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Under the hypotheses of linear potential flow and rigid wake aligned with the freestream,

a configuration-invariant analytical formulation for the induced drag minimization of single-

wing non-planar systems is presented. Following a variational approach, the resulting

Euler-Lagrange integral equation in the unknown circulation distribution is obtained. The

kernel presents a singularity of the first order and an efficient computational method, ideal

for the early conceptual phases of the design, is proposed.

Munk’s theorem on the normalwash and its relation with the geometry of the wing under

optimal conditions is naturally obtained with the present method. Moreover, Munk’s con-

stant of proportionality, not provided in his original work, is demonstrated to be the ratio

between the freestream velocity and the optimal aerodynamic efficiency. The Augmented

Munk’s Minimum Induced Drag Theorem is then formulated.

Additional induced drag theorems are demonstrated following the derivations of this

invariant procedure.

Several non-planar wing systems are proposed and analyzed and the optimal induced

drag and circulation are provided. The conjecture regarding the equality of the optimum

induced drag of a quasi-closed C-wing with the induced drag of the corresponding closed

system is also verified for several configurations including the boxwing.

Nomenclature

V∞, ρ∞ Freestream velocity and density
L Lift
Dind Induced drag
Γ Circulation
γ(η)dη Vortex filament
ℓ Lifting line
η, ξ Arc length abscissas
a semi-length of the lifting line
u, uv Parameters used to represent the lifting line
y, z Cartesian coordinates identifying a point on ℓ
vn Normalwash
Y Kernel of the integral equation
λ Lagrange multiplier
E Aerodynamic efficiency
ε Optimal aerodynamic efficiency ratio
α Incidence
bw Semi-wingspan

∗Associate Professor, Department of Aerospace Engineering, San Diego State University,
San Diego (USA), Member AIAA, Email: ldemasi@mail.sdsu.edu

†PhD student, Computational Science Research Center, San Diego State University, PhD student at the Dipartimento di
Ingegneria Aerospaziale, Università di Pisa. Member AIAA.
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R Superformula’s function
µ, χ,m, pi Superformula’s parameters
Ui Chebyshev polynomial of the second kind of degree i
L Generalized Lagrange polynomial at Chebyshev nodes
ψ Even function defining a parametric representation
r Position vector identifying a point on ℓ
i, j,k Unit vectors of the axes of the right handed 3-D Cartesian reference
v Induced velocity on the lifiting line
τ ,n Tangent and normal local unit vectors
F Aerodynamic force vector
Dind Induced drag vector
F⊥ Aerodynamic force component in the direction opposite to the local normal

(•)
′

Derivative of the generic quantity (•)

Superscripts
opt Referred to optimal conditions
ref Referred to the optimal conditions of the cantilever wing

Symbols
δsd Kronecker symbol∫
− Cauchy principal value

I. Introduction

I
NDUCED drag or drag due to lift is an important component of the total drag: it corresponds1,2 to
30%-50% of the aircraft drag under cruise conditions. At the low speeds conditions (takeoff, landing)3 the

drag due to lift is about 80% of the total drag.
As it is argued in Reference [3], improving the aerodynamic efficiency of the takeoff portion of the flight

greatly impacts the overall design with large benefits in terms of performance. This is the reason why
an accurate prediction4 (and optimization5–7) of the induced drag and a design of passive8 and actively4

controlled devices to minimize the drag due to lift interest many researchers.
The main idea behind the minimization of induced drag is to reduce, as much as possible, the gradients

of the circulation.9 This is the typical situation at the wingtips, where strong vortices are shed and the
circulation (in classical cantilevered wings) goes to zero. Thus, wingtip modifications such as tip sails,1

winglets,10 and wing grids11,12 achieve a significant passive reduction of the induced drag (for a fixed span).
For greater aerodynamic efficiency at different flight conditions, the induced drag can for example be

reduced by control surface deflections.13 To achieve optimal results, the calculation of these deflections should
be very accurate and take into account the flexibility of the wing and consequent aeroelastic effects.14,15

At the early stages of the design it is useful to have a good estimate of the induced drag for a given wing
configuration. A computationally efficient option is represented by panel codes.16–20

In the preliminary design it is also beneficial, due to the requirements of inexpensive computational
methods, to evaluate the induced drag with even faster tools based on lifting line models such as the ones of
References [9,21,22]. The optimal condition, when only constraints of total lift and wingspan are considered,
is represented by the well known elliptical solution.23 However, it is possible to take into account additional
constraints such as the bending moment. This can be achieved as discussed in References [24–27].

Other fundamental studies on induced drag have been carried out in earlier works. Reference [28] presents
the minimum induced drag conditions for V-wings and diamond ring wings. The results are obtained with
an analytical method based on conformal mapping. Another significant contribution is represented by
Reference [29] where analytical solutions for the minimum induced drag are again obtained with conformal
transformations. In addition to the analytical results, Reference [29] reports several experimental evaluations
based on the electrical analogy.

A remarkable work, surprisingly almost ignored in the open literature, is represented by Reference [30]:
fundamental analytical solutions of non-planar wings (both open and closed) are used to statistically generate
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a relatively simple equation for the optimal aerodynamic efficiency. Moreover, biplanes and multiplanes with
different wingspans are also discussed. Reference [31] discusses several theoretical aspects of the induced
drag with a rigorous mathematical approach. Particularly relevant is the qualitative plot of the optimal
circulation of a joined wing configuration and a relatively simple formula derived with transformations in
the complex plane (see equations 17.7 and 17.8 on page 205 and the Schwarz-Christoffel theorem on page
206). The problem of minimizing the induced drag of Joined Wings is also discussed (without showing
the actual derivations) by Prandtl9 and an approximate formula for the aerodynamic efficiency is also
provided. The interest on the optimal conditions of boxwing (named Best Wing System, BWS9) is still quite
strong nowadays. Relatively recent studies32,33 investigate the minimum induced drag conditions under the
assumption that the circulation over the joints has a butterfly-type of diagram and the load distributions
over the upper/lower wing are obtained by superposing a constant and an elliptical functions. Reference [34]
addresses the issue of theoretical asymptotic limit for the wings of the best wing system indefinitely distant
from each other and it is observed that Prandtl’s extrapolated equation (see equation 12 of Reference [9])
provides a limit of 0.16 for the ratio between the optimal induced drag referred to the classical cantilevered
wing, whereas the studies conduced in References [32,33] find that limit to be 0.5. Reference [34] is based on
an optimization procedure in which the aerodynamic model is represented by the vortex lattice method and
finds that asymptotic limit to be 0.43a. It should be pointed out on this regard that the formula reported
in Reference [30] for the box wing predicts an asymptotic limit of 0 (see Table 1 of Reference [30]).

