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1. Introduction. Let G be a connected semisimple Lie group and 3 the algebra
of all differential operators on G which commute with both left and right trans-
lations of G. One of the main objects of this paper is to show that every invariant
eigendistribution T of 3 on G, is actually a locally summable function F which
is analytic on the regular set G' of G (Theorem 2). In particular, this implies that
the character of an irreducible unitary representation of G is a function.

In the second part we examine the behavior of F around the singular points
of G (see §§19, 20). This is done by applying the results of [4(n), §§8, 9]. The
third part is devoted to the detailed study of an invariant integral on G, which
had been introduced in [4(h), Theorem 2]. Here we have to make use of [4(m),
Theorem 1]. The full significance of Theorem 3 for harmonic analysis on G will
appear only in later papers. Roughly speaking, it is the group analogue of [4(g),
Theorem 3].

Our methods are substantially the same as those introduced in [4(1)] and
[4(n)], although they have now to be applied to the group G instead of its Lie
algebra g. Here Theorem 2 of [4(1)] gets replaced by Lemma 22, which is based
on Theorem 1 and this, in its turn, depends on Theorem 5 of [4(n)]. The results
of §3 enable us to limit ourselves to the semisimple points of G and the reduction
procedure, outlined above, can be applied to any such point a provided
it does not lie in the center Z of G. However, if aeZ, the translation by a-1
reduces the problem to the case a = 1. Then we use the results of §14 to transform
it, by means of the exponential mapping, into an analogous question on g around
zero, which has already been discussed in [4(n)]. This general pattern of proof
applies to most results of this paper (e.g., Theorems 1 and 2). However, some-
times it is more convenient to reduce the problem around a directly to the corre-
sponding question around zero on the centralizer 3 of a in g (see, for example, the
proofs of Lemmas 31, 35, 37 and 40).

Theorem 3 is proved by making use of the elementary solution of a certain
elliptic "Laplacian" and imitating the argument of [4(g), pp. 208-211]. The
Appendix contains a few simple lemmas which are needed in the proof of this
theorem.
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2. The mapping Tx. Let G be a Lie group, g its Lie algebra over R and © the
universal enveloping algebra of gc. For any X e gc, let Lx and Rx, respectively,
denote the endomorphisms g->Xg and g->gX (ge©) of (5. Fix xe G and de-
fined) (cf. [4(e), p. 114])

ax(X) = Lx-ix-Rx (Xeqc).

Note that Lx and RY commute and(2)

[LX,LY] = LÍX y],     [Rx,Ry} = — RlX.Y]

for X, Yegc. Hence it follows immediately that ax is a representation of gcon®.
It may, therefore, be extended (uniquely) to a representation of © which
we shall again denote by ax. Let Tx denote the linear mapping of © ® (5 into
© such that

Tx(gy ® g2) = 0-x(gy)g2 (gugl 6 Si-

Let X denote the canonical mapping (see [4(b), p. 192]) of S(qc) onto ©. We say
that an element ge© is homogeneous of degree d if ge(3d = X(Sd(ac)) in the
notation of [4(k), §6]. Put

,© =      I      ©m.
0 SmSd

Then it is obvious that Tx defines a linear mapping of ©dl ® ©¿2 into dl +1¡2©.
Let x -* x" (x e G) be an automorphism of G. Then it defines an automorphism

of g which can be extended uniquely to an automorphism g-* g" (ge©) of g.

Lemma 1. For any xeG and gx, g2e®,

rAgai®g2a) = (rx(gi®g2))a-

Let A denote the automorphism g-> g" of ©. Then one verifies from the defi-
nitions that

axa(Xa) = Aox(X)A-1

for Xeq. Our assertion is an immediate consequence of this fact.

Lemma 2. Suppose X¡ and Yj (1 ^ i ^ r, 1 ^ ; 5á s) are elements in gc. Fix
xeGandputXi' = x~1Xi-Xi(l ^it^r). Then

Tx(X(XyX2-Xr)®X(YyY2-Ys)) = X(Xy'X2'-Xr' YyY2-Ys) mod,^,.,,®.

It follows by an easy induction on r that

(i) As usual xX = X" = AdOOA1 for xeG and Xe g<-.
(2) [A, B] = AB — BA for two endomorphisms A and B of a vector space.
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rxiX1X2-Xr®Y1Y2   ■YJsXi'X2''Xr'Y1Y2-Ytmodlr+,-1yß,

where all the products are in ©. Hence our assertion is an immediate consequence
of the following well-known fact (see [4(a), p. 902]).

Lemma 3. Let Z,,---,Zd be elements of qc and iiy,i2,---,id) a permutation
ofil,2,--,d). Then

ZyZ2-Zi-ZlZil-Zi_e    {i-yß.

As usual we regard elements of © as left-invariant differential operators on G.
Moreover, for every X e g, let piX) denote the right-invariant vector-field on G
given by(3)

fix;piX)) = (¿/(exptX ■ x)jdt),„0       ixeG,feC°°(G)).

A simple argument shows that [pLY),p(YVJ = - p([X, Y]) and therefore p can be
extended uniquely to an anti-homomorphism of © into the algebra of all dif-
ferential operators on G. We define

f(g\x)= f(x;p(g))

forxeG, ge© and feCx(G). If Xlt-,Xreg, then(*)

/(I,X,..-If;x)- f(x;p(XyX2-Xr)) = f(x;p(Xr)-p(X2)p(Xx))

m {d'f(exp tyXy - exp tTXr ■ x)jdty -dtr}u = ...=tr=0

=   f(x;(XyX2-Xr)x'1)

since   exp tyXy- exp trXr ■ x = x(exp tyXy ■ ■ ■ exp trXr)x~ '. Therefore

f(g;x) = f(x;g*-1)    ige<$).

It is obvious that X and p(Y) (X, Teg) commute (in the algebra of differential
operators on G) and therefore g y and p(g2) (gy,g2e&) also commute.

Now G operates on itself by means of inner automorphisms so that yx = xyx-1
(x,ye G, see [4(k), §5]). Let Í20 and G0 be two open sets in G and/ a C°°-function
on Q=£20Go. Put fix:y)=fiyx) (xe G0, yeQ0). The significance of the mapping
Ty arises from the following lemma.

Lemma 4. Let gy,g2e®- Then

f(x;gy:y,g2) = fix:y;r„igy ® g2))

for x e G0 and ye(l0.

(3) We use here the notation of [4(k), §2].
(4) For any xeG, we extend Ad(x) to an automorphism g -> g* of © and define

y =xyx~l (yeG).
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If X e g, it is clear that

y»p'x m y exp (tXy- ') exp ( _ ijf)        (yeG,te R).

On the other hand if x e G0 and y e Q0, it is clear that

f(xexptX:y) = f(x:ynp,x)

provided 111 is small. Therefore

f(x;X:y) = f(x:y;X»-i-X) = f(x:y;p(X)-X).

Since p(X) commutes with g2, it follows by differentiation with respect to y that

f(x;X:y;g2) = f(x:y;p(X) o g2 - g2X)

= fix : y ; X> " g2 - g2X) = f(x:y; cry(X)g2).

Hence if Xy,~-,XreQ and gy = XyX2---Xr, it follows by induction on r that

f(x;gy:y;g2)= f(x:y;(Ty(gy)g2).

The statement of the lemma is now obvious.

3. Completely invariant sets. Assume that G is connected. Consider the
polynomial

det(i+l-Ad(x))=    S  tsDj(x) (xeG),

where t is an indeterminate and n = dim G. Then Dj are analytic functions on G and
J3„ = 1. Let I be the least integer such that D¡ # 0. Then I = rank G = rank g and
an element x e G is called singular or regular according as Dt(x) = 0 or not. Let
G' be the set of all regular elements. Then it is obvious that G' is open and dense
in G and the set of singular elements is of measure zero with respect to the left-
invariant Haar measure of G.

We say that G is reductive if g is reductive. An element x e G is called semi-
simple if the endomorphism Ad(x) of g is semisimple. Let 3X denote the centralizer
of x in g. We assume, from now on, that G is reductive.

Lemma 5. Let x be an element of G. Then xeG' if and only if$x is a Carian
subalgebra of g. Moreover, if x is semisimple then $x is reductive in g and
rank 3.,. = rankg. Finally, a regular element is always semisimple.

It is clearly enough to consider the case when g is semisimple. The first and
last statements follow from [4(e), Lemma 5].Put B(X, Y)=tr(ad Xad Y) (X, Yeg)
and let Bx denote the restriction of the bilinear form B on 3^. Now assume that x
is semisimple. An elementary argument (see [2, p. 391]) shows that Bx is non-
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degenerate. Hence it follows from [2, Proposition 3.4] and [3] that ix is reductive
in g. Finally rank 3* = rank g from [2, Proposition 4.6].

Corollary.   If x is semisimple, it is contained in a Carian subgroup of G.

Let h be a Cartan subalgebra of 3X and A the centralizer of h in G. Since rank
3X = rank g, A is a Cartan subgroup of G and x e A.

Let jV denote the set of all nilpotent elements (see [4(n), §3]) of g. Put
JTq = exp N cz G. The mapping X -> exp ad X (X e ^V) is known (see [4(h), §3])
to be univalent on ¿V.

Lemma 6. Every xeG can be written uniquely in the form x = hn, where h
is a semisimple element of G, neJfG and h, n commute with each other. Let
Zx denote the centralizer of x in G. Then h and n lie in the center of Zx.

It is obviously enough to consider the case when g is semisimple and G is the
connected component of 1 in the adjoint group G0 of g. Then G0 is the set of all
real points of a linear algebraic group defined over R. Therefore the lemma
follows from well-known results on algebraic groups (see, for example, [1, §8]).
n and n, respectively, are called the semisimple and unipotent components of x.

Corollary(5). h e Cl (xG).

Choose XeJf such that n = exp X and let 3 denote the centralizer of n in g.
Then Xe%. We may obviously assume that A" # 0. Then by the Jacobson-
Morosow theorem, we can choose He3 such that [H,X] = 2X (see [4(h), §3]).
Put y, = exp( - tH). Then

xyt = (hexpX)y,= nexp(e"2'Z)->n

as t -» + 00. This proves the corollary.
Let U be a subset of G. We say that U is completely invariant (cf. [4(n), §3])

if it has the following property. If C is any compact subset of U, then C1(CG) cz 17.

Lemma 7. Let U be a completely invariant subset of G and V an invariant
subset of U which is closed in U. Then if V contains no semisimple element
of V, V is empty.

Suppose x e V. Then it follows from the corollary of Lemma 6 that the semi-
simple component of x also lies in V. Hence the lemma.

Now assume that g is semisimple. For any c> 0, let g(c) denote the set of all
Xeg such that(6) |lmA|< c for every eigenvalue X of adX. Clearly g(c) is an
open and completely invariant neighborhood of zero in g and Jf cz g(c). More-
over, if X e g(c) then tX e g(c) for 0 ^ t ^ 1. Hence g(c) is connected.

(5) As usual CIA" and X, respectively, denotethe closure and the complement ofasubsetJT,
(6) Im A denotes, as usual, the imaginary part of A.
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Lemma 8. Assume that c zin. Then the exponential mapping from g into G
is everywhere regular and univalent on g(c). Moreover, exp g(c) is completely
invariant in G.

The proof of the first part is the same as that of [4(h), Lemma 11]. In order
to obtain the second part we use the notation of [4(h), Lemma 12] and first
prove the following lemma.

Lemma 9. Assume c ^n and let Xr (r ^ 1) be a sequence in g(c). Then if
I exp AT, I remains bounded, the same holds for | Xr ||.

We keep to the notation of the proof of [4(h), Lemma 12]. Then Xr = Ad(ur)Yr,
Yr = Hr + Zr and therefore | Im a(Hr) | < c ^ n for any a e P. On the other hand
|| exp Xr I = I exp Yr || and ad Yr has the same eigenvalues as ad HT. This shows
that |e*<Hr) | remains bounded for every oceP. In view of the above result this
implies that || Hr || itself remains bounded. The rest of the proof now goes through
in the same way as for Lemma 12 of [4(h)].

Now fix a compact set C in V = expg(c). We have to show that C1(CG) cz V.
Let Xk and xk (k ^ 1) be sequences in g(c) and G respectively such that expXkeC
and (exp Xk)Xk converges to some point y in G. We have to verify that yeV.
Let log denote the inverse mapping from F to g(c). Then log C is compact. Hence,
in view of Lemma 9, we can, by choosing suitable subsequences, arrange that
Xk-*X and xkXk^> Y, where ZelogC and Y eg. But it is obvious that adX
and ad Y have the same eigenvalues. Hence Y e g(c) and therefore y = exp YeV.
This completes the proof of Lemma 8.

4. Some algebraic results(7). We return again to the case when g is reductive.
Fix a semisimple element a e G and let 3 = 3(a) denote the centralizer of a in
g and E = 3(a) the analytic subgroup of G corresponding to 3. Put

Va(y) = det(Ad(ayY1 - l)m    (yeS).

Then v„ is an analytic function on S and vfl(l) =± 0. Let S' = S'(a) be the set of
all points yeS, where va(y) # 0. Then S' is an open neighborhood of 1 in S.

In view of Lemma 5, 3 satisfies the conditions of [4(1), §2]. Define q as in
[4(1), §2] and put Q = <S(qc) and Q+ = S+(qc) in the notation of [4(k), §7].

Lemma 10. Fix yea'. Then Tay defines a bijective mapping o/Q®©(3c)
onto ©. Moreover,

I   rjJ5äiiqc)®<5M) = & (d=l0).

Put Wd= T,d¡+d2ád<Zdí(qc)®(Sd2(zc). Since g is the direct sum of q and 3,
it is clear that dimlFd = dimd®. Hence it would be sufficient to prove that

(7) The results of this section are similar to those of [4(1), §2]. See also [4(e)].
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^ay(Wf) = j®. We do this by induction on d. It is obvious that Tay(Wd) cz d©.
Hence it would be sufficent to show that

J&cTJWi) + W-I)©»
Fix two integers dy, d2 ^ 0 such that dx + d2 = d and suppose Yxeq (I z%i zi dx)
and Z¡ei (lz%jz%d2). Let q = YXY2-Yd¡eS(qc) and z = Z1Z2-.-ZÍÍ2eS(3c).
(Here we have to take q = 1 if dx = 0 and z = I if d2 = 0.) Define X as in §2.
Then it would be enough to verify that

X(qz)eray(Wd) + („_!)©.

