INVARIANT EIGENDISTRIBUTIONS
ON A SEMISIMPLE LIE GROUP

BY
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1. Introduction. Let G be a connected semisimple Lie group and 3 the algebra
of all differential operators on G which commute with both left and right trans-
lations of G. One of the main objects of this paper is to show that every invariant
eigendistribution T of 3 on G, is actually a locally summable function F which
is analytic on the regular set G’ of G (Theorem 2). In particular, this implies that
the character of an irreducible unitary representation of G is a function.

In the second part we examine the behavior of F around the singular points
of G (see §§19, 20). This is done by applying the results of [4(n), §§8, 9]. The
third part is devoted to the detailed study of an invariant integral on G, which
had been introduced in [4(h), Theorem 2]. Here we have to make use of [4(m),
Theorem 1]. The full significance of Theorem 3 for harmonic analysis on G will
appear only in later papers. Roughly speaking, it is the group analogue of [4(g),
Theorem 3].

Our methods are substantially the same as those introduced in [4(1)] and
[4(n)], although they have now to be applied to the group G instead of its Lie
algebra g. Here Theorem 2 of [4(1)] gets replaced by Lemma 22, which is based
on Theorem 1 and this, in its turn, depends on Theorem 5 of [4(n)]. The results
of §3 enable us to limit ourselves to the semisimple points of G and the reduction
procedure, outlined above, can be applied to any such point a provided
it does not lie in the center Z of G. However, if a € Z, the translation by a~!
reduces the problem to the case a = 1. Then we use the results of §14 to transform
it, by means of the exponential mapping, into an analogous question on g around
zero, which has already been discussed in [4(n)]. This general pattern of proof
applies to most results of this paper (e.g., Theorems 1 and 2). However, some-
times it is more convenient to reduce the problem around a directly to the corre-
sponding question around zero on the centralizer 3 of a in g (see, for example, the
proofs of Lemmas 31, 35, 37 and 40).

Theorem 3 is proved by making use of the elementary solution of a certain
elliptic ‘“Laplacian’ and imitating the argument of [4(g), pp. 208-211]. The
Appendix contains a few simple lemmas which are needed in the proof of this
theorem.
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2. The mapping I',. Let G be a Lie group, g its Liealgebra over R and ® the
universal enveloping algebra of g.. For any X eg., let Ly and Ry, respectively,
denote the endomorphisms g —» Xg and g— gX (ge®) of ®. Fixxe G and de-
fine(') (cf. [4(e), p. 114])

ax(X) = Lx‘IX - RX (X egc)'
Note that Ly and Ry commute and(?)
[Lx,Ly] = L[x,yp [RX>RY] = R[x,y]

for X, Y eg,.. Hence it follows immediately that o, is a representation of g, on ®,
It may, therefore, be extended (uniquely) to a representation of ® which
we shall again denote by o,. Let I', denote the linear mapping of ® ® ® into
® such that

I'(g: ® g,) = 0.(g1)2: (81,8,€0).

Let A denote the canonical mapping (see [4(b), p. 192]) of S(g.) onto . We say
that an element ge® is homogeneous of degree d if ge®, = A(S,(g.)) in the
notation of [4(k), §6]. Put
d(ﬁ = 2 ®m‘
d

0sms

A

Then it is obvious that I', defines a linear mapping of ®,, @ 6, into 4,4 ,,®.
Let x —» x? (x € G) be an automorphism of G. Then it defines an automorphism
of g which can be extended uniquely to an automorphism g — g° (ge ®) of g.

LEMMA 1. For any xeG and g,, g,€®,
(g1 ® 22") = (T(g: ® £2))".

Let A denote the automorphism g — g“ of ®. Then one verifies from the defi-

nitions that
0.(X°) = Ac (X)A~!

for X e g. Our assertion is an immediate consequence of this fact.

LEMMA 2. Suppose X; and Y; (1 Si<r, 1 £j=<5) are elements in g, Fix
xeGandput X/ =x"'X;,— X,(1£iZr). Then

X, X, X)QUY Y, V) =MX,X, - X, Y,Y,--Y)) mod (r+s—1)(5-

It follows by an easy induction on r that

(1) As usual xX = X* = Ad(x)X for xeG and X g..
(2) {4, Bl = AB — BA for two endomorphisms A and B of a vector space.
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(X, X, X, 1Y, Y)=X/X," X,V Y, Y;mod,,- 1,5,

where all the products are in ®. Hence our assertion is an immediate consequence
of the following well-known fact (see [4(a), p. 902]).

LemMMA 3. Let Z,,---,Z, be elements of g, and (iy,i,,-,i;) a permutation
of (1,2,---,d). Then

ZIZZN.Zd - Zi Z,z---Zi_E (4_1)6-

As usual we regard elements of ® as left-invariant differential operators on G.
Moreover, for every X eg, let p(X) denote the right-invariant vector-field on G
given by(3)

fx;p(X)) = (df(exptX - x)[df),=o  (x€G, feC(G)).

A simple argument shows that [p(X), p(Y)] = — p([X, Y]) and therefore p can be
extended uniquely to an anti-homomorphism of ® into the algebra of all dif-
ferential operators on G. We define

flgix)= f(x;0(2)
for xe G, ge® and fe C*(G). If X, -+, X, €g, then(4)
JX 1 Xp o X ix) = f(x; p(X1 Xy X)) = f(x;p(X,) -+ p(X ) p(Xy))
{0" flexpt, X, ---expt,X, - x)[0ty -+ O}y, =...=s.=0
FOes(X X5 X)*7)

since expt;X,---expt,X, - x = x(expt, X, ---expt,X,)* " Therefore

fEx) = f(x;857")  (geG).

It is obvious that X and p(Y) (X, Y eq) commute (in the algebra of differential
operators on G) and therefore g, and p(g,) (g1, £, € ®) also commute.

Now G operates on itself by means of inner automorphisms so that y* = xyx~
(x,y € G, see [4(k), §5]). Let Q4 and G, be two open sets in G and f a C*-function
on Q=0,%. Put f(x:y) = f(y") (xe G,, y €Q,). The significance of the mapping
I', arises from the following lemma.

1

LEMMA 4, Let g,,2,€®. Then

f(x;81:¥:82) = f(x:;T(g, ® £2))
Jor xe Gy and yeQy.
(3) We use here the notation of [4(k), §2].

(4) For any xeG, we extend Ad(x) to an automorphism g — g* of (& and define
yx =xyx-1 (yeG).
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If X g, it is clear that

yE = yexp(tX® Dexp(— tX) (y€G, teR).
On the other hand if x e G, and y € Q,, it is clear that

f(xexptX:y) = f(x:y **%)
provided |t[ is small. Therefore
S Xp) = f(xiy; X7 = X) = f(x:y;p(X) = X).
Since p(X) commutes with g,, it follows by differentiation with respect to y that
JGXiy;82) = f(x:y;0(X) 0 g3 — 82X)
= [y X7 'gs ~ £:,X) = f(x:730,(X)2,).
Hence if X,,:--,X,eq and g, = X X, -+ X,, it follows by induction on r that

f(x;81:y:82) = f(x:y;0,(81)82)

The statement of the lemma is now obvious.

3. Completely invariant sets. Assume that G is connected. Consider the

polynomial
det(t+1—Ad(x)) = X #Dx) (xeG),
0<j=n

where tis an indeterminate and n = dim G. Then D, are analytic functions on G and
D, = 1. Let I be the least integer such that D, # 0. Then [ = rank G = rank g and
an element x € G is called singular or regular according as D,(x) = 0 or not. Let
G’ be the set of all regular elements. Then it is obvious that G’ is open and dense
in G and the set of singular elements is of measure zero with respect to the left-
invariant Haar measure of G.

We say that G is reductive if g is reductive. An element x€ G is called semi-
simple if the endomorphism Ad(x) of g is semisimple. Let 3, denote the centralizer
of x in g. We assume, from now on, that G is reductive.

LEMMA 5. Let x be an element of G. Then xe G’ if and only if 3, is a Cartan
subalgebra of g. Moreover, if x is semisimple then 3, is reductive in § and
rank 3, = rankg. Finally, a regular element is always semisimple.

It is clearly enough to consider the case when g is semisimple. The first and
last statements follow from [4(e), Lemma 5].Put B(X, Y)=tr(ad Xad Y) (X, Yeq)
and let B, denote the restriction of the bilinear form B on 3,. Now assume that x
is semisimple. An elementary argument (see [2, p. 391]) shows that B, is non-
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degenerate. Hence it follows from [2, Proposition 3.4] and [3] that 3, is reductive
in g. Finally rank 3, = rankg from [2, Proposition 4.6].

COROLLARY. If x is semisimple, it is contained in a Cartan subgroup of G.

Let b be a Cartan subalgebra of 3, and A the centralizer of ) in G. Since rank
3, = rankg, 4 is a Cartan subgroup of G and x € A4.

Let 4" denote the set of all nilpotent elements (see [4(n), §3]) of g. Put
N =exp A < G. The mapping X — expad X (X € .A4") is known (see [4(h), §3]
to be univalent on A",

LEMMA 6. Every xe G can be written uniquely in the form x = hn, where h
is a semisimple element of G, ne ¢ and h, n commute with each other. Let
Z. denote the centralizer of x in G. Then h and n lie in the center of Z,..

It is obviously enough to consider the case when ¢ is semisimple and G is the
connected component of 1 in the adjoint group G, of g. Then G, is the set of all
real points of a linear algebraic group defined over R. Therefore the lemma
follows from well-known results on algebraic groups (see, for example, [1, §8]).
h and n, respectively, are called the semisimple and unipotent components of x.

COROLLARY(5). heCl(x%).

Choose X € A" such that n = exp X and let 3 denote the centralizer of h in g.
Then Xe3. We may obviously assume that X # 0. Then by the Jacobson-
Morosow theorem, we can choose H €3 such that [H, X]=2X (see [4(n), §3]).
Put y, = exp( — tH). Then

%’ = (hexpX)’*= hexp(e ¥ X) > h

as t > + oo. This proves the corollary.
Let U be a subset of G. We say that U is completely invariant (cf. [4(n), §3])
if it has the following property. If C is any compact subset of U, then CI(C%) = U.

LEMMA 7. Let U be a completely invariant subset of G and V an invariant
subset of U which is closed in U. Then if V contains no semisimple element
of U, V is empty.

Suppose x € V. Then it follows from the corollary of Lemma 6 that the semi-
simple component of x also lies in V. Hence the lemma.

Now assume that g is semisimple. For any ¢ > 0, let g(c) denote the set of all
X eg such that(6) |Iml|< ¢ for every eigenvalue A of ad X. Clearly g(c) is an
open and completely invariant neighborhood of zero in g and A" < g(c). More-
over, if X e g(c) then tX e g(c) for 0 £ ¢ < 1. Hence g(c) is connected.

(5) Asusual ClXand °X, respectively, denote the closure and the complement of a subset X,
(%) Im 2 denotes, as usual, the imaginary part of A.
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LeMMA 8. Assume that ¢ < n. Then the exponential mapping from g into G
is everywhere regular and univalent on g(c). Moreover, exp g(c) is completely
invariant in G.

The proof of the first part is the same as that of [4(h), Lemma 11]. In order
to obtain the second part we use the notation of [4(h), Lemma 12] and first
prove the following lemma.

LEMMA 9. Assume ¢ =z and let X, (r 2 1) be a sequence in g(c). Then if
” exp X, ” remains bounded, the same holds for “ X, ”

We keep to the notation of the proof of [4(h), Lemma 12]. Then X, = Ad(u,)Y,,
Y,=H, + Z, and therefore |Im cx(H,)| < ¢ £« for any a e P. On the other hand
lexpX, | = |exp ;|| and ad ¥, has the same eigenvalues as ad H,. This shows
that le’“’ r) | remains bounded for every ae P. In view of the above result this
implies that “ H, | itself remains bounded. The rest of the proof now goes through
in the same way as for Lemma 12 of [4(h)].

Now fix a compact set C in V = expg(c). We have to show that CI(C®) c V.
Let X, and x; (k = 1) be sequences in g(c) and G respectively such that exp X; e C
and (exp X;)™ converges to some point y in G. We have to verify that yeV.
Let log denote the inverse mapping from V to g(c). Then log C is compact. Hence,
in view of Lemma 9, we can, by choosing suitable subsequences, arrange that
X.— X and x,X,— Y, where XelogC and Y eg. But it is obvious that ad X
and ad Y have the same eigenvalues. Hence Y €g(c) and therefore y =expYe V.
This completes the proof of Lemma 8.

4. Some algebraic results(7). We return again to the case when ¢ is reductive.
Fix a semisimple element ae G and let 3 = 3(a) denote the centralizer of a4 in
g and E = E(a) the analytic subgroup of G corresponding to 3. Put

vi(y) = det(Ad(ay)™* —1)g; (y€BE).

Then v, is an analytic function on E and v,(1) # 0. Let Z' = Z'(a) be the set of
all points y € E, where v,(y) # 0. Then Z’ is an open neighborhood of 1 in Z.

In view of Lemma 5, 3 satisfies the conditions of [4(l), §2]. Define q as in
[4(1), §2] and put Q = &(q,) and Q. = S .(q,.) in the notation of [4(k), §7].

LemMMA 10. Fix yeZ'. Then T, defines a bijective mapping of Q® S(3,)
onto ®. Moreover,

z ray(edl(qc) ® 642(30)) = d(5 (d g 0)

dy+da=d

Put Wy =X, +4,2454,(9) ® S,,(3,). Since g is the direct sum of q and 3,
it is clear that dim W, =dim ®. Hence it would be sufficient to prove that

(") The results of this section are similar to those of [4(1), §2]. See also [4(¢)].
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I, (W) =,6. We do this by induction on d. It is obvious that I',(W,) < /6.
Hence it would be sufficent to show that

d® < ray(vyd) + (4—1)6‘
Fix two integers d,, d, = 0 such that d, + d, = d and suppose Y,eq(1 i < d,)
and Z;e3 (1=j=d,). Let q=Y,Y,--Y;,€8(q.) and z=2,Z,---Z;,eSG3.).

