariant map
µip : Z −→ (ip)∗. Using a fixed U -invariant scalar product 〈 , 〉 on u, we
identify u ∼= u∗. We also denote by 〈 , 〉 the scalar product on iu such that
multiplication by i be an isometry of u onto iu. For z ∈ Z let µp(z) ∈ p
denote −i times the component of µ(z) in the direction of ip. In other words
we require that 〈µp(z), β〉 = −〈µ(z), iβ〉, for any β ∈ p. Then we view µip
as a map

µp : Z → p,

which is called the G-gradient map or restricted momentum map associated
to µ. For the rest of the paper we fix a G-stable compact subset X ⊂ Z and
we consider the gradient map µp : X −→ p restricted on X. We also set

µβp := 〈µp, β〉 = µ−iβ.

We will now study the convex hull of µp(X), that we denote by E. Let a ⊂ p
be a maximal abelian subalgebra of p and let π : p −→ a be the orthogonal
projection onto a. Then π ◦ µp =: µa is the gradient map associated to
A = exp(a). Let ZA be the set of fixed points of A. We note that µa
is locally constant on ZA since Ker dµa(x) = (a · x)⊥ (see [15]). Let b a
subspace of a and let Xb = {p ∈ X : ξX(p) = 0 for all ξ ∈ b}, where ξX is
the vector field induced by the A action on X. Then the map µb : Xb −→ b,
that is the composition of µp with the orthogonal projection onto b, is locally
constant ([11], Section 3). Since Xb is compact, µb(X

b) is a finite set. In

[11] it also shown that for any y ∈ X(b) := {p ∈ X : ap = b}, where

ap := {ξ ∈ a : ξX(p) = 0}, we have that µa(A · y) ⊂ µa(y) + b⊥ is an open

subset of the affine space µa(y) +b⊥ (the orthogonal complements are taken
in a). Moreover µa(A · y) is a convex subset of µa(y) + b⊥ (see [10]) and

therefore µa(A · y) = µa(A · y) is a convex body.

Let P := µ̂a(X). If β ∈ µa(X) is an extremal point of P , and y ∈ µ−1a (β),
then µa(A · y) is an open neighborhood of µa(y) in µa(y) + a⊥y and it is
contained in µa(X) ⊂ P . Since µa(y) is an extremal point, it follows that
a⊥y = {0} and so y is a fixed point of A. Since X is compact, the set XA

has finitely many connected components. Therefore P has finitely many
extremal points, i.e. it is a polytope. We have shown the following.

Proposition 3.1. Let X ⊂ Z be a G-invariant compact subset of Z. Then

the image µa(X
A) is a finite set {c1, . . . , cp} and P = µ̂a(X) is the convex

hull of c1, . . . , cp.

As a corollary we get the following result.
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Theorem 0.3. Let X ⊂ Z be a G-invariant compact subset of Z. Then

every face of E = µ̂p(X) is exposed.

Proof. Since

π(E) = ̂π(µp(X)) = µ̂a(X),

by Lemma 1.1 (i) we conclude that E ∩ a = π(E) = P and by Proposition
3.1, Remark 2.1 and Theorem 0.2 we get that every face of E is exposed. �

We call P the momentum polytope. If G = UC and X is a complex
connected submanifold of Z, then P = µa(X) by the Atiyah-Guillemin-
Sternberg convexity theorem [1, 8]. The same holds for X an irreducible
semi-algebraic subset of a Hodge manifold Z [17, 11, 5].

Since any proper face F of E is exposed, the set CF defined in (1) is a
non-empty convex cone in p. Set

KF := {g ∈ K : g · F = F}.

By Proposition 5 in [3] we have CK
F

F := {β ∈ CF : KF · β = β} 6= ∅. This
means that for a proper face F one can find a KF –invariant vector β such
that Fβ(E) = F . For β ∈ p, denote by Xβ the set of points of X that are
fixed by exp(Rβ). If β ∈ CF , let

Xβ
max := {x ∈ X : µβp (x) = max

X
µβp }.

Since the function µβp is Kβ–invariant the set Xβ
max is Kβ–invariant. More-

over Xβ
max is a union of finitely many connected components of Xβ and Xβ

is Gβ-stable. Every connected component of Gβ meets Kβ. This implies

that Gβ leaves Xβ
max invariant. Next we show that Xβ

max does not depend
on the choice of β in CF .

Lemma 3.1. If β ∈ CF , then Xβ
max = µ−1p (F ). Moreover F is the convex

hull of µp(X
β
max).