If dy = 0, this is obvious since ra),(l ® l(z)) = l(z). Hence we may assume dy > 0.
Now ay commutes with a and therefore i"y = 3 and qay = q (see [4(1), §2]).
Therefore since va(v) # 0, we can choose Y/eq such that (Ad(aj)-1 — l)Yj'= Y¡
(Iz^iz^ dy). Put q' = y/-- y,'eS(qc). Then

rfl}J(/l(»z ') ® A(z)) = A(gz)   mod („_!)©

from Lemma 2. This proves the lemma.

Corollary 1. Fix ge©. Then for any yes.', there exist unique elements
ay(g)eS(3c) <™d ßy(g)eQ+ <g><S(3C) swcn i/tai

•? = a,(f) + rfl),(jSJ,(i?)).

Moreover, ifge ,,©, t/ien d°ay(g) sí d and

^fe) el I        ©^(qcXSS^Öc)»
d2&0     lgtdjSd-d2

This is obvious from Lemma 10.
Let M be an analytic manifold and / a mapping of M into a complex vector

space V. We say that / is analytic if the subspace U of V spanned by the image
f(M) is of finite dimension and /, viewed as a mapping of M into U, is analytic
in the usual sense.

Corollary 2. Given ge®, we can choose an integer r^O such that the
mappings y -* va(y)ray(g) and y ~* va(y)rßy(g) (y e S') can be extended to analytic
mappings of E into <2>(3C) and Q+ ® S(3C), respectively.

Let d = d°g. If d = 0 our statement is obvious. So we assume that d ^ 1 and
use induction. We may obviously assume that g = X(qz) in the notation of the
proof of Lemma 10. Let A(y) denote the restriction of (Ad(ay)~' — 1) on q (y e S).
Then if t is an indeterminate,

det(i - ¿(y)) =     I    D¿y)t.
OSItím

Here m = dim q, Dk (0 1% k ^ m) are analytic functions on 3, Dm = 1 and
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D0(y) = ( - l)mdetA(y) = ( - l)m va(y).
Therefore

va(y) = B(y)A(y) = A(y)B(y),
where

B(y) = (-l)m+1  I    Dk+1(y)A(y)k.
OZk<m

Put Yt(y) = B(y) Yf (1 = i = dy) and q(y) = H, £t£ii Y¡(y) e S(qc) (y e E). Then it
follows from Lemma 2 that

»GO = ray(X(q(y)) ® z) - va(y)äiX(qz) e (d_1}©.
Therefore

v(y) =    Z    aXy^i

where a, are analytic functions on S and d°v¡ < d. The required result now follows
immediately by applying the induction hypothesis to v¡ (1 = i — r).

Corollary 3. Let Za denote the centralizer of a in G. Then if xeZa, yea'
and ge(5,we have

«xyx->(gX) = («y(g))X.

This follows immediately from Lemma 1.

5. The mapping ôaG/s. We keep to the notation of §4. Let UG be an open
neighborhood of a in G. Put Us = S' r\(a~L UG). Then Us is an open neigh-
borhood of 1 in E. For any differential operator Don UG, we define a differential
operator A(D) on l/E as follows :

(A(D))y = ay(Day)       (yeUs).

Here Day and (A(D))y denote, as usual, the local expressions (see [4(e), p. 112])
of D at ay and A(D) at y, respectively. Corollary 2 of Lemma 10 insures that there
does exist a differential operator A(D) on l/E satisfying the above relation and it is
analytic if D is analytic. Finally, if we assume that UG and D axe invariant under
G (see [4(j), §2]), it follows from Corollary 3 of Lemma 10 that Us and A(D)
axe invariant under Z„. We shall denote the mapping D -> A(D) by <S„ or, if neces-
sary, by c5fljG/s.

Let b be an element of Us which is regular in E and let h denote the centralizer
of b in 3. Then h is a Cartan subalgebra of 3 and therefore also of g (see Lemma 5).
Let Ac denote the Cartan subgroup of G corresponding to b (see [4(m), §5]).
Then a, b axe in A\). Let A be the connected component of 1 in Af¡.

Lemma 11. The following two conditions on an element c of A are mutually
equivalent.

(1) ceb_1i/a and detíAdí»"1 - l)a/i>#0.
(2) ce(ab)~ UG and det(Ad(abc)~i - 1)9/^ 0.
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Since Ad(fl) = 1 on 3, it is clear that

det(Ad(afcc)_1 - l)fl/6 = det(Ad(afcc)_1 - l)fl/5det(Ad(i>c)_1 - l)m

for ce A. Now suppose (1) holds. Then be e U3 and therefore abc e UG and
det(Ad (ai>c)-1 — l)fl/J#0. Therefore (1) implies (2). Conversely, assume that
(2) holds. Then bcea~1UG and

va(bc)det(Ad(bcy1 -l)i/X)^0.

Hence be e Us and (1) holds.

Corollary, ab is regular in G and h is the centralizer of ab in g.

Take c = 1 in Lemma 11. Then condition (1) obviously holds and therefore
det(Ad(ab)~1 - l)fl/6 # 0 by (2). Since Ad(ab) = 1 on b, it follows that h is the
centralizer of ab in g. Therefore ab is regular in G by Lemma 5.

Let UA be the set of all c e A satisfying the conditions of Lemma 11.

Lemma 12. Let D be a differential operator on UG. Then(8)

Sab,G/A(D) = ob¡B/Aioa¡G/siD)).

It follows from Lemma 11 that both sides are differential operators on UA.
Let Aj = ôaG/siD), A2 = SbS/AiAy) and A = ôabG/AiD). We have to prove that
A2 = A. Let m = [b,3] and p = q + nt. Then g = b + p and 3 = h-f-m where
both sums are direct.

Fix heUA. Then
(A2)„ - iAy)bherbhi<5+imc) ® S(bc)).

On the other hand bh e Us and therefore

iAy)bh - Dabh e rttbhi<5+iqc) ® ®(3c)).

Since Ad(a) = 1 on 3, it is clear that

<W» = ffM(z)    (ze<S(3c))
and therefore

(A2)A-öaMeraW,(©+®S(3c)),

where ©+ = S+(gc). But

Tabhi<5imc) ® ®(be)) =rM(S(mc) ® <S(hc)) = S(3c)

from Lemma 10 (applied to (S, b) instead of (G, a)), since det(Ad(fcn)_1 — 1)»^ # 0.
Hence

raM(©+®S(3c))= craM(©+)S(3c)

= °-abh(.®+)<rabh((5(mc))<5il)c)

_ = <W®+)S(hc).
(8) Cf. [4(1), Lemma 11].
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But © = S(pc)S(hc) and since h is abelian, it is clear that

«*iS+ft))6ft)-{0}.
Therefore since

©+=<3+(pc) + S(pc)<S+(í>c),
we conclude that

rflWl(©+ ® sog) = rao„(S+(pc) ® S(bc)).
This shows that

(A2)„ - Dabh e Tabh(<B+(pc) ® S(fc))

and therefore (A2)„ = A„ from the definition of A.

6. The case when a is regular. Let 3 be the algebra of all differential operators
on G which are invariant under both left and right translations of G. It is obvious
that 3 consists of the center of© and therefore 3 is abelian.

Let G' be the set of all regular elements of G. Fix a e G' and let b denote the
centralizer of a in g and A the analytic subgroup of G corresponding to l). Then
h is a Cartan subalgebra of g and

va(h) = det(Ad(pnr ' - l)9/i,       (ft e A).

Hence A' = A O (a~1G') is the set of all points he A where vfl(n) # 0. Let W be
the Weyl group of (gc, hc). Then W operates on S(f)r). Let I(bc) be the algebra
of all invariants of W in <B(bc). We have a canonical isomorphism y of 3 onto
I(hc) (see [4(e), Lemma 19]). Thus for every ze$, y(z) is a differential operator
on A which is invariant under the translations of A.

Lemma 13. ôaG/A(z) = \ va\ ~1/2y(z)o |v„|1/2 on A' for any ze$.

This is substantially the same as the first statement of [4(e), Theorem 2, p. 125].

7. Application to invariant distributions^). Fix a semisimple element aeG and
define E and E' as in §4.

Lemma 14. Consider the mapping (b: (x,y)-*(ay)x of G x E info G. Then if
n = dimG, </> is everywhere o/rank n on G x 5'.

We identify the tangent space of G x S at a point (x, y) with g x 3 in the usual
way. Then a simple calculation shows that

(d(b)Xiy(X, Z) = (Z + (Ad(ay) ~ ' - 1)X) *

for Xeg and Ze3. But

3+(Ad(a^)_1-l)q = 3 + q = g

if yea" and therefore our assertion is obvious.

(') The results of this section are similarto those of [4(1), §7].
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Let dx denote the Haar measure on G. We orient G and fix a left-invariant
differential form coG > 0 of degree n on G, corresponding to the measure dx.
Then the set up of [4(k), §5] is applicable to M=G, if we define yx=xyx~1 ix,y e G)
as above.

Let U be an open neighborhood of 1 in E' which is invariant under E (i.e.,
Uy = U for y e E). Put Q=cp(G xU) = (auf. Then by Lemma 14, fi is open in G.
Let dx, dy denote the Haar measures on G and E, respectively. Now take
M = G x U, N = Q, n = cp in Theorem 1 of [4(k)] and let coM and coN be the
differential forms corresponding to the measures dxdy and dx, respectively. Let
a->/„ denote the corresponding mapping of Cc°°(G X U) onto C/°(£2).

Lemma 15. Let T be an invariant distribution on Q. Then there exists a
unique distribution   oT on U such that Tiff) = oTißf) (a e Cc™(G x U)), where

ßAy)=j«ix: y)dx iyeU).

Moreover, aT is invariant under E and aT = 0 implies that T = 0.

Define T'(a) = T(/a)(aeCc°°(G x I/)). Then (see [4(k), Lemma 5]) T" is a
distribution on G x U. Fix x0 e G and let axo denote the function (x, y) -> a(x0x : y)
on G x U. We claim that T'(<x) = T'i«xo). For if F e Cc°°(£2), we have

J /a;coF dx    = J"  «X0(x : y) F ((ay)1) dxdy = J a(x : y) F*°((<, y)*) dxdy

= J/IF*0dx=í//0"'      Fdx.

Hence /ajco = /.Xo" and therefore T'(«J = TfJ^) = Tiff) = T'(a). Now fix
ßeC^iU) and put T/(v) = T'(y x )S) (y e CC°°(G)). Then T/ is a distribution on G
which is invariant under the left translations of G. Hence Tß' = ciß), where c(ß)
is a constant (see [4(k), Lemmas 6 and 7]). Now select y0eCc°°(G) such that
Jy0dx = 1. Then

c(ß) = V (y0) = T'iyo xß)       iße Ce°°(ü)).

This shows that the mapping /? -* ciß) is a distribution on U which we denote
by oy. Then

T'iy x ß) = o-r(jS) í y dx (ye CC°°(G), ]8 e CC°°(Í7))

and therefore we conclude from [4(k), Lemma 3] that T'(oc) — 0y(J?a) = 0 for
aeCc°°(G). Since ß„ = ß for a = y0 x ß, the mapping ct^ßx of Ccœ(G x U)
into Ccœ(t/) is surjective. Finally the mapping a-»/„ of Ccco(G x U) into CC™(ÇÏ)
is also surjective (see [4(k), Theorem 1]) and so all the statements of the lemma,
except the invariance of erT under E, are now obvious.
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Fix {eE and define a?(x:y) = a(x:>>{_1). Then we claim that T'(a) = T'(oc{)
for a e Ccœ(G x U). This is seen as follows.

(foFdx=    f a(x:yi'l)F((ay)x)dxdy=   j a(x:y)F((ay)xt)dxdy

=   j a(xr1:y)F((ayy)dxdy

for any FeCcœ(Q). Hence if a'(x:y) = a(xÇ~1:y), it is clear that/„?=/„..
Therefore

T'(a«) = T'(a') = aT(ßa.).
But

ßAy) = j o&t ' h y) dx = ßx(y)        (y e U)

by the right-invariance of dx. Hence T'(a{) = crT(ß^) = T'(a). On the other hand

ßAy) = j <x:y^)dx = ßjtf") (yeU).

Therefore p\? = (ßxf. Now for a given ß e Ccœ(U), we can choose a e CC°°(G x 17)
such that ß = ßx. Then

aT(ß) = T'(a) = T'(a{) = <7r(/L.O = o^i/).

This shows that aT is invariant under E.

Corollary. Let D be an invariant differential operator on £2. Then aDT = A<rr,
where A = ôa(D).

It follows from Corollary 2 of Lemma 10 and the definition of A, that we can
select gfe(5+(qc), f¡eS(3c) and a¡eC°(U) (l = i^ r) such that

Day = Ay+    I    aAy)Tay(q,®vù     (yeU).■ay       — y
ISiSr

Moreover, aDT(ßa) = T(D*fa) for aeC^G x U), where the star denotes the
adjoint as usual. Fix F e Cc°°(£l). Then

f D*/a • Fd* =   (faDFdx =   J* a(x:y)F((ay)x;D)dxdy.

Put F(x:u) = F(u*) for any pair (x,u)eG x G such that uxeQ. Then it is clear
from Lemma 4 that

Fííay)*; D) = F((ay)x; If) = F(x:ay;D)

= Fix : ay; A,) +   Z   a^Fíx^ra}/;^)
ISiïSr

for x e G and .y e U. Put

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965]    INVARIANT EIGENDISTRIBUTIONS ON A SEMISIMPLE LIE GROUP    469

Then

<Xo(.x:y)   = a(x:y;A*),

a¡(x:y)   = ctLxiqfiyiiatVy)*) (1 <, i ^ r).

f D*fx-Fdx  =      I      f a¡ix:y)Füay)x)dxdy
J OjSigr      J

=        Z Í/-J
OSiSr      J

F dx.

This proves that

and therefore

D*f. =     I   /.,
O-Sfgr

T(D*/J  =     S   <7r(/LJ.
OíiSr

Now p\0 = A*/L, and if j denotes the distribution on G corresponding to the
constant function 1, it is obvious that q¡j = 0 since q¡e(S+. Hence it follows
that ßxi = 0 (1 z% i zi r) and therefore

TiD*fa) = o-T(A*/y.