(Here we have to take g =1 if d; =0 and z =1 if d, =0.) Define A as in §2.
Then it would be enough to verify that

A(qz) € ray(%) + @-1 )®°

If d, = 0, this is obvious since I',,(1 ® A(z)) = A(z). Hence we may assume d; > 0.
Now ay commutes with a and therefore 3 =3 and % = q (see [4(1), §2]).
Therefore since v,(y) # 0, we can choose ¥;'e q such that (Ad(ay)™! — 1)Y=,
(1gi=d)). Put g’ =Y/ Y,'eS(q.). Then

(Mg ® A(2)) = A(gz) mod 4-1)®
from Lemma 2. This proves the lemma.

CoROLLARY 1. Fix ge®. Then for any yeZ’, there exist unique elements
u(8)€S@.) and B(g) ey ® SG) such that

g = a,(g) + I,,(B(g)).
Moreover, if ge ;®, then doay(g) <dand

ﬁy(g) € E Z Gdl(qc)®6d2(3c)'
4220 15d,5d-d»

This is obvious from Lemma 10.

Let M be an analytic manifold and f a mapping of M into a complex vector
space V. We say that f is analytic if the subspace U of V spanned by the image
f(M) is of finite dimension and f, viewed as a mapping of M into U, is analytic
in the usual sense.

COROLLARY 2. Given ge®, we can choose an integer r =0 such that the
mappings y - v (y) 0,(g) and y = v, (y) B,(g) (y € E') can be extended to analytic
mappings of E into S(3,) and Q. ® S(3.), respectively.

Let d = d°g. If d = 0 our statement is obvious. So we assume that d > 1 and
use induction. We may obviously assume that g = A(qz) in the notation of the
proof of Lemma 10. Let A(y) denote the restriction of (Ad(ay) ' —1) on q (y € E).
Then if ¢ is an indeterminate,

det(t — A(y)) = osi Dt

Here m = dim q, D, (0 < k £ m) are analytic functions on E, D,, =1 and
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Dy(y) = (— 1)"det A(y) = (— 1)" v ().
Therefore
v{(y) = B(y)A(y) = A(y) B(y),
where

B(y)=(— 1)m+los§< Dy 1(Y)A(Y)k-

Put Y(y)=B(») Y, 1 £i<dy) and g(y) = [] 15124, ¥i(») € S(q.) (y€E). Then it
follows from Lemma 2 that

o(y) = T, (Aq(») ® 2) — v, (N"Ugz) € 4-1,5.
Therefore
= X a()w
1gigr
where a; are analytic functions on E and d°v; < d. The required result now follows
immediately by applying the induction hypothesis to v; (1 ZiZr).

COROLLARY 3. Let Z, denote the centralizer of a in G. Then if xeZ,, yeE’
and ge®, we have

axyx' l(g x) = (“y(g )) g
This follows immediately from Lemma 1.

5. The mapping 6, g;z. We keep to the notation of §4. Let Ug be an open
neighborhood of a in G. Put Uz =E'N(a""'Ug). Then Uy is an open neigh-
borhood of 1 in E. For any differential operator D on Ug;, we define a differential
operator A(D) on Uj as follows:

(A(D))y = o(Day)  (yeUp).

Here D,, and (A(D)), denote, as usual, the local expressions (see [4(e), p. 112])
of D at ay and A(D) at y, respectively. Corollary 2 of Lemma 10 insures that there
does exist a differential operator A(D) on Uy satisfying the above relation and it is
analytic if D is analytic. Finally, if we assume that U; and D are invariant under
G (see [4(3), §2]), it follows from Corollary 3 of Lemma 10 that Ug and A(D)
are invariant under Z,. We shall denote the mapping D — A(D) by §, or, if neces-
sary, by é,,¢/z-

Let b be an element of Uz which is regular in Z and let Iy denote the centralizer
of b in 3. Then }j is a Cartan subalgebra of 3 and therefore also of g (see Lemma $).
Let Ay denote the Cartan subgroup of G corresponding to b (see [4(m), §5]).
Then a, b are in Ay. Let A be the connected component of 1in Aj.

LEMMA 11. The following two conditions on an element ¢ of A are mutually
equivalent.

(1) ceb™'Ug and det(Ad(be)™ ! —1)35# 0.

(2) ce(ab) ™ Ug and det(Ad(abc)™' — 1)gp # 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965] INVARIANT EIGENDISTRIBUTIONS ON A SEMISIMPLE LIE GROUP 465

Since Ad(a) = 1 on 3, it is clear that
det(Ad(abe)™ ! — )¢ = det(Ad(abc)™" — 1)g;3det(Ad(be)™" — Dy

for ce A. Now suppose (1) holds. Then bce Uz and therefore abce U; and
det(Ad(abc) ' — 1)g3# 0. Therefore (1) implies (2). Conversely, assume that
(2) holds. Then bcea™'Ug and
vi(bc)det(Ad(be)™! — 1)y 0.
Hence bc e Ug and (1) holds.
COROLLARY. ab is regular in G and | is the centralizer of ab in g.

Take ¢ =1 in Lemma 11. Then condition (1) obviously holds and therefore
det(Ad(ab)™! — 1) O by (2). Since Ad(ab) =1 on b, it follows that | is the
centralizer of ab in g. Therefore ab is regular in G by Lemma 5.

Let U, be the set of all ¢ € 4 satisfying the conditions of Lemma 11.

LEMMA 12. Let D be a differential operator on Ug. Then(8)
5ab,G/A(D) = 5b,s/4(5a,c/a(D))~

It follows from Lemma 11 that both sides are differential operators on U,.
Let Ay =08,,6/2(D), A; =6, z4(A;) and A =6, 64(D). We have to prove that
A,=A Let m=[h,3] and p=q+m. Then g=h+p and 3 =0 +m where
both sums are direct.

Fix heU,. Then

(A2)n — (A)en € Tpi(S (M) ® S(D.)).

On the other hand bhe Uz and therefore

(Apss — Doy € Tapi( S +(9.) ® S(.))-
Since Ad(a) = 1 on 3, it is clear that

oun(2) = 0p(2)  (2€GEL)
and therefore

(A2)s = Dapn € Tapn(® 4 ® S(3.)),
where G, = S,(g,). But
Fa(G(m) @ (b)) =T'u(S(m) @ S(h.) = S(G.)

from Lemma 10 (applied to (E, b) instead of (G, a)), since det(Ad (bh)™ ' — Dy # 0.
Hence

LG+ @SR = 0.(©+)SG,)
= 0u(©+) 0,0 (E(M,) S (B
= o,u(®+)S®.).
" (® C. [4(1), Lemma 11],
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But & = S(p.)S(h.) and since § is abelian, it is clear that
(S +(0) S (ho) = {0}.

(54. = 6+(pc) + 6(pc)6+ (I)c)’

Therefore since

we conclude that

Fan(® 4+ ® SG.) = Tipn(S +(p.) ® S(h.)).
This shows that

(A2)h — Dapn € Lap(S 4+ (p.) ® S(D).))
and therefore (A,), = A, from the definition of A.

6. The case when a is regular. Let 3 be the algebra of all differential operators
on G which are invariant under both left and right translations of G. It is obvious
that 3 consists of the center of ® and therefore 3 is abelian.

Let G’ be the set of all regular elements of G. Fix ae G’ and let }) denote the
centralizer of a in g and A the analytic subgroup of G corresponding to §. Then
b is a Cartan subalgebra of g and

v,(h) = det(Ad(ah)™* —1)gp  (he A).

Hence A’ = AN (a~'G’) is the set of all points he A where v,(h) # 0. Let W be
the Weyl group of (g.,5.). Then W operates on S(h,). Let I(),) be the algebra
of all invariants of W in &(f,). We have a canonical isomorphism y of 3 onto
I1(H,) (see [4(e), Lemma 19]). Thus for every z€ 3, y(z) is a differential operator
on A which is invariant under the translations of A4.

LeMMA 13. 6, g.4(2) = |va| “12yz)o |v,,|”2 on A’ for any ze 3.
This is substantially the same as the first statement of [4(e), Theorem 2, p. 125].

7. Application to invariant distributions(®). Fix a semisimple element a e G and
define = and 2’ as in §4.

LeMMA 14, Consider the mapping ¢: (x,y) > (ay)* of G X E info G. Then if
n =dimG, ¢ is everywhere of rank n on G X E’.

We identify the tangent space of G x E at a point (x, y) with g X 3 in the usual
way. Then a simple calculation shows that

(d$),(X,Z) = (Z +(Ad(ay) "'~ DX)*
for X eg and Z €3. But
3+(Ad(@y) '-Da=3+q=g

if ye E’ and therefore our assertion is obvious.

(%) The results of this section are similar to those of [4(1), §7].
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Let dx denote the Haar measure on G. We orient G and fix a left-invariant
differential form wg > 0 of degree n on G, corresponding to the measure dx.
Then the set up of [4(k), §5] is applicable to M =G, if we define y*=xyx~! (x,y e G)
as above.

Let U be an open neighborhood of 1 in Z’ which is invariant under E (i.e.,
U’ = U for ye E). Put Q =¢(G x U) = (aU)°. Then by Lemma 14, Qis open in G.
Let dx, dy denote the Haar measures on G and =, respectively. Now take
M=GxU, N=Q, n=¢ in Theorem 1 of [4(k)] and let wy and wy be the
differential forms corresponding to the measures dxdy and dx, respectively. Let
o — f, denote the corresponding mapping of C.* (G x U) onto C.°(Q).

’

LEMMA 15. Let T be an invariant distribution on €. Then there exists a
unique distribution a; on U such that T(f,) = 6(B,) (e € C,”(G x U)), where

B.(y) = f axy)dx (el

Moreover, o is invariant under Z and oy = 0 implies that T = 0.

Define T'(a) = T(f) (xe C.“(G x U)). Then (see [4(k), Lemma 5]) T’ is a
distribution on G x U. Fix x, € G and let o, denote the function (x, y) — a(xyx: y)
on G x U. We claim that T'(«) = T'(a,,). For if F e C,*(Q), we have

f foFdx = f e 9 F((ay)") dxdy = f a(x: y) F((ay)") dxdy

= ffaF"°dx=[f;‘°" Fdx.

Hence f,, = .77 and therefore T'(a,,) = T( Jaxy) = T(f) = T'(®). Now fix
BeC.2(U) and put T,'(y) = T'(y x B) (ye C.“(G)). Then T, isadistribution on G
which is invariant under the left translations of G. Hence T’ =c(f), where c(f)
is a constant (see [4(k), Lemmas 6 and 7]). Now select y,€ C.*(G) such that
fyodx = 1. Then

cB=T @)=T' (o xp (BeC (V).

This shows that the mapping f — ¢(f) is a distribution on U which we denote
by o5. Then

T'(3 % B) = o1(B) f ydx (3 C.G), feC, V)

and therefore we conclude from [4(k), Lemma 3] that T'(x) — o7(8,) =0 for
aeC,2(G). Since B, =P for a =1y, x B, the mapping a— f, of C. (G x U)
into C.*(U) is surjective. Finally the mapping « — f, of C,°(G x U) into C.*(Q)
is also surjective (see [4(k), Theorem 1]) and so all the statements of the lemma,
except the invariance of g1 under E, are now obvious.
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Fix £eZ and define o’(x:y) = a(x:)*""). Then we claim that T'(x) = T'(a%)
for a € C,*(G x U). This is seen as follows.

jf,:Fdx f a(x: y* ") F((ay)™) dxdy = j a(x: y) F ((ayy™) dxdy

- f a(eE 11 y) F ((ay)") dxdy

for any FeC,°(Q). Hence if a'(x:y) =a(xf "1iy), it is clear that fe=f,..
Therefore

T'(@") = T'(&") = 67(B,7).
But

Bo(y) = f o “hydx=B0)  (yel)

by the right-invariance of dx. Hence T'(a°) = 61(B,) = T'(a). On the other hand

Bay) = j aGe: ¥ Ydx =B (eD).

Therefore B,: = (8,)°. Now for a given e C,(U), we can choose a € C,(G x U)
such that § = f8,. Then

o1(B) = T'(2) = T'(e*) = 05(B.2) = o1(B°).
This shows that oy is invariant under E.

COROLLARY. Let D be an invariant differential operator on Q. Then 6py = Aoy,
where A = 5,(D).

It follows from Corollary 2 of Lemma 10 and the definition of A, that we can
select q,€S,(q.), v;€S(3,) and a;€ C*(U) (1 £i £ r) such that

Dy=A+ X a(W(@,®v) (yel).

15isr

Moreover, apr(B,) = T(D*f,) for ae C.,“(G x U), where the star denotes the
adjoint as usual. Fix F e C,°(Q). Then

f D*f, - Fdx = ff,DFdx = f oa(x: y)F((ay)*; D)dxdy.

Put F(x:u) = F(u®) for any pair (x,u)e G X G such that 4™ e Q. Then it is clear
from Lemma 4 that

F((ay)*;D) = F((ay)*’; D*) = F(x:ay;D)

= F(x:ay;A,) + ls};s a(y)F (x;q,:ay;v)

for xeGand ye U. Put
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ap(x:y) = ax:y;A%),

a(x; ¢;*: y;(a0)*) (1gigr).

ax:y)
Then

fD*fa-Fdx = X fa,-(x:y)F((ay)")dxdy

0<isr
= X J‘ f, Fdx.
osisr
This proves that
D*f, = X f,
osigr
and therefore
TO*f) = Z or(Bo)-

Now B,, = A*B, and if j denotes the distribution on G corresponding to the
constant function 1, it is obvious that g;j = 0 since ¢, ®, . Hence it follows
that 8,, =0 (1 £ i < r) and therefore

T(D*f) = or(A*B)).

