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Abstract

Due to the increasing amount of 3D data for vari-
ous applications there is a growing need for classifica-
tion and search in such databases. As the representa-
tion of 3D objects is not canonical and objects often
occur at different spatial position and in different ro-
tational poses, the question arises how to compare and
classify the objects. One way is to use invariant fea-
tures. Group Integration is a constructive approach to
generate invariant features. Several variants of Group
Integration features are already proposed. In this paper
we present two main extensions, we include local di-
rectional information and use the Spherical Harmonic
Expansion to compute more descriptive features. We
apply our methods to 3D-volume data (Pollen grains)
and 3D-surface data (Princeton Shape Benchmark)

1. Introduction

In many fields researches deal with a huge amount of
three dimensional data. In medical and biological ap-
plications one usually has to do with volumetric scans
of various types, there is a need for fast and reliable
feature extraction methods to handle and classify such
huge amounts of data. The development of 3D model-
ing software has increased the number of free available
3D-surface models, fast retrieval systems are necessary
to browse and search for 3D-models in a user-friendly
way.

In most cases problem dependent solutions are pro-
posed. The algorithms and features are especially de-
signed for the specific tasks and are not adaptable to
other problems. We apply the general Group Integra-
tion (GI) framework to volume- and surface data with-
out any data-specific adaption. Additionally we un-
cover relation to already used ad-hoc features, which
lack of theoretical motivation.

Group Integration stands in opposite to Normaliza-
tion techniques, which obtain invariance by computing

features relative to a global reference frame. The de-
termination of the reference frame makes Normaliza-
tion techniques extremely sensitive to noise. Whereas
Group Integration is known to be very robust to many
kinds of noise. In [2] a detailed overview over GI-
techniques is given. In [5] the GI-framework is joined
with Kernel-techniques. Ronneberger et al [8, 9] used
GI for the classification of Pollen grains and segmen-
tation of cell nuclei. In [1] GI is applied to discrete
graph-like structures.

2. Group Integration Features

For consistent treatment of the volume and surface
data we represent them by functions x : R

3 7→ R de-
fined on the whole volume, where we interpret the sur-
face data as volume mapping with its ’mass’ located
only on the surface of the object.

We always consider the Euclidean group E . A group
integration feature Ik is obtained by integrating a ker-
nel function k

Ik(x) =

∫

E

k(gx) dg,

where gx denotes the group action of g on x. Typically
choices of k are e.g. kd(x) = x(0) · x(d) or kd(x) =
h1(x(0)) ·h2(x(d)), where h1, h2 may be some arbitrary
nonlinear functions and d ∈ R

3 is a parameter.

2.1. Including local directional information

To include directional information instead of gray
values only, one should also consider a local quan-
tity that describes the neighborhood of some point,
the gradient ∇x would be a good idea. We can use
kernels as kd(x,∇x) = h1(∇x(0)) · h2(∇x(d)) or fur-
ther extension, which combine the gradient values with
the gray values. We only have to keep in mind that
the gradient has the following transformation behavior
(g∇x)(r) = R∇x(R†r−u), when x is shifted by u and



then rotated by R. Of course, one can also use other lo-
cal neighborhood operators like the Hessian, local jets
or wavelets.

For surface data the interpretation of the gradient is
not clear. But there is a simple back door. A point on
a surface is usually associated with a surface normal,
which may be interpreted as the gradient of a solid
object surrounded by this surface. The surface normal
has exactly the same transformation behavior as the
gradient.