Proof. Fix x ∈ X. Then µp(x) ∈ F if and only if 〈µp(x), β〉 = maxv∈E〈v, β〉.
Moreover maxv∈E〈v, β〉 = maxv∈µp(X)〈v, β〉 = maxX µ

β
p . So x ∈ µ−1p (F )

if and only if x is a maximum of µβp (x) restricted to X. This shows that

Xβ
F = µ−1p (F ). The inclusion µp(X

β
F ) ⊂ F follows from the definition and

therefore µ̂p(X
β
F ) ⊂ F . By [3, Lemma 3] extF = extE ∩ F , so extF ⊂

µp(X) ∩ F = µp(X
β
F ). It follows that F = µ̂p(X

β
F ). �

Motivated by the above Lemma we set XF := Xβ
max where β is any vector

in CF . We also set

QF = {g ∈ G : g ·XF = XF }.

QF is a closed Lie subgroup of G.
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Given β ∈ p define the following subgroups:

Gβ+ = {g ∈ G : lim
t7→−∞

exp(tβ)g exp(−tβ) exists},

Gβ− = {g ∈ G : lim
t7→+∞

exp(−tβ)g exp(tβ) exists},

Rβ+ = {g ∈ G : lim
t7→−∞

exp(tβ)g exp(−tβ) = e},

Rβ− = {g ∈ G : lim
t7→+∞

exp(−tβ)g exp(tβ) = e}.

Gβ+ (respectively Gβ−) is a parabolic subgroup, Rβ+ (respectively Rβ−) is
its unipotent radical and Gβ is a Levi factor. Therefore Gβ+ = Gβ o Rβ+

(respectively Gβ− = Gβ oRβ−).

Lemma 3.2. QF ∩K = KF .

Proof. If g ∈ QF ∩ K, then g · XF = XF . Since µp is a K-invariant map,
g ·µp(XF ) = µp(XF ). Taking the convex hull of both sides and using Lemma
3.1 we get that g · F = F , thus g ∈ KF . Conversely, if g ∈ KF , the
equivariance of µp yields XF = µ−1p (F ) = µ−1p (g · F ) = gXF , thus g ∈
QF . �

We are now ready to prove the connection between the set of the faces of
E and parabolic subgroups of G.

Proposition 3.2. QF is a parabolic subgroup of G. Moreover QF = Gβ+

for every β ∈ CKF

F .

Proof. Observe that by definition QF is a closed subgroup of G. Let β ∈
CK

F

F . Then F = Fβ(E) and, by definition of KF , we get KF = Kβ.

The set XF = {x ∈ X : µβp (x) = maxX µ
β
p } is Gβ-stable. Fix p ∈ XF

and consider the orbit G · p, which is a smooth submanifold contained in
X. By Proposition 2.5 in [13] (see also Proposition 2.1 in [4]) we get that
ξX(x) = 0 for any ξ ∈ rβ+ and for any x ∈ XF . Therefore Gβ+ · p ⊂ XF .
Hence Gβ+ ⊂ QF and the Lie algebra qF of QF is parabolic. On the other
hand by Lemma 3.2, we have qF ∩ k = gβ+ ∩ k = kβ and so by Lemma
3.7 [4] we conclude that qF = gβ+. Since QF ⊂ NG(gβ+) = Gβ+ we get
QF = Gβ+. �

Remark 3.1. If β′ ∈ CKF

F , then QF = Gβ
′+ = Gβ+. By Lemma 2.8 in [4],

we have [β, β′] = 0, Gβ = Gβ
′

and Rβ+ = Rβ
′+.

Let QF− = Θ(QF ), where Θ : G −→ G denotes the Cartan involution.
The subgroup QF− is parabolic and depends only on F . The subgroup

LF := QF ∩QF− is a Levi factor of both QF and QF−. Let β ∈ CKF

F . Then

QF = Gβ+, LF = Gβ and we have the projection

πβ+ : Gβ+ −→ Gβ, πβ+(g) = lim
t7→+∞

exp(tβ)h exp(−tβ),



12 LEONARDO BILIOTTI, ALESSANDRO GHIGI, AND PETER HEINZNER

respectively

πβ+ : Gβ− −→ Gβ, πβ−(g) = lim
t7→−∞

exp(tβ)h exp(−tβ).

Lemma 3.3. If β ∈ CKF

F , then the projections πβ+ and πβ− depend only
on F .

Proof. Let g ∈ Gβ+. We know that g = hr, where h ∈ Gβ and r ∈ Rβ+.
Then

πβ+(g) = lim
t7→+∞

exp(tβ)g exp(−tβ) = h lim
t7→+∞

exp(tβ)r exp(−tβ) = h.