This proves that oy = Agy.
For any X e g, let 75(X) denote the vector-field on G defined by

W(X)f = @f*¥d)=o  (f€C™(G)).

Let V be an open subset of G. Then the local invariance of a differential
operator, a distribution or a C* -function on V is defined as in [4(k), §5]. Since
[ta(X), 16(Y)] = 16([X, Y]) (X, Y €9), 75 can be extended (uniquely) to a homo-
morphism of & into the algebra of all differential operators on G.

Let G, and U, be open neighborhoods of 1 in G and E’, respectively, and put
Q, = (aU,y)®. Define the mapping o — f, of C,°(G, x U,) onto C,*(Q,) as above.
Then the following result is proved in the same way as [4(l), Lemma 17] and
[4(k), Theorem 3].

LEMMA 16. Assume that G, is connected and T is a locally invariant
distribution on Q. Then there exists a unique distribution oy on U, such that
T(fa) = aT(ﬂa) (a € ch(GO X UO))’ Where

b= [ominds pev.

Moreover, o is locally invariant (with respect to E) and oy =0 implies that
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T.=0. Finally, opy =0, D)oy for any locally invariant differential operator
Don Q,.

8. Some preparation for Theorem 1. Let G, Q, and Q be three open subsets of
G such that Q,% < Q. For any f € C¥(Q), we write f(x:y) = (™) (x € Gy, y € Q)
as in §2.

LEMMA 17. Let f € C*(Q). Then

J(x;8:9) = f(x:y;76(¢%))
Jor xeG,, yeQ, and ge ®.

The proof is the same as that of [4(k), Lemma 11].

LEMMA 18. Let D be a differential operator and f a locally invariant C*-
Junction on an open subset Q of G. Fix a semisimple element a € Q and define
Qz = a QN E' in the notation of §4. Then

f(ay;D) = f(ay;6,(D)) (yeQg).

Fix y,eQz and choose open neighborhoods G, and Q, of 1 and ay,, re-
spectively, in G such that QF° < Q. Put A = 6,(D). Then it follows from the de-
finition of A that

Da)'o - Avo = E rayo(gi ® vy,

1sigr

where g,€ %, and v;e S(3.). Therefore we conclude from Lemma 4 that

fayo; D, — Ayo) = X f(L;gizaye;v).

1<igr
But

fgx) = f(x;76(gfN =0  (xeQp)

from Lemma 17 since f is locally invariant and g€ ® . Therefore f(1;g;:x;v) =0
for x e Q, and hence

f(ayO;Dayo - Ayo) =0.
This proves the lemma.
LemMMA 19. Let D and Q be as above. Then the following two conditions
on D are equivalent.
(1) 6,(D) =0 for every regular element a in Q.

(2) For any open subset Q, of Q and a locally invariant C®-function f on
Qo, Df = 0.

Suppose (1) holds and Q, and f are given as in condition (2). Fix a regular
element a € Q,. Then it follows from Lemma 18 that

f(a;D) = f(a;5,D)) =0.
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Therefore Df =0 on Qy = Q, N G'. Since Q,’ is obviously dense in Q,, we con-
clude that Df = 0.

Conversely, assume that (2) holds and fix ae QN G’. Let ) be the centralizer
of ain g and A the analytic subgroup of G corresponding to h.PutQ, =a~'QnN 4’
where A’ is the set of all h e A where

v,(h) = det(Ad(ah) ™' = 1) # O.

Then §,(D) is a differential operator on Q,. Let x—x* denote the natural projection
of G on G* = G/A. Since A is abelian, (ah)* (x€ G, he A) depends only on x*
and so we may denote it by (ah)* . It follows from Lemma 14 that the mapping
Y:(x*, k) = (ah)™ of G* x Q, into G is everywhere regular. Fix a point hy €.
Then we can choose open neighborhoods G,*and U of 1* and hg in G* and Q,,
respectively, such that Q, = Y(G,* x U) = Q and ¢ defines an analytic diffeo-
morphism of Gy* X U onto the open neighborhood Q of ah, in Q. Fix f e C(U)
and define fe C¥(Q,) by f(¥(x*,h)) = B(h) (x* € Gy, he U). Then it is obvious
that f is locally invariant and therefore Df = 0 by (2). On the other hand we
know from Lemma 18 that

f(aho;u) = f(aho ;D) =0,

where u is the local expression of 5,(D) at h,. Since ue S(H,) and f(ah) = B(h)
(heU), it is obvious that B(hy; u) = 0. This being true for every Be CP(U),
we conclude that u = 0. Since h, was an arbitrary point of Q,, this proves that
0,(D) = 0. Therefore (2) implies (1).

9. First part of the proof of Theorem 1. We shall now begin the proof of the
following theorem (cf. [4(n), Theorem 5}]).

THEOREM 1. Let Q be a completely invariant open set in G and D an analytic
differential operator on Q. Assume that:

(1) D is invariant under G,

(2) 6,(D) = 0 for every regular element a €.
Then DT = O for every invariant distribution T on Q.

We use induction on dim G. By replacing (U, V) in Lemma 7 with (Q, Supp DT),
it becomes obvious that it would be enough to verify that no semisimple element
of Q lies in Supp DT. Let Z denote the center of G. Fix a semisimple element a in Q
and first assume that a¢Z. Put Q:=a 'QNE’ in the notation of §.
Then it is obvious that Q- is a completely invariant open neighborhood of 1 in E.
Corresponding to Lemma 15, we get an invariant distribution ¢ on Q5. Moreover,
opr = Aoy, where A =9,(D) (see the corollary of Lemma 15). Fix an element
beQ: which is regular in Z. Then abeQ' =QN G’ (see the corollary of
Lemma 11) and therefore

0p z/4(A) = 0,,(D) =0
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in the notation of Lemma 12. Moreover, as we have seen in §5, A is analytic and
invariant under =. Now dim E < dim G, since a ¢ Z. Therefore we conclude from
the induction hypothesis that Ac; = 0. But then a ¢ Supp DT by Lemma 15.

So now we may assume that ae QN Z. It follows from its definition (see §2)
that the mapping I', depends only on Ad(x) (x e G). Therefore if we apply the
translation by a~! to the whole problem, we are reduced to the case a = 1. So
we may assume that 1€ Q and it remains to show that 1¢ Supp DT.

Let ¢ be the center and g, the derived algebra of g. Choose an open and relatively
compact neighborhood ¢, of zero in ¢ such that the exponential mapping is uni-
valent on ¢,. Moreover, select a number ¢ (0 < ¢ <) and define g;(c) as in
Lemma 8. Put go = ¢y + g;(c). Then g, is an open and completely invariant
neighborhood of zero in g and the exponential mapping is everywhere regular
on g,. Now suppose exp(C, + X,) =exp(C, + X,), where C;e ¢, and X, eg;(c)
(i=1,2). Then exp(ad X,) = exp(ad X,) and so it follows from Lemma 8 that
X;=X,. Hence expC, =expC, and therefore C; = C, from the definition
of ¢y. This proves that the exponential mapping defines an analytic diffeomor-
phism of g, onto the open set exp go in G. Let log denote its inverse and put
U =logQ,, where Q,=expg,NQ. Let V be a compact subset of U. Since
@o is completely invariant, CI(V®) < g,. Moreover,

exp (CI(V %) = Cl(exp V%) = Cl((exp V)¥) = Q

since Q is completely invariant. Hence it follows that CI(V®) < U and this shows
that U is completely invariant.

Now, in order to complete the proof, we need some preparation which will
be undertaken in the next section.

10. Reduction to g. Put
&(X) = |det{(e*¥/* — e7*¥?)jad X} |2 (X €q).

Then ¢ is analytic around every point X,eg, where £(X,) # 0. Moreover, the
exponential mapping of g into G is regular at X, if and only if (X ) # O (see,
for example, [5, p. 95)).

Let U be an open subset of g such that the exponential mapping is regular and
univalent on U and put Ug = exp U. Then U is open in G and the exponential
mapping defines an analytic diffeomorphism of U onto Ug;. For any function ¢
on U, let f, denote the function on U, given by

flexpX) =&X) T(X)  (XeD).

Then f, is C* or analytic if and only if the same holds for ¢. In particular, f— f,
defines a linear topological mapping of C,*(U) onto C,*(Ug;). Moreover, it is
obvious that, for any differential operator D on Uy, there exists a unique dif-
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ferential operator A(D) on U such that Dfy = fypy for ¢eC*(U). Finally,
D is analytic if and only if A(D) is analytic.

As usual let dX denote the Euclidean measure on g and dx the Haar measure
on G. Then if dX is suitably normalized, we have the relation (see [5, p. 95])

dx =8X)’dX (x=expX, XeU).
Hence it follows that

f¢1¢2dX = ffmfmdx

for ¢, € C*(U) and ¢, € C,°(U).
LemMmA 20. A(D*) = A(D)* for any differential operator D on Uy.
Fix D and write A for A(D). Thenif ¢,, ¢, € C.°(U), we have

fD*f¢l-f¢2dx - ff,,,l-Dfd,z dx = jf¢1fA¢zdx
=f¢1-A¢2dX - fA*¢1-¢2dX

= f Favoy fordx.

This shows that D*f, = fa+s, and from this our assertion follows immediately.
For any distribution T on Ug, let t; denote the distribution on U given
by 14(¢) = T(f,) (¢ € C,°(U)). Then it follows from Lemma 20 that 75y = A(D)ty.
Now assume that U is invariant under G. Since exp(X™)=(exp X)* (xe G, X €q),
Uy is also invariant. Moreover, since ¢ is obviously invariant under G, it is clear
that (f,)* = f;= and A(D*) =(A(D))" (x€G) for ¢ € C*(U) and any differential
operator D on U. Similarly 10*= (zp)".

11. Completion of the proof of Theorem 1. We are now ready to finish the proof
of Theorem 1. Define U asin §9. Then U = exp U = Q, and, corresponding to T,
we get an invariant distribution 7, on U. Since D is an invariant and analytic
differential operator on Ug, A = A(D) is also invariant and analyticon U. Let ¢
be any invariant C*-function on U. Then

fA¢ = Df¢ =0

from Lemma 19. Hence A¢ = 0. However, since U is completely invariant (see §9),
we conclude from [4(n), Theorem 5] that 7, = Aty = 0. Obviously this implies
that DT =0 on Uz =Q, and therefore 1¢SuppDT. This completes the proof
of Theorem 1.

12. Two isomorphisms. Let m be a subalgebra of g such that (1) m is reductive
in g and (2) rank m = rank g. As before, let 3=3(g) be the center of & = &(g,)
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and 3(m) the center of S(m,). We shall now define a homomorphism p = pg,,
of J into J(m).

Fix a Cartan subalgebra h of m. Then §) is also a Cartan subalgebra of g. Let W
and W(m) denote the Weyl groups of (g,b) and (in,B), respectively. Then W(m)
is a subgroup of W. Let I(h.) and I, (H.) denote the algebras of invariants of W and
W(m), respectively, in &(Y.). Then I () >I(h.). Let y: 3-I{.) and y,,:
J(m)—-I,(H.) denote the canonical isomorphisms (see [4(¢), Lemma 19]).
We define u(z) = y;l(y(z)) (ze3d). Since any two Cartan subalgebras of m, are
conjugate under the connected complex adjoint group of m,, it follows easily
from [4(e), §6] that u is independent of the choice of b.

LEMMA 21. 3(m) is a free abelian module over pgm(3) of rank [W:W(m)].

It is enough to show that I (h.) is a free abelian module over I(h.) of
rank [W:W(m)]. The proof of this is substantially the same as that of Lemma
8 of [4(1)].

If b is a Cartan subalgebra of g, we can take mt = ). Then it is clear that ug5=1y.
As usual let I(g.) denote the algebra of all invariants of G in S(g.). Then we have
the Chevalley isomorphism j: p— p, of I(g,) onto(1) I(h) (see [4(D), §9]). For
any ze3, let p, denote the element j~ '(y(z))eI(g.). Then z—p, is an iso-
morphism of 3 onto I(g.). It follows again from the results of [4(e), §6] that
this isomorphism is independent of the choice of . We shall call it the canonical
isomorphism of 3 onto I(g,).

13. A consequence of Theorem 1. We use the notation of §5.

LEMMA 22. Let Ug be a completely invariant open set in G. Fix a semisimple
element ae U and define Us =E'N(a ' Ug) as in §5. Then Us is completely
invariant under E. Let o be an invariant distribution on Uz. Then(11)

3u(2)0 = [ vo| " ty(2)(|va] '*0)
forze 3.

It is obvious that Uz is an open and completely invariant subset of Z. Therefore,
in view of Theorem 1 and Lemma 19, it is enough to prove the following resuit.