This proves that aDT — AoT.
For any X e g, let tcLY) denote the vector-field on G defined by

.cW/= (dftxptxjdt)t=0    (/eCœ(G)).

Let F be an open subset of G. Then the local invariance of a differential
operator, a distribution or a C°°-function on V is defined as in [4(k), §5]. Since
[xGiX), tg(T)] = xG([X, Y]) (X, Y eg), xG can be extended (uniquely) to a homo-
morphism of ® into the algebra of all differential operators on G.

Let G0 and U0 be open neighborhoods of 1 in G and E', respectively, and put
Í20 = (aU0)Co. Define the mapping a -»/, of Ccœ(G0 x U0) onto C^ÍÍÍq) as above.
Then the following result is proved in the same way as [4(1), Lemma 17] and
[4(k), Theorem 3].

Lemma 16. Assume that G0 is connected and T is a locally invariant
distribution on Q0. Then there exists a unique distribution cT on U0 such that
T(f) = aT(ßx) (a e Cc°°(Go * ^o))> where

ßJb)= J <*(x:y)dx     (yeUo).

Moreover, oT is locally invariant (with respect to E) and aT = 0 implies that
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T¡ = 0. Finally, aDT — ôa(D)aT for any locally invariant differential operator
D on Q0 ■

8. Some preparation for Theorem 1. Let G0, Q.0 and Q be three open subsets of
G such that £20Coc Q. For any / e C°°(£2), we write f(x:y)= f(yx) (xeG0,yefi0)
as in §2.

Lemma 17.  Let f e Cœ(Q). Then

f(x;g:y) = f(x:y;zG(g*))
for xe G0, veQ0 and ge©.

The proof is the same as that of [4(k), Lemma 11].

Lemma 18. Let D be a differential operator and f a locally invariant C00-
function on an open subset fi of G. Fix a semisimple element aeQ. and define
Qs =a"'firiS' in the notation of §4. Then

f(ay;D) = f(ay;ôa(D))     CveQa).

Fix y0eQ3 and choose open neighborhoods G0 and Q0 of 1 and ay0, re-
spectively, in G such that fi0Go c Í2. Put A = 6a{D). Then it follows from the de-
finition of A that

A.*,-^ =        £     ray0(g¡®vd,
lgigr

where g¡e©+ and v¡ e <3(3C). Therefore we conclude from Lemma 4 that

f(ay0 ; Dayo - Ayo) =     H   f(í;g¡:ay0;v¡).
lSiár

But

f(l;gt:x) = f(x ; zG(gf )) = 0      (x e Q0)

from Lemma 17 since/is locally invariant and gfe©+. Therefore/(l;g¡:x;t)() = 0
for x e Q0 and hence

f(ayolDay0-\o) = °-

This proves the lemma.

Lemma 19. Let D and Q be as above. Then the following two conditions
on D are equivalent.

(1) ôa(D) = Ofor every regular element a in Í2.
(2) For any open subset Q0 of £2 and a locally invariant C^-function f on

Qo,Df = 0.
Suppose (1) holds and £20 and / are given as in condition (2). Fix a regular

element a e Q0. Then it follows from Lemma 18 that

f(a;D) = f(a;oa(D)) = 0.
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Therefore Df = 0 on £î0' = ÇïoC\G'. Since Q0 ' is obviously dense in Q0 »we coi-
elude that Df = 0.

Conversely, assume that (2) holds and fix aefin G'. Let b be the centralizer
of a in g and A the analytic subgroup of G corresponding to b. Put QA = a ~ Q O A'
where A' is the set of all h e A where

va(n) = det(Ad(an)-1-l)8/6#0.

Then ôa(D) is a differential operator on QA. Let x->x* denote the natural projection
of G on G* = GjA. Since A is abelian, iah)x (x e G, he A) depends only on x*
and so we may denote it by (ah)x*. It follows from Lemma 14 that the mapping
\p:(x*,h)-+(ah)x of G* x QA into G is everywhere regular. Fix a point h0eQA.
Then we can choose open neighborhoods G0*and U of 1* and n0 in G* and ÇîA,
respectively, such that Q0 = "W^o* xU) czQ and tp defines an analytic diffeo-
morphism of G0* x U onto the open neighborhood Q of ah0 in fi. Fix ß e Cœ(U)
and define fe C00^) by f(\p(x*, h)) = ßih) ix* e G0* h e U). Then it is obvious
that / is locally invariant and therefore Df = 0 by (2). On the other hand we
know from Lemma 18 that

fiaho;u) = fiaho;D) = 0,

where u is the local expression of OLD) at n0. Since u e QQi)c) and fiah) = ßih)
iheU), it is obvious that p\no;u) = 0. This being true for every ßeC^iU),
we conclude that u = 0. Since h0 was an arbitrary point of SiA, this proves that
OLD) = 0. Therefore (2) implies (1).

9. First part of the proof of Theorem 1. We shall now begin the proof of the
following theorem (cf. [4(n), Theorem 5]).

Theorem 1. Let Q be a completely invariant open set in G and D an analytic
differential operator on £2. Assume that:

(1) D is invariant under G,
(2) (5a(D) = 0/or every regular element ae£l.

Then DT — Ofor every invariant distribution T on Si.

We use induction on dimG. By replacing (17, V) in Lemma 7 with (Q, Supp DT),
it becomes obvious that it would be enough to verify that no semisimple element
of il lies in SuppOT. Let Z denote the center of G. Fix a semisimple element a in Q
and first assume that a$Z. Put £í2 = a_1í2nE' in the notation of §4.
Then it is obvious that Q3 is a completely invariant open neighborhood of 1 in E.
Corresponding to Lemma 15, we get an invariant distribution rjr on Qs. Moreover,
aDT=AcrT, where A = Sa(D) (see the corollary of Lemma 15). Fix an element
beCis which is regular in E. Then abeQ' = ñnG' (see the corollary of
Lemma 11) and therefore

<5*,SM(A) = ôab(D) = 0
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in the notation of Lemma 12. Moreover, as we have seen in §5, A is analytic and
invariant under S. Now dim E < dim G, since a$Z. Therefore we conclude from
the induction hypothesis that Aoy = 0. But then a $ SuppDT by Lemma 15.

So now we may assume that a e O. O Z. It follows from its definition (see §2)
that the mapping Tx depends only on Ad(x) (x e G). Therefore if we apply the
translation by a~ 1 to the whole problem, we are reduced to the case a = 1. So
we may assume that leu and it remains to show that 1 $ SuppDT.

Let c be the center and qx the derived algebra of g. Choose an open and relatively
compact neighborhood c0 of zero in c such that the exponential mapping is uni-
valent on c0. Moreover, select a number c (0 < c ^ n) and define Qx(c) as in
Lemma 8. Put g0 = c0 + gi(c). Then g0 is an open and completely invariant
neighborhood of zero in g and the exponential mapping is everywhere regular
on g0. Now suppose exp (Ci + Xf) = exp(C2 + X2), where Cfec0 and X¡eqx(c)
(i = 1,2). Then expiad^) = exp(adAT2) and so it follows from Lemma 8 that
Xy=X2. Hence expC!=expC2 and therefore CX = C2 from the definition
of Co- This proves that the exponential mapping defines an analytic diffeomor-
phism of g0 onto the open set exp g0 in G. Let log denote its inverse and put
l/ = log£î0, where Í20 = exp g0 n Í2. Let F be a compact subset of U. Since
g0 is completely invariant, C1(FG) er g0. Moreover,

exp(Cl(FG)) cz Cl(exp Fc) = Cl((exp Vf) c fi

since Í2 is completely invariant. Hence it follows that C1(FG) cz U and this shows
that U is completely invariant.

Now, in order to complete the proof, we need some preparation which will
be undertaken in the next section.

10. Reduction to g. Put

ÇiX) = |det{(eadx/2 - e~*dxl2)ladX} \m        (Xeg).

Then £ is analytic around every point X0eq, where Ç(X0) ^ 0. Moreover, the
exponential mapping of g into G is regular at X0 if and only if Ç(X0) # 0 (see,
for example, [5, p. 95]).

Let U be an open subset of g such that the exponential mapping is regular and
univalent on U and put UG = exp 17. Then UG is open in G and the exponential
mapping defines an analytic diffeomorphism of U onto UG. For any function (b
on U, let/¿ denote the function on UG given by

f¿expX) = ZiX)-í<biX)       (XeU).

Then/j, is C00 or analytic if and only if the same holds for (/>. In particular,/-»/^
defines a linear topological mapping of CCG0(17) onto CC°°(17G). Moreover, it is
obvious that, for any differential operator D on UG, there exists a unique dif-
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ferential operator A(D) on U such that Df4, = fAm4> for epeCfiU). Finally,
D is analytic if and only if A(D) is analytic.

As usual let dX denote the Euclidean measure on g and dx the Haar measure
on G. Then if dX is suitably normalized, we have the relation (see [5, p. 95])

dx = iiX)2dX      (x = exp X, X e U).

Hence it follows that
J cpyCp2dX = j UJ^dx

for cby e CœiU) and cb2 e CC°°(C7).

Lemma 20. A(D*) = A(D)*/or any differential operator D on UG.

Fix D and write A for A(D). Then if cby, cp2 e Cc°°(t/), we have

I D*f(j>l -f^dx =   j /^ • Df^ dx =    I UJ^ydx

=  Í epy ■ Aep2 dX =   Í A*epy ■ ep2dX

f— | f&'ipi '/¿.2dx.

This shows that D*flbl = /A«^)I and from this our assertion follows immediately.
For any distribution T on UG, let xT denote the distribution on U given

by Xjicp) = T(/^) (cp e Ccm(U)). Then it follows from Lemma 20 that xDT = A(D)xT.
Now assume that U is invariant under G. Since exp(Xx)=(expX)x (xeG,Xea),

UG is also invariant. Moreover, since c% is obviously invariant under G, it is clear
that (f4)x = fip* and A(DX) = (A(D))X (xeG) for cpeC^U) and any differential
operator D on C7. Similarly xT" = (xff.

11. Completion of the proof of Theorem 1. We are now ready to finish the proof
of Theorem 1. Define U as in §9. Then UG = exp U = Q.0 and, corresponding to T,
we get an invariant distribution xT on U. Since D is an invariant and analytic
differential operator on UG, A = A(D) is also invariant and analytic on U. Let cp
be any invariant C°°-function on 17. Then

A* = o/^ = o
from Lemma 19. Hence Acp = 0. However, since U is completely invariant (see §9),
we conclude from [4(n), Theorem 5] that xDT = Att = 0. Obviously this implies
that DT = 0 on UG = Í20 and therefore l^SuppDT. This completes the proof
of Theorem 1.

12. Two isomorphisms. Let m be a subalgebra of g such that (1) m is reductive
in g and (2) rank m = rank g. As before, let 3 =3(S) De the center of ® = <S(gc)
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and 3(m) tne center of S(mc). We shall now define a homomorphism p = pg/m
of3into3(m).

Fix a Cartan subalgebra b of m. Then h is also a Cartan subalgebra of g. Let W
and W(m) denote the Weyl groups of (g,i)) and (m,b), respectively. Then W(m)
is a subgroup of IF. Let /(I)c) and / m(hc) denote the algebras of invariants of IF and
W(m), respectively, in QQ)C). Then Im{\)c) =>1(hc). Let y: i^I(\)c) and ym :
3(Rt) -> Im(l)c) denote the canonical isomorphisms (see [4(e), Lemma 19]).
We define p(z) = y~'(y(z)) (zeQ). Since any two Cartan subalgebras of rrtc are
conjugate under the connected complex adjoint group of mc, it follows easily
from [4(e), §6] that p is independent of the choice of b.

Lemma 21. 3(m) ,s a free abelian module over pa/m(3) 0/rank [W:JF(m)].

It is enough to show that Im(bc) is a free abelian module over I(hc) of
rank [W: W(m)]. The proof of this is substantially the same as that of Lemma
8 of [4(i)].

If h is a Cartan subalgebra of g, we can take m = rj. Then it is clear that p8/i, = y.
As usual let I(qc) denote the algebra of all invariants of G in S(qc). Then we have
the Chevalley isomorphism j: p-> Py, of I(qc) onto(10) I(hc) (see [4(1), §9]). For
any ze$, let pz denote the element ;'_1(y(z))e/(gc). Then z^pz is an iso-
morphism of 3 onto I(qc). It follows again from the results of [4(e), §6] that
this isomorphism is independent of the choice off). We shall call it the canonical
isomorphism of 3 onto I(qc).

13. A consequence of Theorem 1.   We use the notation of §5.

Lemma 22. Let UG be a completely invariant open set in G. Fix a semisimple
element aeUa and define Uz = S' n (a~l UG) as in §5. Then Us is completely
invariant under E. Let a be an invariant distribution on [/=. Then(11)

^>=|v„|-1/2pfl/3(z)(|v0|1/2(r)

forze3.

It is obvious that Î7S is an open and completely invariant subset of E. Therefore,
in view of Theorem 1 and Lemma 19, it is enough to prove the following result.

Lemma 23. Let V be an open subset of UB and f a C00 -function on V which
is locally invariant under S. Then

^)/=|vfl|-1/2p9/ä(z)(|va|1/2/)       (ze3).

Let V be the set of those elements of F which are regular in E. Since V is

(i°) Since h is abelian, we may identify S(i)c) with Q(bc) under the canonical mapping X
of S(gc) onto ©.

(») Cf. [4(1), Theorem 2].
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dense in V, it is enough to verify that the above equation holds on V. Fix beV
and ze^. Then we have to show that

f(b; ôa(z)) =f(b;\Va\-ll2p(z)o\va\112),

where p = pm. Let h be the centralizer of b in 3 and A the analytic subgroup of G
corresponding to h. Let A' denote the set of all points he A where

det(Ad(fch)-1 - l)8/t) # 0

and put UA = A'r\b~1Us and VA = (b~1V)nUA. Then VA is an open neigh-
borhood of 1 in A'. Moreover,

f(bh;ôa(z))  = fibh;ôbtSIAiôaiz)))
= f(bh;ôab(z))      (heVA)

from Lemmas 18 and 12. But since ab  is  regular in  G (see the corollary of
Lemma 11), it follows from Lemma 13 that

^(z)=|va6|-1/2y(z)o|v<lft|^

on VA. Therefore
f(bh;ôa(z)) = \vab(h)\-ll2F(h;y(z)),

where
F(h) = \vab(h)\ll2f(bh)    (heVA).

