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INVARIANT CURVES FOR NUMERICAL METHODS*

By

H. T. DOAN

California State University, Long Beach

Abstract. The problem of finding periodic orbits of dynamical systems numerically is

considered. It is shown that if a convergent, strongly stable, multi-step method is

employed then under some suitable conditions, there exist invariant curves. The result also

shows that the rates of convergence toward the invariant curves are roughly the same for

different methods and different step sizes.

Introduction. The problem of locating the periodic orbits of dynamical systems numeri-

cally has been considered by many authors (see, e.g., [3,4,8]). In many instances,

especially when the periodic orbits of an one-parameter family of dynamical systems are

to be followed, the existence of these orbits is more important than their exact locations.

This paper arises from the author's dissertation [2], Its purpose is to show that when a

strongly stable method is employed, then under suitable conditions, there exist invariant

curves. This result is stronger than the one obtained in [1] in that the method could be

multi-step and the periodic orbit need not be stable. The result also shows that reducing

the step size or employing more sophisticated methods do not necessarily improve the rate

of convergence.

The problem. Let

woo, (1)
x e R", f(x) is as smooth as needed,

be a dynamical system which possesses a periodic orbit F with characteristic multipliers

ju,,, jun satisfying fil = 1, |juy| < 1 for j = 2,...,/ and |juy| >1 for j = I + 1

Suppose that (1) is approximated by a convergent, k-step method of the form

k k

*„, + ! = L ajXm+l_j+ h £ bjf(xm+l_j) + h2F(h,xm,...,xm+1_k) (2)
7=1 7-1
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where

k k k

1 - £ dj = 0 and £ jdj = £ bj.

7=1 7=1 /=1

We will also assume that the method employed is strongly stable. This means that the

polynomial g(\) = \k — T.k=lajXk~J has k roots Aj,... ,A^ satisfying A[ = 1, |A;| < 1 for

j = 2,... ,k. We note that (2) includes the usual linear, multi-step methods as well as many

non-linear methods such as the modified Euler's method, the Runge-Kutta method, etc.

For example, the modified Euler's method applied to (1) would yield

*m+l = xm + hf(xm) + h2F(h,xm)

where F(h, x) = (f{x + hf(x)) — f(x))/h for h # 0 and F(0, x) = f'(x)f(x).

The moving coordinate system. The key in proving the result is to introduce the moving

coordinate system. To that end, let T = {p{6)/0 < 6 < r} be the periodic orbit, i.e.,

p(6) is a T-periodic function satisfying dp(6)/d8 = f(p(8)). The corresponding linear

variational equation

dy(8)/d8=df/dx(p(8))y(8) (3)

has p'(0) as a solution corresponding to the trivial characteristic multiplier jli, = 1. Thus

(3) has a fundamental matrix solution of the form (see, e.g., [5])

X(0) = P{d)eAe (4)

in which the first columns of X{6) and P(0) both equal top'(6), P(0) is 2 T-periodic and

A is of the form A = [£g] where B is an (n - 1 )x(n - 1) matrix such that e2Br has

eigenvalues ... ,nl. The 2 r-periodicity is chosen here to ensure that A is a real matrix.

We now imbed T into R*" by definingp(6) = [p(0 — (k — 1 )h)T ■ • • p(6)T]T, here T

denotes transposition. Since p(6) is periodic, so is p(6). Thus for 0 < 0 < r, p(9) defines

a curve f in R*". Similarly, given a sequence xm + 1_k,... ,xm in R", we define zm =

[x^+l_k ■ ■ ■ x^]r. The difference equation (2) then defines a mapping M from R*" to R*"

by M(zm) = zm + 1 where zm+l = [xTm_k + 2 ■■■ x^ + 1]rand xm + l is given by (2).

Due to the special form of M, any curve invariant under M in R k" would yield a curve \p

in R" which is invariant under (2) in the sense that for any point x in there exist points

xk = x, xk,xx on \p such that the points generated by (2) with starting points

xl,...,xk stay on \p.