LEMMA 23. Let V be an open subset of Uz and f a C* -function on V which
is locally invariant under E. Then

82 = va| P ug(|) V) (z€3).
Let V' be the set of those elements of V' which are regular in Z. Since V' is
(19) Since By is abelian, we may identify S(),) with &(}).) under the canonical mapping 1

of S(g,) onto .
(11) Cf. [4(1), Theorem 2].
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dense in V, it is enough to verify that the above equation holds on V', Fix be V"’
and z € 3. Then we have to show that

F(b; 8,2 = £(b; [v| " u(z) 0 | v '),
where p = pg;3. Let b be the centralizer of b in 3 and A4 the analytic subgroup of G
corresponding to . Let A" denote the set of all points h e A where

det(Ad(bh)™' —1)gp# 0

and put U, =A4'Nnb~'Uz and V, =(b"'¥V)N U,. Then V, is an open neigh-
borhood of 1 in A’. Moreover,

J(bh;6,2)) = f(bh;;,24(6.2))

= f(bh; 04(2)) (heVy)

from Lemmas 18 and 12. But since ab is regular in G (see the corollary of

Lemma 11), it follows from Lemma 13 that

|—1/2 bl1/2

5ab(z) = Ivab Y(z) o Iva

on V. Therefore

S (bh;8,(2)) = |vas(W) |2 F(h; 9(2)),
where
F(h) =|va(B)|V2f(b) (heV)).

Now put f,(») = |v.(»)|2f () for y& V. Then
SO |V, "G 0 [va)Y2) = | vaBh)| 12y (bh; u(z))
= |v(Bh)| "2y (bh; 8y 20 (hE V)

from Lemma 18. On the other hand it follows from Lemma 13 (applied to =) and
the definition of pu(z) that

-1/2 1/2
| I

0p,z4((2)) = lvb,E y(z)o ‘Vb,a
on U,, where
vy 2(h) = det(Ad(bh)™ ! — yp  (heA).
Therefore
f1(bh; 3y 5 (1(2))) = lvb,s(h)l 12 (h;9(2)),
where
Fy(h) = | vy e(B) |2 f1(bh) = | vy e(W)va(bB)|2f(bR)  (heV)).
But since
vy, =(R)v(bh) = v,(h),

we have F = F;. This shows that
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SO T 20(2) 0 |va]2) = |va(bh)vy (k)| V2 F 1(h; %(2))
= va(B)| T2 F(h;9(2)) = £ (bh;8,(2))
for he V,. Putting h = 1, we get the required result.

14. The relation between 3 and d(I(g.)). We now use the notation of §10.
For any open subset V of U and a function ¢ on V, we define, as before, the func-
tion f, on Vg=expV by fy(expX)=E&X) '¢(X) (XeV). Let z~ p, denote
the canonical isomorphism of 3 onto I(g,) (see §12).

LeMMA 24. Let ¢ be a locally invariant C* -function on an open subset V
of U. Then
25 = faporé

forze3.

Fix ze 3 and let V'’ be the set of all regular points in V. Consider the differential
operator A(z) on U corresponding to z (see §12). Then it is enough to prove that
A(z)¢ = 0(p.)¢p on V'. Fix a point Hye V' and let §y denote the centralizer of
H,in g. Then §j is a Cartan subalgebra of g. Let ), be an open and connected
neighborhood of Hyinh N V’. Then it would be sufficient to show that

¢(H;A2)) = ¢(H;0(p,))  (Hehy).

Since ¢ is locally invariant, it follows from [4(l), Lemma 14] and [4(f), Theorem 1]
that

$(H;0(p.)) = (H; 895 (A(p.))) = m(H) ~'$p(H;9(q) o) (H eby).

Here = denotes, as usual, the product of all the positive roots of (g,h) and g = (p,)
in the notation of [4(l), §8]. Let 4 be the analytic subgroup of G corresponding
toh and put A’ = 4N G’ and

v(h) = det(Ad(h)™* — 1)gp (he A).

Since b, = U, it follows that £(H) # 0 and therefore exp H € A’ for H €fy,. More-
over, it is clear that f, is locally invariant with respect to G. Therefore we conclude
from Lemma 17 and [4(e), Theorem 2] that

foexpH;2) = |Wexp H)| ™12 flexp H3y(z) o | v [2)
for Hel,. But it is obvious that

| v(exp H)|'/? = &(H) | n(H)|
and therefore
| v(exp H)|"/* fy(exp H) = | n(H)| 6(H)  (H e}o).

If r is the number of positive roots of (g,h), we know that det(adH) =(—1)"n(H)?
(H €b). This shows that n(H)? is real. Therefore since b, is connected and = is
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nowhere zero on §, it follows that |7z(H)| =¢n(H)(H €by), where e= ln(H o) I/n(H 0)
Moreover, j(p,) = y(z) in the notation of §12. Hence it is clear that

folexpH;z) = n(H) ' &(H)™' ¢(H;d(q) 0 m)

= H) '¢H;a(p)) (Hedy).
On the other hand

$(X;A(2)) = &(X)fylexpX;2) (XeV)
from the definition of A(z). Therefore

¢(H;A(2)) = ¢(H;0(p.))  (Hebhy)
and this proves the lemma.

COROLLARY. Assume that U is completely invariant. Then if T is an
invariant distribution on Ug,

T = a(pz)"'-T (263)'

We know (see §10) that 7, = A(z)t; and it follows from Lemma 24 and [4(n),
Theorem 5] that A(z)t; = d(p,)rr. Hence the corollary.

15. Proof of Theorem 2. We now come to one of the main results of this paper
(cf. [4(j), Theorem 17).

THEOREM 2. Let Q be a completely invariant open setinGand T a distribution
on Q. We assume that:

(1) T is invariant;

(2) there exists an ideal W in 3 such that dim3/ U <o and uT=0 for uell.
Then T is a locally summable function which is analyticon Q' = QN G’.

We shall use induction on dim G. Let Q,be the set of all points a € Q with the
following property. There exists an open neighborhood U of a in Q and a locally
summable function F on U such that F is analyticon UNG'and T =F on U.
Clearly Q, is an open and invariant subset of Q. It would be enough to prove that
Q, = Q. But then, in view of Lemma 7, we have only to verify that Q, contains
all semisimple points of Q.

LemmA 25. Q' < Q,,.

Fix a e Q' and let ) denote the centralizer of a in g. Thenh is a Cartan subalgebra
of g. Consider the analytic subgroup A of G corresponding to h and put
Q,=a 'QN A, where A’ is the set of all h e 4 such that

vi(h) = det(Ad(ak) ~! = 1) # 0.

Let or denote the distribution on Q, corresponding to T under Lemma 15. Put
o= Iv,,|” 2 ¢r. Then we conclude from Lemma 13 and the corollary of Lemma 15
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that y(u)o = Ofor u €. Since S(h,)is a finite module over y(3)=I(h,) (Lemma 21),
it follows that B =E&(h,)y () has finite codimensionin S(,). Fix a base Hy,---, H,
for h over R and put

O=H?+-+H;.

Then if N =dim&(H,)/B, it is obvious that we can choose ¢;eC (1Zi=< N)
such that
v=0"+ X 0" %D
1 <k=N

Now vis an analytic differential operator on A which is obviously elliptic. Therefore
since vo =0, we conclude that ¢ coincides with an analytic function g on Q,. Put
G* = G/4 and define the mapping ¥: G* X Q, — Q as in the proof of Lemma 19.
Then we can choose open neighborhoods Gy and V of 1 in G and Q,, respectively,
such that y defines an analytic diffeomorphism of Go*X V onto the open subset
U = y(G,* x V) of Q. Define the analytic function F on U by

F((ah)™) =|v(h)|"?g(h)  (x*eGg" heV).
Then by Lemma 15, we get

T(f,) = or(B) = f B.|v.| g dh (@ € C.%(Go X V)),

where dh is the Haar measure on A. On the other hand, it follows from the defi-
nition of f, that

f fFdx = f a{x: h) F((ah)")dx dh

_ f B.|va| 2 g dh.

This shows that T = F on U and therefore a e Q,.

It is clear from the above lemma that there exists an analytic function F on Q'
such that T =F on Q’. Now fix a semisimple element a € and let us use the
notation of §4. Z being the center of G, first assume that a ¢ Z so that dim3 <dimg.
Put Q- = a "'Q N E’. Then Q; is an open and completely invariant neighborhood
of 1in E. Let o, denote the distribution on Qz which corresponds to T under
Lemma 15. Then o, is invariant under = and it follows from the corollary of
Lemma 15 that 6,(u)or = O for u ell. But then we conclude from Lemma 22 that

pwo =0 (uell).

Here o =v,|'?orand p = pigp;. Since 3(3)is a finite module over u(3) (Lemma 21),it
is clear that B =3(3) u (W) has finite codimension in J(3). LetQz’ be the set of those
elements in Qz which are regular in Z. Then it follows by the induction hypothesis
that ¢ = g, where g is a locally summable function on Q: which is analytic on Qz'.
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Let ¢ denote the mapping (x,y) = (ay)* of G x Qg into Q. Then U = ¢(G xQ3)
is an open neighborhood of a in Q (Lemma 14). Moreover, it is easy to verify
that (G X Q') =U’,where U'=UNG =UNQ'".Since T = F on Q’, we have

100 = [ £iF dx = [[atxip)F(ary) dxdy
for a e C,*(G x Q") in the notation of Lemma 15. However,
TUD = ox(B) = [ ax: ) [v)| 2 ¢0)dndy.
This shows that the analytic function

(x,) = F((@y)™) — [ v | ()

is zero on G x QZ and therefore F o ¢ is locally summable on G X Qz. Hence F
is locally summable on U (see [4(k), Corollary 2 of Theorem 1]) and

J f,Fdx

f a(x: y)F((ay)®) dxdy

f a(x: )| v0)|" V2 g(y) dxdy

= aT(ﬂa) = T(fa)

for ae C,®(G x Qg). This proves that T = F on U and therefore a € Q.

It remains to consider the case when aeZ. Then by a translation by a™*,
we are reduced to the case a = 1. Then, as we have seen in §9, there exists an
open and completely invariant neighborhood U of zero in g such that the ex-
ponential mapping of g into G is univalent and regular on U and Ug =expU < Q.
Let 77 be the distribution on U corresponding to T (see §10). Then we know
from the corollary of Lemma 24 that 6(p,)t; =0 for u € U. Let B denote the image
of Win I(g.) under the canonical isomorphism z — p, of 3 onto I(g_). Then

dimI(g,)/B =dim3/U < o

and so we conclude from [4(n), Theorem 1] that t; = ®, where @ is a locally
summable function on U. Define the function f, on Ug asin §10. Then it is obvious
that f is locally summable on Ug and T = fg on Ug. Butsince T = F on Ug N Q’,
it follows that fg, = F almost everywhere on Ug. Hence F is locally summable on
U; and T = F on Ujg. This shows that 1eQ, and so the proof of Theorem 2 is
now complete.

The above theorem shows that F is locally summable on Q and T = F on Q.
Fix ze 3. Then the distribution zT also satisfies all the conditions of Theorem 2
and it is obvious that zT = zF on Q'. Hence zF is also locally summable on Q
and zT = zF on Q. Thus we obtain the following corollary (cf. [4(n), Lemma 16]).
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COROLLARY. For any ze 3, the function zF on Q' is locally summable on Q
and zT = zF. Hence

ff-dex=fz*f-Fdx

for fe C.2(Q).

16. Some elementary facts about reductive groups. As before let ¢ be the center
and @, the derived algebra of g. Fix a Cartan subalgebra j of g. Then b, =bhng;,
is a Cartan subalgebra of the semisimple Lie algebra g,. We can choose a Cartan
involution 6 of g, such that 8(),) =0, [4(e), p. 100]. We extend 6 to an automor-
phism of g by defining 8(C) = C for Cec. Let fand p be the subspaces of g
corresponding to the eigenvalues 1 and — 1 of 8. Then ¢ = f and p < g,. Moreover,
since 6(h) =, it is clear that h=h NE+Hh Np.

Let K be the analytic subgroup of G corresponding to ¥ and Z the center of G.

LEMMA 26. The mapping ¢:(k,X)—>k expX (keK, X €p) is an analytic
diffeomorphism of K X p onto G. Moreover, Z < K and K/|Z is compact.

It is easy to verify (see [4(d), p. 614]) that ¢ is everywhere regular. Let C, G,
and K, be the analytic subgroups of G corresponding to ¢, g, and f,=fNg,,
respectively. Then G = CG, and G, = K, expp (see e.g. [5, pp. 214-215]). There-
fore since CK,; = K, it follows that ¢ is surjective. Now suppose

kiexpX,=k,expX, (keK,X;ep,i=12).
Put k = k, ~'k,. Then kexp X, = exp X, and therefore
Ad(k)exp(ad X)) = exp(ad X ,).

Since Ad(G) is semisimple, we conclude [5, pp. 214-215] that X,=X,. Hence
k,=k,. This proves that ¢ is univalent and so it is an analytic diffeomorphism.

Let Z, be the center of G,. Then we know that Z, =K, and K{/Z, is compact
[5,p.214].Since K = CK,and Z=C Z,, it follows that Z < K and K/Z is compact.

COROLLARY. 1. 0 can be extended to an automorphism of G such that
O(kexp X) = kexp(— X) (keK, Xep).

First assume that G is simply connected. Then our statement is obvious. More-
over, 0 leaves Z pointwise fixed since Z<=K. Therefore if Z, is any closed sub-
group of Z, it defines an automorphism of G/Z,. From this our assertion follows
immediately in the general case.

COROLLARY 2(12), Let Y’ =Ad(kexpX)Y, where Y, Y'eqg, keK and Xep.
Then if Y and Y’ are both eigenvectors of 6, [X,Y] =0.

(12) This result was pointed out to me by A. Borel.
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Since \
6(Y’) =Ad(kexp( — X))(Y),
it is clear that

eZade — 8Y,

where =+ 1. Moreover, it follows from [4(k), Lemma 27] thatad X issemisimple
and all its eigenvalues are real. Therefore it is obvious thate =1 and [X, ¥] = 0.