The majority of these studies extensively use the very fundamental work presented by Munk23 who
introduced several important theorems to effectively identify the minimum induced drag conditions of a
generic non-planar system. Particularly significant is the so called Munk’s Minimum Induced Drag Theorem,
which states that under optimal conditions the normalwash is proportional to the cosine of inclination of the
lifting element at that point.

The present effort provides a contribution on the fundamental aspects of the induced drag minimization.
With a variational approach, a configuration-invariant formulation is presented. The corresponding Euler-
Lagrange equation augments Munk’s Minimum Induced Drag Theorem: it is analytically obtained the value
of the constant of proportionality and how it is linked to the optimal aerodynamic efficiency. Additional
theorems and insights are demonstrated with the proposed invariant formulation and several non-planar test
cases are presented and can provide benchmarks for the verification of accuracy and convergence character-
istics of other minimization methods.

II. Contributions of the Present Work

A configuration-invariant minimization procedure is presented (see also Reference [35]). The Euler-
Lagrange equation is derived with variational methods and is represented by an integral equation with a first
order singular kernel. With the present method the integral equation contains only the unknown circulation
and not its derivative as previously presented in other methods (see for example Reference [36] for the
classical cantilevered wing and Reference [37] for a wing with curved planform).

In References [38] and [39] an alternative integral formulation was obtained. However, the singularity
was of the second order and the variational method and Euler-Lagrange equation needed to be derived every
time for a given wing.

On the contrary, with the proposed method, virtually any single non-planar wing can be analyzed. The
derivation of the optimal condition is obtained only once and is formally invariant with respect to the wing
geometry. Furthermore, the present formulation naturally leads to Munk’s Minimum Induced Drag Theorem
when the writing of the Euler-Lagrange equation is carried out. The constant of proportionality (originally
not derived by Munk) is demonstrated to be directly related to the freestream velocity and aerodynamic
efficiency under optimal conditions.

This work introduces the Minimum Induced Drag Curvature-Invariance Theorem (MIDCIT) and the
Quasi-closed C-Wing Zero-gradient Optimal Circulation Theorem (QCWZOCT). In both cases, analytical
proofs are provided for a generic non-planar single wing system.

A numerically efficient solution of the Euler-Lagrange equation is also discussed in detail: the aerodynamic
optimal efficiency and circulation are determined in just a few seconds on a regular PC with a MATLAB
code.

aIn subsequent private conversation with the authors, E. Rizzo communicated that with a refined optimization model the
numerical asymptotic limit was found to be 0.17.
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Several published results are reproduced and new non-planar cases (including several winglet designs)
are also presented. A detailed discussion of the C-Wing and its limit to the corresponding closed system
is analyzed. It is numerically verified that the Quasi-closed C-Wing Minimum Induced Drag Conjecture
(QCWMIDC) is correct: the optimal induced drag of a quasi-closed system is equal to the optimal value of
the corresponding closed system. This was verified for a quasi-boxwing system. However, it should be noted
that a formal proof of this property is not available in the open literature.

III. Lift, Induced Drag and Normalwash

The theory used here is based on the assumption that the wake is rigid and aligned with the freestream
velocity (the x axis in Figure 1). This means that the intersection between the wake and the Trefftz plane
has the exact shape of the (unstaggeredb) lifting line ℓ. In reality, the wake is not rigid and may get distorted
(wake roll up). The extent and importance of this wake deformation depends on the configuration and in
the framework of preliminary design can be neglected.

Consider a symmetric and open lifting line ℓ, as shown in Figure 1. Denote by ψ(t) = [ψ1(t), ψ2(t)]
T ,

t ∈ [−1, 1] and |ψ′(t)| ̸= 0, an even (vectorial) function defining a parametric representation of it, and by η
the corresponding arc length abscissa:

η = η(u) =

∫ u

0

∣∣ψ′(t)
∣∣ dt, dη =

∣∣ψ′(u)
∣∣ du (1)

where, here and in the following, |·| denotes the Euclidean norm. This abscissa will run from η(−1) = −a
to η(1) = a, for some positive real number a; moreover, η(0) = 0 and η(−u) = −η(u). In the following,
η = η(u) and ξ = ξ(uv) will denote two arbitrary values of this abscissa.

Since it will be necessary to perform some Taylor expansions and to define some Cauchy principal value
integrals on the curve ℓ , for simplicity it is assumed that the lifting line ℓ is sufficiently smooth. That is,
it is assumed that ψi(t), i = 1, 2, are continuous functions together with their first m ≥ 2 derivatives, in the
interval [−1, 1] (i.e. ψi ∈ Cm[−1, 1]), although this is more than what is really needed. When the arc length
abscissa is used, if a point r = (y, z)T ∈ ℓ, where the aerodynamic forces are calculated, is identified by its
corresponding parametrization, then this will be denoted by r = r(η) = [y(η), z(η)]T . When, instead, the
parametric representation defined by ψ(t) is used, the same point will be denoted by r = [ψ1(u), ψ2(u)]

T .
Within the assumption of lifting line theory, the aerodynamic force dF calculated at a point of ℓ identified

by the coordinate η is obtained by adding dF⊥ (force in the direction opposite to the local normal [see Figure
1]) and dDind which is a force directed along x and parallel to the free stream velocity V∞. dDind represents
the differential of the induced drag force. If τ indicates the unit vector tangent to the curve representing

Figure 1. Aerodynamic forces and induced incidence on a profile placed in the generic point η of the curve.

bMunk’s Stagger Theorem23 is adopted in this work. Thus, the induced drag minimization is carried out by projecting the
lifting system on a single plane perpendicular to the freestream.
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the lifting line (see Figure 1) it can be inferred that





dF⊥ (η) = −ρ∞V∞Γ (η) dη [i× τ (η)]

dDind (η) = ρ∞Γ (η) dη [v (η)× τ (η)]
(2)

where Γ(η) and v (η) are the values that the circulation and the induced velocity, respectively, taken at a
point r(η) ∈ ℓ identified by the coordinate η, and the symbol × denotes the classical cross (or vectorial)
product. For simplicity, it is further assumed that the function Γ(η) is continuous in [−a, a], having also
continuous derivatives of order ≤ m in the open interval (−a, a), that is, Γ ∈ C[−a, a] ∩ Cm(−a, a), and
that its first derivative has at most Lp, p > 1, integrable endpoint singularities. These assumptions are
fully justified by the true physical behavior of the circulation in the case of the smooth lifting line under
consideration, and it is also confirmed by the numerical testing discussed later. They allow to perform the
mathematical steps needed to derive the Euler-Lagrange equation.

