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Abstract 31 

Retinoblastoma (RB) is a good model to study drug resistance to cell-cycle inhibitors because it is 32 

driven by mutations in the core components of cell-cycle, i.e, Rb gene. However, there is limited 33 

gene expression dataset in RB which has major reproducibility issues. We have developed 34 

invariant differential expression analysis (iDEA) that improves the state of the art in differential 35 

expression analysis (DEA). iDEA uses strong Boolean implication relationships in a large diverse 36 

human dataset GSE119087 (n = 25,955) to filter the noisy differentially expressed genes (DEGs). 37 

iDEA was applied to RB datasets and a gene signature was computed that led to prediction and 38 

mechanism of drug sensitivity. The prediction was confirmed using drugs-sensitive/resistant RB 39 

cell-lines and mouse xenograft models using CDC25 inhibitor NSC663284. iDEA improved 40 

reproducibility of differential expression across diverse retina/RB cohorts and RB cell-lines with 41 

different drug sensitivity (Y79/Weri vs NCC). Pathway analysis revealed WNT/β-catenin involved 42 

in distinguishing drug sensitivity to CDC25 inhibitor NSC663284. NSC663284 inhibited tumour 43 

cell proliferation in mouse xenograft model containing Y79 cells indicating novel therapeutic 44 

option in RB. Invariant differentially expressed genes (iDEGs) are robustly associated with 45 

outcome in diverse cancer datasets and supports for a fundamental mechanism of drug resistance.  46 

 47 

Keywords: Retinoblastoma, invariant, differential analysis, bioinformatics, biomarkers, beta-48 

catenin, CDC25,  49 
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Introduction 50 

Differential expression analysis (DEA) is a standard approach to identify differentially expressed 51 

genes (DEGs) between normal and disease human tissue1,2. DEA has been widely used in 52 

analyzing large scale biomedical data3-8. Reproducibility of the results has been a major issue that 53 

affect progress in understanding biological processes9,10. A previous study establish that current 54 

methods can give reproducible false positive findings that are driven by genetic regulation of gene 55 

expression, yet are unrelated to the trait of interest11. These problems persist in previous 56 

improvements on DEA12-15. We developed a new computational approach that performs an 57 

unbiased differential expression analysis combined with strong Boolean implication 58 

relationships16. We call this invariant differential expression analysis (iDEA) that identifies 59 

invariant differentially expressed genes (iDEGs) because these genes maintain strong Boolean 60 

implication relationships in almost all tissues regardless of their disease state. This method is so 61 

simple and general that it can be applied in any gene expression differential analysis context and 62 

complimentary to all previous improvements. We applied this approach to Retinoblastoma (RB) 63 

to demonstrate a proof of principle (Fig 1A). We demonstrate how this approach accelerate 64 

discovery of drug targets and potential mechanism of action. 65 

Retinoblastoma (RB) arises due to mutation in Retinoblastoma protein (Rb)17. Rb is a tumor 66 

suppressor protein and its mutation leads to pediatric intraocular cancer that originates from the 67 

neuroectodermal cells of the retina (RT)18,19. Rb  tumor are caused by the inactivation of the pRb 68 

protein which is a tumor suppressor protein20. RB is classified into two types bilateral which is 69 

caused by a germline mutation of the RB1 gene and unilateral which is sporadic and caused by 70 

external factors such as mutagens, viruses like HPV21. Treatment of RB especially in high grade 71 

tumors involves enucleation followed by conventional adjuvant chemotherapy22. These 72 

chemotherapeutic agents target rapidly dividing cells including cancer cells and normal cells. 73 

Additionally, the use of chemotherapeutic agents has grave effects in the treatment of childhood 74 

cancers, which hinders the normal growth of effected child. Additionally, the RB disease 75 

progression leads to partial or complete loss of vision effecting the quality of life of these 76 

children23. Therefore, finding targeted therapy molecules in reducing RB tumour progression 77 

might reduce the side effects in these children. The therapeutic target identification used global 78 

transcriptomics and proteomic approaches24-26. The deregulated pathways identified in RB 79 
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includes AKT signalling pathway, Wnt pathway, IGF signalling pathway and MAPK pathways27. 80 

Recently, RNA sequencing of RB tumours by us identified altered noncoding RNA and fusion 81 

transcripts.  However, there is need for  identifying additional therapy molecules for RB 82 

treatment28. 83 

Phenotypic characterization of RB tumor cells has identified the presence of stem cell markers 84 

such as  MDR1, ABCG2, Oct4, Nanog, ALDH1, and CD4429. Wnt signaling plays a pivotal role 85 

in the formation of RB tumor and can increase stem-like cells in RB tumors30. This pathway has 86 

been reported to be proto-oncogenic in most of the solid tumor whereas, this pathway  is known 87 

to be tumor suppressor in RB31,32.  iDEGs robustly classified retina vs retinoblastoma, severity in 88 

retinoblastoma, drug sensitivity in RB Cell lines (sensitive Y79/Weri33,34 vs resistant NCC 89 

RB5135). Pathway analysis of differentially expressed genes between these RB cell lines revealed 90 

WNT/β catenin to be an important player. WNT/β-catenin pathway has been shown previously to 91 

mediate drug resistance in tumors36,37. Therefore, it is essential to understand the WNT signalling 92 

pathway and its regulation by potential drug therapy molecules to identify novel therapy targets in 93 

RB.  RB has been shown to up-regulate genes involved in cell cycle such as CDC25A/B/C4,38-40. 94 

Interestingly CDC25 has recently been identified as a target for diverse triple-negative breast 95 

cancers including RB1/PTEN/P53-deficient tumors41. However, small molecule CDC25 therapy 96 

for RB progression is not studied before. Additionally, the cross talk between WNT signaling and 97 

targeted therapy molecules that can increase RB cell apoptosis is not studied before.  In vitro cell 98 

culture models like Y79, Weri and NCC RB51 are employed to understand the mechanism 99 

between WNT signaling and cell cycle progression inhibitors. We discovered that the RB cells 100 

lines express differential localization of transcription factors. The localization of β-catenin, a 101 

central molecule of WNT signaling and its interacting partners such as c-fos and c-jun was nuclear 102 

in Weri and Y79 RB cells. However, their localization is different in NCC cell line where the WNT 103 

signalling molecules were in the periphery of the cells.   Furthermore, the WNT activated cell lines 104 

exhibited therapeutic response to the CDC25 small molecule inhibitor, NSC663284 while the NCC 105 