COROLLARY 3. Let a be a subset of Y) such that a = 0(a) and let Z and 3 be the
centralizers of a in G and g, respectively. Then they are both invariant under 0,
3 is reductive in g and

e
=)

E=Egexp3Np),
where By = EN K.
For the proof we can obviously replace a by the linear subspace of g spanned
by it. Then a = a N f + anp. The invariance of = and 3 under 0 is obvious and
therefore (see [4(g), Lemma 10]) 3 is reductive in g. The last statement follows

from Corollary 1.
Let A be the Cartan subgroup of G corresponding to §.

COROLLARY 4. A = AgA,, where Ay =AN Kand A, =exp(hNp). Moreover,
Z c Ag and Ag|Z is compact.

The first statement follows from Corollary 3 if we take a =}. It is obvious
from Lemma 26 that Z < Ax. Moreover, since K/Z is compact and A4y is closed
in K, it follows that A,/Z is compact.

COROLLARY 5. Suppose every root of (g,b) isimaginary (see [4(m), §4]). Then
A is connected and contained in K.

For then itis obvious that}) N p = {0} and therefore 4 = 4. Since fis reductive
and its derived algebra is compact, the connected component of 1in A is maximal
abelian in K. This shows that A4 is connected.

17. Complex semisimple groups. Let g, be a complex semisimple Lie algebra
and G, a complex analytic group corresponding to it. Fix a Cartan subalgebra
b, of g.. Then we can choose a compact real form u of g, such that h =), Nnu
is a Cartan subalgebra of u (see [5, p. 155]). Let # denote the conjugation of
g. with respect to u. Then if we regard g, as a Lie algebra over R, # is a Cartan
involution of g, and g, =1+ ( — 1)"/?uis the corresponding Cartan decomposition.
Let U be the real analytic subgroup of G, corresponding to u. Then U is compact
and by Lemma 26, the mapping

(u,X) »uexp( — %X (ueU, Xeu)

is an analytic diffeomorphism of U x u onto G..
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LeEMMA 27. Let a be a subset of b, such that n(a) = a and let 3. and =_ denote
the centralizers of a in g, and G, respectively. Then 3 is reductive in g, and Z_ is
connected.

We may obviously replace a by the subspace a, spanned by it over C. It follows
from Corollary 3 of Lemma 26 that 3, is reductive in g, and

E.=Eexp((— D"%),

where = =Z2_NU and 3 =3, Nu. It is clear that Z is the centralizer of a,Nu
in U and therefore it is connected (see [5, p. 247]). This proves that =, is connected.

COROLLARY. Let A_bethe Cartan subgroup of G.corresponding to .. Then
A, is connected.

By definition A4, is the centralizer of §, in G.. Hence the corollary follows by
taking a = ,.
The following lemma, together with its proof, was pointed out to me by Borel.

LEMMA 28. 3. being as above, put 3, =[3..3.] and let 2, be the complex
analytic subgroup of G, corresponding to 3,.. Then if G, is simply connected,
the same holds for Z;..

Put hg = (= 1D)'*(H.Nu) and ag = (— 1)"*(a, " u). Introduce compatible
orders (see [4(g), p. 195]) in the spaces of linear functions on bz and ag. Let P
be the set of all positive roots of (g, §).) under this order. Let & denote the restriction
of « on a, for any root « and let P, denote the set of those « € P for which & = 0.
Consider the set (a;,0,,---,0;) of simple roots in P and assume that a;€ P,
(1£i<m)and o;¢ Py (m <i=<l). We claim that («y,--+,a,) is a set of funda-
mental roots for (3., b.). Fix a€ Py. Then o = Elé,é (T, where r; are integers
= 0. Hence

Y rag=a=0.
15151
Now &, =0(1 £i £ m)and & > 0(m < i) by the compatibility of our orders.
So it is obvious that r; = 0 for m < i < L Since («y, -++,®,,) are linearly independent,
this proves our assertion.

For any root «, let H, denote, as usual, the element in by such that

tr(ad Had H,) = a(H) for H e},. Put

H;=20(H,) 'H,, (1=ig)).

Then it is clear that H; (1 £ i £ m) form a base for h, N3, over C. Now suppose
t, (1 £i £ 1) are complex numbers such that

exp(Zn(—l)”2 z t.'Hi)=1

15ism
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in Z;.. Then since G, is simply connected, we can conclude (see Weyl [8]) that
t; are rational integers. This implies that Z; is simply connected.

LEMMA 29. Assume that G, is simply connected and let A be a linear function
on by,. Then there exists a character £, of A, such that

EexpH) = 4 (Heb,)
if and only if 2A(H,)[a(H,) is a rational integer for every root «. Put
1
Rt

where P is the set of positive roots under some order. Then the above condition
is fulfilled for A = p.

This is well known (see Weyl [8]).

18. Acceptable groups. Let G be a connected Lie group with the Lie algebra
g over R which we assume, as before, to be reductive. Let j be theinclusion mapping
of g into g, and G, a complex analytic group corresponding to g.. We say that
G is a complexification of G if j can be extended to a homomorphism of Ginto G..

Define ¢ and g, as in §9 and let C and G,, respectively, be the corresponding
analytic subgroups of G. We call G, the semisimple part of G.Similarly let C,
and G, denote the complex analytic subgroups of G, corresponding to ¢, and
1. respectively. We say that G, is quasisimply connected (q. s. ¢.) if C.NG . ={1}
and G, is simply connected. Moreover, G itself is called q. s. c. if it has a q. s. .
complexification. Assume that G;NC is finite. Then G always has a complexi-
fication. Moreover, since the center of a complex semisimple group is finite, it is
clear that there exists a q. s. c. covering group G which covers G only finitely
many times. :

Let A be the Cartan subgroup of G corresponding to }). Consider a complexi-
fication G, of G and let A, denote its Cartan subgroup corresponding to}).. Then
A, is connected (corollary of Lemma 27) and it is obvious that j(4d)<A,. Let A
be a linear function on §),.. Then there exsts at most one complex-analytic homo-
morphism &, of A.into C such that

Cexp H) =™ (Heb,).

Then &; o j is a homomorphism of 4 into C, which is easily seen to be independent
of the particular choice of G, (so long as it can be defined by means of G_at all).
We shall write &; instead of &;0j. If ais a root of (g,}), it is obvious that £,
always exists.

Let P be the set of all positive roots of (g,b) in some order and put

.

2 aeP
If G is q. s. c., we can take G, to be a q. s. ¢. complexification of G. Then it follows
from Lemma 29 that £, exists.
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Let W denote the Weyl group of (g, h). Then it is well known (see [8]) that
sp — p (s€ W) is an integral linear combination of the roots. Therefore the con-
dition that £, should be defined is independent of the order of roots. Moreover,
since any two Cartan subalgebras of g, are conjugate under the (connected)
adjoint group of g, it follows that the above condition also does not depend on
the choice of §). We shall say that G is acceptable if thiscondition is satisfied.
Similarly a complexification G, of G is called acceptable if £, can be defined on 4...

Let m be the centralizer of h N p in g and M the analytic subgroup of G corre-
sponding to m. Introduce compatible orders (see [4(g), p. 195]) onthe spaces
of real linear functions on hnp and h N p + (— 1)*2 h N T respectively. We
assume that P is the set of positive roots under this order. Let P, denote the set
of those a € P which vanish identically on h N p. Put

LemMA 30. Suppose G is acceptable. Then the same holds for M and in fact
S =8(h)  (hed N M),
where h=hh, (h;€ Ag,h, € A,) in the notation of §16.

Let P,. be the complement of Py, in P. Then it is easy to verify that if ae P,
the same holds for — Ga. This shows that p — py, =0 on §h NE. Letm, be the set
of all Xem such that tr(ad Had X) = Ofor He hnp. Then O(m,) =m,; and
(b np) nm, = {0}. Hence if M, is the analytic subgroup of G corresponding to
my,itisclearthat M = A M, and 4, N M, = {1}. Nowmis reductive (Corollary 3
of Lemma 26) and ) Ny lies in the center of m. Therefore since p=p, onhN ¥
and A4, is simply connected, the statement of the lemma follows immediately by
considering an acceptable complexification of G.

19. Behavior of F around singular points. From now on we assume that G is

acceptable. Put
Ay () =¢,(h) HP(I -&myY)  (hed).

(We shall often drop the subscript A4 if there is no risk of confusion.) Then
A’ = A NG’ is the set of all points h € A, where A(h) # 0. Put

ARy =T Q=-¢&Mm™H (hed),

aePgr

where Py is the set of allrealroots (see [4(m), §4])in P. Let A'(R) be the set of those
h e A where Ag'(h) # 0. We now use the notation of §15.

LemMma 31(13). Put ®,(h) = A, (h)F(h) (he A’ \Q). Then ®, can be extended
to an analytic function on A'(R) N Q.

(13) Cf. [4(n), Theorem 2] and [4(e), Theorem 8].
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Fix a point ae 4 NQ. Then a is semisimple. We now use the notation of §4
and define Q: = a " 'Q NE'. Put 6 = | v,| %6, as in §15, and let Qz' be the set of
all elements in Qz which are regular in Z. We denote by g, as before, the analytic
function on Q' such that g is locally summable on Qg and ¢ = g on Q. Since
T is invariant, the same holds for F and, as we have seen during the proof of
Theorem 2,

F(ay) =|v.»| "*e(») (reQs).

Now Q: is an open and completely invariant neighborhood of 1 in =. Hence
(see §9) we can choose an open and completely invariant neighborhood U of zero
in 3 such that the exponential mapping defines an analytic diffeomorphism of U
onto an open subset Uz of Qz. Consider the function &; on 3 (see §10) and, for any
¢ € C.°(U), define f, € C,*(Ug) by

folexp2) = &(2) ' ¢(2) (Ze).

Let © be the distribution on U given by ©(¢) = o(f;) (¢ € C,°(U)). Define
B = 3(3) - W), where p = g, (in the notation of §12). Then we know from
Lemmas 21 and 22 that 3(3) is a finite module over u(3) and ve =0 (ve B). Let
z — p, denote the canonical isomorphism of 3(3) onto I(3.) (see §12). Then
d(py)t = 0 (ve B) from the corollary of Lemma 24. Hence Theorem 1 of [4(n)]
is applicable to (3, U, 1). Let 3’ denote the set of all elements of 3 which are regular
in 3 and let { be the analytic function on U’ = U N3’ such that T = .

Lemma 32. W(Z) = &(2)|v(expZ)|/*F(aexpZ) (Ze U’).
Fix ¢ € C,*(U). Then

f Sz = ) =o(f,) = f fogdy

- [ s@r@eewraz.
Here dy is the Haar measure of E and dZ the Euclidean measure on 3 and they
are related (see §10) by the equation
dy = §(2)%dZ (y=expZ, ZeU).
Since exp(U") = Qz’, we have
g(expZ) = |v(expZ)|"/* F(aexp Z) (ZeU")

and so our assertion is now obvious.

Let P; be the set of all roots a€ P such that {,(a) =1. Put P; p = P;N Py
and let h’(R) be the set of all points H e, where [ [, Ps,R“(H) # 0. Then we know
from [4(n), Theorem 2] that there exists an analytic function 4 on h'(R)n U
such that
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u(H) = ny(H)Y(H) (HehnU),
where 73 =[],cp, %

LemMA 33. Let b, be an open and connected neighborhood of zero in UNH.
Then

n( H)E(H) | va(exp H) | '/ = cA(aexp H) (H € ho),

where c is a constant. Let P’ be the complement of P; in P and p the number of
roots in P’, Then p=(dimg — dim3)/2 and

¢? = (— 1)Psignv,(1).
Finally
e= | { 6@ IT @ - &@™) .
Put p’ =(1/2) X, .p-o. Then it is clear that
v(expH) = ,ll'{(éa(aexPH)_l = 1D(¢(aexpH)—-1)}

= (= 0%, @[ ™ [] (- Laespr)™ |
aeP’
for H el. Since v, (exp H) is real and # O for H €}, it is clear that
|va(exp B)| ™42 # [T (1 - £ aexp H)™)
aeP’

is an analytic function on b, whose fourth power is a constant. Therefore since
B, is connected, we conclude that

|vaexp H)|'/? = c,e? "™ HP,(I —&(aexpH)™Y) (H €hy),
where
e = (D] Il’(l —-&@™H

A similar argument shows that

n(H)(H) = H (ea(u)/z - e—a(H)/z) (H €hy).

ae P3
Hence

n(H)S{(H) | vi(exp H) | '/ = cA(aexp H) (H €ho),

where ¢ = ¢,&,(a)" 1.
It is obvious that dimg — dim3 = 2p. Since {,(a) = 1 for a e P;, it is clear that
éZp’(a) = fzp(a). Now

cf I‘L(l—éa,(a"))2 = [v(D)] = v(Dsignv,(1)
= (= DGignn(D), (@) 1 (- &™)
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This shows that ¢ = ( — 1)?signv,(1).
It follows from Lemmas 32 and 33 that

u(H) = c® (aexp H) (HebhyNU').

Now put V = aexpl, and v(aexp H) = c='u(H) (H €ho NH’(R)). Then V is an
open neighborhood of @ in 4 NQ, v is an analytic function on ¥ N 4'(R) and
v=®, on V. This proves Lemma 31.

For any root a, let s, denote the Weyl reflexion corresponding to «. The Weyl
group W of (g,h) operates on §j, and therefore also on S(J,).

LeEMMA 34. Fix a point ae A NQ and suppose v is an element in S(},) such
that v™ = — v for every real root o for which £, (a)=1. Then v®, can be ex-
tended to a continuous function around a.

We keep to the above notation. Then by Lemma 19 of [4(n)] é(v)u can(10)
be extended to a continuous function around zero. Since @ (aexp H) = ¢ ~'u(H)
(Hehyn U"), our assertion is now obvious.