The circulation Γ(η) is the composition of a (continuous) function Γℓ(r), defined on the curve ℓ, with
the parametrization r = r(η). Denoting by o(h) a term vanishing, as the positive quantity represented by h
tends to zero, consider the following first order Taylor expansion:

Γ(ξ + dξ) = Γ(ξ) + Γ′(ξ)dξ + o(|dξ|2), −a < ξ < a (3)

The velocity v (η) defined above is induced by the semi-infinite vortex filaments depicted in Figure 1. The
generic vortex located at position ξ is indicated as γ (ξ) dξ. Its value can be found by applying Helmhotlz’s
theorem: γ (ξ) dξ = −Γ′ (ξ) dξ.

These vortices take into account the changes of circulation Γ for a given location on the lifting line. The
infinitesimal contribution dv to the induced velocity (see Figure 2) due to the vortex γ (ξ) = −Γ′(ξ)dξ and
evaluated at position η (see Figure 2) is:

dv (η, ξ) =
1

4π
− Γ′ (ξ) dξ i×

r (ξ)− r (η)

|r (ξ)− r (η)|
2

(4)

where equation 4 is an application of the Biot-Savart law. Because of the smoothness assumption that have

Figure 2. Infinitesimal contribution to the induced velocity calculated at location η.

been made on the curve ℓ, it is not difficult to show that

r (ξ)− r (η)

|r (ξ)− r (η)|
2
=

h(η, ξ)

ξ − η
, ξ ̸= η

where the function h(η, ξ) and its partial derivatives of order ≤ m− 1 are continuous with respect to both
variables (h ∈ Cm−1([−a, a]× [−a, a])).

The expression reported on the Right Hand Side (RHS) of (4) presents a singularity when ξ = η (i.e.,
the position where the induced velocity infinitesimal contribution is calculated coincides with the position
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of the vortex). The singularity is of order 1; moreover, the function Γ is zero at the wing’s tips. Thus, the
total contribution, obtained by adding all the infinitesimal contributions due to all the vortices, is given by
the following Cauchy integral:

v (η) =

a∫

−a

− dv (η, ξ) dξ =
1

4π

a∫

−a

− Γ′ (ξ) i×
r (ξ)− r (η)

|r (ξ)− r (η)|
2
dξ, −a < η < a (5)

where the integration limits −a, a denote the curvilinear abscissa values of the wing tips. By definition (see
also Figure 2), the unit normal vector is given by

n (η) = i× τ (η) , (6)

where the unit vector tangent to the lifting line is easily calculated as follows:

τ (η) =
dr (η)

dη
= r′(η) (7)

The induced drag is directed along x, whereas the lift is directed along z. Thus, the infinitesimal contributions
to the lift, term dL (η), and induced drag, term dDind (η), can be obtained from equation (2) as follows:





dL (η) = dF⊥ (η) • k = −ρ∞V∞Γ (η) dη [i× τ (η)] • k = −ρ∞V∞Γ (η) dη [k× i] • τ (η)

dDind (η) = dDind (η) • i = ρ∞Γ (η) dη [v (η)× τ (η)] • i = −ρ∞Γ (η) dη [i× τ (η)] • v (η)
(8)

where the vector identity (A×B) •C = (C×A) •B has been used for the first relation and the identity
(A×B) • C = − (C×B) • A has been used to elaborate the second relation. Using expression (6) and
observing that k× i = j, equation (8) is rewritten as





dL (η) = −ρ∞V∞Γ (η) dη j • τ (η) = −ρ∞V∞Γ (η) dη τy (η)

dDind (η) = −ρ∞Γ (η) dη n (η) • v (η) = −ρ∞Γ (η) dη vn (η)
(9)

The quantity τy (η) = j • τ (η) is the projection on the y direction of the unit vector tangent to the lifting
line.

From its definition (see equation (9)) it is clear that n (η) • v (η) = vn (η) represents the projection of
the induced velocity on the direction perpendicular to the lifting line and the free stream velocity V∞ (see
Figure 1 for its interpretation). This is referred to as the normalwash. Its expression can be deduced directly
from equation (5):

vn (η) = n (η) • v (η) =
1

4π

a∫

−a

− Γ′ (ξ) n (η) •

[
i×

r (ξ)− r (η)

|r (ξ)− r (η)|
2

]
dξ

=
1

4π

a∫

−a

− Γ′ (ξ) [i× τ (η)] •

[
i×

r (ξ)− r (η)

|r (ξ)− r (η)|
2

]
dξ

(10)

where equation (6) has been used. Using the vector identity (A×B) • (C×D) = (A •C) (B •D) −
(A •D) (B •C) and observing that τ is perpendicular to i (see Figures 1 and 2), equation (10) is simplified
as follows:

vn (η) =
1

4π

a∫

−a

− Γ′ (ξ) τ (η) •
r (ξ)− r (η)

|r (ξ)− r (η)|
2
dξ =

1

4π

a∫

−a

− Γ′ (ξ) Y (η, ξ) dξ (11)

Note that the function vn is certainly continuous in the open interval (−a, a), having at most endpoint
integrable singularities; that is, vn ∈ C(−a, a) ∩ L1(−a, a).

The quantity

Y (η, ξ) = τ (η) •
r (ξ)− r (η)

|r (ξ)− r (η)|
2
= r′ (η) •

r (ξ)− r (η)

|r (ξ)− r (η)|
2
=
q(η, ξ)

ξ − η
(12)
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where the function q(η, ξ) and its partial derivatives of order ≤ m− 1 are continuous functions with respect
to both variables (q ∈ Cm−1([−a, a] × [−a, a])). Y (η, ξ) is called kernel and presents a singularity of order
1 when η = ξ.

The normalwash vn is directly related to the induced incidence (see Figure 1): αind (η) = vn (η) /V∞.
The assumption of small angles is implied.

Integrating the contributions reported in equation (9) over the lifting line ℓ, it is possible to obtain the
expressions for the lift and induced drag:

L =

∫

ℓ

dL = −

a∫

−a

ρ∞ V∞τy (η) Γ (η) dη (13)

Dind =

∫

ℓ

dDind = −

a∫

−a

ρ∞ vn (η) Γ (η) dη (14)

It should be noted that in equation (14) the normalwash vn (see its definition reported in (11)) involves a
Cauchy integral, whereas the external integral is a standard Riemann integral. Indeed, the internal integral,
as a function of η, has only endpoint logarithmic singularities.

A wing can withstand a pressure jump and the circulation Γ can be a non-null function. However, a
pressure jump is not possible beyond the wing tips (see Figure 1). Thus, the circulation must be zero at
those locations.

IV. Minimum Induced Drag Condition for a Single-Wing Non-planar System:

the Euler-Lagrange Equation

Finding the minimum induced drag condition for a given wing span and total lift of a generic single-wing
requires the minimization of a functional. This is accomplished with variational methods.40–43 The Lagrange
multiplier method is adopted to enforce the constraint of given total lift. The relative Lagrange multiplier
is constant as shown in references [38] and [39].