Since Gβ = Gβ
′

and Rβ+ = Rβ
′+ the decomposition g = hr is the same for

both groups and πβ+(g) = πβ
′+(g). The same argument works for πβ−. �

Now assume that X is a G-stable compact submanifold of Z.

For β ∈ CKFF set Xβ−
F := {p ∈ X : limt7→+∞ exp(tβ) · p ∈ XF }. Then the

map

pβ− : Xβ−
F −→ XF , pβ−(x) = lim

t7→+∞
exp(tβ) · x (2)

is well-defined, Gβ-equivariant, surjective and its fibers are Rβ−-stable.
More generally one can consider pβ− as a map from Xβ− = {y ∈ X :

limt7→+∞ exp(tβ) ·x exists } to Xβ. In general however this map is not even
continuous [14, Example 4.2]. To ensure continuity and smoothness it is
enough that the topological Hilbert quotient Xβ−//Gβ exists. Using the

notation of [14] and choosing r = maxX µ
β
p , we have XF = Xβ

max = Xβ
r

and Xβ−
r = Xβ−

F . Thus Prop. 4.4 of [14] applies and yields that Xβ−
F is an

open Gβ−–stable subset of X and that (2) is smooth deformation retraction
onto XF . Using πβ− one defines an action of QF− = Gβ− on XF by setting
g · x = πβ−(q) · x. This just depends on F . With respect to this action the
map pβ− becomes QF−–equivariant.

Lemma 3.4. The set Xβ−
F and the map pβ− do not depend on the choice

of β ∈ CKF

F .

Proof. Set Γ = exp(Rβ). If p ∈ XF by the Slice Theorem [13, Thm. 3.1]
there are open neighborhoods Sp ⊂ TpX and Ωp ⊂ X and a Γ-equivariant
diffeomorphism Ψp : Sp −→ Ωp, such that 0 ∈ Sp, p ∈ Ωp, Ψp(0) = p. Since

p is a maximum of µβp restricted to X, the following orthogonal splitting

TpX = V0 ⊕ V− with respect to the Hessian of µβp holds. Here V0 denotes

the kernel of the Hessian of µβp and V− denotes the sum of eigenspaces of

the Hessian of µβp corresponding to negative eigenvalues. We also point out
that V0 = TpXF and Sp = {x0 + x− : x0 ∈ Sp ∩ V0, x− ∈ V−}, see [15].

It follows that Ωp ⊂ Xβ−
F . Set Ω :=

⋃
p∈XF Ωp. By what we just proved,

Ω ⊂ Xβ−
F . On the other hand Ω is an open Γ-invariant neighbourhood

of XF , so Xβ−
F ⊂ Ω. So Xβ−

F = Ω. If β′ is another vector of CK
F

F , set
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B = exp(Rβ ⊕Rβ′). This is a compatible abelian subgroup and XF ⊂ XB.
So we may choose the open subsets Ωp above to be B-stable. Therefore we

get Xβ′− = Ω as well. This proves that Xβ−
F = Xβ′−

F .

Next we show that pβ− = pβ
′−. First observe that pβ−(y) = pβ

′−(y) if
y ∈ Ω. Indeed if y ∈ Ωp we can study the limit using the diffeomorphism
Ψp : Sp → Ωp. The decomposition TpX = V0 ⊕ V− is the same for β
and β′ since they commute and attain their maxima on XF . Therefore if
x = Ψ−1p (y) = x0 + x−, then

pβ−(y) = Ψp(x0) = pβ
′−(y). (3)

If p ∈ Xβ−
F and q = limt7→+∞ exp(tβ) · p ∈ XF , there is t1 ∈ R, such that

exp(tβ) · p ∈ Ω. Therefore

lim
t7→+∞

exp(tβ′) · p = lim
t7→+∞

exp(tβ′)(exp(t1β
′) · p)

= lim
t7→+∞

exp(tβ)(exp(t1β
′) · p) (by 3)

= exp(t1β
′)( lim

t7→+∞
exp(tβ) · p)

= lim
t7→+∞

exp(tβ) · p.

�

By the above Lemma if F is a face and β ∈ CKF

F , we can set X−F := Xβ−
F

and pF− := pβ− : X−F −→ XF .

Theorem 3.1. For any face F ⊂ E, the set XF is closed and LF -stable,
X−F is an open QF−–stable neighborhood of XF in X and the map pF− is a

smooth QF−–equivariant deformation retraction of X−F onto XF .
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