Rb51 could not respond to this therapy. Using WNT activated cell line Y79 we created the mouse 106 

xenograft model and used CDC25 small molecule inhibitor, NSC663284 as treatment for reducing 107 

tumor cell proliferation.  Our results indicate for the first time that WNT signalling is needed for 108 

therapeutic response of CDC25 small molecule inhibitor. Finally, iDEGs were tested on diverse 109 
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cancer datasets and association with outcome. iDEGs performed much better compared to DEGs 110 

(Differentially Expressed Genes) because of the invariant aspect of the analysis which helps 111 

translate the information from retina to other tissue types. 112 

Materials and Methods 113 

Sample collection 114 

The present study was conducted at the Medical Research Foundation and Vision Research 115 

foundation Sankara Nethralaya, India. The study was approved by the Institutional Ethics Board. 116 

Ethics No. 247-2011-P. Normal adult retinas (n=3, age 30 yrs) were obtained from the enucleated 117 

eyeballs of cadaveric donors donated to C.U SHAH eye bank, Sankara Nethralaya. A part of the 118 

tumor from the enucleated eyeball was used for pathological evaluation and the remaining part 119 

was used for gene expression analysis by Q-PCR.  The tumors were graded according to 120 

international retinoblastoma staging system for RB.  The collected tumors were stored in liquid 121 

nitrogen until further use. Clinicopathological characteristics for 10 RB samples are given in 122 

supplementary table 1. 123 

Data Collection 124 

Publicly available microarray and gene expression databases were downloaded from the National 125 

Center for Biotechnology Information (NCBI) Gene Expression Omnibus website (GEO) 42-44 and 126 

the European Molecular Biology Laboratory European Bioinformatics Institutes (EMBL-EBI) 127 

ArrayExpress website45-47. NCBI GEO and EMBL-EBI Array Express were searched for 128 

transcriptomic studies of retinoblastoma. If the dataset is not normalized, RMA (Robust Multichip 129 

Average)48,49 is used for microarrays and TPM (Transcripts Per Millions)50,51 is used for RNASeq 130 

data for normalization. We used log2(TPM+1) to compute the final log-reduced expression values 131 

for RNASeq data. Accession numbers for these crowdsourced datasets are provided (Supplemental 132 

Table 4). All of these datasets were processed using the Hegemon data analysis framework 52-54. 133 

Identification of Boolean implication relationships 134 

Boolean implication analysis is performed in the large diverse human dataset GSE119087 (n = 135 

25,955 human samples). First, gene expression levels were converted to Boolean values (high and 136 
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low) using StepMiner algorithm (Fig. S1A)55. The expression values are sorted from low to high 137 

and a rising step function is fitted to the series to identify the threshold (Fig. S1A). Relationship 138 

between two genes was evaluated in the context of high and low values (Fig. S1B-G). These 139 

relationships are called Boolean implication relationships (BIRs) because they are represented by 140 

logical implication (=>) formula. BooleanNet statistics is used to assess the significance of the 141 

Boolean implication relationships16. S > 3 and p < 0.1 are the thresholds (False Discovery Rate < 142 

0.0001) used on the BooleanNet statistics during the neuroblastoma data analysis to identify 143 

Boolean implication relationships. A noise margin of 2-fold change is applied around the threshold 144 

to determine intermediate values and these values are ignored during Boolean analysis. 145 

Differential Expression Analysis (DEA) 146 

Differential expression analysis is performed using multiple t-tests in python scipy.stats.ttest_ind 147 

package (version 0.19.0) with Welch’s Two Sample t-test (unpaired, unequal variance 148 

(equal_var=False), and unequal sample size) parameters. Multiple hypothesis correction were 149 

performed by adjusting p values with statsmodels.stats.multitest.multipletests (fdr_bh: 150 

Benjamini/Hochberg principles). The results were independently validated with R statistical 151 

software (R version 3.6.1; 2019-07-05). Adjusted p-value threshold for GSE97508 was 0.1 and for 152 

GSE125903 was 0.15 (Fig. S1H).  153 

Invariant Differential Expression Analysis (iDEA) 154 

Invariant Differential Expression Analysis (iDEA, Fig. S1I) is a new computational approach 155 

where standard differentially expressed genes are filtered using Boolean implication relationships 156 

on large diverse human dataset GSE119087 (n = 25,955 human samples). The Up/Down lists are 157 

first filtered by using Boolean Equivalent relationships. First, genes from list (Up/Down) that do 158 

not have Boolean Equivalent relationships with other genes from the same list (Up/Down) is 159 

removed. Second, up-regulated genes that do not have Boolean high => low or Opposite with 160 

down-regulated genes are removed. The final up/down-regulated genes are called invariant 161 

differentially expressed genes (iDEGs). 162 

iDEGs based classification score: gene signature 163 
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StepMiner algorithm was used to compute a threshold that separate the high and low values for 164 

each gene55. To compute the iDEGs signature, the gene expression values will be normalized 165 

according to a modified Z-score approach centered around StepMiner threshold (formula = (expr 166 

-SThr)/3*stddev). Two iDEGs signature scores: one for Up another for Down is computed by 167 

adding together the normalized expression values for every probeset for iDEGs Up/Down. 168 

Weighted linear combination (1 for Up, -1 for Down) of these two scores are computed for the 169 

final iDEGs signature score. The samples are ordered based on the final iDEGs signature score 170 

and ROC-AUC is computed based on the performance of classification of the normal retina vs 171 

retinoblastoma samples or two groups of samples with different disease states. 172 

Visualization and quantification 173 

Gene signature is used to classify sample categories and the performance of the multi-class 174 

classification is measured by ROC-AUC (Receiver Operating Characteristics Area Under The 175 