The functional J is defined as the induced drag expression (see (14)) from which the constraint (prescribed
value for the lift Lpres) is taken into account by using the Lagrange multiplier λ (see (14), (13), (11) and
(12)):

J(Γ) = Dind − λ (L− Lpres) =

a∫

−a

ρ∞


− 1

4π

a∫

−a

− Γ′ (ξ) Y (η, ξ) dξ + λV∞τy (η)


 Γ (η) dη + λLpres (15)

Consider now a smooth arbitrary variation δ (η), vanishing at the endpoints ±a.
A solution for the problem can be found by using the following relation (the subscript “opt” indicates

the optimal condition for which J is minimized):

Γ (·) = Γopt (·) + σδ (·) σ ∈ (−1, 1) (16)

where (·) means that the variable can be a function either of η or ξ.
Since Γ(±a) = 0, the endpoint vanishing property of the test function δ(·) implies that the optimal circulation
also satisfies the homogeneous boundary conditions at the tips of the wing:

Γopt (−a) = Γopt (a) = 0 (17)

To find the optimal solution, the circulation given by (16) needs to be substituted into the expression of
the functional (15). Before presenting the subsequent derivations, it should be noted that in this work a
non-closed path for the lifting line is assumed. Thus, this formulation is valid for any wing described by a
single non-planar and non-closed lifting line (see for example the lifting line shown in Figure 1). If the wing
is simulated with an open lifting line, then the circulation must be zero at the tips. This condition and the
endpoint vanishing property of the test function δ are used to demonstrate (see Appendix) that the following
relation holds:

a∫

−a

δ (η)

a∫

−a

−
dΓopt (ξ)

dξ
Y (η, ξ) dξdη =

a∫

−a

Γopt (η)

a∫

−a

− δ′ (ξ) Y (η, ξ) dξ dη (18)
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By means of identity (18) the functional can be written (details are omitted for brevity). To find the optimal
condition, the first derivative of the functional J with respect to the parameter σ has to be calculated and
equated to zero:

dJ (Γopt + σδ)

dσ

∣∣∣∣
σ=0

=

a∫

−a

ρ∞


−2

1

4π

a∫

−a

−
dΓopt (ξ)

dξ
Y (η, ξ) dξ


 δ (η) dη+

λ

a∫

−a

ρ∞V∞ τy (η) δ (η) dη = 0

(19)

or (see (11) for the expression of the normalwash here calculated under optimal conditions)

a∫

−a

ρ∞
[
−2voptn (η) + λV∞τy (η)

]
δ (η) dη = 0 (20)

The function δ (η) is arbitrary. This means that equation (20) implies (fundamental lemma of calculus of
variations):

ρ∞
[
−2voptn (η) + λV∞τy (η)

]
= 0 ⇒ voptn (η) =

1

2
λ τy (η)V∞ (21)

which is the Euler-Lagrange Equation (ELE).
The induced drag (see (14)) can then be written under optimal conditions (see (21)):

Dopt
ind = −

a∫

−a

ρ∞ voptn (η) Γopt (η) dη =
λ

2


−

a∫

−a

ρ∞V∞τy (η) Γ
opt (η) dη


 (22)

The integral on the RHS represents the total lift (see (13) and consider that the lift is prescribed and known;
from now on there is no need to distinguish the lift produced by a generic circulation and the prescribed
value Lpres. Thus, in the following derivations L will indicate the prescribed lift):

Dopt
ind =

λ

2
L (23)

Relationship (23) allows one to express the Lagrange multiplier λ in terms of the prescribed lift L and the
unknown induced drag:

λ =
2Dopt

ind

L
=

2

Eopt
(24)

where Eopt is the aerodynamic efficiency under optimal conditions. Note that this representation provides
a clear physical meaning for the Lagrange multiplier. By substituting expression (24) into (21) it is possible
to write:

αopt
ind (η) =

voptn (η)

V∞
=
τy (η)

Eopt
(25)

It is then deduced that:

The optimal induced incidence has to be proportional to the component along the y axis of the tangent-to-
the-curve vector. The constant of proportionality is the inverse of the optimal aerodynamic efficiency.

V. Augmented Munk’s Minimum Induced Drag Theorem

Expression (25) can be further elaborated (see (6)) for additional physical insight:

voptn (η) =
V∞
Eopt

τy (η) =
V∞
Eopt

j • τ (η) =
V∞
Eopt

[k× i] • τ (η) =
V∞
Eopt

[i× τ (η)] • k =
V∞
Eopt

n (η) • k (26)

or

voptn (η) =
V∞
Eopt

cos [ϑ (η)] (27)
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Figure 3. Augmented Munk’s Minimum Induced Drag Theorem.

It is possible to observe that relationship (27) is the mathematical counterpart of Munk’s Minimum Induced
Drag Theorem. However, it provides additional information not reported in the original Munk’s theorem. In
fact, the original version of Munk’s Minimum Induced Drag Theorem states that the normalwash has to be
proportional to the cosine of ϑ (see Figure 3). With this formulation it was possible to calculate the constant
of proportionality (which was not provided in the original Munk’ workc). The “complete” theorem, defined
here as Augmented Munk’s Minimum Induced Drag Theorem (AMMIDT) is then the followingd:

When the lifting system has been translated into a single plane (Munk’s stagger theorem), the induced drag
will be minimum when the component of the induced velocity normal to the lifting element at each point is
proportional to the cosine of the angle of inclination of the lifting element at that point. The constant of
proportionality is the ratio between the freestream velocity and the optimal aerodynamic efficiency.

A partial verification of the validity of AMMIDT beyond the formal proof presented in this work for
single-wing systems, can be immediately found in Reference [39] where one can immediately deduce the
same constant of proportionality for circular and elliptical annular wings.

VI. Integro-Differential Form for the Euler-Lagrange Equation

Equations (21), (25), (26) and (27) are equivalent writings of the ELE. If the ELE is satisfied, then the
optimal conditions can be determined. However, these expressions are not the best practical choice when
the problem needs to be numerically solved. In this case, it is convenient to rewrite the expressions in terms
of the unknown circulation Γopt. This is accomplished as follows.