For any root a, define H, as in [4(m), §4] and put @ =[], .p H, € S(),). Then,
by Lemma 34, @®, can be extended to a continuous function ¥, on 4.

LemMMA 35. Let A and B be two Cartan subgroups of G. Then ¥, =Yg on
ANBNQ.

Fix acANBNQ and let a and b be the Cartan subalgebras corresponding
to a and b, respectively. Define 3, U and ¢ as in Lemma 32. Then a, b are Cartan
subalgebras of 3. Put h = a or b and define(14)

o= = [[ Ho @y =og;= [] H,
aePy aeP’
in the notationintroduced above. Then w= ;" wy;. Since o™= —w, wy* = — w;
for any ae Py, it is clear that wy; is invariant under the Weyl group of (3,h).
Therefore, by Chevalley’s theorem [4(f), Lemma 9], there exists an element
n €1(3.) such that the projection 5, of # in S(a,) = S(a,) (see [4(1), §8]) is mg;,".

Let G, be an acceptable complexification of G and =, the analytic subgroup
of G, corresponding to 3.. Then we can choose y € E, such that (a.)” =b,. Thus
we have an isomorphism D — D* of ®(a,) onto D(b,) (see [4(1), §3]). Since the
definition of ¥j is obviously independent of the order of roots, we may assume
that the positive roots of a are mapped into positive roots of b under this iso-
morphism. Define j as in §18. Then it is obvious that yj(a)y ™! = j(a). Therefore
it follows from Lemma 33 that ¢, = ¢z and 5, = wm". (Here ¢, and ¢y are the
constants which correspond to ¢ of Lemma 33 for the cases h=a and h=Db,
respectively.)

L]

(14) We use a similar notation in other cases. For example 73° = 7, and o® = .
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Now put
u’(H) = n,"(H)Y(H) (HeU’ Nb).

Then it follows from the corollary of Theorem 3 of [4(n)] and [4(f), Theorem 1]
(both applied to 3) that

Nws® - nJu® = &(w,® - nu®

on aNb N U. This proves that d(w*)u® = d(@®)u® on a NbN Q. But if U, is an
open convex neighborhood of zero in U, we know that

u*(H)= c,®,(aexpH) (HeUy' Na),
ub(H) = cy®p(aexpH) (HeU, Nb),
where U, =Uy N U'. Therefore since c,=cz#0, we conclude that ‘¥ (a)="Y4(a).
20. The function voF. We write w = o, for a given Cartan subgroup A.

LEMMA 36. There exists a unique differential operator v; on G’ with the
following properties.

(1) vq is invariant under G.

(2) Let A be a Cartan subgroup of G. Then

f(h;ve) = f(hima0 Ay

for feC®(G)and he AN G’
Moreover, v is analytic.

The proof is similar to that of [4(n), Lemma 24]. Since two distinct Cartan
subgroups cannot have a regular element in common, the uniqueness is obvious.
The existence is proved as follows. Fix a Cartan subgroup 4 of G and define
G, =, .exA’x™!, where A’ = AN G’". Let b be Cartan subalgebra of 4, 4 the
normalizer of  in G and 4, = A N K in the notation of §16. Then by Corollary 2
of Lemma 26, /T=/TKA,, and if A, is the center of A, it follows (see §16) that

W, =AlAy~ Agdo N K

is both compact and discrete and therefore it is finite. Let x = x* denote the
natural projection of G on G* = G/A4,. Define h** = h* (he A, xe G). Then the
mapping ¢: (x*,h) > h*" of G* x A into G is everywhere regular on G* x A4’
Hence G, = ¢(G* x A') is open in G. Now W, operates on G* and A4 as follows.
Let y be an element in A whose image in W, is 5. Then

x*s = (xy)* (xeG), h* = yhy .
Define

(x*,h)s = (x*s,h* ") (x*€G*, he A").
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In this way W, operates on the right on G* x A’ without fixed points and the
quotient space (G* x A')/W, may be identified with G, by means of ¢. By making
use of the homomorphism j: G — G, (see §18) one proves without difficulty that
the differential operator w, 0 A, on A is invariant under W,. The rest of the proof
now goes through exactly as in [4(n), §9].

LemMa 37, For any z € 3,(V;02)F can be extended to a continuous function on Q.

Since the distribution zT also satisfies all the conditions of Theorem 2, it is
enough to consider the case z = 1. Let Q, be the set of all points x,€Q, for
which there exists an open neighborhood V of x, in Q and a continuous function
v on V such that v = v4F on V N G’. Obviously Q, is an open and invariant
subset of Q. Hence, in view of Lemma 7, it would be enough to prove that every
semisimple element of Q is contained in Q.

Fix a semisimple element ae€Q and let us use the notation of Lemma 32.
Let 3" be the set of those elements of 3 which are regular in 3. Define the differential
operator v on 3’ as in [4(n), §9] and fix an open and convex neighborhood
U, of zeroin U and put Uy” = Uy N U’. Let a be a Cartan subalgebra of 3. Then,
as we have seen in §19, there exists a unique element 5 € I(3,) such that , = g,
Let ¢ denote the constant of Lemma 33 corresponding to ) = a.

LeMMA 38. F(aexpZ; v¢) = c(Z;v300m) (Ze Uy").

Fix Hye U," and let ) be the centralizer of Hyin 3. Then § is a Cartan subalgebra
of 3 and therefore also of g. Moreover, a exp Hy,e Q N G’'. Let A be the Cartan
subgroup of G corresponding to §. Then

F(aexpH,; vg) = F(aexpHy; w,0A)) ,
from the definition of v4. Put by =) N U,. Then we have seen in §19 that
Aaexp H)F(aexpH) = c,m(HW(H) ~ (Hebon UY),

where ¢, is a constant. Moreover, by a suitable choice of positive roots of (g,h)
we can arrange (see the proof of Lemma 35) that ¢, =c and n = wwb. Then
it follows from [4(f), Theorem 1] and the definition of v, that

Y(H;v 0 0m) =y(H;d(w)on) (HehonU'),
where @ = @,. Therefore it is clear that
F(aexpHo; V) = cy(Ho; V30 0(m)

and this proves our assertion.
It follows from Lemma 38 and [4(n), Lemma 25] that there exists an open
neighborhood V3 of 1in Q3 and a continuous function g, on Vz such that

F(ay; Ve) = 8o(») (yeVe' =VanQg')
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in the notation of §19. Let x — % denote the natural mapping of G on G= GJE.
Select open neighborhoods G, and V, of 1 and 1 in G and Vs, respectively. If they
are sufficiently small the following conditions hold. There exists an analytic
mapping ¢ of G, into G such that: (1) $(¥) = % for xe G, and (2) the mapping
«:(%, y)-(ay)*® of G, x V, into Gis univalent and regular and V =a(Gy X Vo)< V.
Then V isan open neighborhood of ain G and « defines an analytic diffeomorphism
of Gy X V, on V. Define a function F, on V by

Fo(a(%, ) = go(y)  (X€Gy,ye V).

Then F, is continuous and since VgF is invariant under G, it is obvious that
Fo = vgF on V n\ G'. This shows that a e Q, and therefore Lemma 37 is proved.

21. An elementary result. Let b be a Cartan subalgebra of g and Wthe Weyl
group of (g, b).

LEMMA 39. Let A be a linear function on §,. Then there exists an invariant
analytic function f, on g such that

(H)f(H)= X e(s)e*™ (Heb).

seW

Moreover, f, is unique.

Let b’ be the set of all elements H b, where n(H) # 0. Since (§')° is an open
subset of g, the uniqueness of f; is obvious. Therefore it remains to prove its
existence. For this we may obviously assume that g is semisimple and G is the
connected adjoint group of g. Now we use the notation of §16. Let G, be the
(connected) complex adjoint group of g. and U the real analytic subgroup of
G, corresponding to the compact real form u=¥ + (— 1)!/?p of g,. Then U is
compact. Put B(X,Y) =tr(ad Xad Y) (X, Y eg,) as usual and consider

1X:0) = [ expBUX. du (X, Yeg)
14
where du is the normalized Haar measure on U. Then f is obviously a holomorphic
function on g, X @, and it is clear that
f(X;1(2):Y)=0 (Zeuw

in the notation of [4(l), §4]. Since f is holomorphic in X, this implies that
f&xX:V)=f(X:Y)for xeG,.

Let H, denote the element in b, such that B(H, H;) = A(H) for all H €}y,. Then
we know from [4(f), Theorem 2] that

HInEf(H:H) =c L e(s)e*™  (Heb,),
seW

where c is a number # 0 independent of H and A. Therefore we can take

[X)=cT'n(H)f(X:H) (Xeg)
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22. The invariant integral on G. We now return to the notation of §19. Let 4,
denote the center of A and x — x* the natural projection of G on G* = G/A4,.
Put h* =h*(hed, xeG) and let dx* denote the invariant measure on G*.
For any f € C.”(G), put

P =as) [ g0at hea)

where A’ = AN G’ and ex(h) = signAg’'(h). Then F,is a C®-function on A4’and
if y isthe canonical isomorphism of J onto I(,) (see §6), we have [4(h), Theorem 3]

F.p=1)F; (ze3, f € C.7(G)).

Let S; denote the set of all positive singular imaginary roots of (g,h) (see
[4(m), §41). Define

Ay = [T ~-&Mm™H (he )

GESI

and let A’(T) be the set of those points h € A where A,'(h) # 0.

LEMMA 40. Fix f € C,“(G). Then F, can be extended to a C®-function on
A'(I). Let a be a point in A and v an element in S(B,) such that v** = — v for
every singular imaginary root o for which &,(a) = 1. Then vF can be extended
to a continuous function around a.

Let 3 and =, denote the centralizers of a in g and G, respectively, and E the
connected component of 1 in E;. Then if Z is the center of G, Z,/Z= is finite
(see [4(g,), Lemma 15]). Choose an open neighborhood B of 1 in 4 with the
following property (see [4(h), Theorem 1]). If 1 e B and x € G vary in such a way
that (ah)™ stays inside some compact subset of G, then the coset X = xE, remains
within a compact subset of G = G/Z,. Let x - % denote the natural projection
of G on G. Since 3 is reductive and E,/ZE is finite, it follows that the group E, is
unimodular. Hence we have an invariant measure dx on G. Let dy* denote the
invariant measure on Z,* = =,/4,. Then if d% and dy* are suitably normalized,
we have

F ;(ah) = eg(ah)A(ah) fa‘ dz . f(x(ahy’ x"VYdy* (heB)
for f € C,*(G). Here B'=B Na~'A’. Now fix an open and relatively compact

subset G, gf G and choose a compact set Q in G such that (aB*N G, = (x€G)
unless ¥ € Q. Let dy denote the Haar measure of £, and choose y € C,“(G) such that

f Wxy)dy =1
=4

if € Q (x € G). Then if dy is suitably normalized, we have

F (ah) = ex(ah)A(ah) fG y(x) dx L. f(@h” )x"Hdy*  (heB')
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for f e CX(G,). Here E* = E[EN A,. Now fix f e C.(G,) and put

200) = f S lap) (eD).

Then g, e C.“(B).
We now use the notation of §19. Select an open and connected neighborhood
b of zero in ) such that expf), = B, & (aexpH) # 1 (xe P') and

(1 — ) a(H) # 0 (x€Py)

for Hebh,. Then if b’ is the set of all points H ely,, where m(H) # 0, it is clear
that exph,’ = B’ and

F (aexp H) = gg(aexp H)A(aexp H) . gol(exp HY )dy* (Hehy).

(=)

A simple argument shows (see §21) that there exists an analytic function D, on
3 such that: (1) D, is invariant under Eand (2) A(aexp H)y=my(H)D,(H) for H €}.
Fix an open and completely invariant neighborhood 3, of zero in 3 such that the
exponential mapping (from 3 to Z) is regular and univalent on 3, and select a C*-
function u on 3 such that: (1) u is invariant under =, (2) Suppuc 3o,
and (3) u =1 around zero. This is possible (see §9 and [4(n), Corollary 1 of
Lemma 45]). Now put

8(Z) = u(Z)D(Z)go(expZ) (Zey).

Then ge C,*(3,). Since b, is connected and &,(aexpH) # 1 for ae P’ and H el,,
it is clear that

8R(a cxp H) = 8"t,R(H)ga (H GI)O)’
where

s =sign [ o)

aePznPr
and ¢, is a constant. Therefore

FiaexoH) = s (EOnH) [ 2O*B)y  (HeUNDY),

where U is an open neighborhood of zero in 3 such that u =1 on U. The second
assertion of the lemma now follows by applying Theorem 1 of [4(m)] to (3,h)
and g. Moreover, this obviously implies the first assertion.

COROLLARY. @WF can be extended to a continuous function on A.
Since @**= — wforeveryroot a, thisis animmediate consequence of Lemma 40.

23. Statement of Theorem 3. Define G, as in §20. Since A4, is abelian and
AlA, is finite (see the proof of Lemma 36), the Haar measure dh of A4 is bi-
invariant. We keep to the notation of §22.

LeMMA 41. There exists a number ¢ > 0 such that
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L fx)dx=c L |A(h)|2dh J.G‘ SR )dx*
Jor fe C(G,).
We observe that
det(Ad(R) ™' — g =(— 1 A(R)? (ke A),

where r is the number of positive roots of (g,))). From this our assertion follows
in the usual way (see the proof of Lemma 36 and [4(c), p. 508]).

COROLLARY. Let f e C,*(G). Then

L |A(h)Ff(h)|dh ¢ ‘L | (x)] dx.

This is obvious from the above lemma.