Curve) values. A color-coded bar plot is combined with a density plot to visualize the gene 176 

signature-based classification. Volcano plot and heatmap were created using python matplotlib 177 

package (version 2.1.1). Pathway analysis of gene lists will be carried out via the Reactome 178 

database and algorithm56. 179 

Measurement of classification strength or prediction accuracy 180 

Receiver operating characteristic (ROC) curves were computed by simulating a score based on the 181 

ordering of samples that illustrates the diagnostic ability of binary classifier system as its 182 

discrimination threshold is varied along the sample order. The ROC curves were created by 183 

plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold 184 

settings. The area under the curve (often referred to as simply the AUC) is equal to the probability 185 

that a classifier will rank a randomly chosen disease samples higher than a randomly chosen 186 

healthy samples. In addition to ROC AUC, other classification metrics such as accuracy ((TP + 187 

TN)/N; TP: True Positive; TN: True Negative; N: Total Number), precision (TP/(TP+FP); FP: 188 

False Positive), recall (TP/(TP+FN); FN: False Negative) and f1 (2 * (precision * recall)/(precision 189 

+ recall)) scores were computed. Precision score represents how many selected items are relevant 190 

and recall score represents how many relevant items are selected. Fisher exact test is used to 191 
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examine the significance of the association (contingency) between two different classification 192 

systems (one of them can be ground truth as a reference). 193 

 194 

Software Code and Reproducibility 195 

Instructions for how to analyze dataset is available at http://hegemon.ucsd.edu/eye/. Bash, perl and 196 

python scripts for reproducing the figures and analyses can be downloaded. All datasets used in 197 

this paper are available in Gene Expression Omnibus (GEO) website. 198 

 199 

RNA extraction and Real time PCR 200 

Total RNA was extracted from tissues and cells by using TRIzol reagent (Invitrogen) as per 201 

manufacturer’s guidelines. The extracted RNA was resuspended in MilliQ water with RNAse 202 

inhibitors (Sigma, USA) and the quality was assessed on agarose gel. 1µg of RNA was converted 203 

into cDNA using iScript cDNA synthesis kit (Biorad) according to the manufactures protocol. RT-204 

qPCR was done using GoTaq qPCR master mix (promega) with PCR conditions: 50 °C for 2 205 

minutes, 95 °C for 10 minutes, 95 °C for 30 seconds, 60 °C for 1 minute (step3-4 for 40 cycles) 206 

and 95 °C for 2 minutes. Data were normalized against the Ct values of the house-keeping gene 207 

GAPDH in each sample. The primers used for real time PCR are shown in Supplementary Table 208 

2. The PCR products were detected with CFX96 Touch Real time PCR detection system (Biorad) 209 

and analyzed with CFX Maestro software (Biorad).      210 

4.5. Western Blotting 211 

Cells collected was dissolved in RIPA (Radioimmunoprecipitation assay) buffer (EMD Millipore 212 

Cat No-20-188), sonicated in ice for 15s, centrifuged at 13,000 x g for 10 min at 4 °C and the 213 

supernatant was collected. Proteins were estimated using BCA protein assay kit (Thermo Fisher 214 

Cat No-23227). For Western blot, equal concentration of cell lysates was loaded onto the gel and 215 

separated on a sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) at 100V in 216 

electrophoresis buffer (25mM Tris, 190mM Glycine and 0.1% SDS). The proteins were separated 217 

and transferred to PVDF membrane (GE Healthcare Cat No-10600023) using semi-dry transblot 218 

apparatus (Hoefer) at 1.50 mA/cm2. The membrane was then blocked for 1 h at 25 °C in 5% (w/v) 219 
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non-fat dry milk powder (NFDM) in TBST (20mM Tris-HCl pH 7.5, 150mM NaCl and 0.1% 220 

Tween 20). It was washed with TBST, incubated at 4 °C overnight with the β-Catenin (Cell 221 

signaling and Technology Cat No-9961) and β-actin (Santa Cruz Cat No-sc47778) antibodies. 222 

After overnight incubation, the membrane was washed thrice for 5 min with TBST and further 223 

incubated in corresponding HRP-conjugated Anti-rabbit and Anti-mouse secondary antibody). 224 

The secondary antibodies used were diluted to 10,000-fold in 5% NFDM (w/v) in TBST. After 225 

incubation, the membrane was again washed thrice for 5 min with TBST. HRP activity was 226 

detected using HRP substrate (Bio-Rad Cat No-1705061) in Bio-Rad Gel Documentation system 227 

(Protein Simple). 228 

Immunofluorescence 229 

Cells collected were fixed in 4% Paraformaldehyde and washed with Phosphate buffered saline 230 

pH 7.2 (PBS). Cells were permeabilized with 0.5% triton-100 followed by PBS wash. The cells 231 

were then blocked with 1% BSA prior to overnight incubation with primary Antibody. The 232 

detection was done using Cy3.5 secondary antibody and counterstained with Hoechest (Thermo 233 

fisher Cat No-33342). Fluorescence microscope (Observer Z1, Carl Zeiss) was used for imaging. 234 

Cell viability assay 235 

Y79 cells were seeded in 96 well plate to a cell density of 6000/well 24hrs prior to the experiment. 236 

The NSC663284 inhibitor (Tocris Biosciences, United Kingdom) was added at increasing 237 

concentrations from 50-500nM to the cells in triplicates. The samples were incubated at 37°C with 238 

5% CO2 in a humidified incubator for 24h. The sensitivity of the cells to the inhibitor was evaluated 239 

using the colorimetric MTT assay. A multi-well scanner (Spectramax, molecular devices, USA) 240 

was used to measure the absorbance at 570 nm wavelength. The untreated/control cells were 241 

assigned a value of 100%. Cell survival/viability was calculated by the following equation: (Test 242 

OD/Control OD) X 100%. 243 

To determine the live/dead cells, a cocktail of Calcein-AM and ethidium homodimer purchased 244 

from Molecular probes was used (4 µM each per sample) and imaged using fluroscence 245 

microscope with suitable filters. 246 

Flow cytometry analysis 247 
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To perform the cell cycle analysis Y79 cells were seeded in 6-well plates 24 hrs prior to the 248 

treatment of the inhibitor (100nM and 200nM) and incubated again for 24hrs. Post incubation, 249 

cells were retrieved and washed twice with cold PBS, fixed with 70% cold ethanol and stored at  250 