The optimal normalwash voptn (η) is explicitly calculated by means of representation (11):

voptn (η) =
1

4π

a∫

−a

−
dΓopt (ξ)

dξ
Y (η, ξ) dξ (28)

Then, after setting
r = y(η )j+ z(η)k (29)

the quantity τy (η) is explicitly calculated from its definition:

τy (η) = τ (η) • j =
dr (η)

dη
• j =

d [r (η) • j]

dη
=

dy (η)

dη
= y′(η) (30)

where formula (7) has been used.

cThe constant of proportionality can also be found by following the discussion that led to equations 20.6, 20.7, and 20.8 on
page 136 of Reference [31].

dThe wording of the original theorem has been modified for consistency of terminology of the present formulation.
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Inserting expressions (30) and (28) into (25), the ELE can be written in its explicit integro-differential form:

1

4π

a∫

−a

−
dΓopt (ξ)

dξ
Y (η, ξ) dξ =

V∞
Eopt

y′ (η) , −a < η < a (31)

where the kernel Y (η, ξ) is defined in (12).
The constraint of fixed total lift, defined by (13), can now be elaborated by taking advantage of identity
(30):

L = −

a∫

−a

ρ∞ V∞ Γopt (η)
dy (η)

dη
dη (32)

VII. Integral Form for the Euler-Lagrange Equation

Equation (31) contains the unknown circulation differentiated with respect to the arc length abscissa.
However, by applying the integration by part rule, it is possible to move the differentiation operator from
the unknown circulation Γopt to the kernel.

To this end, first it is observed that the following equivalent representation of the kernel holds:

Y (η, ξ) = −
d

dη
ln |r (ξ)− r (η)| (33)

By inserting this expression into the integro-differential ELE (see equation (31)) the resulting expression is:

d

dη


 1

4π

a∫

−a

−
dΓopt (ξ)

dξ
(− ln |r (ξ)− r (η)|) dξ


 =

d

dη

[
V∞
Eopt

y (η)

]
(34)

Equation (34) means that the two functions that are differentiated with respect to η must differ by a constant
C:

1

4π

a∫

−a

−
dΓopt (ξ)

dξ
(− ln |r (ξ)− r (η)|) dξ =

V∞
Eopt

y (η) + C (35)

However, for wings which are symmetric with respect to the x− z plane (all the wings of practical interest
have that feature) it is possible to verify that the constant C in (35) is zero. To show this property, consider
the point identified by η = 0 and located on the z axis. The position vector is then exactly vertical, which
means that

y(0) = 0 (36)

Substituting condition (36) into equation (35), and assuming that η = 0 identifies the point where equation
(35) is evaluated, it is possible to write

1

4π

a∫

−a

−
dΓopt (ξ)

dξ
(− ln |r (ξ)− r(0)|) dξ = C (37)

Now focus on the integral on the LHS of equation (37).
Taking into account the symmetry of the functions r (ξ) and Γopt (ξ), from the Cauchy integral definition it
follows:

1

4π

a∫

−a

−
dΓopt(ξ)

dξ
(− ln |r(ξ)− r(0)|) dξ =

1

4π
lim
e→0

[∫ −e

−a

+

∫ a

e

]

=
1

4π
lim
e→0

∫ a

e

[
dΓopt(ξ)

dξ
ln |r(ξ)− r(0)| −

dΓopt(ξ)

dξ
ln |r(ξ)− r(0)|

]
dξ = 0

That is (see (37)):
C = 0 (38)
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The boundary condition for the optimal circulation (equation (17)) makes possible to integrate by parts
the Cauchy integral reported in equation (35):

a∫

−a

−
dΓopt (ξ)

dξ
(− ln |r (ξ)− r (η)|) dξ = Γopt (ξ) (− ln |r (ξ)− r (η)|)

∣∣∣∣∣

ξ=a

ξ=−a

−

a∫

−a

− Γopt (ξ)

(
−

d

dξ
ln |r (ξ)− r (η)|

)
dξ = −

a∫

−a

− Γopt (ξ) Y (ξ, η) dξ

(39)

where the following representation has been used (see (33)):

Y (ξ, η) = −
d

dξ
ln |r (η)− r (ξ)| (40)

It should be noted that in the general case Y (ξ, η) ̸= Y (η, ξ) as can be immediately derived by direct
comparison of expressions (40) and (33). Thus, the singular kernel does not present symmetry when the
variables are exchanged even if the curve representing the wing has a symmetry with respect to the x − z
plane. Substituting (39) and (38) into equation (35), the integral form of the ELE is obtained:

−
1

4π

a∫

−a

− Γopt (ξ) Y (ξ, η) dξ =
V∞
Eopt

y (η) , −a < η < a (41)

The constraint of prescribed total lift is still represented by (32).
The integral form of the ELE and the constraint (equations (41) and (32) respectively) represent a system
of two equations and two unknowns: the optimal circulation Γopt (ξ) and the optimal efficiency Eopt. An
important property of these two equations is their generality: they are valid for any non-closed non-planar
single-wing system (the symmetry with respect to the x− z plane is also assumed). In fact, these equations
were not derived for a specific case and are configuration invariant. The mathematical derivation assumed
the absence of corners.

Next, the following notation is adopted. Let q be a generic quantity, which can represent the circulation
or another variable used in the problem of induced drag minimization. It is a function of the curvilinear
coordinate η (indicated also with ξ in some cases to clearly differentiate the sending and receiving points).
Then, after introducing the lifting line parametric representation η = η(u) (see (1)), the composition of the
functions q(η) and η = η(u) is denoted by q̃(u) = q (η(u)).

To further simplify the above system, two quantities are introduced: the new unknown

Γ
opt

(uv) =
1

4

Eopt Γ̃opt(uv)

V∞
(42)

and the optimal aerodynamic efficiency ratio ε

ε =
L2

2πρ∞V 2
∞b

2
wD

opt
ind

=
LEopt

2πρ∞V 2
∞b

2
w

(43)

where bw is the semi-wingspan.
After introducing the changes described above, the ELE and the associated constraint take then the

following form: 



−
1

π

1∫

−1

− Γ
opt

(uv) Ỹ (uv, u) duv = ỹ (u) , −1 < u < 1

−
2

πb2w

1∫

−1

Γ
opt

(u) ỹ ′ (u) du = ε

(44)

where

Ỹ (uv, u) =
ỹ ′ (uv) [ỹ (u)− ỹ (uv)] + z̃ ′ (uv) [z̃ (u)− z̃ (uv)]

[ỹ (u)− ỹ (uv)]
2
+ [z̃ (u)− z̃ (uv)]

2
(45)
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Remark 1 By introducing the new unknown Γ
opt

, the first equation in (44) does not contain the constraint
and its Lagrange multiplier; thus the two equations of the system have been decoupled. Therefore, once the

solution Γ
opt

has been determined, by inserting it into the second equation in (44), one can compute the
quantity ε, hence Eopt and Dopt

ind .

For the kernel of the first equation in (44) the representation

Ỹ (uv, u) =
Θ(uv, u)

uv − u
(46)

holds, where Θ ∈ Cm−1([−1, 1]× [−1, 1]) satisfies the properties

Θ(u, u) = lim
uv→u

Θ(uv, u) = 1 (47)

and
Θ(−uv, u) = Θ(uv,−u) (48)

In the following, it is assumed that the singular integral equation in (44) has a unique solution.
The uniqueness of the optimal circulation distribution has been formally demonstrated for cantilevered

planar wings in Reference [36].