Now put fy(y) = I v„(y) |1/2/(y) for y e V. Then

/(fcn;|va|-1/2p(z)o|vJ1/2) =  \va(bh)\-1,2fy(bh;p(z))

= I va(fcn) I - 1,2fy(bh ; Ô„,s/A(p(z)))     (h e VA)
from Lemma 18. On the other hand it follows from Lemma 13 (applied to E) and
the definition of p(z) that

^,SM(p(z)) = |v6,s|-1/2y(z)o|v6,s|1/2

on UA, where

v„,s(n) = detiAdt&n)-1 - l)ä/I)      (heA).
Therefore

fi(bh;ob¡z/A(p(z))) = \vbE(h)\ -ll2Fx(h;y(z)),

where

Fy(h) = I vUh)\ll2fy(bh) = I viE(n)va(r;n)|1/2/(ftn)       (n e VA).
But since

v„,s(h)va(bh) = vab(h),

we have F = Fy. This shows that
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f(bh;\va\-1'2p(z)o\va\112) =  \va(bh)Vb¡z(h)\-ll2Fx(h;y(z))

= |vai,(n)|-1/2F(n;y(z)) = /(íin;¿a(z))

for heVA. Putting n = 1, we get the required result.

14. The relation between 3 and d(I(Qc)). We now use the notation of §10.
For any open subset V of U and a function (b on V, we define, as before, the func-
tion /,, on FG = expF by f<jl(expX) = £,(Xy1(b(X) (XeV). Let z-*pz denote
the canonical isomorphism of 3 onto I(qc) (see §12).

Lemma 24. Let </> be a locally invariant C°° -function on an open subset V
of U. Then

forze$.

Fix ze^ and let V be the set of all regular points in V. Consider the differential
operator A(z) on U corresponding to z(see §12). Then it is enough to prove that
A(z)(b = d(pz)(b on V. Fix a point H0e V and let h denote the centralizer of
H0 in g. Then b is a Cartan subalgebra of g. Let b0 be an open and connected
neighborhood of H0 in b n V. Then it would be sufficient to show that

(b(H;A(z)) = (b(H;d(pz))      (H eh0).

Since </» is locally invariant, it follows from [4(1), Lemma 14] and [4(f), Theorem 1]
that

<b(H;d(pz)) = (b(H;ôm'(ô(pz))) = n(H)-1(b(H;Ô(q)on)       (H eb0).

Here n denotes, as usual, the product of all the positive roots of (g,I)) and q = (pz)ty
in the notation of [4(1), §8]. Let A be the analytic subgroup of G corresponding
to b and put A' = A n G' and

v(n) = det(Ad(n)"1 - l)g/l) (h e A).

Since Fjo <= U, it follows that £(H) # 0 and therefore exp He ,4'for if efj0. More-
over, it is clear that /^ is locally invariant with respect to G. Therefore we conclude
from Lemma 17 and [4(e), Theorem 2] that

/^(expH;z) = | v(exp/í)|-1/2/¿(expH;y(z)o | v |1/2)

for  H eí)0. But it is obvious that

|v(exp//)|1/2 = ^(JÏ)|7t(f/)|
and therefore

| v(exp H) 11/2//exp H) = \ n(H) | <b(H)       (H e h0).

If ris the number of positive roots of (g,b), we know that det(adii) =(—T)rn(H)2
(Heb). This shows that n(H)2 is real. Therefore since h0 is connected and n is
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nowhere zero onf)0, it follows that |7r(#)|=£7r(fi)(r7eh0), where £ = |ir(r/0)|/7r(ii0)
Moreover, j(pz) = y(z) in the notation of §12. Hence it is clear that

f+(exp H ; z) = n(H)~i i(H)~1 (b(H ; d(q) o n)

= ttHy'^H^p,))      (He (bo).
On the other hand

<b(X ; A(z)) = i(X)Mcxp X;z)        (XeV)

from the definition of A(z). Therefore

(b(H ;A(z)) = <b(H;d(pz))       (H eh0)

and this proves the lemma.

Corollary. Assume that U is completely invariant. Then if T is an
invariant distribution on UG,

*zt = 5(pz)i:T (ze3).

We know (see §10) that tzT = A(z)tt and it follows from Lemma 24 and [4(n),
Theorem 5] that A(z)tt = d(pz)xT. Hence the corollary.

15. Proof of Theorem 2. We now come to one of the main results of this paper
(cf. [4(j), Theorem 1]).

Theorem 2. Let Í2 be a completely invariant open setinGand T a distribution
on Í2. We assume that:

(1) T is invariant;
(2) there exists an ideal VÍ in 3 such that dim3/U<oo and uT = 0 for ueU.

Then T is a locally summable function which is analytic on £2' = Í2 n G'.

We shall use induction on dimG. Let Í20be the set of all points aeQwith the
following property. There exists an open neighborhood U of a in Q and a locally
summable function F on U such that F is analytic on U C\G' and T = F on U.
Clearly Q0 is an open and invariant subset of Q. It would be enough to prove that
£20 = í2- But then, in view of Lemma 7, we have only to verify that Q0 contains
all semisimple points of Q.

Lemma 25. fi' e= £20.

Fix aeQ' and let b denote the centralizer of a in g. Thenh is a Cartan subalgebra
of g. Consider the analytic subgroup A of G corresponding to h and put
£2^ = fl_1i2 C\A', where A' is the set of all he A such that

v„(«) = det(Ad(aft)-1-l)fl/i#0.

Let aT denote the distribution on QA corresponding to T under Lemma 15. Put
a = |va|1/2 ar- Then we conclude from Lemma 13 and the corollary of Lemma 15
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thaty(í()o' = 0 for well. Since S(bc) is a finite module over y(3) = I(bc) (Lemma 21),
it follows that 23 = S(bc)y (XL) has finite codimension in S(hc). Fix a base Hy,---,H¡
for b over R and put

U = H\ + ---+H2.

Then if N = dimS(hc)/23, it is obvious that we can choose c¡eC (lzgirgN)
such that

^=G"+    I    C/tD*-*e33.
1 StaJV

Now v is an analytic differential operator on A which is obviously elliptic. Therefore
since ver — O, we conclude that a coincides with an analytic function g on QA. Put
G* = GjA and define the mapping \p : G* x QA —> Í2 as in the proof of Lemma 19.
Then we can choose open neighborhoods G0 and F of 1 in G and ilA, respectively,
such that ip defines an analytic diffeomorphism of G0*x V onto the open subset
U = ip(G0* x V) of Í2. Define the analytic function F on V by

F((ah)x') = | vaih) | - ll2gih)        ix* e G0* h e V).

Then by Lemma 15, we get

n/J = crTißa) = j ßx | va | -1/2 g dh (a e Cc<°iG0 x V)),

where dh is the Haar measure on A. On the other hand, it follows from the defi-
nition of /„ that

\ fJFdx    =  f   ocix:h)FHah)x)dxdh

= |   ß*\va\-il2gdh.

This shows that T = F on Í7 and therefore a efi0.
It is clear from the above lemma that there exists an analytic function F on Q'

such that T = F on ÍT. Now fix a semisimple element a e Q and let us use the
notation of §4. Z being the center of G, first assume that a $ Z so that dim3 <dimg.
Put fi2 = a"'finS'. Then Í2, is an open and completely invariant neighborhood
of 1 in E. Let rjT denote the distribution on Í2= which corresponds to T under
Lemma 15. Then oT is invariant under E and it follows from the corollary of
Lemma 15 that öa(u)aT = 0 for u ell. But then we conclude from Lemma 22 that

p(u)a = 0 (ue U).

Here<r= |va|1/2r/rand p = pm. Since3(3) is a finite module over p(3) (Lemma 21),it
i s clear that 23 =3(3) p (IT) has finite codimension in 3(3)- Letfir-'be the set of those
elements in Q2 which are regular in E. Then it follows by the induction hypothesis
that er = g, where g is a locally summable function on £2S which is analytic on fis'.
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Let </> denote the mapping (x, y) -» (ay)x of G x Í2S into Í2. Then U = ¡b(G x £2=)
is an open neighborhood of a in Í2 (Lemma 14). Moreover, it is easy to verify
that (p(G x Q3') = U', where U' = U n G' = U n Q'. Since T = F on Í2', we have

T(f) = J7.F ¿x = Ja(x:^)F((^r) ¿xdv
for a e C^G x Í23') in the notation of Lemma 15. However,

T(f) = o-T(A) = j«(x:y)\vx(y)\-1/2g(y)dxdy.

This shows that the analytic function

(x,y)-+F((ay)x)-\va(y)\-ll2g(y)

is zero on G x £23'and therefore F o (b is locally summable on G x Í23. Hence F
is locally summable on U (see [4(k), Corollary 2 of Theorem 1]) and

j fxFdx =   ja(x:y)F((ay)x) dxdy

=   j«(x:y)\va(y)\-1/2g(y)dxdy

= aT(ßx)=T(fx)

for a e C^G x £23). This proves that T = F on U and therefore a e £20.
It remains to consider the case when aeZ. Then by a translation by a-1,

we are reduced to the case a = 1. Then, as we have seen in §9, there exists an
open and completely invariant neighborhood U of zero in g such that the ex-
ponential mapping of g into G is univalent and regular on V and UG = exp U cz Í2.
Let tt be the distribution on U corresponding to T (see §10). Then we know
from the corollary of Lemma 24 that B(pu)zT = 0 for u e U. Let 33 denote the image
of II in I(qc) under the canonical isomorphism z-*pz of 3 onto I(qc). Then

dimJ(gc)/23=dim3/U<oo

and so we conclude from [4(n), Theorem 1] that xT = i>, where <X> is a locally
summable function on Í7. Define the function /j, on UG as in §10. Then it is obvious
that /<!, is locally summable on L7G and T = f<¡, on UG. But since T = F on UG n Í2',
it follows that fit, = F almost everywhere on UG. Hence F is locally summable on
UG and T = F on [7G. This shows that 1 e Í20 and so the proof of Theorem 2 is
now complete.

The above theorem shows that F is locally summable on Í2 and T = F on Í2.
Fix ze3- Then the distribution zT also satisfies all the conditions of Theorem 2
and it is obvious that zT = zF on Í2'. Hence zF is also locally summable on SI
and zT = zF on Í2. Thus we obtain the following corollary (cf. [4(n), Lemma 16]).
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Corollary. For any ze$, the function zFonQ' is locally summable on Q
and zT = zF. Hence

\f- zFdx= \z*f- Fdx

for feCfiQ).
16. Some elementary facts about reductive groups. As before let c be the center

and gt the derived algebra of g. Fix a Cartan subalgebra b of g. Then bx = \)(~\Qy
is a Cartan subalgebra of the semisimple Lie algebra g,. We can choose a Cartan
involution 0 of gx such that 0(h1)=i)1 [4(e), p. 100]. We extend 0 toan automor-
phism of g by defining 0(C) = C for C e c. Let f and p be the subspaces of g
corresponding to the eigenvalues 1 and— 1 of 0. Then c cz ï and p cz gt. Moreover,
since 0(1)) = b, it is clear that b = í)ní + bnp.

Let K be the analytic subgroup of G corresponding to ï and Z the center of G.

Lemma 26. The mapping ep:(k,X)-*k expX (keK, X ep) is an analytic
diffeomorphism ofKxp onto G. Moreover, Z cz K and KjZ is compact.

It is easy to verify (see [4(d), p. 614]) that ep is everywhere regular. Let C, Gy
and Ky be the analytic subgroups of G corresponding to c, g. and ït = ï ng„
respectively. Then G = CGy and Gy = .K^expp (see e.g. [5, pp. 214-215]). There-
fore since CKy = K, it follows that cj> is surjective. Now suppose

kyexpXy=k2 expX2    (k¡eK,X¡ep, i = 1,2).

Put k = k2~1ky. Then kexpXy = expX2 and therefore

Ad(fe)exp(adXj) = exp(adZ2).

Since Ad(G) is semisimple, we conclude [5, pp. 214-215] that Xy=X2. Hence
ky = k2. This proves that ep is univalent and so it is an analytic diffeomorphism.

Let Zy be the center of Gy. Then we know that Zy cz Ky and KyjZy is compact
[5,p.214]. Since K = C Ky and Z = C Zy, it follows that Z cz K and KjZ is compact.

Corollary. 1. 0 can be extended to an automorphism of G such that

6(kexpX) = kexp(-X)        (keK,Xep).

First assume that G is simply connected. Then our statement is obvious. More-
over, 0 leaves Z pointwise fixed since ZczK. Therefore if Z0 is any closed sub-
group of Z, it defines an automorphism of G¡Z0. From this our assertion follows
immediately in the general case.

Corollary 2(-2). Let Y' =AdikexpX)Y, where Y, Y'ea,keK and Xep.
Then if Y and Y' are both eigenvectors of 6, [X, Y] = 0.

(12) This result was pointed out to me by A. Borel.
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Since
0(y')=Ad(/cexp(-Z))0(y),

it is clear that

e2*áXY = £Y,

where e = +1. Moreover, it follows from [4(k), Lemma 27] that ad X is semisimple
and all its eigenvalues are real. Therefore it is obvious that e = 1 and [X, Y] = 0.

Corollary 3. Let a be a subset of b such that a = 0(a) and let E and 3 be the
centralizers of a in G and g, respectively. Then they are both invariant under 0,
3 is reductive in g and

S = Exexp(3 0p),
where 2i = SnX.

For the proof we can obviously replace 0 by the linear subspace of g spanned
by it. Then a = anl + anp. The invariance of S and 3 under 0 is obvious and
therefore (see [4(g), Lemma 10]) 3 is reductive in g. The last statement follows
from Corollary 1.

Let A be the Cartan subgroup of G corresponding to b.

Corollary 4. A = AKAV, where AK — An KandAp = exp(hnp). Moreover,
Z cz AK and AKjZ is compact.

The first statement follows from Corollary 3 if we take a = h. It is obvious
from Lemma 26 that Z cz AK. Moreover, since KjZ is compact and AK is closed
in K, it follows that AKjZ is compact.