-200C until used. The cells were thawed on ice and washed twice with PBS and incubated with 251 

RNase (10μg/ml) and Propidium Iodide (PI-50μg/ml) at 37°C for 3 hrs. Post incubation, cells were 252 

washed twice with PBS, resuspended in sheath fluid and acquired through Flow cytometer (BD, 253 

USA). All experiments were performed in triplicates.  254 

 255 

Animal Studies 256 

The animal study has been approved by the Syngene, Institutional Animal Ethics Committee 257 

(IAEC Protocol Approval No: SYNGENE/IAEC/537/08-2014) where the study was conducted. 258 

Athymic Nude-Foxn1nu female mice with 5-6 weeks of age were injected with 1x 107 of Y79 259 

cells/animal. The cells were allowed to grow until the tumor attained ~125mm3. The mice were 260 

stratified into three groups of 8-10 animals: vehicle control, low dose (2.5mg/kg), high dose (5 261 

mg/kg) of NSC663284 CDC25 inhibitor. The mice in the low dose group were injected with the 262 

inhibitor every 2 days and in the high dose group, they were injected with the drug after every 4 263 

days.  The two regimes, low dose (with frequent injections of drug) and high dose (with less 264 

frequency of drug injections) were studied for the drug efficacy studies. Tumor volumes and body 265 

weights were calculated after every three days during the study period. The tumor volumes were 266 

measured using a Vernier caliper, The length (L) and width (W) of the tumors were measured and 267 

tumor volume (TV) was calculated using the following formula: Tumor Volume (mm3) = L x W2 268 

/ 2, Where, L = Length (mm); W = Width (mm). The mice were followed for three weeks and 269 

euthanized upon completion of the study period.  270 

 271 

Immunohistochemical and hematoxylin/eosin (H and E) staining 272 

Immunohistochemical and H and E staining were performed on the tumor tissue sections from the 273 

mouse xenograft model as previously described [19].  Anti-Ki 67 was purchased from Sigma, USA 274 

and used at a dilution of 1:25 for the IHC application.  275 

Statistical analyses 276 
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The statistics for the Cell cycle assay and cell viability assay was performed with Student t-test, 277 

and the values with p<0.05, were considered significant. All experiments were performed at least 278 

three independent (n=3) times. The statistical significance of the differences was analyzed by 279 

paired student “t” test and one-way analysis of variance (ANOVA) followed by Bonferroni Post-280 

hoc test using Graph Pad software. Asterisks *, **, and *** denote a significance with p-Values 281 

<0.05, 0.01, and 0.001 respectively. 282 

 283 

Results 284 

Invariant Differential Expression Analysis (iDEA) identifies invariant differentially 285 

expressed genes (iDEGs) 286 

Traditional Differential Expression Analysis (DEA) often suffer from reproducibility problems 287 

across independent datasets11. The results of this analysis are heavily controlled by the pvalue 288 

threshold that is typically adjusted after multiple hypothesis correction1. Neither sample size nor 289 

pvalue threshold can resolve the reproducibility issues. We have developed a new computational 290 

approach called invariant differential expression analysis (iDEA) that has the potential to resolve 291 

this reproducibility issues. iDEA performs traditional DEA followed by a Boolean analysis-based 292 

filtering step (Fig. 1B). To achieve robustness, iDEA enforce strong Boolean implication 293 

relationships (Fig. S1A-G) across and within down- and up- regulated genes in a large diverse 294 

gene expression dataset (Fig. 1C, S1I). To perform iDEA on human retinoblastoma we used two 295 

independent datasets GSE125903 (2 RT, 7 RB) and GSE97508 (3 RT, 6 RB). First step is to 296 

perform a traditional DEA which results in 639 up- and 981 down-regulated genes in GSE125903, 297 

and 490 up- and 1139 down- regulated genes in GSE97508 (Fig. 1D, S1H). The DEA analysis on 298 

these two cohorts shared 359 down- and 209 up-regulated genes. These genes are filtered using 299 

three different types of Boolean implication relationships in a large diverse human microarray 300 

dataset GSE119087 (n = 25,955; Affymetrix Human U133 Plus 2.0)16. This dataset includes 301 

diverse tissues, cancers, diseases and cell lines. We expect that up-regulated genes should have 302 

Boolean equivalent relationships with each other. Similarly, down-regulated genes should also 303 

have Boolean equivalent relationships with each other. The relationship between an up-regulated 304 

gene A and a down-regulated gene B are expected to be A high => B low or A Opposite B Boolean 305 
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implication relationship. iDEA performs these three filtering steps to identify iDEGs which are 306 

supposed to be fundamental gene regulatory changes that hold across almost all tissues regardless 307 

of their disease state. Therefore, reproducibility across dataset are expected to improve with iDEA. 308 

Finally, 14 genes down- (Supplementary Table 5) and 70 genes up-regulated (Supplementary 309 

Table 6) that are shared between GSE125903 and GSE97508 (Fig. 1E). Top five genes 310 

downregulated are GABRA1, OPCML, B3GAT1, RIBC1, and FRMPD4 (Fig. 1F). Top five genes 311 

upregulated are MYBL2, FAM72A, CKAP2L, UBE2C, and DEPDC1B (Fig. 1F). 312 

Invariant differentially expressed genes (iDEGs) robustly classify retina disease states and 313 

reveals mechanism of cancer resistance. 314 

To classify retina disease states, both up- and down- regulated genes in the iDEGs are used to 315 

compute a gene signature based on weighted linear combination of the normalized gene expression 316 

values (See methods). Gene signature is used as a score to classify the sample categories. The 317 

performance of this classification is measure using Receiver operating characteristic (ROC) area 318 

under the curve (AUC). ROC-AUC close to 1 is considered good classification and 0.5 is 319 

considered the worst possible classification. Performance of iDEGs (Boolean), iDEGs/up, 320 

iDEGs/down is compared against other gene signatures from the literatures in two human datasets 321 

(GSE87042, GSE24673)39,57 and two mouse datasets (GSE29686, GSE86372)58,59 by computing 322 

the average of the ROC-AUC values (Fig 2A). Up regulated iDEGs (Boolean/Up) performed the 323 

best followed by combined iDEGs signature. Classification of retina vs RB using the up-regulated 324 

iDEGs is validated in four independent retina and retinoblastoma datasets (GSE97508, 325 