We now use the notation of §16. Let m be the centralizer of  Np in g and M
the analytic subgroup of G corresponding to m. Let P,, be the set of all positive
roots of (g,h) which vanish identically on h N p. Then P, is also the set of all
positive imaginary roots of (g,b) or, equivalently, the set of positive roots of
(m,h). Put

Ay(my=¢&,(hy) TT A =&Y (e a),

ae Pym

where h = hyh;, (h; € Ak, hy € Ay). Tt follows from [4(h), Theorem 2] that

j ) | Au(W)F ((B)| dh < oo (f €C.2(G)).

THEOREM 3. Let v be a seminorm(15) on the complex vector space C,”(G)
and 3, a subalgebra of 3 containing 1. Assume that 3 is a finite module over

3o and
L | Au(F )| dh <¥W(f)  (f e C.(G)).

Then for any ue &S(D,), we can choose a finite set of elements z,,--+,zy€ 3o such
that

sup |[F(h;u)| S X w(zf) (f € C.2(G)).
hed’ 1SisN

=is

REMARK. The above form of this theorem suggested itself to me after a con-
versation with R. P. Langlands. My original version was less comprehensive.

Let Z be the center of G and V asubsetof Asuchthat VZ=A. Put V'=V N4’
We claim that it would be sufficient to prove the following lemma for a con-
veniently chosen V.

LEMMA 42. For any ueS(h,.), we can choose z,,+++,zy in 3¢ such that

(15) Here we ignore completely the topology of Cc°°(G).
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sup|Frhiw| = L v@f)  (JeC(G).

sis

Put:
vo(f) = L | Au(R)F ()| dh (f € C.2(G)).

Then v, is a seminorm on C.®(G) which satisfies the condition of Theorem 3.
For any yeZ, let f, denote the function x — f(xy) on G. Then it is clear that
EIF () =F(hy) (he A) and Ay(hy)=&,(nAy(h). Since |,(0]=1, it
follows that vo(f,) = vo(f). Therefore if Lemma 42 holds for vy, we can conclude
that

sup|F(hy;u)| = sup |F, (h;u)]
heV’ heV’

= X w@f)= Zvaf) (e
1SiSN i
since z;f, = (z;f),. Now fix a seminorm v as in Theorem 3. Then vy(g) < v(g)
for ge C.”(G). Hence
fu‘glF Ahy;w| S Lwaf)  (veZ, feC.(G).

Butsince V'Z = A’, the assertion of Theorem 3 now follows immediately.

24. Reduction to [) in a special case. So now it remains to prove Lemma 42,
First assume that every root of (g,b) is imaginary. Then M = G and it follows
from Corollary 5 of Lemma 26 that A/Z is compact. So we can take V to be
compact. Let & be the set of all seminorms o on(15) C,°(G) with the following
property. We can choose a finite number of elements z,,---,zy in 3, such that

o X wzf) (f e C.2(G)).
SisN
Then since V is compact, it would obviously be enough to prove the following
result.

LeEMMA 43. Given hye A, we can choose an open neighborhood U of hy in A
with the following property. For any ue &(,), there exists an element 6,€ &
such that

sup |Fy(h;w)| S a,(f) (feC.2(G)).
hed’'nU

Let ¢ be the center and g, the derived algebra of g. Then § = ¢ + b, where
b, =hNg,. Since every root of (g,h) is imaginary, — tr(ad H)*> (Heb,) is a
positive-definite quadratic form on h,. Weextend it to a positive-definite quadratic
form Q on ) in such a way that ¢ and §; are orthogonal under @ and, moreover,
regard [ as a real Hilbert space under the norm " H ”2 =Q(H) (Heb).

Let us now introduce the notation of §19 corresponding to a = h,. Fix a number
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¢ (0 <c £1) and let V be the set of all H el with || H ” < ¢, We assume that ¢ is
so small that:

(1) (€12 = e T W2E (hy™ 1)) | 2 (1/2)|1 = E(he™ )| for every root « of (g,h)
and HeV.

(2) The exponential mapping of V into A is univalent.

(3) [{(e*™* — e *™2)ja(H)}| 2 1/2 for e Pyand He V.

Let h’ be the set of all Hel) where ny(H) # 0. Then V' = VN |’ consists of a
finite number of connected components, say V;,---, V. Put

U = hyexp(aV),
where a is a positive number (0 < a < 1). Then it is clear that

una=U U

1sisq
where U; = hyexp(aV}). Then it would be sufficient to prove the following lemma.
LeMMA 44. Fix i (1<i=q). Then we can select a number a (0<ax1)
with the following property. For any ue&(l,) we can choose a€ & such that
sup | F(hoexpH;u)| < o(f) (f € C.2(G)).

HeaV,;
Put
¢ (H) = F y(hoexp H) (feC.,X(G), HeV").

Then it follows from [4(h), Theorem 3] that(19) ¢,,=d(y(z))¢, for ze€ 3. More-
over, it is obvious that Lemma 44 is equivalent to the following.

LEMMA 45. Fix i (1£i£q). Then we can select a (0<a <1) with the
following property. For any u € S(b_), we can choose o € & such that

up | (H;0u)| = o(f)

s
HeaV;
for all feC°(G).
We may assume that i = 1. Let L be the rank of 3, = [3,3]- Then we can choose
L roots a,,---,a; of (3, h) with the following property. If « is a root of (3,h)such
that (— 1)!/?«(H) > 0 for He V;, then a = X, ,c; mo;, where m; are rational
integers = 0. Put t(H)=(—1)"?a(H) (1<i<L, Heb) and choose a base
H; 1<jgly) for by =hNg, such that t(H)=4;; (1<is<L, 15j=<1)).
Let H; (I, <j £1) be an orthonormal base for ¢. Extend (¢,,-+,,) to a Cartesian
coordinate system (t;,---,#;) on b by defining t;(H;)=6;; (1<1i,j<I). Then
a point He Vliesin ¥, if and only if t,(H) > 0 (1 < i £ L). Define

min |t(H)| if L>0,

T(H) = { 15isL
c ifL=0 (Heb).
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Clearly |H|?*22|a(H)|* for any root « of (g, b). Hence if HyeV,/2 and
|H—H,| St(Ho)2 (Heb), it is clear that |H| < |H,o| +(Ho)2<ec.
Therefore H € V. Moreover,

|6(H — Ho)| = ol — Ho) | S | H — Ho|| S So(Ho) S 5 t(H))  (1SiSL).
Therefore t(H)=1(Hg)/2 (1iZL) anci so HeV;. This also shows that
1(H) = 1(H)/2. Thus we have obtained the following result.
LeMMA 46. Fix Hye V,/2 and let H be an element in | such that
| H =~ Ho | < w(Ho)/2.
Then He V, and ©(H) = 1(H,)/2.

Fix a function ¥ on R of class C* such that =1 on the interval ( — oo, 0],
¥ = 0 on the interval {1, + o) and 0 £ ¢ < 1 everywhere.

LEMMA 47. For any real number ¢ (0 < ¢ £ 1/2) define
V) =y |H| -2  (He).

Then for any element ue S(Y,) of degree < d, we can choose a number b >0
such that
| (H; o)) < b

forall Hehand 0 <e = 1)2.

This is an immediate consequence of Lemma 55 of the Appendix (see also
[6, p. 281]). Observe that ¥ (H) = 0 unless “ H ” < 3e.

25. Proof of a weaker result, Now first we prove the following weaker form (16)
of Lemma 45.

LeEMMA 48. Givenu e S(b,), we can choose an integer q =2 0andoe & such that

sup | TI 148D }"I¢;(H;6(u))|§a(f)

Hevy2 \1gisL
for all f €C2(G).
Let @, € 3 be the Casimir operator (see [4(e), p. 140]) corresponding to g,. Put
o=w—- X Hf3
11<jst
Then it is easy to verify (see [4(e), p. 144]) that(17) y(w) + < p, p > is homo-
(16) Cf. [4(g), p. 206].

@7 {p, p> = p(H,), where H,isthe unique element in b1, such thattr(adH adH)) = p(H)
for all HED.
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geneous of degree 2 and D = d(y(w)) + < p, p>is an elliptic differential operator

onb.
Now 3 being a finite module over 3,, we can choose v; =1, v,,---,v, in 3
such that
3= X 3o
1=isr

Fix an integer m = 1. Then we have an equation of the form

we" + X zo) =0,
1sjsr
where wy = w + < p, p>and z;€3,.

For the proof of Lemma 48, we may obviously assume that u # 0. Let d be the
degree of u. Fix a Euclidean measure dH on | such that dH corresponds, locally,
to the Haar measure dh on A, under the exponential mapping. Then if m is suf-
ficiently large, there exists a function E, on b of class C2™*~1)*4 gych that

DmrEo = 5

in the sense of the theory of distributions on the Euclidean space b (with respect
to the measure dH). Here J is the Dirac measure on by concentrated at zero and
E, is of class C® everywhere except at the origin (see Lemma 57, §29). Put
E = 8(u)*E,, where the star denotes adjoint. It follows by applying the homo-
morphism 7y to the relation above that

D™+ X ayz)D" P =0.
1sjsr

Since D* = D, we find, by taking adjoints, that
D™+ X a(y(z J-))*D”‘("” =0.

15jsr

PwtE,= — D™ PE (1 £j <r). Then E;is afunction of class C*™U=1 and

duy*s= X 0(y(z)*E,.

15jsr

Clearly E; is of class C* everywhere except at zero. Put E; ,='¥ E; foranye
(0 < g £ 1/3) in the notation of Lemma 47. Then it is clear that

L Ay(z))*E;,. = 0u)*s + B.,

12j=sr

where §,eC.” (h) and SuppB, = Supp'¥,. Now W (H) =1 if | H| < 2. Hence
B(H)=0unless 2¢ < | H|| < 3e.
Therefore

sup| B(B)| = sup | B.ED).

2e<|[H|| S3e
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Making use of Lemma 47 and the explicit formula for E, (see §29), we find that
sup|B(H)| < bye™""*|loge| < bye ™"
H

where b,, b, are positive numbers and p an integer =0, all independent of
e(0<e=x1/3).
Now fix Hq € V;/2 and put g, = ©(H)/6, E; y, = E; ,, and By, = B,, (L S j=71).
Then
I 00D By = 9%+ B

sup | Ba,| S bst(Ho) 7%

where by = 67b,. Now SuppE; g, and Supp fy, are both contained in Supp'¥,,.
Moreover, |H| <©(Ho)/2 if HeSupp'¥,,. Hence if H~ HoeSupp¥,,, it
follows from Lemma 46 that He V, and t©(H) = t©(H,)/2. Let V(H,) be the set
of all H eV such that t©(H) = t(H,)/2. Then it is clear that V(H,) < V; and

¢s(Ho; 0w) = X ¢;(H;00(z)))E; u(H — Ho) dH

1gisr JV(Ho)

- ¢ (H)By(H — Hy)dH.
V(Ho)

On the other hand it follows from the definition of V (see §24) that we can choose
a number ¢, > 0 such that

| A(Hoexp H)| 2 ¢ | my(H)| (HeV).

Let g, be the number of roots in P;. Then it follows from our definition of #,---,1,

that
| ny(H) | 2 <(H)™ (HeT)).
Therefore
| A(hoexp H)| 2 ¢yt(H)! (He V).
Hence

CHO | [ $H: 006 Evn(H ~ Ho)aH |
V(Ho) !

< e f |62, (E)AChoexp H) || E, so(H — Ho) | dH,
V(Ho)

where ¢, = 2% ! . Moreover, since | ¥,| < 1 and E; are continuous functions on
b, it is clear that

sup |EI,H0(H - Ho)| S sup IE;(H)| =3,
HeV(Ho) lells2
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where c; is a positive number independent of H, or i. Hence

©(Ho)"

[ 1B 00CNE aH ~ HaH | S exesvzf)  ASisn.
Similarly since supl/},,ol < byt(Hy) %, we get
[ | [ 8Dt = HOdH | S csbans)

V(Ho)

Moreover, ©{H,) < ¢ < 1. Hence

(Ho ' [¢,(Ho; 0W)| S e:b5(f) + 265 I vaf)

<i

for Hye V,/2 and f € C.”(G). Now
[T t(H) < "«(H) (HeV)).

1£i<L
This is obvious if L =1 and is also true if L =0. Therefore the statement of
Lemma 48 follows immediately if we take g = p + ¢,.

26. Proof of Lemma 45(18), Now we come to the proof of Lemma 45. If
L =0, it is an immediate consequence of Lemma 48. So we may assume that
Lx1.

By a monomial T we mean a function on | of the form ¢,%:¢,%2..-1,7%, where
q4,°+,q, are integers = 0. The degree of T is the integer ¢, + ¢, + - + q, and

we denote it by d°T. Since S(b,) is a finite module over I(h,)=7(3) (see [4(f),
Lemma 11]), it is also a finite module over »(3,). Hence we can choose u;
(1 £j £ r)in S(h,) such that u; =1 and

S(I)c)= z }’(30)“1"

1gjsr

We say that a monomial T has property (P) if there exists a number a = a(T)
(0 <a £1)and e & such that

®) sup T(H)|¢{(H;o(u))| < o(f) (I1=j=7)

HeaV,

for all f € C,°(G). Now suppose T has property (P) and put
or(f)= max sup TH)|o(H;du))| (feC(G)),

15jsr HeaV,
where a = a(T). Then it is obvious that o€ & and, for a given u € S(J),), we can
select z,€ 3o (1 £ i = r)such thatu = Elé,g,y(zi)ui. Hence
¢ (H;0) = X ¢,,,(H;0(uy) (HeV', feC2(G)).

(18) Cf. [4(g), pp. 208-211],
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So it is clear that

or{f)= sup T(H)|$(H;ou)| éls};s o1(z;f)

HeaVy <js

for all f € C,°(G) and therefore oy ,€ <.
Hence, in order to prove Lemma 45, it is obviously enough to obtain the fol-
lowing result.