Corollary 5. Suppose every root of (g,i)) is imaginary (see [4(m), §4]). Then
A is connected and contained in K.

For then it is obvious that h n p = {0} and therefore A = AK. Since ï is reductive
and its derived algebra is compact, the connected component of 1 in A is maximal
abelian in K. This shows that A is connected.

17. Complex semisimple groups. Let gc be a complex semisimple Lie algebra
and Gc a complex analytic group corresponding to it. Fix a Cartan subalgebra
bc of gc. Then we can choose a compact real form u of gc such that b = bc n u
is a Cartan subalgebra of u (see [5, p. 155]). Let n denote the conjugation of
gc with respect to u. Then if we regard gc as a Lie algebra over R, n is a Cartan
involution of gc and gc=u + ( — 1)1/2U is the corresponding Cartan decomposition.
Let U be the real analytic subgroup of Gc corresponding to it. Then U is compact
and by Lemma 26, the mapping

(u, X) -+ u exp ( - l)1/2X (ueU, Xeu)

is an analytic diffeomorphism of U x u onto Gc.
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Lemma 27. Let a be a subset ofhc such that n(a) = a and let ic and Ec denote
the centralizers of a in gc and Gc, respectively. Then 3C is reductive in gc and Ec is
connected.

We may obviously replace o by the subspace oc spanned by it over C. It follows
from Corollary 3 of Lemma 26 that 3C is reductive in gc and

Sc = Sexp((-l)1/23),

where E = Sc n [/ and 3 = 3«. nu. It is clear that E is the centralizer of ac n u
in U and therefore it is connected (see [5, p. 247]). This proves that Sc is connected.

Corollary. Let AcbetheCartan subgroup of G c cor responding to bc. Then
Ac is connected.

By definition Ac is the centralizer of bc in Gc. Hence the corollary follows by
taking a = l)c.

The following lemma, together with its proof, was pointed out to me by Borel.

Lemma 28. 3C being as above, put 3lc = [3C,3C] and let EXc be the complex
analytic subgroup of Gc corresponding to 3lc. Then if Gc is simply connected,
the same holds for alc.

Put bR = ( - l)1/2(i)c n u) and aR = ( - l)íl2(ac n u). Introduce compatible
orders (see [4(g), p. 195]) in the spaces of linear functions on hR and aR. Let P
be the set of all positive roots of (gc, bc) under this order. Let â denote the restriction
of a on ac for any root a and let P0 denote the set of those a e P for which â = 0.
Consider the set (aj,a2,■•■,a¡) of simple roots in P and assume that a¡eP0
(1 ^ / ^ m) and a¡$P0 (m <i^ I). We claim that (a,,-,oim) is a set of funda-
mental roots for (3,., hc). Fix aeP0. Then a = L,iSt¿irfitt, where r¡ axe integers
3: 0. Hence

Z    rjä, = ä = 0.
í^ígi

Now a¡ = 0 (1 rg i ^ m) and ¿c¡ > 0 (m< i ^ /) by the compatibility of our orders.
So it is obvious that r¡ = 0for m < i g /. Since (al5---,am) are linearly independent,
this proves our assertion.

For any root a, let Hx denote, as usual, the element in bR such that
tr(ad H ad Hx) = a(H) for H eí)e. Put

Hi = 2ai(Hxy1Hx¡ (l^ièl).

Then it is clear that H¡ (1 ^ i ^ m) form a base for hc Ci§lc over C. Now suppose
i, (1 ;£ i ^ I) axe complex numbers such that

exp(27r(-l)1/2   I    tAl-l
\ lá¡ím /
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in Elc. Then since Gc is simply connected, we can conclude (see Weyl [8]) that
i; are rational integers. This implies that Elc is simply connected.

Lemma 29. Assume that Gc is simply connected and let X be a linear function
on bc. Then there exists a character Cx of Ac such that

U^pH) = em) (Hebc)

if and only if2XiHa)jaiHx) is a rational integer for every root a. Put

P = -x-  £ a,
Z   oteP

where P is the set of positive roots under some order. Then the above condition
is fulfilled for X = p.

This is well known (see Weyl [8]).

18. Acceptable groups. Let G be a connected Lie group with the Lie algebra
g over R which we assume, as before, to be reductive. Letj be the inclusion mapping
of g into gc and Gc a complex analytic group corresponding to gc. We say that
Gcis a complexification of G if j can be extended to a homomorphism of G into Gc.

Define c and g. as in §9 and let C and Gy, respectively, be the corresponding
analytic subgroups of G. We call Gy the semisimple part of G. Similarly let Cc
and Glc denote the complex analytic subgroups of Gc corresponding to cc and
glc, respectively. We say that Gcis quasisimply connected (q. s. c.) if CcnGlc={l}
and Glc is simply connected. Moreover, G itself is called q. s. c. if it has a q. s. c.
complexification. Assume that GyC\C is finite. Then G always has a complexi-
fication. Moreover, since the center of a complex semisimple group is finite, it is
clear that there exists a q. s. c. covering group G which covers G only finitely
many times.

Let A be the Cartan subgroup of G corresponding to b. Consider a complexi-
fication Gc of G and let Ac denote its Cartan subgroup corresponding to bc. Then
Ac is connected (corollary of Lemma 27) and it is obvious that jiA)ezzAc. Let X
be a linear function on hc. Then there exsts at most one complex-analytic homo-
morphism e\x of Ac into C such that

^(expfl) = eiW        iHebc).

Then i\x 07 is a homomorphism of A into C, which is easily seen to be independent
of the particular choice of Gc (so long as it can be defined by means ofGcat all).
We shall write £A instead of e\x o j. If a is a root of (g,b), it is obvious that £,
always exists.

Let P be the set of all positive roots of (g,b) in some order and put

P - -s-  £ a-
Z    xeP

If G is q. s. c, we can take Gc to be a q. s. c. complexification of G. Then it follows
from Lemma 29 that e\p exists.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



484 HARISH-CHANDRA [September

Let W denote the Weyl group of (g, h). Then it is well known (see [8]) that
sp — p (se W) is an integral linear combination of the roots. Therefore the con-
dition that £p should be defined is independent of the order of roots. Moreover,
since any two Cartan subalgebras of gc are conjugate under the (connected)
adjoint group of gc, it follows that the above condition also does not depend on
the choice of h. We shall say that G is acceptable if this condition is satisfied.
Similarly a complexification Gc of G is called acceptable if £p can be defined on^4c.

Let m be the centralizer of l) n p in g and M the analytic subgroup of G corre-
sponding to m. Introduce compatible orders (see [4(g), p. 195]) on the spaces
of real linear functions on t)Op and b n p + ( — 1)1/2 h n ï respectively. We
assume that P is the set of positive roots under this order. Let PM denote the set
of those a e P which vanish identically on b O p. Put

Pu = -z    la.
z   aePti

Lemma 30. Suppose G is acceptable. Then the same holds for M and in fact

£,„(») = ^("i)       (heAHM),

where h = hyh2 (hyeAK,h2eAp) in the notation of §16.

LetP+ be the complement of PM in P. Then it is easy to verify that if aeP+,
the same holds for - öa. This shows that p - pM = 0 on b ni. Let m^ be the set
of all Xem such that tr(adiîadZ) = Ofor He hop. Then ö(m1) = m1 and
(I) n p) Orrt! = {0}. Hence if My is the analytic subgroup of G corresponding to
rrt1,itisclearthatM = y4p]vi1and/4I)nM1 = {l}.Nowm is reductive (Corollary 3
of Lemma 26) and b np lies in the center of m. Therefore since p = pM on b n ï
and Ap is simply connected, the statement of the lemma follows immediately by
considering an acceptable complexification of G.

19. Behavior of F around singular points. From now on we assume that G is
acceptable. Put

AA(h) = ^(h)Y[(l-UWl)      (he A).
«eP

(We shall often drop the subscript A if there is no risk of confusion.)   Then
A' = A n G' is the set of all points he A, where A(h) # 0. Put

A/(«) = n (l-^(ft)-1) (heA),
aePR

where PR is the set of all real roots (see [4(m), §4]) in P. Let A'(R)be the set of those
he A where AR'(h) # 0. We now use the notation of §15.

Lemma 3103). Puf ®A(h) = AA(h)F(h) (he A' nil). Then 4>¿ can be extended
to an analytic function on A'(R) n Í2.

(13) Cf. [4(n), Theorem 2] and [4(e), Theorem 8].
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Fix a point aeAnQ. Then a is semisimple. We now use the notation of §4
and define Qs = a_1fi HE'. Put a = | va| 1/2<rT as in §15, and let Qs' be the set of
all elements in fis which are regular in E. We denote by g, as before, the analytic
function on Q=' such that g is locally summable on QE and a = g on Qs. Since
T is invariant, the same holds for F and, as we have seen during the proof of
Theorem 2,

F(ay) = \va(y)\-ll2g(y) (ye£22')-

Now QE is an open and completely invariant neighborhood of 1 in E. Hence
(see §9) we can choose an open and completely invariant neighborhood U of zero
in 3 such that the exponential mapping defines an analytic diffeomorphism of C7
onto an open subset Uz of fi2. Consider the function £ä on 3 (see §10) and, for any
eP e Cc°°(l/), define/,e~Ccx(U,) by

/,(expZ) = iJ(Z)-1«/,(Z) (ZeC7).

Let x be the distribution on U given by x(ep) = o(f<b) (cpeCcco(U)). Define
23 =3(3) " J"(M)> where p = pB/3 (in the notation of §12). Then we know from
Lemmas 21 and 22 that 3(3) is a finite module over p(3) and vo = 0 (ve 23). Let
z^pz denote the canonical isomorphism of 3(3) onto I($c) (see §12). Then
d(p„)T = 0 (v e 23) from the corollary of Lemma 24. Hence Theorem 1 of [4(n)]
is applicable to (3, U,x). Let 3' denote the set of all elements of 3 which are regular
in 3 and let ip be the analytic function on V = U 03' such that x = ip.

Lemma 32. ip(Z) = ¿3(Z)|va(expZ)|1/2F(<iexpZ) (ZeV).

Fix cpeC^U). Then

jcPiPdZ  - <</.) = oU¿=Jtedy

=  I </)(Z)ís(Z)í?(expZ)dZ.

Here dy is the Haar measure of E and dZ the Euclidean measure on 3 and they
are related (see §10) by the equation

dy = i\lZ)2dZ (y = exp Z,ZeU).

Since exp(fJ') c Qs', we have

g(expZ) = I va(expZ)|1/2F(aexpZ) (Ze C7')

and so our assertion is now obvious.
Let P3 be the set of all roots aeP such that ¿¡¿a) = 1. Put P3R = P3nP,j

and letb'(K) be the set of all points Heb, where Y[aepy &ÍH) # 0. Then we know
from [4(n), Theorem 2] that there exists an analytic function u on í)'iR)r, U
such that
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u(H) = n^HMH) (Hebnt/'),

where n3 = l\xePia.

Lemma 33. Let b0 be an open and connected neighborhood of zero in  U ni).
Then

n^HMH) | va(exp H) |1/2 = cA(a exp H) (H e b0),

where c is a constant. Let P' be the complement of Pä in P and p the number of
roots in P'. Then p = (dim g — dim3)/2 and

c2 = (-l)psignva(l).

Finally

Hv^iWwna-««)"1)."1 •
l xeP' )

Put p' = (1/2) HXBp-a. Then it is clear that

va(exp H) =    [I {(«a exp Ä)" ' - 1) (^(a exp H) - 1)}

= ( - D^pWe'™  FI (1 - UacxpH)-1) }2
\ ¡xeP' )

fox Heb. Since va(expH) is real and # 0for Heb0, it is clear that

| va(expH)\-1/2e»'(H)[1(1- 5.(aexpHfl)
cteP'

is an analytic function on b0 whose fourth power is a constant. Therefore since
l)o is connected, we conclude that

| va(expif)|1/2 = eye"'™ u (1 - UatxpHy1) (Heb0),

where

^ = |va(i)|1/2 n a-««r1) "*.
A similar argument shows that

n¿mUm- FI i**™2 - e-*™2) (Heb0).
Hence

nlH)^(H) | va(exp H) |1/2 = cA(a exp H) (H e i)0),

where c = c1£p(a)~1.
It is obvious that dim g - dim 3 = 2p. Since £x(a) = 1 for aePit it is clear that

Ç2p(a) = Ç2p(a).'Nov,

c\ fi (1 - 4(a-1))2 = I v.(l)| = v0(l)signva(l)

= (-însignvii))^.^) na-a«"1»2.
aeP'
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This shows that c2 = ( — l)psignva(l).
It follows from Lemmas 32 and 33 that

u'H) m cQ>A(a exp H) (ff e fj0 n U').

Now put V = aexpb0 and i>(iiexpH) = c~lu(H) (Heb0 nl)'(R)). Then V is an
open neighborhood of a in A n Q, v is an analytic function on V n A'(A) and
v = <bA on K This proves Lemma 31.

For any root a, let sa denote the Weyl reflexion corresponding to a. The Weyl
group W of (g,b) operates on bc and therefore also on ®(hc).

Lemma 34. Fix a point aeAC\Q, and suppose v is an element in S(bc) such
that Vs" = — v for every real root a for which Çx(a) = 1. Then v<S)A can be ex-
tended to a continuous function around a.

We keep to the above notation. Then by Lemma 19 of [4(n)] d(v)u can(10)
be extended to a continuous function around zero. Since <¡>A(aexpH) = c_1u(H)
(Heb0 O [/'), our assertion is now obvious.

For any root a, define H^ as in [4(m), §4] and put m = fle-eP^a6®©«-). Then,
by Lemma 34, mQ>A can be extended to a continuous function WA on A.

Lemma 35. Let A and B be two Cartan subgroups of G. Then WA = \YB on
AC\B nfl.

Fix aeinßnfi and let o and b be the Cartan subalgebras corresponding
to a and b, respectively. Define 3, U and \p as in Lemma 32. Then a, b are Cartan
subalgebras of 3. Put b = 0 or b and define (14)

ros = ro3 = n h*>   mm " ^9/3 = n h*
xeP¡ oc e P '

in the notation introduced above. Then m = r¡73 ■ tr/g/3. Since ws° = — rar, tv£" = — tr;3
for any aeP3, it is clear that rafl/3 is invariant under the Weyl group of (3,h).
Therefore, by Chevalley's theorem [4(f), Lemma 9], there exists an element
ne7(3c) such that the projection na of n in <3(oc) = S(ac) (see [4(1), §8]) is r¡7B/30.