GSE125903, GSE87042, GSE110811; ROC-AUC > 0.85; Fig 2B)57,60,61. If a gene signature 326 

classifies retina vs RB robustly, it may not classify severity of RB. However, we observed that up 327 

regulated iDEGs (Boolean/Up) classify severity of RB in three independent datasets (GSE59983,  328 

GSE110811, GSE29686; ROC-AUC > 0.83; Fig 2C)59,60,62.  Up regulated iDEGs also predicted 329 

therapeutic effects of chemotherapy, developmental stages of retina, and various Rb mutant retina 330 

(GSE24673, GSE74181, GSE86372; ROC-AUC = 1.0; Fig 2D)39,58,63. We studied three different 331 

RB cell lines (resistant NCC; sensitive Weri and Y79) that model resistance to cell cycle inhibitors. 332 

Up regulated iDEGs based gene signature placed NCC close to normal and both Weri and Y79 far 333 

from normal retina. We performed a high-resolution differential expression analysis to identify 334 

genes that may distinguish NCC from Weri and Y79 (Fig 2E). 436 genes were differentially 335 
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expression in both Retina vs NCC and Weri/Y79 vs NCC after removing the retina vs Weri/Y79 336 

background DEGs (Fig 2F). Reactome pathway analysis of these 436 genes revealed Wnt/β-337 

catenin pathway significant (Fig 2G).  338 

Transcripts levels of β-catenin and CDC25 are strongly correlated in both human and mouse 339 

datasets 340 

We asked whether β-catenin (CTNNB1) transcripts levels are strongly associated with cell cycle. 341 

We checked the relationship between CTNNB1 and CDC25A/B/C in both human and mouse 342 

datasets. The mouse dataset included RNASeq from normal mouse retina (GSE87043, n=8). To 343 

get a diverse human dataset, we performed xenografts and cultured in two different conditions 344 

(See supplementary methods) using NCC cell lines. Two different culture conditions were used to 345 

grow NCC cell lines: standard tissue culture plates and graphene sponge. Graphene sponge were 346 

synthesized from nickel foam using standard techniques (See supplementary methods; Figure S4). 347 

NCC cell line was cultured in a 3D environment in graphene sponge. Finally, the human dataset 348 

included normal retina, retinoblastoma, xenografts, and RB cell lines (Total n = 22; GSE125903, 349 

retina n=2, RB, n=7; NCC Xenograft n=3; NCC tissue culture n=3; NCC graphene sponge n=3; 350 

GSE141327, Weri n = 2, Y79 n = 2). In both human and mouse dataset we observed a strong 351 

correlation between CTNNB1 and CDC25A/B/C (Fig 3A-B). We also observed that both Weri 352 

and Y79 has higher expression patterns for CDC25A/B/C compared to NCC and normal retina. 353 

Therefore, we predicted that Weri and Y79 may have higher levels of cell cycle activity compared 354 

to NCC. We validated the elevated expression of CDC25 transcripts in additional RB cohort using 355 

qPCR. We observed that CDC25A (p<.05), CDC25B (p<.005), CDC25C(p<.05) were 356 

significantly up regulated in human RB samples (Fig S3A). 357 

Resistant NCC Rbc51 cell line exhibits Differential Wnt signalling and interacting partners 358 

compared to sensitive Y79 and Weri cell lines 359 

CDC25s are phosphatases which control cyclin-dependent kinases and play prominent role in 360 

cycle progression. β-catenin is known as the central molecule in Wnt pathway signalling. 361 

Therefore, we investigated if these two prominent molecules that effected cell cycle, influenced 362 

mutual gene expression in RB tumours. β-catenin exists in three different subcellular locations as 363 

membrane bound, cytosolic, and nuclear locations. Further, experiments were undertaken in cell 364 
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culture models to understand the expression and localization of β catenin. RB cell line such as 365 

NCC, Weri and Y79 cells were analysed for its expression and localisation. Weri and Y79 showed 366 

complete nuclear localization of β-catenin whereas in NCC Rb51 has a membrane localization 367 

(Fig 3C). In different cancer lines, β-catenin has been showed  to have physical association with 368 

c- Fos and  c-Jun64. Hence, we further analyzed the localization of these proteins in NCC Rb51 369 

and Weri through co immunostaining.  Interestingly, both c-Fos and c-Jun showed differential 370 

localization in both the cell lines (Fig 3D). From these data we can observe that the localization of 371 

the transcription factors such as β-catenin, c-Fos and c-Jun are different in NCC Rb51 compared 372 

to Weri/ Y79 cell lines. 373 

CDC25 gene expressions were higher in Weri and Y79 compared to NCC Rb 51 (Fig 3B). 374 

Wnt/Beta catenin pathway is known to be active in most cancers and β-catenin localisation is 375 

observed in nucleus in Weri and Y79 cell line (Fig 3C). However, membrane localization observed 376 

in NCC Rb 51cell line was intriguing. Therefore, we treated NCC cell line with 40mM of Licl 377 

which is an agonist of the canonical wnt signaling and is known to induce nuclear localization of 378 

β catenin, which could alter CDC25 expression.  The CDC25 A (p<.05) , and CDC25B (p<.005)  379 

gene expressions were significantly upregulated  whereas CDC25 C changes were not significant. 380 

(Fig 3E). Our data suggest that the localization of β catenin regulates the CDC25 transcripts 381 

expression in this human Rb cell line.  382 

β-catenin localization governs efficacy of CDC inhibitors 383 

Next, we investigated if CDC25 inhibitor alters the localization of β catenin in human Rb cell line. 384 

In NCC Rb 51 cell line treatment with CDC25 inhibitor NSC663284 changed the β catenin 385 

localization from plasma membrane to cytosol (Fig 3F). Additionally, the inhibitor treatement 386 

induced localization changes of its interacting partners such as c-Fos and c-Jun (Fig 3G) 387 

Interestingly, absolute protein levels were unaltered by the NSC663284 treatment (Fig 4A). 388 