LEMMA 49. The monomial 1 has property (P).

It is clear from Lemma 48 that monomials with property (P) actually do exist.
Let T be a monomial with property (P) of the lowest possible degree. We claim
that T = 1. For otherwise suppose d°T > 0. Then, without loss of generality,
we may assume that T =¢#'¢,* ... ;% and gq; 21.Put T, =¢,2*...1,% 50 that
T = t,9'T, and d°T, < d°T. Let a = a(T) and, for any f € C,°(G), put

s, (H) = To(H) (H; (uy)) (HeaVy, 12ig).

We recall that Hy,--+, H, is a base for ) over R such that t(H;)=6,; 1 <i,j < I).
Now choose z;;€ 3, (1 £ i, j < r) such that

Hyuy= X oz)u (=si=sn.

1sjgr

Then
O s il0ty = 2 Va5
J

on aV; and therefore

|t1ql(a¢f,i/at1)| = ? or(z;f) (feC2(6G)

on aV,. Here

or(f) = max  sup T(H)| ¢ ,(H;0(u)| (f e C.M(G)

HeaV,

and it is clear that o, € & since T has property (P). Put
o(g) = > or(z;;8) (geC7(G).

1<1,j<r
Then o also lies in <.

For any b > 0, let W, denote the set of all H e h such that |t,(H)| < b(1 S i <)),
Choose a; (0 <ay; £1) so small that W,, c aV and a, (0 <a, < a,) such that
a,V < W,,. Suppose Hea,V,. Then H' = H + (a, — t,(H))H; € W,, < aV. Since
t(H)>0 (1<i<L) and t,(H)S|H| <ay<a,<a,, it follows that
t(H')>0 (1 £i< L) and therefore H' e aV,. But aV, being convex, the whole
line segment joining H to H' liesin aV;. On the other hand, we have seen above that

| @400t | < 8,7%a(f) (feC.(@)
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on a¥; . Hence, by integrating on this line segment, we get
ay
|Ws (H) =Y ()| Sa(f)| s™%ds
t1(H)
since t,(H') = a;. Moreover,
|t,(H"Y" Y, (H")| = TH)| ¢ (H'; 0up)) | £ o1(f).
Therefore
|'/’f,t(H')l < ai"or(f).
This shows that

I'/’f,i(H)| L a; " ar(f) + o(f) “ s~91ds

t1(H)
for Hea,V,; and f € C,*(G).
Now first suppose that g; = 2. Then

J.a‘ sTds = (g, — D71 (H)' T — a,' 7).

t(H)

Hence if T = t,* " T,, it is clear that

l T, (H)¢,(H; a(“i))l < ay,” Yo (f) + o(f)

for Hea,V;, feC.”(G) and 1 £i<r. This shows that T, has property (P).
But since d°T, = d°T — 1 < d°T, this gives a contradiction. So the case ¢, =2
is impossible.

Hence g, = 1. Then

f " s = log(ay /1y (H)

(@)
and therefore
|‘/’f,i(H)| < a7 Yo (f) + o(f)log(ay/t,(H)) (I=isn
for Hea,V; and f € C,*(G). Put
o'(g) =o(g) +a; ' or(g) (geC.(G)).
Then ¢’ € & and
|'l’f,:| S o'(f){1 +log(a,/t))}
on a,V;. Put

oxg)= X o'(z;8) (geC.X(G)).
15, 8r
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Then 6, € & and since

O oty = E Vet
J

we conclude that

I (a‘/’f,t/atx)l < o5(f){1 +log(ayt, ™)}

on a,V;. Now choose numbers a,,a, (0 <a, < a; =a,) such that W,, ca,V
and a,V < W,,. For any Hea,V,, define

H'=H +(a; — t;(H))H,.

Then H” € a,V, and so again by integrating along the line segment joining H and
H", we conclude that
~as
|Ur B = Y1 ABD| £ 0D (1 +log(as™)ds
t)
< boy(f)
for Hea,V,, feC,“(G)and 1 £i < r. Here

as '
b =f (1 + log(a;s~1))ds < 0.
4]

Now t;(H") = a; and
tl(H”)l 'I’f,i(H”)I < or(f)
since T = t;T,. Therefore
|¥ s ()| = a5 'or(f) + bay(f) (I=ign)

for Hea,V, and f e C,%(G). This shows that T, has property (P) and therefore
again, since d°T, = d°T — 1 < d°T, we get a contradiction. This proves Lemma 49
and hence also Lemma 45.

27. Proof of Theorem 3 in the general case. Now we come to the general case
and use of the notation of §16. Let (M be the centralizer of ) N p in G and M the
connected component of 1in oM. Then A = yM and, by Lemma 30, M is acceptable.

Let G, be a complexification of G and define j as in §18. Put

@, = j(K) n exp(( — )/’ () N p)).

LemMMA 50. @, is a finite group. Let ® be a finite subset of G such that
j(®) = ®y. Then A= DA°Z, where A® is the connected component of 1 in A.

Since h N\ p =g,, we may obviously assume, for the proof of this lemma,
that g is semisimple and G, is simply connected. Then j(K) is compact and
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D, < j(4) N j(K) = j(Ag). Extend 8 to a complex-analytic automorphism of G..
Then since 8 = — 1 on p, it is clear that a* = 1 for every a € ®,. Therefore since
Jj(Ag)is a compact abelian group, it follows that ®, is finite.

Now 4 = AgA, and 4, < A° (see Corollary 4 of Lemma 26). Hence, in order
to prove the second statement, it would be enough to verify that j(Ay) = ®,j(4x°),
where A4,° is the analytic subgroup of G corresponding to h NE.

Let A, betheCartan subgroup of G_corresponding to §,. Put u=¥+(—1)">pand
and define U and 7 asin §17. Thenif a € j(4y),itisclearthat ae UN A =exp(h.Nu).
But h,nu=hNE + (- 1)"*(h N p) and therefore a = a,a,, where a, €j(4;°)
and a, € ®,. This proves that j(Ay) = ®,j(A4°).

LEMMA 51. Let ae® and me M. Then a and m commute.

Since M is connected, this follows from the fact that its Lie algebrant commutes
withhn p.

Fix an order in the space of (real-valued) linear functions 4 on ) N p and, for any
such A, let g, denote the space of all Xeg such that [H,X]| = AH)X for all
Hehnp. Put 1= X,.,0; Then n is a nilpotent subalgebra of g. Let N be the
analytic subgroup of G corresponding to n. It is clear that ,M normalizes tt. Put

d(m) = | det(Ad(m)), | (me M),

where the subscript n denotes restriction on n. Put G, =Ad(G) and let K,
denote the image of K in G, under the homomorphism x —Ad(x). Then K, is
compact. For any x € G and y, € G,, define x’° = yxy~! where y is any element
of G such that y, =Ad(y). Put

0= ek, g,<m)=d(m)f Fmnydn
Ko N

for feC.”(G), xe G and me (M. Here dk, and dn are the Haar measures on
K, and N, respectively, and fy dko = 1.

Introduce an order on the space of real-valued linear functions on
(- DY2®N ) +HhNp which is compatible (see [4(g), p. 195]) with the one
already chosen above. We may assume, without loss of generality, thatthe set P
of positive roots of (g,h) is defined with respect to this order. Since every root of
(m,b) is imaginary, it follows from Corollary 5 of Lemma 26 that An M = A°.
Let m - m* denote the natural projection of M on M* = M/A° anddefine

FMG) = 8k [ g™yam (hedo nw)
M‘

(@ = [ | [uBEM0|an  gecmon,
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where dm* is the invariant measure on M* and M’ is the set of those elements
of M which are regular in M.

Let M be the subalgebra of & generated by (1, nt.) and 3, the center of IN.
Then we have the isomorphism g = pg,, of 3 into 3 (see §12). Moreover,
G = KMN from [4(g), Lemma 11].

LeMMA 52. For any ae®, put
gf,a(m) = gf(am) (mEM9 feccao(G))
Then g; . C,(M) and
ng,a = M(Z)gf,a (Z 63)'
Moreover, if dm* and dn are suitably normalized, we have the relation

Fy(ah) = &, (a)F,, M(h)

for feC.2(G),he A°n(a 'G)and ac ®.

Although the proof of this lemma is not difficult, it is rather long. Hence we
postpone it to another paper.
We can now complete the proof of Theorem 3. It is clear that

Ay(ah) = & (a)Ay(h) (ae®, heA).

Hence we conclude from Lemma 52 that
e, = [ | AChF ah)| ab < (1.

We have seen (Lemma 30) that M is acceptable and every root of (m,D) is
imaginary, Moreover, 3,, is a finite module over u(3,) by Lemma 21. Hence
Theorem 3 holds for (M, A%, u(3), V) in place of (G, 4,3, v). Therefore for any
u e &(h,), we can, in view of Lemma 52, choose a finite set of elements z;,+-+,z, € 3o
such that

f“f,IF Ahw)| < max X vy(uzgr S X waf)

aed 1=Zisr 1Zisr
for f € C,”(G). This proves Theorem 3.

28. The local summability of | D |!/%. Let I = rank G and put D = D, in the
notation of §3. Then D is an analytic function on G and

D(h) = det(1 — Ad(h))g = ( — 1)?A(h)* (he A),
where p is the number of positive roots of (g,b).

LEmMMA 53. |D| ~12 is locally summable on G.
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Let C be a compact subset of G. Then we can choose f e C.°(G) such that
J = 0 everywhere and f = 1 on C. Then it is clear that

f |D|"¥ dx gf |D|~*2 £ dx.
[of G
Let A, (1 £i < r) be a maximal set of Cartan subgroups of G no two of which

are conjugate under G. Put

Gi = UxAilx-ls

xeG

where A, = 4;n G'. Then G’ is the disjoint union of Gy, -+, G, (see [4(e), Lemma
5]). Hence it would be enough to verify that

f |D|™2 fdx < aAgisgn.

So fix i and put A = A4;. Then G; = G in the notation of §23 and it follows from
Lemma 41 and [4(h), Theorem 2] that

f |D|'”2fdx=cf | F(h)| dh < oo.
Ga A

This proves the lemma.

29. Appendix. Put p(x) = (x,* + x,2 + - + x,2)/2 =20 for xeR".

LEMMA 54. Let o be a real number and D = 8*/dx,,0x;,++ 0x;,. Then
Dp* = X pip*i7H,

0gjzk
D(p®logp)= X Ppp" ' F+(logp) T Qup*i7*,
0Zjsk 0<jsk

where p;, P; and Q; are homogeneous polynomials in (xy,+-,x,) of degree j.
This follows by an easy induction on k.
COROLLARY 1. If a > k, then p® and p®log p are functions of class C* on R".
This is obvious from the lemma.
COROLLARY 2. p*~'Dp remains bounded on R".
We know that
p¥'Dp= X pp,

0<jsk

where p; is a homogeneous polynomial of degree j in (x,,:-,x,). Our assertion
therefore follows from the obvious fact that | p; | p ~/is bounded on R™.
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The following lemma is implicitin the paper of Morrey and Nirenberg [6, p. 281].

LEMMA 55. Let h be a function in C®(R) which is constant on the intervals
(— 0,0] and [1, + 00). Choose two numbers r, d such that 0 <3 < r < 1 and put

H, 5(x) = h(5™'(p(x) — r)) (xe R").
Then for each integer k = 0, there exists a number ¢, = 0, independent of r and 6,
such that
|DHr,6| S¢d *

for D= ak/axhax,-z--- 5xik (1 é il’ "',ik é n).

We use induction on k. If k = 0, we can take ¢, = sup [ h]. So let us assume that
k=1 and put h’(t) = dh/dt (te R). Then h’ also satisfies the conditions of the
lemma and

OH, ;/0x; = 6_1H,.',,’ - dp|ox; (1Z£ign),
where
H, ;'(x) = k'@ (p(x) = 1) (xe RY.
Now H, ;(x) =0 unless r £ p(x) < r + 6 and therefore

suplDH,,,,| <67 'sup |D’(H,,‘,’ . ap/(?x,-k)l,
x p2d

where D’ = 0% Y/ax,; - 0x Hence if we expand

D'(Hr,a' ’ 5P/axik)

(T [P

by means of the Leibniz formula, make use of Corollary 2 of Lemma 54 and apply
the induction hypothesis to H, ;’, we get the required assertion.

Put A= Eléié,,(i)/ax,-)l and let 0 denote the Dirac measure concentrated
at the origin.

LEMMA 56. If nis odd

Al+(n—1)/2 p2l—l — 616 (l g 1)
and if n is even

A2 ogp) = ¢S (z0).

Here c¢; and ¢, are nonzero numbers and the above relations are meant in the
sense of the theory of distributions.

This is well known (see [7, p. 47]).

LeMMA 57. Fix integers d =0 and r=1. Then we can choose an integer
m = 1 and a function e on R" of class C*™"~ V% such that
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A™e = 6.

Choose m so large that 2m > d + n. First suppose n is odd. Then
I =mr — (n — 1)/2 is an integer and

2=2mr—n+1>d+1.
Hence /= 1.Pute= ¢, 'p* 1. Then
Amre — Al+(n‘-l)/2e - 5

and 2/ —1=2mr —n=2m(r — 1) + 2m—n > 2m(r — 1) + d. Hence e is of class
C?mr=D*d by Corollary 1 of Lemma 54.

On the other hand if n is even put / = mr — n/2. Then 2/ =2mr —n>d and
therefore / is positive. Now put

e=(c,) " 'p* logp.

Then 2! = 2mr — n > 2m(r — 1) + d and therefore again e is of class C?"¢~ D+,
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