Let Gc be an acceptable complexification of G and Ec the analytic subgroup
of Gc corresponding to 3C. Then we can choose y e Ec such that (ac)y = bc. Thus
we have an isomorphism D^D" of Tj(ac) onto î)(bc) (see [4(1), §3]). Since the
definition of \YB is obviously independent of the order of roots, we may assume
that the positive roots of a are mapped into positive roots of b under this iso-
morphism. Define j as in §18. Then it is obvious that yj(a)y~1 =j(a). Therefore
it follows from Lemma 33 that cA = cB and nb = t¡79/3b. (Here cA and cB are the
constants which correspond to c of Lemma 33 for the cases b = a and f) = b,
respectively.)

(14) We use a similar notation in other cases. For example 7t3° = n, and err = w.
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Now put
u\H) = n?(H)\li(H) (HeU'rM)).

Then it follows from the corollary of Theorem 3 of [4(n)] and [4(f), Theorem 1]
(both applied to 3) that

3« • n>° = d(wib ■ nb)ub

on a n b n 17. This proves that d(rna)ua = d(zoh)ub on a n b n Í2. But if U0 is an
open convex neighborhood of zero in C7, we know that

ua(H)= cAQ>A(aexpH)       (HeU0'na),

u\H)= cB<bB(aexpH)       (HeU0'nb),

where U0' = U0 n 17'. Therefore since cA = cB=i0, we conclude that WA(a) = y¥B(a).

20. The function vGF. We write xn = mA for a given Cartan subgroup A.

Lemma 36. There exists a unique differential operator vG on G' with the
following properties.

(1) VG is invariant under G.
(2) Let A be a Cartan subgroup of G. Then

f(h;vG) = f(h;ajAoAA)

forfeCœ(G)andheAnG'.
Moreover, vG is analytic.

The proof is similar to that of [4(n), Lemma 24]. Since two distinct Cartan
subgroups cannot have a regular element in common, the uniqueness is obvious.
The existence is proved as follows. Fix a Cartan subgroup A of G and define
GA = iJxeGxA'x'1, where A' = A n G'. Let h be Cartan subalgebra of A, Ä the
normalizer of I) in G and/îK =Ä (~\K in the notation of §16. Then by Corollary 2
of Lemma 26, Ä = ÄKAp and if A0 is the center of A, it follows (see §16) that

WA=ÀIA0^ÀKIA0nK

is both compact and discrete and therefore it is finite. Let x -» x* denote the
natural projection of G on G* = G/A0. Define n** = hx (h e A, xe G). Then the
mapping </>: (x*,n)->h** of G* x A into G is everywhere regular on G* x A'.
Hence GA = <b(G* x A') is open in G. Now WA operates on G* and A as follows.
Let y be an element in A whose image in WA is s. Then

x*s = (xy)* (xeG), hs = yhy'1.
Define

(x*,n)s = (x*s,ns"1) (x*eG*, ne4').
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In this way WA operates on the right on G* x A' without fixed points and the
quotient space (G* x A')/WA may be identified with GA by means of ep. By making
use of the homomorphism j:G->Gc (see §18) one proves without difficulty that
the differential operator mA o AA on A is invariant under WA. The rest of the proof
now goes through exactly as in [4(n), §9].

Lemma 37. For any ze$,(\7Go z)F can be extended to a continuous function on il.

Since the distribution zT also satisfies all the conditions of Theorem 2, it is
enough to consider the case z = 1. Let Q0 be the set of all points x0efi0 for
which there exists an open neighborhood V of x0 in £2 and a continuous function
con F such that v = vGF on F n G'. Obviously Í20 is an open and invariant
subset of £2. Hence, in view of Lemma 7, it would be enough to prove that every
semisimple element of £2 is contained in £20 •

Fix a semisimple element a e Q and let us use the notation of Lemma 32.
Let 3' be the set of those elements of 3 which are regular in 3. Define the differential
operator v3 on 3' as in [4(n), §9] and fix an open and convex neighborhood
U0 of zero in U and put U0' — U0 n U'. Let a be a Cartan subalgebra of 3. Then,
as we have seen in §19, there exists a unique element n e f(3c) such that na = wg/°.
Let c denote the constant of Lemma 33 corresponding to h = a.

Lemma 38. F(aexpZ; vG) = cxpiZ; v3o (3(n)) (Ze U0').

Fix H0eU0' and let h be the centralizer of H0 in 3. Then b is a Cartan subalgebra
of 3 and therefore also of g. Moreover, a exp r/0eQnG'. Let A be the Cartan
subgroup of G corresponding to b. Then

F(aexpíí0; vc) = F(aexpH0 ; wA o A^) ,

from the definition of vc- Put f)0 = b n U0. Then we have seen in §19 that

AAiaexpH)FiaexpH) = cAn,iH)HH)       (Heb0n U'),

where cA is a constant. Moreover, by a suitable choice of positive roots of (g,h)
we can arrange (see the proof of Lemma 35) that cA = c and n^ = raB/3 . Then
it follows from [4(f), Theorem 1] and the definition of v3 that

iPiH;v3 o din)) = tfr(iï; d(ra) o tt3)       (H e f)0 n U'),

where tr; = mA. Therefore it is clear that

Fia exp H0 ; VG) = cipiH0 ; v3 o din))

and this proves our assertion.
It follows from Lemma 38 and [4(n), Lemma 25] that there exists an open

neighborhood Vs of 1 in Q3 and a continuous function g0 on Vs such that

Fiay,VG) = g0iy)      iyeVs' = VsnSl3')
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in the notation of §19. Let x ->x denote the natural mapping of G on G= G/E.
Select open neighborhoods G0 and F0 of fand 1 in G and Fs, respectively. If they
are sufficiently small the following conditions hold. There exists an analytic
mapping </> of G0 into G such that: (1) (b(x) = x for xeG0 and (2) the mapping
a:(x,y)-*(ay)'l'M of G0 x F0into Gis univalent and regular and F = a(G0x V0)czVE.
Then V is an open neighborhood of a in G and a defines an analytic diffeomorphism
of (j0 x F0 on V. Define a function F0 on F by

F0(<x(x,y)) = go(y)       (xeG0,yeV0).

Then F0 is continuous and since VGF is invariant under G, it is obvious that
^o = VGF on Fn G'. This shows that a e£20 and therefore Lemma 37 is proved.

21. An elementary result. Let h be a Cartan subalgebra of g and IFthe Weyl
group of (g, b).

Lemma 39. Let X be a linear function on f)c. Then there exists an invariant
analytic function fx on g such that

n{H)f(H)=2Ze(s)e^H)    (H el)).
seW

Moreover,fx is unique.

Let f)' be the set of all elements Heb, where n(H) # 0. Since (b')G is an open
subset of g, the uniqueness of fx is obvious. Therefore it remains to prove its
existence. For this we may obviously assume that g is semisimple and G is the
connected adjoint group of g. Now we use the notation of §16. Let Gc be the
(connected) complex adjoint group of gc and U the real analytic subgroup of
Gc corresponding to the compact real form u= ï + ( — l)1/2p of gc. Then U is
compact. Put B(X, Y) = tr(ad X ad Y) (X, Y e gc) as usual and consider

f{X:Y)= f expB(uX,Y)du    (X,Yeqc),
Jv

where du is the normalized Haar measure on U. Then / is obviously a holomorphic
function on gc x gc and it is clear that

/(X;t(Z):Y) = 0      (Zeu)

in the notation of [4(1), §4]. Since / is holomorphic in X, this implies that
f(xX:Y) = f(X:Y) fox xeGc.

Let Hx denote the element in bc such that B(H,HX) = X(H) for all H et)c. Then
we know from [4(f), Theorem 2] that

n(Hx)K(H)f(H :Hx) = c I e(s)e«sH)       (H e bc),
seW

where c is a number # 0 independent of H and X. Therefore we can take

fx(X) = c-1n(Hx)f(X : Hx)     (X e g).
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22. The invariant integral on G. We now return to the notation of §19. Let A0
denote the center of A and x->x* the natural projection of G on G* = GjA0-
Put hx =hx iheA,xeG) and let dx* denote the invariant measure on G*.
For any / e CCX(G), put

Ff(h) = ER(h)A(h) f   f(hx')dx* (heA'),

where A' = A n G' and sR(h) = signAR'(/¡). Then Ff is a C°°-function on ,4'and
if y is the canonical isomorphism of 3 onto I(bc) (see §6), we have [4(h),Theorem 3]

Fzf = yiz)Ff ize3,feCc°°iG)).

Let S/ denote the set of all positive singular imaginary roots of (g,b) (see
[4(m), §4]). Define

A/(n)=   IK1" a")"1) (he A)
aeSj

and let A'il) be the set of those points he A where A/(n) # 0.

Lemma 40. Fix feCcœ(G). Then Ff can be extended to a C^-function on
A'(I). Let a be a point in A and v an element in <3(bc) such that vs" = — v for
every singular imaginary root at for which i„(a) = 1. Then vF¡ can be extended
to a continuous function around a.

Let 3 and E. denote the centralizers of a in g and G, respectively, and E the
connected component of 1 in Sx. Then if Z is the center of G, EJZE is finite
(see [4(g2), Lemma 15]). Choose an open neighborhood B of 1 in A with the
following property (see [4(h), Theorem 1]). If h e B and x e G vary in such a way
that iah)x stays inside some compact subset of G, then the coset x = xE, remains
within a compact subset of G = G/Sx. Let x-*x denote the natural projection
of G on G. Since 3 is reductive and EJZE is finite, it follows that the group E, is
unimodular. Hence we have an invariant measure dx on G. Let dy* denote the
invariant measure on Ex* = S,/,40. Then if dx and dy* are suitably normalized,
we have

Ff(ah) = 8R(ah)A(ah) f   dx f    f(x(ah)y' x'i ) dy*      (h e B')

for /e C^iG). Here B' — B c\a~xA'. Now fix an open and relatively compact
subset G0 of G and choose a compact set £2 in G such that (aB)xC\Go=0 (xe G)
unless x e £2. Let dy denote the Haar measure of Et and choose y e Cc °°(G) such that

j;
y(xy)dy = 1

:z
if x e £2 (x e G). Then if dy is suitably normalized, we have

Ffiah) = sRiah)Aiah) f  y(x)dx Í    /(xia/r^x-1^*       (neß')
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for / e CC°°(G0). Here E* = E/E O A0. Now fix / e Ccœ(G0) and put

go(y)=\   y(x)f(x(ay)x~1)dx (yea).

Theng0eCcœ(E).
We now use the notation of §19. Select an open and connected neighborhood

b0 of zero in h such that expb0 <= B, £,x(a exp H) # 1 (a e P') and

(1 _ e-«H))la(H) * 0 (aeP3)

for Hef)0. Then if b0' is the set of all points Heb0, where n¡(H) # 0, it is clear
that expb0' cz B' and

Ff(a expH) = eR(a exp H)A(a expH) f ^ g0((expHf')dy* (H e h0').

A simple argument shows (see §21) that there exists an analytic function Da on
3 such that : (1) Da is invariant under E and (2) A(a exp H) = 7r3(íí)Da(H) for Heb.
Fix an open and completely invariant neighborhood 30 of zero in 3 such that the
exponential mapping (from 3 to S) is regular and univalent on 30 and select a C°°-
function w on 3 such that: (1) u is invariant under S, (2) Suppu<=30,
and (3) u = 1 around zero. This is possible (see §9 and [4(n), Corollary 1 of
Lemma 45]). Now put

g(Z) = u(Z)Da(Z)g0(exp Z) (Z e 3).

Then g e Ccœ(30). Since b0 is connected and i,x(a exp H) ^ 1 for a e P' and H e í)0,
it is clear that

£R(aexpH) = eiR(H)sa (Heb0),
where

£3jR(H) = sign     u       «(#)
«efznPn

and sa is a constant. Therefore

Ff(aexpH) = eoE3>R(ff)7r3(fi) j^ g(y*H)dy* (HeUnb0'),

where U is an open neighborhood of zero in 3 such that u = 1 on 17. The second
assertion of the lemma now follows by applying Theorem 1 of [4(m)] to (3,b)
and g. Moreover, this obviously implies the first assertion.

Corollary. xoFf can be extended to a continuous function on A.

Since ms" = — to for every root a, this is an immediate consequence of Lemma 40.

23. Statement of Theorem 3. Define GA as in §20. Since A0 is abelian and
^4/^40 is finite (see the proof of Lemma 36), the Haar measure dh of A is bi-
invariant. We keep to the notation of §22.

Lemma 41. There exists a number c> 0 such that
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f fix)dx = c í   \Aih)\2dh f    fihx')dx*
forfeCc(GA).

We observe that

det(Ad(n) - » - l)9/ft - ( - iy A(n)2      (n e A),

where r is the number of positive roots of (g,h). From this our assertion follows
in the usual way (see the proof of Lemma 36 and [4(c), p. 508]).

Corollary. Let f e C^G). Then

f   ¡MfOF/fOldh^c-'í   \f(x)\dx.
Ja Jga

This is obvious from the above lemma.

We now use the notation of §16. Let nt be the centralizer of b Op in g and M
the analytic subgroup of G corresponding to m. Let PM be the set of all positive
roots of (g,h) which vanish identically on bop. Then PM is also the set of all
positive imaginary roots of (g,b) or, equivalently, the set of positive roots of
(nt,b). Put

-v.) = Ép(Ai) na-«*'1))    («e¿)>
«£ PM

where n = hyh2 (hyeAK, h2eAv). It follows from [4(h), Theorem 2] that

| àM(h)Ff(h) | dh< oo (feCc<°(G)).L
Theorem 3. Let v be a seminorm(15) on the complex vector space C^G)

and 3o a subalgebra of 3 containing I. Assume that 3 is a finite module over
3o and

J^ | AM(h)Ff(h) | dh z% v(f)       (f e Ccœ(G)).