However, in Weri and Y79 cell line where nuclear localization of β catenin was observed, the 389 

inhibitor induced puncta formation indicating cellular apoptosis. Hence the effect of CDC inhibitor 390 

for inducing cell death was dependent on β catenin localization.  The drug efficacy could be higher 391 

in the cells where β catenin is in nucleus. Therefore, the active wnt signaling is needed for the drug 392 

efficacy studies. 393 
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CDC25s are effective therapeutic target in β-catenin active RB 394 

Further to validate the effect of CDC25s inhibitor on Y79 cell line (beta-catenin active cell line) 395 

we evaluated its effect in mouse xenograft model. To evaluate the effect of the CDC25 inhibitor 396 

NSC663284 on the Y79 cell line, different concentration of the CDC25 inhibitor (50 to 500 nM) 397 

treatment were used for 24h (Fig 4B). We observed that 100-150nm of NSC663284 CDC25 398 

inhibitor treatment showed nearly 50% viability in Y79 cell lines. The percentage of cell viability 399 

decreased with increased inhibitor concentration.  We performed the cell cycle analysis to identify 400 

the effect of the inhibitor on the Y79 cells. There was significant (p≤0.05) decrease in the G0-G1 401 

and significant increase (p≤0.05) in the G2-M and S phase arrest of the cells when compared to 402 

control, at 100nM concentration of the inhibitor. In the 200nM inhibitor treated cells there is a 403 

significant decrease (p≤0.005) in the G0-G1 phase and S (p≤0.05) phase whereas significant 404 

increase (p≤0.001) in the G2-M phase of the cells was observed when compared to the untreated 405 

cells.  Increasing the inhibitor concentration from 100nM to 200nM resulted in a significant 406 

increase (p≤0.05) in the G2-M phase and significant decrease (p≤0.05) in the S phase (Fig S3). 407 

Mouse xenograft models of RB was generated injecting Y79 cells into the nude mice 408 

subcutaneously to develop measurable tumors of 100 mm3. The mice were treated with low dose 409 

(2.5mg/kg injected every other day for 3 weeks) and high dose (5mg/kg injected every 4 days for 410 

3 weeks) of the inhibitor. We observed that a significant reduction in the tumor volumes with both 411 

dosages conditions but significantly more tumor reduction (62%, p≤0.05) was observed in mice 412 

treated with the high dosage compared to mice treated with low dosage (Figure 4C and 4D). There 413 

was no significant (p>0.2) decrease in the body weight during the treatment regime. We elucidated 414 

the effect of the inhibitor on the other organs such as the liver, kidneys, lungs and spleen of the 415 

mice and observed no profound adverse effect.  416 

Immunohistochemistry (IHC) was performed on the xenograft tumors using anti Ki67 antibody 417 

which is a proliferative marker to assess the effect of the inhibitor on the tumors. We observed that 418 

mice that were not treated with the inhibitor exhibited higher expression of the Ki67 protein in the 419 

tumor tissues. In the low dose inhibitor group decreased expression of Ki67 protein was observed. 420 

We observed an increase in necrotic cells. Furthermore, in the high dose inhibitor group higher 421 
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number of necrotic cells was observed in addition to the lower expression levels of Ki67 protein 422 

(Figure 4E).  423 

iDEGs are robustly associated with outcome in breast and prostate cancer 424 

iDEGs helped elucidate the mechanism of drug sensitivity in RB cell lines. Since iDEGs are 425 

supposed to be invariant, they represent common pathway that are fundamental cell cycle activity 426 

in diverse tumors. To test if iDEGs can be translated to other tumor types, we investigated how 427 

strongly iDEGs are associated with outcome. Cell cycle activity is not universally prognostic in 428 

all tumors. Cell cycle activities are known to be prognostic in breast cancer and prostate cancer. 429 

However, prognostic significance of cell cycle is not established in colorectal cancer, pancreatic 430 

cancer, and lung cancer. We predicted that iDEGs signature may be prognostic in breast cancer 431 

and prostate cancer, but it may not be prognostic in colorectal cancer, pancreatic cancer and lung 432 

cancer. We tested iDEGs signature in two independent breast cancer cohorts: pooled cohort of 433 

GSE2034+GSE2603+GSE12276 (n=572) and METABRIC (n = 2136). iDEGs signature is 434 

computed using linear combination of normalized Z-scores around StepMiner threshold (See 435 

supplementary methods). Final iDEGs signature score is divided into high and low values using 436 

StepMiner. In both breast cancer cohorts high iDEGs signature is associated with worse outcome 437 

(GSE2034+GSE2603+GSE12276, p = 0.016 in ESR1 low, p < 0.001 in ESR1 high; METABRIC, 438 

p = 0.013 in ESR1 low, p = 0.0026 in ESR1 high; Fig 5A-B). Univariate and Multivariate analysis 439 

(Fig 5B) in METABRIC cohorts suggest that iDEGs is better than differentially expressed genes 440 

(DEGs) in the individual RB datasets (GSE97508 and GSE125903).  High iDEGs signature score 441 

was also significantly associated with worse outcome in two independent prostate cancer cohorts 442 

(GSE16560, p < 0.001; GSE21034, p < 0.001; Fig 5C). However, association with outcome was 443 

not significant in pancreatic cancer, colorectal cancer and lung cancer (Fig S5). Only one lung 444 

cancer cohort (GSE68465; n=462) shows significant association with outcome (Fig S5C). These 445 

data suggest that iDEA significantly improves differential expression analysis. 446 

Discussion 447 

It is well known that differential expression analysis (DEA) suffer from reproducibility issues 448 

because of diversity in patient cohorts. Here we introduce a new method called invariant 449 

differential expression analysis (iDEA) that use strong Boolean implication relationships in 450 
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independent largescale pooled cohorts of gene expression datasets to improve reproducibility. 451 

Despite smaller cohorts of available retinoblastoma datasets, iDEA was able to identify an 452 

invariant differentially expressed genes (iDEGs) that is successfully validated in multiple 453 

independent cohorts of RB datasets. It is also surprising to see that the results are still relevant in 454 

diverse cancer datasets including breast and prostate cancer. iDEA enabled discovery of Wnt 455 

signalling as a major pathway that mediate sensitivity to cell cycle inhibitors. The gene annotations 456 

for the iDEGs revealed that many of the genes involved in the DNA synthesis, DNA repair, 457 

nucleosome assembly and cell cycle. The reactome pathway analysis identified G1-S phase of the 458 

cell cycle as a major deregulated pathway in RB tumour progression. Since, iDEGs can classify 459 