VIII. Physical Interpretation of the Optimal Aerodynamic Efficiency Ratio

The term classical wing is used in this work to indicate the cantilevered planar wing system whose lifting
line is represented by a straight line. The total wingspan is indicated as 2bw.

Under optimal conditions the circulation distribution of this system is elliptical23,44 and the corresponding
minimum induced drag is

Dref
ind =

L2

2ρ∞πV 2
∞b

2
w

(49)

The optimal aerodynamic efficiency ratio ε previously introduced (see (43)) for a classical cantilevered wing
under optimal conditions with the same wing span and lift is indicated with εref and can be calculated
immediately from expressions (43) and (49):

εref =
L2

2πρ∞V 2
∞
b2wD

ref
ind

= 1 (50)

Thus, a classical cantilevered wing has optimal aerodynamic efficiency ratio equal to 1.
From equation 50 it is also deduced

εref = 1 =
LEref

2πρ∞V 2
∞b

2
w

⇒
L

2πρ∞V 2
∞b

2
w

=
1

Eref
(51)

where the Eref is the aerodynamic efficiency for the cantilevered classical wing under optimal conditions.
Substituting (51) into (43):

ε =
LEopt

2πρ∞V 2
∞b

2
w

=
Eopt

Eref
(52)

Thus, the following important property has been demonstrated:

The optimal aerodynamic efficiency ratio ε for a given wing represents the ratio between its aerodynamic
efficiency and the corresponding efficiency of a reference classical cantilevered wing with the same wing span and
total lift. Both efficiencies are evaluated under their respective optimal conditions.

A. Optimal Circulation and Aerodynamic Efficiency Ratio

The optimal aerodynamic efficiency ratio can also be related to the ratio between the optimal circulation,
evaluated at a generic location on the wing, and the maximum value for the optimal circulation of a classical
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wing (the total lift and wing span are maintained constant). To show this property, consider the maximum
value Γref

max for the circulation when a classical wing is under optimal conditions:

Γref
max =

2L

ρ∞πbwV∞
=

4V∞bw
Eref

⇒ Eref =
4V∞bw
Γref
max

(53)

From the definitions of Γ
opt

(see (42)), ε (see (52)), and Γref
max (see (53)) the following relationship holds:

Γ
opt

(u) =
ε

Γref
max

bw Γ̃opt (u) (54)

from which it follows:

Γ̃opt (u) =
Γref
max

ε

(
1

bw

)
Γ

opt
(u) (55)

B. Optimal Induced Drag and Aerodynamic Efficiency Ratio

The induced drag under optimal conditions, Dopt
ind , can be immediately expressed as a function of the optimal

aerodynamic efficiency ratio. This is accomplished by calculating the ratio between the optimal induced
drag Dopt

ind for the wing under investigation and the reference optimal induced drag Dref
ind for a classical wing

with the same wing span and total lift (see (52)):

Dopt
ind

Dref
ind

=
Eref

Eopt
=

1

ε
(56)

which implies (see (49)):

Dopt
ind =

1

ε
DRef

ind =
1

ε

L2

2ρ∞πV 2
∞b

2
w

(57)

IX. Minimum Induced Drag Curvature-Invariance Theorem

The problem of finding the minimum induced drag for a given lift and wingspan (see system (44))
presents an important property of invariance. To discuss this property, consider a generic single-wing system
symmetric with respect to the x−z plane. Suppose that the minimum induced drag problem has been solved

and that Γ
opt

is the corresponding solution.
Consider now a lifting line perfectly identical to the one previously considered. Assume that this second
lifting line is mirrored with respect to the first one (i.e., the two lifting lines are the symmetric image of
each other with respect to the ỹ axis, as Figure 4 shows). A point P on the lifting line is identified by the

Figure 4. Identical lifting lines which are the symmetric image of each other with respect to the ỹ axis.

parameter u. For the same value of the parameter, the symmetric point PM is identified on the mirrored
system. Because of the symmetry, both points P and PM present the same y coordinate and opposite z
coordinate:

ỹM (u) = +ỹ (u)

z̃M (u) = −z̃ (u)
(58)
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Similar arguments can be applied for points symmetrically located and identified by the parameter uv.
Relationships (58) and the counterpart formula written when the parameters is uv can be used to calculate

the kernel ỸM (uv, u) for the mirrored system (see equation (46)):

ỸM (uv, u) =
ỹ ′ (uv) [ỹ (u)− ỹ (uv)] + z̃ ′ (uv) [z̃ (u)− z̃ (uv)]

[ỹ (u)− ỹ (uv)]
2
+ [z̃ (u)− z̃ (uv)]

2
≡ Ỹ (uv, u) (59)

The ELE and the constraint for the mirrored system are immediately deduced from system (44) (the subscript
M is now used to clearly indicate that the mirrored wing is considered):





−
1

π

1∫

−1

− Γ
opt

M (uv) Ỹ (uv, u) duv = ỹ (u) , −1 < u < 1

−
2

πb2w

1∫

−1

Γ
opt

M (u)
dỹ (u)

du
du = εM

(60)

It is immediate to recognize that the ELE (first equation in (60)) is formally identical to the ELE of the
given lifting line (see the first relation in (44)). Since it has been assumed that the ELE equation has a
unique solution, this implies that

Γ
opt

M (uv) = Γ
opt

(uv) (61)

Substituting this result into the second equation in (60), the definition of ε (see (44)) is obtained. In other
words, the lifting line and its mirrored counterpart have

ε = εM ⇒
L2

2πρ∞b2wV
2
∞Dopt

ind

=
L2
M

2πρ∞b2wV
2
∞Dopt

M ind

(62)

If the comparison between the lifting systems is done by maintaining the same lift (so that LM = L), then
from (62) it is deduced that

Dopt
ind = Dopt

M ind (63)

which is also confirmed by the discussion presented in Reference [29] (page 23). It is then concluded that
the demonstration of the the Minimum Induced Drag Curvature-Invariance Theorem (MIDCIT):

Changing the sign of the curvature of the lifting line (i.e., the arc from convex is changed to concave or
viceversa) does not modify the optimal induced drag and circulation distribution: the optimal solution is then
invariant if the sign of the curvature is modified.

X. Quasi-Closed C-Wing Zero Gradient Optimal Circulation Theorem

When the tips of a C-wing are (symmetrically and smoothly) brought close to each other, an interesting
property of the optimal circulation arises.