Then for any ueQ(bc), we can choose a finite set of elements z1,---,zJve3o SI»cn
that

sup | Ff(h; u) | ^    Z    v(z;/) (/eCeœ(G)).
heA' lâ'aN

Remark. The above form of this theorem suggested itself to me after a con-
versation with R. P. Langlands. My original version was less comprehensive.

Let Z be the center of G and V a subset of A such that VZ = A. Put V' = Vf\A'.
We claim that it would be sufficient to prove the following lemma for a con-
veniently chosen V.

Lemma 42.   For any u e S(ÏL.), we can choose z1( •••,zN in 3o such that

(15) Here we ignore completely the topology of Ce  (G).
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sup |Ff(h;u)\ ^    I    v(Z¡/) (feCc°"(G)).
AW' lgiSJV

Put:

Vo(/)-f   lAM^F/n)^/! (feCc*°(G)).

Then v0 is a seminorm on Ccco(G) which satisfies the condition of Theorem 3.
For any yeZ, let/, denote the function x->/(xy) on G. Then it is clear that
íP(y)Ffy(h) = FJ(hy) (heA') and AM(hy) = t;p(y)AM(h). Since |Ç/y)|-l, it
follows that v0(/,) = v0(/). Therefore if Lemma 42 holds for v„, we can conclude
that

sup|Ff(hy;u)| = sup \Ffv(h;u)\
heV heV

^     I    v0(z,./,)= Iv0(z,/)     (yeZ)
l£lg\ i

since z¡fy = (zj)y. Now fix a seminorm v as in Theorem 3. Then v0(g)ú v(g)
for geC™(G). Hence

sup |F/ny;u)| g   I v(Z//) (yeZ, /eC^ÍG)).
AW i

But since V'Z = A', the assertion of Theorem 3 now follows immediately.

24. Reduction to 1) in a special case. So now it remains to prove Lemma 42.
First assume that every root of (q,b) is imaginary. Then M = G and it follows
from Corollary 5 of Lemma 26 that ,4/Z is compact. So we can take F to be
compact. Let £f be the set of all seminorms a on(is) C™(G) with the following
property. We can choose a finite number of elements Zy,---,zN in 3o such that

o(f)ú      I    v(z,./) (/eCc°°(G)).

Then since F is compact, it would obviously be enough to prove the following
result.

Lemma 43. Given h0eA, we can choose an open neighborhood U of h0 in A
with the following property. For any ue<5(i)c), there exists an element aueSr"
such that

sup    \Ff(h;u)\ïou(f)    (feCcœ(G)).
HeA'nU

Let c be the center and g¡ the derived algebra of g. Then b = c + bj, where
I)1=^ng1. Since every root of (g,I)) is imaginary, -tr(adH)2 (Heh,y) is a
positive-definite quadratic form on by. We extend it to a positive-definite quadratic
form Q on b in such a way that c and hi are orthogonal under Q and, moreover,
regard b as a real Hubert space under the norm || H ¡2 =Q(H) (Heb).

Let us now introduce the notation of §19 corresponding to a = n0. Fix a number
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c (0 < c ^ 1) and let V be the set of all H e h with || H || < c. We assume that c is
so small that :

(1) |(e"(fl)/2- e -*m/2Uh0~')) | ^ (1/2)11 - WV')| for every root a of (g,b)
andHeV.

(2) The exponential mapping of V into A is univalent.
(3) \{(e*(H)l2 - e-"lH)'2)la(H)} | ^ 1/2 for a eP3 and He V.
Let b' be the set of all Heb where 7r3(H) # 0. Then V = Vr\ h' consists of a

finite number of connected components, say Vy, ••-, Vq. Put

17 = n0exp(aF),

where a is a positive number (0 < a rg 1). Then it is clear that

UnA'=   U    U,

where U¡ = h0exp(aV). Then it would be sufficient to prove the following lemma.

Lemma 44. Fix i (1 zg i zg q). Then we can select a number a (0 < a zg 1)
with the following property. For any u e S(hc) we can choose oeS? such that

sup \Ffih0expH;u)\ zg a(f) (feCc<°(G)).
HeaV,

Put

<P,iH) = Ffih0exj>H) ifeC^iG), HeV).

Then it follows from [4(h), Theorem 3] that(10) epzf=diyiz))cpf for ze^. More-
over, it is obvious that Lemma 44 is equivalent to the following.

Lemma 45. Fix i (1 zg i zg q). Then we can select a (0 < a zg 1) with the
following property. For any u e S(bc), we can choose oeSf such that

sup \ePfiH;diu))\z^aif)
HeaV,

forallfeC^iG).
We may assume that i = 1. Let L be the rank of 31 = [3,3]. Then we can choose

L roots <Xy,---,<xL of (3, h) with the following property. If a is a root of(3,b)such
that ( - l)1/2a(H) > 0 for He Vy, then a = T.y<¡t¿Lm¡a¡, where m¡ are rational
integers ^ 0. Put r;(H) = ( - l)1/2a((H) (1 zg ii zg L, Heb) and choose a base
Hj (1 g / á I,) for hx = b n g» such that t£Hf) = i0 (1 £ i g L, 1 gf á /.).
Let H. (/j <;* zg /) be an orthonormal base for c. Extend (t,, •••,íL) to a Cartesian
coordinate system ity,---,t¡) on b by defining tjiHj) = ôtJ (1 g i, j | Í). Then
a point H e F lies in Vy if and only if i,(H) > 0 (1 zg i »g L). Define

r   min k(H)|   if L>0,'
t(H) = \   1S,SL

U ifL = 0      (Heb).
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Clearly | tf||2 ^ 2|a(H)[2 for any root a of (g, h). Hence if H0eVy¡2 and
IH - H0 I S <H0)¡2 (Heb), it is clear that || H \ = fl HQ fl + t(/i0)/2 < c.
Therefore HeV. Moreover,

| ti(H - H0) j - | a¿H -Ho)\u\\H-H0\\ú y <H0) á y h(H0)       (l^ií L).

Therefore t¡(H) ^ t(#0)/2 (l^igL) and so He Ft. This also shows that
t(íí) 2: x(H0)¡2. Thus we have obtained the following result.

Lemma 46. Fix HQ e Vyj2 and let H be an element in b such that

¡H-H0\\á«Ho)l2.
Then HeVy and x(H) £ r(ii0)/2.

Fix a function ib on R of class C°° such that ij/ = 1 on the interval ( - oo, 0],
\j/ = 0 on the interval [1, + oo) and 0 5¡ ib :g 1 everywhere.

Lemma 47.  For any real number s (0 < e 5í 1/2) define

Ve(H) = ir<(a-1\\H\\-2) (Heb).

Then for any element ueS(b,c) of degree ^ d, we can choose a number b>0
such that

\^e(H;d(u))\^b£-''

for all H eh and 0 < e g 1/2.

This is an immediate consequence of Lemma 55 of the Appendix (see also
[6, p. 281]). Observe that ¥,(#) = 0 unless ¡H\\^ 3e.

25. Proof of a weaker result. Now first we prove the following weaker formes)
of Lemma 45.

Lemma 48. Given ueS(t)c),we can choose an integer q^OandaeSf such that

sup    (   fi ti(H)Y\(bf(H;d(u))\io-(f)
BeVi/Z   \ lgigL )

forallfeCcx(G).

Let (Oy e3 be the Casimir operator (see [4(e), p. 140]) corresponding to gx. Put

co = coy-    I   H/e3.

Then it is easy to verify (see [4(e), p. 144]) that(i7) y(oS) + < p, p > is homo-

(16) cf. [4(g), p. 206].
(i7) (p,py = p{Hp), where Hph the unique elementin blc such thattr(ad#ad.f/p) = p(#)

for all ff el).
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geneous of degree 2 and D — d(y(co)) + < p, p>is an elliptic differential operator
onh.

Now 3 being a finite module over 3o> we can choose Vy = I, v2,---,vr in 3
such that

3=   Z  3o»i.
ISigr

Fix an integer m ^ 1. Then we have an equation of the form

co0°"+      Z    zjcoomi--j) = 0,

where cu0 = co + < p, p> and z¡ e3o-
For the proof of Lemma 48, we may obviously assume that u # 0. Let d be the

degree of u. Fix a Euclidean measure dH on b such that dH corresponds, locally,
to the Haar measure dh on A, under the exponential mapping. Then if m is suf-
ficiently large, there exists a function E0 on b of class c2m(r~1)+d such that

DmrE0 = <5

in the sense of the theory of distributions on the Euclidean space b (with respect
to the measure dH). Here <5 is the Dirac measure on b concentrated at zero and
E0 is of class C°° everywhere except at the origin (see Lemma 57, §29). Put
E = 8(u)*E0, where the star denotes adjoint. It follows by applying the homo-
morphism y to the relation above that

Dmr +   Z    d(y(z,.))Dm(r_J') = 0.

Since D* = D, we find, by taking adjoints, that

Dm +   Z   diyizf))*Dm{r~n = 0.

PutEj^ -Dmir~J)E (1 ^j^r). Then Fas a function of class C2m(j'_1) and

ôiu)*ô=   Z   d(y(zf))*Ej.
lá Jar

Clearly E¡ is of class Cœ everywhere except at zero. Put FJ>e = *PE£J for any e
(0 < e z% 1/3) in the notation of Lemma 47. Then it is clear that

Z    d(y(zj))*Ej,^d(u)*o + ßc,

where ße e Ccœ (h) and Supp ße <zz Supp^. Now Ve(H) = 1 if | H | zg 2e. Hence
ße(H) = 0 unless 2e g | H | zg 3e.
Therefore

sup|/?8(H)|=       sup      \ße(H)\.
H 2£5g|lH||S3e
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Making use of Lemma 47 and the explicit formula for £0 (see §29), we find that

sup\ßE(H)\^by£-p + 1\loge\ = b2e-''
H

where by, b2 axe positive numbers and p an integer ^ 0, all independent of
e (0 < e ̂  1/3).

Now fix H0eVyß and put e0 = t(//0)/6, £,,„„ = £,,£0 and ßHo = ßt0 (í=j = r).
Then

I   ö(y(z,.))*£iiIIo = d(u)*ö + ßHo,
lSiSr

sup|fo0|  ^ b3x(Ho)-p,

where b3 = 6pb2. Now Supp£iHo and Supp/JHo are both contained in Supp*F£o.
Moreover, fl 1Ï fl g t(H0)/2 if HeSupp¥Eo. Hence if H - H0 e SuppVCo, it
follows from Lemma 46 that HeVy and x(H) ^ t(H0)¡2. Let V(H0) be the set
of all H e V such that x(H) ^ t(H0)/2. Then it is clear that V(H0) cz VX and

4>f(H0; 3(u)) =   I    f        (pf(H;d(y(ziï)Ei,H0(U-Ho)dH
liiár  JV(Ho)

"i, ^«fl-Fo)^.
»'(Ho)

On the other hand it follows from the definition of V (see §24) that we can choose
a number Cy > 0 such that

|A(H0expH)|^Cl|7r3(/i)|        (HeV).

Let qy be the number of roots in P3. Then it follows from our definition of tt,—,tL
that

\nlH)\^x(Hr        (HeVy).
Therefore

|A(n0expfF)|5:ClT(H)4' (HeVy).

Hence

<Ho)qi\  f        (bf(H;d(y(zi)))Ei¡Ho(H-H0)dH

i= c2  f       |<AZi/ff)A(n0expíF)||£¡!Ho(fí-tfo)|rftf,
J ^(Ho)

where c2 = 2î,c1"1 . Moreover, since |*F,,| ;£ 1 and E¡ axe continuous functions on
b, it is clear that

sup | £j>Ho(íí - H0) | g   sup | £;(H) | £ e„
H^(Ho) I|h|N2
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where c3 is a positive number independent of H0 or ¡. Hence

t(H0)4' I   f     ePfiH;diyizi)))Ei¡HoiH-H0)dH    íí c2c3v(z,./) (1 zg i zg r).

Similarly since sup|/J,.0| g r/3T(H0)~p, we get

\<HQ)\' + »   I   f       ePfiH)ßHoiH-H0)dH    ûc2b3vif).
1   J V(H0)

Moreover, t(H0) :g c 5¡ 1. Hence

xiHo)p+9'\cPfiHo; diu))\ic2b3vif) + c2c3   2   v(z(/)
läiSr

for H0 e PJ2 and / e Cc°°iG). Now

n   i^g^-VA) (He F.).
ISiáL

This is obvious if L ^ 1 and is also true if L = 0. Therefore the statement of
Lemma 48 follows immediately if we take q = p + qx.

26. Proof of Lemma 45 (18). Now we come to the proof of Lemma 45. If
L = 0, it is an immediate consequence of Lemma 48. So we may assume that
L^ 1.

By a monomial T we mean a function on b of the form í1,1í2?2--- íL,L, where
<Zi> •■•>1l are integers 2: 0. The degree of T is the integer qy + q2+ ••• + qL and
we denote it by d°T. Since S(bc) is a finite module over f(bc)=y(3) (see [4(f),
Lemma 11]), it is also a finite module over y(3o)- Hence we can choose Uj
(1 zg ; zg r) in S(bc) such that Uy = 1 and

S(bc)=   Z   y(3o)«y.

We say that a monomial T has property (P) if there exists a number a = a(T)
(0 < a zg 1) and o e if such that

(P) sup  TtH^/Hî^lzgo-ÎJ-) ilâjûr)
HeaVi

for all / e CC°°(G). Now suppose T has property (P) and put

<rT(/)=   max      sup    TiH)\cpfiH;diuj))\      (/eCcœ(G)),
lSjár      fleaf,

where a = aiT). Then it is obvious that oTe£f and, for a given meS(T)C), we can
select z¡e3o (1 = * = r) sucn that u = Ziils,.y{A)H|. Hence

•p/H; 3(u)) =   Z tpZ(/(H; d(u)) (HeV',fe CC°°(G)).

(is) Cf. [4(g), pp. 208-211].
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So it is clear that

Ot,JS)=  sup   T(H)\(bf(H;d(u))\ Í   I    aT(zjf)
BeaVi lijûr

for all / e Ccœ(G) and therefore err>, e Sf.
Hence, in order to prove Lemma 45, it is obviously enough to obtain the fol-

lowing result.

Lemma 49. The monomial 1 has property (P).