RB cell lines that are known to have sensitivity to cell cycle drugs, we focused our analysis on this 460 

process for identifying potential mechanism of action for the drugs sensitivity. Among the cell 461 

cycle genes that classify normal/tumors in both mice and human, CDC25 molecules emerged as 462 

therapeutic targets. CDC25 has been  reported to  be overexpressed in many human cancers65. 463 

However, its association with clinical prognosis has been difficult to assess presently66. The 464 

mechanism by which it becomes dysregulated is still unclear since its regulation takes place at 465 

multiple stages involving promotor methylation, transcript and protein regulation. Additionally, 466 

post translational regulation was also observed.  CDC25 transcript level has been reported to be  467 

upregulated in SV40 transformed  and adenovirus infected fibroblast cell67, suggesting CDC25 468 

promoters are specifically targeted by activated transcription factors. Various transcription factors have 469 

been known to regulate CDC25 expression such as E2F1/2/3,Stat3,Foxm1 and c-Myc66. 470 

Wnt signaling pathway which has been primarily involved in development and evolution process 471 

has been recently linked with cell cycle regulation. As reported earlier most of the wnt beta catenin 472 

component pathways has been found in centrosomes68. These may facilitate the pathway of 473 

proximity of regulators. However in most of the cancers Wnt pathway has been reported to be 474 

activated showing nuclear localization of  β catenin69. We observed that the Y79 and Weri cell 475 

lines had nuclear localization of β catenin indicating that wnt signalling may be active in these cell 476 

lines. However, membrane localisation in aggressive NCC RB51 cell line indicates that wnt 477 

signalling is not active in NCC Rb cell line and after using an inhibitor for canochial wnt signalling 478 

Beta catenin localised to nucleus activating wnt signalling. Since, the growth pattern and drug 479 

sensitivity are different between these two cell lines, we investigated the relationship between 480 
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CDC25A/B/C and β catenin.  The bioinformatic analysis indicated a positive correlation between 481 

CDC25A/B/C expression and β catenin in both mouse retina and human RB samples.  482 

CDC25 belongs to the family of proteins with conserved dual specific phosphatase activity. It 483 

activates CDKs, which in turn regulates the cell cycle progression70. We observed increased 484 

CDC25A and CDC25C gene expression in our transcriptomics data, whereas higher expression of 485 

CDC25A and CDC25B at the protein level was reported earlier in RB tumors. Therefore, it is 486 

reasonable to hypothesize that CDC25 inhibitors may provide therapeutic target in RB. Various 487 

CDC25 small molecules inhibitors has been designed with limited success71.  The sub-group of 488 

patients who respond to CDC25 therapy is unknown probably limiting its use as therapy molecules 489 

for various cancers. In this study we identified the differential localization of β catenin and its 490 

interacting partner c-Fos and c-Jun could play a prominent role in predicting the efficiency of CDC 491 

25 inhibitors. Active wnt signaling in the nucleus of RB cell lines could be used for stratification 492 

of patients who may benefit from CDC25B inhibitors. Furthermore, our results may indicate the 493 

existence of a feedback loop between β catenin and CDC25, which could play a prominent role in 494 

regulating cell cycle progression leading to therapy in RB.  Interestingly, NSC663284 (a potent 495 

CDC25 inhibitor) mediated Beta catenin localization in RB cells which in turn may regulate 496 

CDC25 proteins that controls apoptosis. Further, reduction in G2/M phase and increase in cell 497 

cycle arrest was observed in Y79 cells after the inhibitor treatment. This result is consistent with 498 

earlier studies that reported elongation of S phase and cell cycle arrest in mouse mammary 499 

carcinoma and human pancreatic ductal adenocarcinoma cancer cells after the drug treatment72.  500 

The reduction of the tumor growth is highly significant in the high dose group compared to low 501 

dose treated group. The observed reduction in tumour growth could be due to the decreased 502 

proliferation. Immunohistochemical staining of the xenograft tumors using the Ki-67 proliferative 503 

marker showed lower expression in the treatment group, which suggests that there is reduction in 504 

tumor cell growth. Therefore, a small molecule inhibitor regulating CDC25s expression can 505 

effectively induce tumor reduction in mouse xenograft model of RB indicating their prominent 506 

role in RB tumor progression. However, wnt signalling is necessary for the efficacy of this 507 

inhibitor. The relationship between wnt activation and efficacy of the CDC inhibitors needs further 508 

investigation in additional cohorts. In conclusion, CDC25 phosphatase activity inhibition in wnt 509 

activated tumours may provide a new therapeutic option for treating RB tumours in pre-clinical 510 
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animal models. These targeted CDC25 drug molecules could reduce the off-target effects 511 

associated with conventional drugs. These could be used in combination with conventional drugs 512 

to bring down the dose needed for the therapy.  513 

Conclusion 514 

We demonstrated that invariant differential expression analysis (iDEA) improve reproducibility of 515 

traditional differential expression analysis. iDEA was applied to retinoblastoma datasets to identify 516 

an invariant differentially expressed genes (iDEGs) that is successfully validated in multiple 517 

independent cohorts of RB datasets. Wnt signalling was found to be a major pathway that mediate 518 

sensitivity to cell cycle inhibitors and xenograft retinoblastoma tumors respond to cell cycle 519 

inhibitor NSC663284. Since iDEGs are also found to be relevant in breast cancer and prostate 520 

cancer, the mechanism of action for cancer resistance may also be relevant in other cancer types. 521 

Further studies on this may reveal that wnt/beta-catenin may be a fundamental pathway for cancer 522 

resistance. 523 

Abbreviation 524 

iDEA – invariant differential expression analysis 525 

iDEGs – invariant differentially expressed genes 526 

RB – retinoblastoma tumors 527 

Rb – Retinoblastoma protein 528 

RT – retina 529 

ROC – Receiver operating characteristic 530 

AUC – Area under the curve 531 

GEO – Gene Expression Omnibus 532 

BIRs - Boolean implication relationships 533 

BIN - Boolean implication network 534 
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NCBI – National Center for Biotechnology Information 535 