For notational convenience, the circulation function in the initial representation Γopt(η) is considered. It
is recalled that this function was assumed to be uniquely defined by the ELE (41) for any value of the wing
tips η = ±a, with Γopt(−a) = Γopt(a) = 0, as long as the lifting line ℓ is open. Moreover, because of the
symmetry of ℓ, Γopt(η) is an even function, while its first derivative is odd. Thus,

d

dη
Γopt(η)

∣∣∣
η=−a

+
d

dη
Γopt(η)

∣∣∣
η=a

=:
d

dη
Γopt(−a) +

d

dη
Γopt(a) = 0 (64)

for any chosen value of a (as long as the curve is open). Note that when the value of a changes, also the
ELE solution changes, that is, we have Γopt(η) = Γopt

a (η).
Now, smoothly close the (open) line ℓ symmetrically, by moving a to a value a0 > a, where the curve is

smooth and η(−a0) = η(a0), so that this limit curve becomes closed and smooth at any of its points. If it is
assumed, as suggested by our numerical testing, that the following limit exists:

lim
a→a0

d

dη
Γopt
a (±a) =:

d

dη
Γopt
a0

(±a0) =
d

dη
Γopt
a0

(a0)
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then, because of 64,

lim
a→a0

[
d

dη
Γopt
a (−a) +

d

dη
Γopt
a (a)

]
= 2

d

dη
Γopt
a0

(a0) = 0

From this, the following property finally follows:

d

dη
Γopt
a0

(a0) = 0

In other words, if the above assumption holds, and indeed this seems to be confirmed by our numerical
testing, then the following Quasi-closed C-Wing Zero-gradient Optimal Circulation Theorem (QCWZOCT)
holds:

If the two tips of a C wing are brought indefinitely close to each other, then both the optimal circulation and
its first derivative tend to zero at those points.

Note that this does not mean that this property holds for the closed curve. In fact, all the results derived
in this paper hold for symmetric open lifting lines. It simply means that when the line tips tend to the above
common point, the values of the endpoint first derivative of Γopt tend to zero. The case of a (smooth) closed
lifting line will be examined in a forthcoming paper.

XI. Minimum Induced Drag Problem: Solution Strategy

The system of equations that needs to be solved is represented by the ELE (written in its integral form)
and the constraint represented by the total lift (see equation (44)). The solution strategy is then the following.
First the curve representing the lifting line is selected. The parametrization is assumed to be known. Second
the integral equation (first relation of equation (44)) is numerically solved (how this is accomplished will

be discussed later) to obtain the unknown circulation Γ
opt

. Third, the calculated Γ
opt

is substituted into
the second relation of equation (44) and the optimal aerodynamic efficiency ratio ε is calculated. Forth, the
specific aerodynamic efficiency is used to calculate the optimal induced drag (see equation (57)). Fifth, the
actual circulation is calculated from equation (55).

The steps required to solve the minimization problem are graphically described in Figure 5.
Once the optimal circulation has been determined, it can be used to define the geometric parameters (the

solution is not unique on this regard) of the wing (e.g, twist, chord distribution) as discussed in Reference
[44].

XII. Numerical Methods

Taking into account representations (46) and (47), the ELE in equation (44) is rewritten as follows:

−
1

π

1∫

−1

−
Γ

opt
(uv)

uv − u
duv −

1

π

1∫

−1

κ(uv, u)Γ
opt

(uv) duv = ỹ (u), −1 < u < 1 (65)

where

κ(uv, u) =
Θ(uv, u)−Θ(u, u)

uv − u
∈ Cm−2([−1, 1]× [−1, 1]), m ≥ 2.

Note that

κ(u, u) = lim
uv→u

κ(uv, u) =
∂Θ(uv, u)

∂uv
|uv=u

and
κ(uv,−u) = −κ(−uv, u)

or, equivalently,
κ(−uv, u) = −κ(uv,−u).

and
κ(−uv,−u) = −κ(uv, u). (66)
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Figure 5. Minimization of induced drag for a fixed total lift and wing span: solution strategy for the case of
a single-wing system.

This is a classical singular integral equation (SIE) of the first kind45,46 that appears in many engineering
problems. It has been studied by several authors, and several numerical methods have been proposed for its
solution; see for example References [45–49]. In the application that is being considered in this paper, its

solution Γ
opt

(uv) is taken of the following form:

Γ
opt

(uv) =
√
1− u2v Υ(uv)

and is symmetric, that is, Υ(−uv) = Υ(uv).
By inserting this expression in (65), the new representation is obtained:

−
1

π

1∫

−1

−
√
1− u2v

Υ(uv)

uv − u
duv −

1

π

1∫

−1

√
1− u2v κ(uv, u)Υ(uv) duv = ỹ (u), −1 < u < 1 (67)

i.e., in operator form,
(A+K)Υ = ỹ (68)

This defines a SIE of index −1.
The mapping properties of the operators A,K and A +K, when acting in a scale of weighted Sobolev

subspaces of the Hilbert space

L2
w(−1, 1) =

{
f :

∫ 1

−1

√
1− u2|f(u)|2du <∞

}
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have been examined in Reference [48], Section 4. In particular the authors of this paper show that when
the RHS ỹ and the kernel κ satisfy certain (sufficient) conditions, the SIE has a unique solution in the
corresponding space. Unfortunately, all the required conditions are fulfilled except one on the kernel. This
is: ∫ 1

−1

1√
1− u2v

κ(uv, u) duv = 0, ∀u ∈ [−1, 1]

which is, as recognized by the same authors, very restrictive. Also results on the endpoint behavior of the
solution Υ(uv) are not known. These issues are by no means trivial, and will be examined in a separate
paper.

Therefore, it is assumed that for the particular right hand side ỹ (u) equation (67) has a unique solution
in the space L2

w(−1, 1). Because of the symmetries of the kernel and of the known term, this solution must
then be necessarily an even function. Note that the RHS function ỹ (u) appears also in the definition of the
kernel κ(uv, u).

To solve the above equation, among the possible numerical methods, the very simple and effective quadra-
ture method described in Eq. (3.3) of Reference [46], and based on the classical Gaussian rule associated
with the weight function

√
1− u2v (see formula 25.4.40 of Reference [50]) is chosen. In the case of an even

number of nodes, this is:

−

2n∑

s=1

w2n
s

[
1

u2nvs − u2n+1
q

+ κ(u2nvs , u
2n+1
q )

]
as = ỹ (u2n+1

q ), q = 1 : 2n+ 1 (69)

where:

w2n
s =

1

2n+ 1
sin2

sπ

2n+ 1
, s = 1 : 2n

u2nvs = cos
sπ

2n+ 1
, s = 1 : 2n

u2n+1
q = cos

(2q − 1)π

4n+ 2
, q = 1 : 2n+ 1

It is an over-determined set of equations, which turns out to have, however, a unique symmetric solution.
By taking into account this property, which implies

a2n+1−s = as, s = 1 : n

as well as the following symmetries:

ỹ (−u) = −ỹ (u)

κ (−uv, u) = −κ (uv,−u)

w2n
s = w2n

2n+1−s, s = 1 : n

u2nvs = −u2nv,2n+1−s, s = 1 : n

u2n+1
q = −u2n+1

2n+2−q, q = 1 : n

system (69) is reduced to the following one, which is of order n:

n∑

s=1

w2n
s

[
2u2n+1

q

[u2nvs ]
2 − [u2n+1

q ]2
+ κ(u2nvs , u

2n+1
q ) + κ(−u2nvs , u

2n+1
q )

]
as = ỹ (−u2n+1

q ), q = 1 : n (70)

Note that the equation in (69) corresponding to the collocation point u2n+1
n+1 = 0 (i.e., for q = n + 1) is

trivially satisfied, since both of its members are equal to zero for any given values of the coefficients as. Thus
it must be deleted from the system.