It is clear from Lemma 48 that monomials with property (P) actually do exist.
Let T be a monomial with property (P) of the lowest possible degree. We claim
that T = 1. For otherwise suppose d°T>0. Then, without loss of generality,
we may assume that T = tyqit292 ••• tLqL and qy ^ 1. Put T2 = t2qi — tLqLso that
T = tyqiT2 and d°T2 < d°T. Let a = a(T) and, for any / e Ccœ(G), put

■rV.iiff) = T2(H)(bf(H ; d(U¡)) (H e\a Vy,l^iû r).

We recall that Hlf ■•-,Hl is a base for h over R such that t¡(Hj) = ôtj (1 ;£ i,j ^ I).
Now choose ztj e3o (1 = U j Ú r) such that

Ht«,-     I   y(zif)uJ (l = ièr).
l&jír

Then

Wf.ilÔty = Z ibz.]fJ
j

on aVx and therefore

| trWf.ildti) | S I *r(zy/) (/ e CJ°(G))
on aFi. Here

aT(f) = max    sup T(H)\(¡>f(H;d(uj))| (/eCcœ(G))

and it is clear that aTeSr° since T has property (P). Put

o(g) =     S     o-T(zijg) (geCcœ(G)).
lSI,;ir

Then a also lies in 5".
For any b > 0, let Wb denote the set of all Heb such that | t¡(H) | ^ b (1 ^ i ^ I).

Choose ay (0 < at ^ 1) so small that Wai <= aV and a2 (0<a2f¿ ^í) such that
a2V cz Wai. Suppose Hea2Vx. Then H' = H + (ax- tx(H))Hx e Wai czaV. Since
í¡(íí)>0 (lgi^L) and ty(H)^¡H\\ <a2c £a2='ay, it follows that
t¡(H') > 0 (1 g i ^ L) and therefore H' e aVy. But aFt being convex, the whole
linesegmentjoiningfftoH' lies in a Vy. On the other hand, we have seen above that

\(8ikfJdty)\^ty-q'o-(f) (feCcœ(G))
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on aVy. Hence, by integrating on this line segment, we get

\^PfJ(H')-cbfti(H)\zScj(f)r  s-i'ds
Jr,(H)

since ty(H') = ax. Moreover,

| tx(HTiPfii(H') | = TiH') | ePfiH';eiu)) | zg aTif).
Therefore

\iPf¡iiH')\ía-y«>crTif).

This shows that

¡ iPr¿H)\ zg af' exrif) + aif) f"   s^ds
J'l(H)

forHea2Vy and / e CC°°(G).
Now first suppose that qt S; 2. Then

f    s-"'ds = iqy - ly'ityiH)1-"' - a/-«').

Hence if Tt = tyqi "1T2, it is clear that

| TyiH)ePfiH;diU¡))\ zg ay-*>aTif) + aif)

for Hea2Vy,feCcœiG) and 1 zg i zg r. This shows that Ty has property (P).
But since d°Ty = d°T - 1 < d°T, this gives a contradiction. So the case qy ^ 2
is impossible.

Hence ¿h = 1. Then

f '   s-1ds = log(a1/i1(H))
J 'l(H)

and therefore

|iPf¡iiH)\ zg ay-'cTjif) + o(f)log(aylty(H))       (1 zg i zg r)

for H e a2F! and / e CC°°(G). Put

a'ig) = trig) -faf1 ^rte)     (g e Ceœ(G)).

Then a' eSS and

l-Máff'c/Mi + iogí«-/^}
on a2F1. Put

o2ig)=     Z    c7'(zyg)      (;?eCcco(G)).
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Then a2e£f and since

tyf.ißh =   Z ypz¡jfjj

we conclude that

| (#^01 g o-2(/){l 4Mog(a1i,-1)}

on a2Vy. Now choose numbers a3,a4 (0 < a4 zg a3 zg a2) such that Wa¡cza2V
and a4F cz Wa3. For any H e aAVy, define

H^H + í^-ÍjÍHí))^.

Then H" e a2 Fx and so again by integrating along the line segment joining H and
H", we conclude that

I <Pf¡iiH") - iPfJiH)\ zg o2if) \"     (1 + log^s-^ds

=    i><72(/)

for H e aAVy, f e C^iG) and lgigr. Here

fc=        (1+ log(a1s_1))ds< 00.

Now ty'H") = a3 and

ti(H")\iPfiiiH")\^aTif)
since T = tfT2. Therefore

I iPf4iH) I rg a3 - Vr(/) + ba2if) (1 zg i zg r)

for Hea4F! and f eC^iG). This shows that T2 has property (P) and therefore
again, since d°T2 = d°T — 1 < d°T, we get a contradiction. This proves Lemma 49
and hence also Lemma 45.

27. Proof of Theorem 3 in the general case. Now we come to the general case
and use of the notation of §16. Let 0M be the centralizer of b n p in G and M the
connected component of 1 in 0M. Then A cz 0M and, by Lemma 30, M is acceptable.

Let Gc be a complexification of G and define j as in  §18. Put

o0=XK)nexp((-l)1/2(hnp)).

Lemma 50. 4»0 is a finite group. Let O be a finite subset of G such that
ji<S>) = O0. Then A = <&A°Z, where A0 is the connected component of 1 in A.

Since finpcg,, we may obviously assume, for the proof of this lemma,
that g is semisimple and Gc is simply connected. Then ;'(X) is compact and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965]   INVARIANT EIGENDISTRIBUTIONS ON A SEMISIMPLE LIE GROUP 1503

$0 czj(A)Cij(K) =j(AK). Extend 9 to a complex-analytic automorphism of Gc.
Then since 0 = - 1 on p, it is clear that a2 = 1 for every a e $>0. Therefore since
j(AK) is a compact abelian group, it follows that $0 is finite.

Now A = AKAp and Ap cz A0 (see Corollary 4 of Lemma 26). Hence, in order
to prove the second statement, it would be enough to verify that j(AK) = <P0;L4K°),
where AK° is the analytic subgroup of G corresponding to b Of.

Let Ac be the Cartan subgroup of Gc corresponding to bc. Put u = i + ( — l)1/2p and
and define L/andnasin §17. Then if aey(-4/f),itisclearthataeL7n/lc = exp(b£.nu).
But í)cnu = í)nf +(- l)1/2(í)np) and therefore a = aya2, where axej(AK°)
and a2 e O0. This proves that j(AK) = <&0j(AK°).

Lemma 51. Let aeO and meM. Then a and m commute.

Since M is connected, this follows from the fact that its Lie algebra m commutes
with b n p.

Fix an order in the space of (real-valued) linear functions X on i) n p and, for any
such X, let Qx denote the space of all X e Q such that [H, X\ = X(H)X for all
Heh,C\p. Put rt = lLx>oQk- Then n is a nilpotent subalgebra of g. Let A7 be the
analytic subgroup of G corresponding to rt. It is clear that 0M normalizes n. Put

d(m) = | det(Ad(m))„ |1/2 (m e 0M),

where the subscript rt denotes restriction on n. Put G0=Ad(G) and let K0
denote the image of K in G0 under the homomorphism x-+Ad(x). Then K0 is
compact. For any x e G and v0 e G0, define xyo = yxy-1 where y is any element
of G such that y0 = Ad (y). Put

/(*)= f   f(xk0)dk0,   gf(m) = d(m) f  f(mn)dn
Jko Jn

for /eCcm(G), xeG and me0M. Here dk0 and dn axe the Haar measures on
K0 and N, respectively, and ¡Ko^o = 1-

Introduce an order on the space of real-valued linear functions on
(— l)1/2(i)0 ï) + x)f\p which is compatible (see [4(g), p. 195]) with the one
already chosen above. We may assume, without loss of generality, that the set P
of positive roots of (g,b) is defined with respect to this order. Since every root of
(m,I)) is imaginary, it follows from Corollary 5 of Lemma 26 that A n M = A0.
Let m-*m* denote the natural projection of M on M* = M/A ° and define

FgM(h) = AM(h)   (    g(hm*)dm* (heA°nM'),
Jm*

Mg)   - JA0 \àM(h)FgM(h)\dh        (geCcco(M)),
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where dm* is the invariant measure on M* and M' is the set of those elements
of M which are regular in M.

Let 3JÍ be the subalgebra of © generated by (1, mc) and QM the center of 931.
Then we have the isomorphism p = pg/m of 3 into $M (see §12). Moreover,
G = KMN from [4(g), Lemma 11].

Lemma 52.   For any aeO, put

gf,a(m) = g ¿am) imeM,fe Cc™iG)).

Then gfaeCcœiM) and

gz/,a = Kz)gf,a        (ze3)-

Moreover, if dm* and dn are suitably normalized, we have the relation

F ¿ah) = Z¿a)Ftf¡_Mih)

for f e CcaiG), heA°n(a~1 G') and a e 4>.

Although the proof of this lemma is not difficult, it is rather long. Hence we
postpone it to another paper.

We can now complete the proof of Theorem 3. It is clear that

àM(ah) = Ép(fl)AM(A) (ae<t>,heA).

Hence we conclude from Lemma 52 that

Vm^/.J = J*   I AM(h)F¿ah) | dh zg v(f).

We have seen (Lemma 30) that M is acceptable and every root of (tn,b) is
imaginary. Moreover, $M is a finite module over p(3o) by Lemma 21. Hence
Theorem 3 holds for (M,A°,p(30), vM) in place of (G,A,30,v). Therefore for any
u e <5(bc), we can, in view of Lemma 52, choose a finite set of elements z,, • • •, zr e 30
such that

sup |F¿h;u)| zg   max     Z   vM(ßiz)gfi^ zg     Z   v(z,/)

for / e CcœiG). This proves Theorem 3.

28. The local summability of | D |"1/2. Let / = rank G and put D = Dx in the
notation of §3. Then D is an analytic function on G and

D(n) = det (1 - Adih))m = ( - l)'A(n)2 iheA),

where p is the number of positive roots of (g,b).

Lemma 53. |i)| ~1/2 is locally summable on G.
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Let C be a compact subset of G. Then we can choose / e Ccœ(G) such that
/ ^ 0 everywhere and / ^ 1 on C. Then it is clear that

f   \D\-ll2dx<[   \D\~ll2fdx.

Let A¡ (1 ^ i = r) be a maximal set of Cartan subgroups of G no two of which
are conjugate under G. Put

G,=   [JxAi'x-1,
xeO

where A,' = At n G'. Then G' is the disjoint union of Gu ••-, Gr (see [4(e), Lemma
5]). Hence it would be enough to verify that

f   |D|_1/2/dx<oo (l^i^r).
JGi

So fix i and put A = A¡. Then G¡ = GA in the notation of §23 and it follows from
Lemma 41 and [4(h), Theorem 2] that

f   \D\-1/2fdx = c f   \Ff(h)\dh< oo.
J Ga Ja

This proves the lemma.

29. Appendix. Put p(x) = (x^ + x22 + ••• + x„2)1/2 ̂  0   for xe R".

Lemma 54.   Let abe a real number and D = dk¡dx¡1dxil---dxik. Then

Dp" =     I   p^-¡-\
Ogj^k

D(p"logp)=    Z   P,p'-J'-*+(logp)    I   QjPx-j-k ,

where pjt Pj and Qj are homogeneous polynomials in (xt, ■•■,x„) of degree j.

This follows by an easy induction on k.

Corollary 1. If a > k, then p" and p'logp are functions of class Ck on R".

This is obvious from the lemma.

Corollary 2. pk~1Dp remains bounded on R".

We know that
pk~1Dp=   2   Pjp-J,

0£jSk

where pj is a homogeneous polynomial of degree j in (xy,---,xn). Our assertion
therefore follows from the obvious fact that \pj\p~Hs bounded on R".
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The following lemma is implicit in the paper of Morrey and Nirenberg [6, p. 281].

Lemma 55. Let h be a function in C°°(Ä) which is constant on the intervals
(— oo,0] and [1, + co). Choose two numbers r, ô such that 0<a^rgl and put

Hr<i(x) = h(8-1(p(x)-r)) (xeRn).

Then for each integer k ^ 0, there exists a number ck ̂  0, independent of r and 5,
such that

\DHr¡0\^cko-k

for D = dkldxtldxl2-dxik (1 ^ ix,--,ik ^ n).

We use induction on k. If k = 0, we can take c0 = sup | h |. So let us assume that
fe ̂  1 and put h'(t) = dh/dt (te R). Then n' also satisfies the conditions of the
lemma and

dHrJldxt = S-1 ff,/ ■ 8plÔxi (1 £ i á ft),

where

Hry(x) = h'(Ô-1(p{x)-r)) (xeRn).

Now HrS'(x) = 0 unless r ^ p(x) ^ r + ô and therefore

sup|DHr,ä| ^ ô-1 sup\D'(Hr¡ó' • dpldx,k)\,

where D' = dk~1/dxil---dxik_i. Hence if we expand

D'(Hr¡i' ■ Ôpldxik)

by means of the Leibniz formula, make use of Corollary 2 of Lemma 54 and apply
the induction hypothesis to Hr /, we get the required assertion.

Put A = 2ZySi¿n(d/Bxi)2 and let ô denote the Dirac measure concentrated
at the origin.

Lemma 56.   1/ n is odd
Al+(B-.)/2p2,-i=Ci(5    (/^1}

and if n is even

Al+"l2(p2llogp) = cl'ô (I£0).

Here c, and c,' are nonzero numbers and the above relations are meant in the
sense of the theory of distributions.

This is well known (see [7, p. 47]).

Lemma 57. Fix integers d^O and r^.1. Then we can choose an integer
m 2; 1 and a function e on R" of class c2m(''_1)+', such that
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Amre = Ö.

Choose   m   so   large   that   2m > d + n.   First   suppose   n is odd.  Then
I = mr — (n — l)/2 is an integer and

2/ = 2mr-n + 1 > d + 1.

Hence /^ 1. Put e = cx~lp2l~1. Then

and 2/ — 1 = 2mr — n = 2m(r — 1) + 2m — n> 2m(r — 1) + d. Hence e is of class
C2m(r-i)+d by Coro.lary ! 0f Lemma 54.

On the other hand if n is even put 1= mr — n/2. Then 2/ = 2mr — n> d and
therefore / is positive. Now put

e = ici')~1p21 log p.

Then 2/ = 2mr - n > 2m(r - 1) + d and therefore again eis of class c2m(r_1)+',.
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