Define X(6) = [X{6 — (k - \)h)T ■ ■ ■ X{6)T]T. Note that since

"l 0

o e-Br

the first column of X(8)e~Ae is p(6). Let Z(9) be the (nk)x(n — 1) matrix consisting of

the remaining n - 1 columns of X(8)e~Ae. Also we now assume for simplicity that the

roots Aj,... ,Xk of g(A) = Xk - Y,k=la/\k~J are all distinct and define

X2P(8) ■ AkP(8)

e~A° =

E(8) =

A \P(8) ■ AkkP{8)
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Since Z(0) and E(9) are 2 T-periodic, it makes sense to build the moving coordinate

system on these matrices. We have the following

Lemma 1. There exists an open neighborhood of f such that for every z in that

neighborhood, there exist unique r in R"~\ w in IR'*-1'" and 0 (unique up to mod2r)

such that

z = p(8) + Z(9)r + E(8)w. (5)

Proof. Set F(0, r, w, z) = z - (p(6) + Z{6)r + E(O)w). Then £(0,0,0, p(0)) = 0,

9/790(0,0,0, p(O)) = p'(0), 9F/9r(0,O,O, p(0)) = Z(0) and 9F/9w(0,O,O, p{0)) =
E(6). When h = 0 we have

\p'{0),Z{9),E{0)}

P{0) 0 • 0

0 P{0) ■ 0

0
0 • 0 P(0)

X2I ■ XkI

XV • X\I

which is invertible (here 0 and / denote the zero and identity («) X (n) matrices). Thus

continuity implies that [p'(0), Z(0), £(0)] is also invertible for h > 0 sufficiently small.

The lemma then follows from the implicit Function Theorem and the fact that f is

compact.

Technically speaking, f and the neighborhood provided by Lemma 1 depend on the

step size h, but due to continuity, we may assume that (5) is valid for all |r| < 5 and

|w| < S where S is independent of h provided that h is sufficiently small. Also by assuming

that the function f(x) in (1) is sufficiently smooth, 0, r, w will depend as smoothly on z as

needed. Let vx, v2 and v3 be the appropriate functions such that 0 = i^(z), r = u2(z) and

w = v3(z) for all z sufficiently close to f.

If

z = p{0) + Z{6)r + E{d)w (6)

then

M(z) = M{p(d)) + S(0)[Z(0)r + £(0)w] + hgx{h,0,w, r) (7)

where S(0) = 9Af/9z(/>(0)) and gx(h, 0, w, r) has second order zero in (w, r) at (0,0).

Since M arises from a convergent method, we have

M(p(0))=p(0 + h) + O(h2). (8)

Also since X{0) is a fundamental matrix solution of (3) we have

S(0)X(8) = X{0 + h) + 0(h2)

and hence

Finally note that

S(0)Z(0) = Z(0 + h)eBh + 0(h2). (9)

S(0)E(0) = E(0 + h)A + O(h) (10)
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where

A =

A,/ 0 • 0

0 X3/ •

0

0 0 \kI

Set z = p(8 + h) + Z(8 + h)eBhr + E(9 + h)Aw then

M(z) — z = hgx(h, 9, w, r) + hGx(h, 8, w) + h2Fl(h, 8, r).

The first term comes from (7), the second from (10) and the third from (8) and (9). The

function gx(h, 8, w, r) has second order zero in (w, r), Gx(h, 8, w) has first order zero in w

while Fx(h, 8,0) & 0 in general. Thus ifAZ(z) = p(8x) + Z{8x)rx + E{8x)wx then

8X = vx(M{z)) = vx(z) + du1/dz(z)(M(z) - z) + 0(h2).

The term 0(h2) arises from the fact that M(z) — z = O(h). Thus

8X = 9 + h + hg2(h, 9,w, r) + hG2(h, 8,w, r) + h2F2(h, 6,w, r) (11a)

Similarly

Wj = Aw + hg3(h, 8,w, r) + hG3(h, 8, w, r) + h2F3(h, 9, w, r) (lib)

rx = eBhr + Hg4(h, 8, w, r) + hG4(h, 8, w, r) + h2F4(h, 8, w, r) (11c)

where g,(h, 8,w, r) has second order zero in (w\ r), G:{h, 8,w, r) has first order zero in w

and 0, 0,0) ^ 0 in general.