2.2. Spherical Harmonic expansion

Any function f(s) defined on the two-sphere S2 can
be orthogonally expanded in terms of the so called
Spherical Harmonics.

f(s) =
∑∞

l=0

∑l

m=−l a
l
mY l

m(s),

where s is a unit vector and the al
m are the expan-

sion coefficients, that are computed by projections
al

m =
∫

S2

f(s)Y l
m(s)ds on basis functions. In practice,

the infinite sum is truncated at some finite cutoff pa-
rameter lmax. The Spherical Harmonic Transformation
(SHT) is the analogon to the Fourier Transformation
for the rotation group, i.e. the SHT provides a rep-
resentation, which is invariant to rotations. There are
subspaces which preserve their energy while rotating
the function. Moreover, the al

m show a nice transforma-
tion behavior. Suppose f(s) is rotated by some matrix
R, then the al

m are transformed by the so called D-

Wigner matrices Dl(R), i.e. al
m 7→

∑l
m=−l D

l
m(R)al

m.
Since a integration over the rotation group can al-

ways be separated into an integration over a sphere and
a circle, we are able to use the SHT to keep more in-
formation back. Instead of just integrating the sphere
integration out we expand the residue function in terms
of spherical harmonics.

3. The Kernel Choice

To choose a kernel function is not a simple question.
The choices are typically guided by the application’s
demands and complexity considerations. The percep-
tual interesting parts of shape are edges and regions
of high variety, hence it is obvious to incorporate the
gradient information as the most important part. So
we choose

kd(x) = h1(∇x(0)) · h2(∇x(d))

as the basis of our kernel function with width param-
eter d. But how to choose h1 and h2. One demand

is that both functions should give strong feedback if
the gradient is large. The functions should also be di-
rection specific to keep the relative directions of the
gradients. The simplest idea fulfilling this demands is
hn(v) = |v†n|, where n is some fixed unit vector. We
use the absolute value of the dot-product, because ex-
periments have shown that whether the edge is falling
or growing is less important than the actual direction.
A disadvantage of the function above is that one is not
able to decide whether it has to do with large, disori-
ented or small, oriented gradients v. A more rational
choice is

hn(v) = |v| · δ1

(

|v†n|

|v|

)

, (1)

where δ1 is the Delta-Distribution1 only giving contri-
bution if its argument is nearby 1. The function hn(v)
is unequal to zero whenever n ‖ v, i.e. n and v are par-
allel or anti-parallel. We now have the kernel function

kd,n,n′(x) = hn(∇x(0)) · hn′(∇x(d)). (2)

For the con-focal microscopy data the gray val-
ues should be incorporated. Microscopy data sets are
typically not homogeneously illuminated. If we want
to circumvent a normalization step, only differences
x(0) − x(d) of gray values contain comparable infor-
mation. A direct multiplication of the difference with
the kernel in (2) is not a clever idea, because for large
distances d the result would be dominated by the fluc-
tuation and interferences of the large differences. So
we use a Delta function and have

k
(M)
d,n,n′,µ(x) = kd,n,n′(x) · δµ(|x(0) − x(d)|), (3)

where we again used the absolute difference by the rea-
son mentioned above.

3.1. Implementation

A direct implementation of the integration is of high
computational complexity. In [8] a convolution with a
rotation symmetric kernel is used for a fast evaluation
of the integral. In our case this is not possible, because
our kernel depends on local directional quantities. We
want to point out another way. We write out the inte-
gral for the basis kernel

IΠ =
∫

R3

∫

O3

hn(R∇x(u)) · hn′(R∇x(u + R†d)) dR du,

where Π denotes the parameter set n, n′, d. We use the
relation f(u) =

∫

R3

f(u′)δu′(u) du′ for the second kernel

factor and get

1we write δy(x) for the usual δ(x−y) of the Delta-Distribution
due to space considerations
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∫

R3,R3

∫

O3

hn(R∇x(u)) · hn′(R∇x(u′)) · δ(u + R†d − u′),

where we omit du du′ dR. Due to the form of our kernel
function we find out that the integral over the rotation
group gives contribution only if there is a R such that
the four conditions R†n ‖ ∇x(u), R†n′ ‖ ∇x(u′), R†d ‖
(u − u′) and |d| = |u − u′| are simultaneously met.
The first 3 condition are fulfilled if n, n′, d have the
same configuration up to rotation as ∇x(u), ∇x(u′)
and u−u′. This is the case when the absolute values of
the pair-wise dot-products of the two sets are the same.
So we get the following expression for the integral