EMBL-EBI – European Molecular Biology Laboratory European Bioinformatics Institutes 536 

RMA – Robust Multichip Average 537 

TPM – Transcripts Per Millions 538 
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Figure legends 574 

Figure 1: Study design and invariant differential expression analysis. (A) Study design overview 575 

that use a new computational approach to identify fundamental mechanism of cancer resistance in 576 

diverse cancer types. (B) Schematic approach to identify invariant differentially expressed genes 577 

between normal retina and retinoblastoma datasets: GSE125903 (2 control retina vs 7 578 

retinoblastoma; RNASeq) and GSE97508 (3 control retina vs 6 retinoblastoma; microarray). (C) 579 

Schematic approach for filtering traditional differential analysis by using Boolean implication 580 

relationships (color coded) on a global diverse tissue dataset GSE119087 (n = 25,955; Affymetrix 581 

Human U133 Plus 2.0). The algorithm uses three criteria: (1) Boolean equivalent within each of 582 

the Down- and Up-regulated genes, (2) Boolean high => low from Down-regulated genes to up-583 

regulated genes, (3) Boolean opposite from Down-regulated genes to up-regulated genes. (D) 584 

Overlap of differential expression analysis in two datasets: GSE125903 vs GSE97508. (E) Overlap 585 

of invariant differential expression analysis in two datasets: GSE125903 vs GSE97508. (F) Top 586 

five Down- and Up-regulated genes. 587 

Figure 2: RB gene signature reveals mechanism of cancer resistance. (A) Boolean invariant 588 

differentially expressed genes between normal retina and retinoblastoma: Boolean/Up, 589 

Boolean/Down and Boolean (Combined Up and Down) are compared against other gene lists from 590 

literature. Average ROC-AUC based on two human datasets (GSE87042, GSE24673) and two 591 

mouse datasets (GSE29686, GSE86372) is used to identify the top scoring gene signature. (B) 592 

Validation of Boolean/Up gene signature in four independent retina and retinoblastoma datasets. 593 

(C) Boolean/Up gene signature discreminate tumor phenotypes in two human (GSE59983; UHC 594 

group 1 vs 2, GSE110811; differentiation status: Severe vs non-severe) and one mouse dataset 595 

(GSE29686; single and double knockout DKO vs tripple knockout TKO). (D) Boolean/Up gene 596 

signature discreminate chemo-treated samples (GSE24673), mouse retina at different 597 

developemental stages (GSE74181), mouse retina genotypes (GSE86372): wild type (WT) vs 598 

single RB knockout vs double knockout (DKO). (E) Boolean/Up gene signature placed NCC cell 599 

lines close to retina and Y79/Weri cell lines far from retina. (F) 436 genes are differentially 600 

expressed between retina and NCC after removing background retina vs cell line differences. (G) 601 

Pathway analysis of 436 genes identified enrichment of Wnt/TCF/beta-catenin signaling. 602 
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Figure 3: Beta-catenin pathway mediate cancer resistance. (A) Correlation analyses between 603 

CDC25 and beta-catenin mRNA expression in normal mouse retina (GSE87043, n=8). Pearson’s 604 

correlation coefficient is displayed at the top of each scatterplots. (B) Correlation analyses between 605 

CDC25 and beta-catenin in human retinoblastoma, xenografts, and RB cell lines (GSE156657: 606 

GSE125903, RB, n=7; NCC n=3; GSE141327, Weri n = 1, Y79 n = 1). Normal human retina 607 

(GSE125903, n=2) is displayed in the scatterplots. (C) beta-catenin localization studies using 608 

Immunofluroscence in RB cell lines: NCC (top), Weri (middle) and Y79 (bottom). (D) c-Fos and 609 

c-Jun localization using immunofluorescence in NCC and Weri cell lines. (E) Localization of beta-610 

catenin in NCC (top)  and Weri (middle) after CDC25 inhibitor (NSC663284) treatment. (F) 611 

Localization of c-Fos (left) and c-Jun(middle) after CDC25 inhibitor (NSC663284) treatment. (G) 612 

Relative expression of CDC25 transcripts in RB cell line after normalized to retina in NCC, Weri, 613 

and Y79 (top panels). Effect of LiCl treatment on CDC25 transcripts in NCC cell line (bottom 614 

panel). 615 

Figure 4: CDC inhibitor blocks growth in beta-catenin active tumor. (A) Immunoblotting of beta-616 

catenin in NCC with and without CDC inhibitor. No change in beta-catenin protein level after 617 

CDC inhibitor treatment. (B) MTT assay showing the different concentration of CDC inhibitor 618 

and cell viability. (C) CDC25 inhibitor is effective in reducing tumour volume in RB mouse 619 

xenograft model. (D) Graphical representation of tumor growth inhibition in mm³ by CDC25 620 

inhibitor (NSC663284) in RB mouse xenograft models. The results shown in are the mean ± S.D 621 

of the tumor volume for 10 animals in the control group, 8 animals in the low dose group, 7 animals 622 

in the high dose group.  (E) Immunohistochemical and H&E staining was performed on the tumor 623 

tissue sections from the mouse xenograft model. 624 

Figure 5: iDEG signature is prognostic in breast and prostate cancer. (A) Three breast cancer 625 

datasets (GSE2034, GSE2603, and GSE12276) are combined to create this cohort with consistent 626 

relapse-free survival annotations. iDEG signature is used to classify breast cancer patient samples 627 

into high and low subgroups in both ESR1 low (left) and ESR1 high (right) tumors. (B) 628 

METABRIC breast cancer samples annotated with overall survival is subjected to the same 629 

analysis in panel A. (C) iDEGs signature is used to classify prostate cancer samples into high and 630 

low subgroups in two independent datasets (GSE16560, left; GSE21034, right). (A-C) Kaplan-631 
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Meier analysis in performed using python lifelines package and p values are computed using log-632 

rank test. Both analyses are independently verified using R statistical software. Univariate and 633 

Multivariate Cox-proportional hazard analysis is performed in METABRIC dataset (Panel B) to 634 

compare between iDEGs and DEGs. 635 

 636 

 637 
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