To simplify (11), we now scale r —> hx/2r and w —» /iw, i.e., we make the changes of

variables r = h1/2r and w = hw and call the new variables (r and w) r and w again. (11)

then becomes

8X = 8 + h + h2Hx(h, 8, w, r), (12a)

wx = Aw + hM2(h, 8, w, r), (12b)

rx = c?BV + h2/2H?(h, 8, w, r). (12c)

By making the necessary transformation, we can decompose (12) as

9X = 8 + h + h2Hx(h, 9,w, y, z), (13a)

wx = Aw + hH2(h, 8,w, y, z), (13b)

yx = Cy + h3/2H3{h,8, w, y, z), (13c)

zx = Dz + h3/2H4(h, 9,w, y, z), (13d)

where y e IR'-1, z e R"_1, C is an (/ — 1) X (/ — 1) matrix with eigenvalues ea>h for

j = 2 ,/ and D is an (« - 1) X (n — 1) matrix with eigenvalues ea'h for / = / + 1,...,«.

Here ay are such that e2"' = /x2. Note that ||A|| < X < 1, ||C|| < 1 - he and \\D_1|| < 1 — hd

for some constants c, d > 0 independent of h.
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Main results. Following Lansford [7], we now introduce the spaces

38 w — (continuous, 2T-periodic function w(9) with values in K(*~1>n

such that \w(9)\ ^ 1 and |w(0[) — w(02)| < 19X — 02\ for all 6X, 02},

38 Y = {continuous, 2r-periodic function j>(0) with values in R'_1

such that |.y(0)| < 1 and |y(9l) - y{92)\ < |0j - 02\ for all 9X, d2},

38 7 = {continuous, 2r-periodic function z(8) with values in R"-/

such that \z(8)\ < 1 and \z{8Y) - z(d2)| < \6X - 02\ for all 0X, 02}.

Lemma 2. Given z(9) in 387, there exists a unique pair of function (w(9), y{0)) in

38 w X BY such that

w{9x) = Aw(9) + hH2(h, 0,w(0), y(6), z(6)), (14a)

y(8l) = Cy(6) + h^2H3(h,8,w(8), y(9)7 z(9)), (14b)

where

61 = 0 + h + ^(/i,#, w(0), y(0), z(6)). (14c)

Similarly given a pair of functions (w(9), y(8)) in 38WX38V, there exists a unique

function z(0) in 387 such that

z(8l) = Dz{9) + h3/2H4(h,9, w(9), y{6), z{0)) (15)

where 0X is given by (14c).

Proof. Let z(9) be a function in 38z. We construct a mapping P.: 38w X 38v -* 38 w X 38Y

as follows: Let u{9) and v(9) be a pair of functions in 38w and 38v respectively. Fix 9 and

let 6 be such that

9 = 9 + h + h2H{(h, 8, u(8), u(8), z(8)) (mod2r) (16)

such 9 exists since the right hand side of (16) is strictly increasing and covers an interval of

length 2t as 6 varies from 0 to 2r. We then define P.(u, v) = (u, v) where

u(9) = A u{9) + hH2(hJ,u(S),o(0), z(9)), (17a)

v(9) = Cv(9) + h3/2H2(h, 9, u{9), v(9), z(9)). (17b)

Let N be a bound for the norms of H^h, 9, w, y, z) and their partial derivatives on a

neighborhood of f. We have

|S((9)| < X|w(0)| + hN < A + hN < 1 if hN < 1 -

Similarly

|t5(0)| < (1 — he) + h?/2N < 1 if hl/1 < c/N.

Now let 8X, 92 be given and let 8X, 02 be such that

91 = 8l + h + h2Hx(h,9x, m(^), v(9x), z(9l)), (18a)

92 = 02 + h + h2Hx(h, 92, u(92), v(92), z(#2)), (18b)
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then since

\H,(h,ox, u{ex), v{8x), z{ex)) - Hx(h,e2, u{02), v(e2), z(*2))|

(4^)|^ - e2\

We have

\SX - e2\ < (i.- 4Nh2y1\e1 - e2\

Thus

|u(<?i) - u(02)\< x|w(0i) - u(e2)\ + h\H2(h,0x, u(Sl),v(S1),z(S1))