IΠ =

∫

R3,R3

θα,β,γ · δ∆(|u− u′|) · |∇x(u)| · |∇x(u′)|, (4)

where

θα,β,γ = δα(|∇x(u)T∇x(u′)|) ·

δβ(|∇x(u)T (u − u′)|) · δγ(|∇x(u′)T (u − u′)|)

is the orientation specific part. We introduced the ab-
breviations α = n · n′, β = n · d, γ = n′ · d and ∆ = |d|.
From now on we refer to Π = {α, β, γ, ∆} as the param-
eter set. The question arises how to evaluate integral
(4). Due to the high dimensionality of the integral a
Monte-Carlo approximation is appropriate. It is well
known if we have to do with sparse, non-homogeneous
data, that importance sampling is the right way to do
it. A tuple (u, u′) is chosen according to the probability
p(u, u′) = |∇x(u)| · |∇x(u′)|/Z, where Z is a normaliz-
ing factor making p(u, u′) to a probability distribution.
Then we compute for which parameter-configuration
Π = {α, β, γ, ∆} the Delta-distributions are unequal to
zero and accumulate the contributions in a result-array
with appropriate parameter-indices.

In fact, we compute some kind of histogram. This is-
sue is very interesting because it shows a very close con-
nection of GI-features with invariant histograms used
in [6, 7]. For example, the D2 Shape-distributions [7]
may interpreted as a Group Integration feature with
the kernel kd(x) = x(0) · x(d).

As already mentioned we want to use the SHT to
keep more information. Rewriting (4) by evaluating
δ∆(|u − u′|) leads to the sphere integral

IΠ =
∫

R3,S2

θα,β,γ · |∇x(u)| · |∇x(u + ∆s)| du ds,

where s ranges over the unit-sphere S2. Instead of sim-
ply integrating the above expression we now compute
the projection of it on Y l

m(s), i.e.

I lm
Π =

∫

R3,S2

θα,β,γ · |∇x(u)| · |∇x(u+∆s)| ·Y l
m(s) du ds.

For l = 0 the integral is exactly the same as the one
in (4). For l > 0 the implementation of the above
integral is very similar to the computation of (4). In-
stead of a simple accumulation, the contributions are
weighted by the complex factor Y l

m( u−u′

|u−u′| ). For ev-

ery l and m a new random tuple (u, u′) is chosen to
keep the results independent. After computation, the
results are made invariant by computing the band-wise
energy

∑l
m=−l |I

lm
Π |2.

4. Experiments

4.1. Volume Data

The considered database consists of the 26 most im-
portant German pollen taxa (385 samples). The data
was recorded by con-focal laser scanning microscopy,
for details see [8]. Each sample is of dimension 1283

with 8-bit resolution. As preprocessing we blurred the
volume-image by a Gaussian of width σ = 4 in pixel
units. The gradients were computed by finite differ-
ences within pixel distance 3. Both parameter choices
were driven by the signal-to-noise ratio of the data.
For a fast determination of the random points accord-
ing to the gradient-magnitude we compute the cumu-
lated distribution and use bisectional search. Having
determined two random points (u, u′), we compute the
arguments of the Delta-Distributions in θα,β,γ and ad-
ditionally |x(u) − x(u′)| to accumulate afterwards the
result array at appropriate indices Π = {α, β, γ, ∆, µ}.
In the experiments the parameters are discretized in
4 · 2 · 2 · 16 · 10 = 2560 bins, where the scaling of ∆ and
µ is chosen such that the range of all values, which can
give contribution, is covered. We do experiments with
and without the SH-transform. The cutoff-parameter
lmax = 2 is chosen. The final features are computed by
taking the energy

∑l

m=−l |I
lm
Π |2, resulting in an overall

feature size of 3 · 2560 = 7680.