- H2(h,S2, u(e2), v(e2), z(S2))\

< (A + 4Nh)\0x - e2\

< (A + 4Nh )(1 - 4Nh2)~l\0x - 02\ < \6X - 02 \

if h is such that (A + 4Nh)(\ — 4Nh2)'1 < 1, which is true if h is sufficiently small since

A < 1. Thus u(0) is a function in 36w. Similarly

|5(0i) - v(02)\<||C|| |u(^) - (02)|

+ h3/2\H3(h, 0X, u(6x), v(Sx), z(6x)) - H3(h, S2, u(ff2), u(02), z(02))\

< (1 - hc)\0x - 02\ + 4Nh3/2\0l - 02\ < |0, - 02\

if h is such that (1 - he + 4Nh3/2)(\ - 4Nh2)'1 < 1. This shows that 5(0) belongs to

98 y

We now show that P, is a contraction map. To that end, let (mj, vx) and (m2, v2) be two

pairs of functions in 88 w X 9S Y. Fix 0 and let 0X and 02 be such that

9 = ex + h + h2Hx(h,ex, ux(ex), vx(ox), z(ox)), (i8a)

0 = 02 + h + h2Hx(h, 02, u2(02), v2(02), z(02)). (18b)

Subtracting we obtain

\0X - 02\ < h2N(4\0x - 02\ + Hmj - u21| + Hdj - i72||);

here || • || denotes the sup norm, i.e., ||u|| = max0i(#<2T |k(0)|. Thus \0X - 02\ < h2K(\\ux -

ui\\ + llyi — f2||) where A" = N(\ - 4Nh2)'1. From

ux(0) = Aux(0x) + hH2(h,0x, ux(0x), vx(0x), z(0x)), (19a)

u2(0) = Au2(02) + hH2(h,02, u2(02), v2{02), z(02)), (19b)

we obtain

\ux(0) - u2{0)\< A(||m! - u21| + |0j - 02\)

+ hN(4\0X - 02\ + Hmj - w2|| + Huj - u2||).

Thus

ll"i _ "2II ^ ^illui ~ "2II + ̂ ilki _ ̂ 11 (20)
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where \l = A + O(h) and Kl > 0. Similarly we also have

IK - 52|| < h2K2\\u1 - u21| + (1 - hcl)\\v1 - v2\\

where cl = c + and K2 > 0. For h sufficiently small, the matrix

Xl hKl

h2K2 1 - hcY

has spectrum inside the unit circle. Thus P. is a contraction map. The fixed point of P. is a

pair of functions (w(0), y(0)) in Y which satisfy (14).

To prove the second part of Lemma 2, we rewrite (15) as

z{8) = D~lz{8x) - h^-D'H^hJ.wie), y(9),z(8))

and then proceed as in the proof of the first part. The details will be omitted for

simplicity.

If T is stable, i.e., the characteristic multipliers ju2,...,ju„ of T satisfy |u | < 1 for

j — 2,... ,n, Lemma 2 provides an invariant curve for (13).

In the more general case when not all satisfy |ju/| < 1, we actually need a stronger

result than Lemma 2. More precisely, let z^d) and z2(8) be two functions in 38.. Let

(h>j(0), yx(0)) and (w2{0), y2(8)) be the corresponding functions as provided by Lemma

2. Fix 8 and let 8X and d2 be such that

e = e, + h + h^ih.e^wM, yM, zM), (21a)

9 = e2 + h + h2Hl(h,92, W2{82), y2(02), z2(02)), (21b)

Solving for \0l - 02\, we obtain

l^i - ei\ < h2N(4\61 - 02\ + ||wx - w2\\ + \\yx - y21| + Hzj - z2\\),

hence from

w^d) = Aw^) + hH2(h,8x, wx(8x), y^d^, zx{8x)), (22a)

w2(0) = Aw2(e2) + hH2(h, 62, w2(82), y2(02), z2(d2)), (22b)

we obtain

IK - W2|| < AJK - w2|| + hKx\\yx - j>2|| + hK2\\zx - z2\\

for some \x < 1 and Kx, K2> 0. Hence

IK - ^211 < ^(1 - ^l)_1(^:ill>?l - y2 II + KlWZ\ - ^2II)- (23)

Similarly we also have

Ibi -J2IN (1 - hc1)\\yl -y21|+ h3/2(K3|K - w2\\+ KA\\zx - z2||)

or

Ibi - y2II < (*1/2Ai)(*3IK - ^2II + *4lk - ^2II)* (24)
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(23) and (24) implies there exists a constant K > 0 such that

Iki - ^2II < hKWz\ ~ -2II' (25a)

Ibi - V2II < hl/2K\\zl - z2\\. (25b)

Conversely, suppose two pairs (wv yj) and (tv2, y2) in 38^ X 38 Y are given, then Lemma 2

provides two functions zv z2 in 38 w which satisfy

Ik - 22IN (! - H)lki - z2ll+ hV2(K5||vv'i - w21|+ A"6||^x - >2II)

hence

Ik - Z2II < hW2K(llM'i - wi\\ + Ibi - J2II) (26)

where K > 0 is a constant which is chosen to be the same as the constant given in (25) for

simplicity.

We now construct a sequence of functions (w<A>, yfk), z{k)) in 38 w X 38Y X 38 7 as

follows:

First set z(0)(6) = 0. Applying the first part of Lemma 2 to z(O)(0), we obtain a pair of

functions w<O)(0) and y<O)(0) in 38w and 38Y respectively. Applying the second part of

Lemma 2 to w(O)(0) and y<O)(0), we obtain a function z(1)(6) in 38z. The above process is

repeated to obtain a sequence (w(k)(0), y(k)(9), z(k\6)) in 38w X 38Y X 38z.

Equations (25) and (26) imply that w(k)(0), yfk)(6) and z(k\6) converge to some

functions w(0), y(6) and z(6) respectively. These functions satisfy (12). This means that

there are 2r-periodic functions r{6) and w(8) which satisfy (11). This, in turn, implies the

following

Theorem 1. Under suitable conditions, the difference equation (2) possesses an invariant

curve \p in the sense that for any point * = xk on \p, there exist (k — 1) points xk_1,... ..x^

on \p such that the pointed generated by (2) with starting points xv... ,xk stay on \p.

Remarks. (1) From (12), it follows that the invariant curve satisfies r < NHl/2 and

w < Nh for some jV > 0 in the scaled moving coordinate system. This implies that \p is in

some 0( h )-neighborhood of Y and hence will converge to F as h -» 0.

(2) The assumption that the method employed in (2) is explicit is only for convenience.

Since the existence of the invariant curve is based on the Contraction Mapping Principle,

the proof of Theorem 1 still goes through even if an implicit method is used. Similarly, if

the polynomial g(X) = Xk — Y.k=laJ\k~J has some repeated roots, we only need to change

E(6) in Lemma 1. This can be done by letting rj, = [va ■ ■ ■ vik\x, i = 1 be the

generalized eigenvectors of the companion matrix of g( X). By rearranging the subscripts if

necessary, we may assume that Tjj is the eigenvector corresponding to the eigenvalue

Aj = 1. We then define

~v2lp(e) ■ ■ vklp(e)

e(8)= : ; : ;

v2kP(0) ■ ■ vkkP(6)
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The matrix A in (10) is no longer diagonal but still satisfies || A|| < A < 1. The proofs of

Lemma 2 and Theorem 1 still go through as before.

(3) If the characteristic multipliers of T satisfy |ju.y| < 1 for j = 2,...,k then for

sufficiently small h, ip is attracting in the sense that if the starting points are compatible

(see [6]) and suffiiently close to then the points generated by (2) will spiral toward ip. It

is then natural to discuss about the rate of convergence. As can be seen from the proof of

Lemma 2, this rate is determined by the matrix

A1 hKx

h2K2 1 - hei

whose spectral radius is

1 - hcl + 0(h2) = 1 - he + 0(h3/2).

This means that different methods yield roughly the same rate of convergence.

Similarly, let L = [r/h] = greatest integer < t/h. The mapping ML is governed by the

matrix

Aj hKx

h2K2 1 - hcx

whose spectral radius is e~' + O(h). This implies that the rate of convergence is also

roughly the same if the step size is varied.
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