For classification we use a simple one-Nearest-
Neighbor Classifier (NN) with L1-norm and a Support
Vector Machine (SVM) with Histogram-Intersection
Kernel. Due to the small dataset size it makes no sense
to divide the corpus into test- and training set, so we
use leave-one-out cross-validation for performance eval-
uation. Since pollen forecasts are only interested in the
allergologically relevant species, we also make experi-
ments where the irrelevant classes merged in one class,
resulting in a corpus divided in only 7 classes. In Table
1 the results are presented. Comparing this results to
[8], where for all 26 pollen taxa a recognition accuracy
of 92% were reached and 97.4% for the 7 class problem,
we have nice performance improvements.
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Feature Method Acc. (26C) Acc. (7C)

noSH 1NN 87.0% 93.8%
noSH SVM 93.0% 98.2%
SH 1NN 94.5% 97.9%
SH SVM 96.9% 99.7%

Table 1. Results for the Pollen datasets. LOO
cross-validation accuracy for the different
features and classifiers on the fine (26C) and
coarse (7C) class distributions.

4.2. Surface Data

The PSB consists of 1814 3D-surface models re-
trieved from the web. The PSB provides a hierarchical
classification, we used the finest granularity with about
90 classes. The features are computed as follows: the
models are rendered in a 2563 voxel-grid by using a bi-
nary version of Incremental Triangle Voxelization [4].
Additionally, each voxel gets a reference to the trian-
gle it is stemming from to enable us to incorporate
the original surface normals in our calculations. Mod-
els collected from the web sometimes contain construc-
tional artefacts inside the closed surface. Since we are
only interested in the visual appearance of the model
we exclude the artefacts from the computation by doing
the following: after voxelization we perform a flood-fill
operation starting from the border of the cube. If the
surface is closed, only the outer surface is ’wet’ and
the artefacts inside stay ’dry’. To exclude the artefacts
from the inside of the object we only include the ’wet’
voxels in our computations. The rest of the feature
computation is nearly the same as for the volume data
except that each voxel is chosen with equal probabil-
ity and the surface normals attached to the voxels play
the role of the gradients. Again we compare two type
of feature: without SH (noSH) and with SH. We use
the following quantization 4 · 4 · 4 · 16 = 1024 of the
parameters.

We compare our results to Shape Distribution (D2)
[7] and extension of it (AD) [6] , both are invariant fea-
tures which are obtained without normalization, simi-
lar to our features. Further we compare to the so called
Light Field Descriptors [3], which are based on 2D-
images rendered from different viewing angles. Sim-
ilarity computation is done by searching for the best
matching pair of views. In Table 2 the results are
presented. For evaluation we use the five performance
measures proposed in [10]. The 1NN-rate is the per-
centage that a object from the same class has the high-
est similarity to the query object. For description of

Feature 1NN 1T 2T EM DCG

noSH 58.1 30.1 40.8 24.1 58.3
SH 60.2 31.8 41.5 24.8 58.5

D2 31.1 15.8 23.5 13.9 43.4
AD 42.9 21.6 31.3 18.8 49.9
LFD 65.7 38.0 48.7 28.0 64.3

Table 2. Retrieval Performance for the PSB.

the other measures see [10]. The results show that
our features outperform D2 and AD. In comparison to
the pollen experiments the SH-expansion do not show
such an advantage. The LFD-descriptors still outper-
form our features, but they rely on a matching scheme,
i.e. the retrieval times are much higher, hence a direct
comparison is not really fair.

5. Conclusion and Future Work

In this paper we applied the Group-Integration
framework to two different types of 3D-data. We
showed that without any special adaption of the fea-
tures to the specific problem we are able to compete or
even outperform state-of-art features. The main contri-
butions of the paper are two extensions of the standard
GI-features. We included local directional information
and kept more information back by a Spherical Har-
monic expansion. We also gave a fast algorithm using
importance sampling. For future work we want to use
the D-Wigner matrices to keep even more information
back than with a Spherical Harmonic expansion.
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