Once this system is solved, the approximate solution is given by the following expression:

Υ(uv) ≈ Υ2n(uv) =
2n∑

s=1

asLs (uv) (71)
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where {Ls (uv) , s = 1 : 2n} are the (2n − 1)-degree fundamental Lagrange polynomials associated with
the 2n zeros {u2nvd} of the 2n-degree Chebyshev polynomial of the second kind U2n(uv) and defined by the
interpolation conditions Ls(u

2n
vd) = δsd, where δsd represents the Kronecker symbol. Note that these latter

imply
as = Υ2n(u

2n
vs )

Furthermore, the following representation holds:

Ls (uv) =
U2n(uv)

(uv − uvs)U ′
2n(uvs)

Setting uv = cos(θv), 0 ≤ θv ≤ π, hence Υ(uv) = Υ(cos θv), and recalling the representation

Um(cos θv) =
sin(m+ 1)θv

sin θv

it is not difficult to obtain the following alternative, but computationally simpler, expression for the poly-
nomials Ps(cos θv), when θv ̸= θvs:

Ls(cos θv) =
sin2 θvs

(4n+ 2) sin
θv + θvs

2
sin

θv − θvs
2

cos(2n+ 1)θvs

sin(2n+ 1)θv
sin θv

It is recalled that for θv = θvs it is Ls(cos(θvs) = 1, while if θv = 0, π, the quantity sin(2n + 1)θv/ sin θv
must be replaced by its limit value, which is given by U2n(±1) = 2n + 1 (see Reference [50], p.777). The
following trivial identity is also recalled:

sin(2n+ 1)θv
sin θv

∣∣∣
θv=π/2

= (−1)n

Remark 2 Since Υ2n(uv) is an even function, while formally it is a polynomial of degree 2n − 1, its true
degree is 2n− 2.

The optimal aerodynamic efficiency ratio ε is then computed by applying the same Gaussian rule men-
tioned above to the integral representation (see equation 44), that is,

ε = −
2

π

1

b2w

1∫

−1

√
1− u2v Υ(uv) ỹ

′(uv) duv ≈ −
4

b2w

n∑

s=1

w2n
s as ỹ

′(u2nvs ) (72)

In the case of a Gaussian rule with an odd number of nodes, the proposed method takes the following
form:

−
2n+1∑

s=1

w2n+1
s

[
1

u2n+1
vs − u2n+2

q

+ κ(u2n+1
vs , u2n+2

q )

]
as = ỹ (u2n+2

q ), q = 1 : 2n+ 2 (73)

where:

w2n+1
s =

1

2n+ 2
sin2

sπ

2n+ 2
, s = 1 : 2n+ 1

u2n+1
vs = cos

sπ

2n+ 2
, s = 1 : 2n+ 1

u2n+2
q = cos

(2q − 1)π

4n+ 4
, q = 1 : 2n+ 2

Also in this case there is an over-determined set of equations; however, since the solution is an even function,
by taking into account this property, which implies

a2n+2−s = as, s = 1 : n
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as well as the symmetries of the involved quantities, as was done in the previous case, system (69) is reduced
to the following one, of order n+ 1:

n∑

s=1

w2n+1
s

[
2u2n+2

q

[u2n+1
vs ]2 − [u2n+2

q ]2
+ κ(u2n+1

vs , u2n+2
q ) + κ(−u2n+1

vs , u2n+2
q )

]
as

+w2n+1
n+1

[
− 1

u2n+2
q

+ κ(0, u2n+2
q )

]
an+1 = ỹ (−u2n+2

q ), q = 1 : n+ 1

(74)

Once this system is solved, the approximate solution, an even polynomial of degree 2n, is given by the
following expression:

Υ(uv) ≈ Υ2n+1(uv) =

2n+1∑

s=1

asLs (uv) , as = Υ2n+1(u
2n+1
vs ) (75)

where, for θv ̸= θvs it is:

Ls(cos θv) =
sin2(θ2n+1

vs )

(4n+ 4) sin
θv + θ2n+1

vs

2
sin

θv − θ2n+1
vs

2
cos(2n+ 2)θ2n+1

vs

sin(2n+ 2)θv
sin θv

It is recalled that for when θv = 0, π, the quantity sin(2n+ 2)θv/ sin θv must be replaced by its limit value,
which is given by U2n+1(±1) = ±(2n+ 2).

Remark 3 Unfortunately, convergence results for the above approximant Υm(uv) to the true solution Υ(uv),
as m→ ∞, are not available. Nevertheless, in the numerical testing that has been performed, the above linear
systems were non singular for all the values of n considered, and the associated approximants did show a
convergent behavior. These results are very similar to those obtained by applying some alternative, but less
efficient, numerical methods.

XIII. Parameterizations of Interest and Superformula

To find the optimal circulation of a generic non-planar wing represented by the lifting line ℓ, it is necessary
to evaluate the expression for the kernel (see for example equation (46)). This means that for each value of
the parameter u (or uv) the corresponding values of ỹ and z̃ need to be calculated.

Consider the case in which the lifting line is represented by a parabola z̃ = µỹ 2 defined for ỹ ∈ [−1, 1].
The parameter µ allows one to modify the vertical aspect ratio (defined as the ratio between the vertical
dimension and the wingspan of the system). That is, if µ is equal to zero, then the lifting line is a straight
segment (classical wing). Increasing µ to a non-zero value makes the vertical aspect ratio larger. Thus, large
values of µ determine highly non-planar wings.

A parametrization of the parabola could be the following:

{
ỹ (u) = −u

z̃ (u) = µu2
(76)

where u ∈ [−1, 1].
More general parameterizations are possible. Particularly powerful is the “superformula”51 which allows

one to systematically obtain various natural polygons with rounded sharp edges (so that corners are not
present for selected of the parameters as seen later). The parametric equation of the superformula is the
following: {

ỹ (u) = −R (πχu) · sin (πχu)

z̃ (u) = µ · R (πχu) · cos (πχu)
(77)

where µ allows one to change the vertical aspect ratio (see previous discussion). R (u) is defined as

R (πχu) =
[∣∣∣cos

(
π
m

4
χu

)∣∣∣
p2

+
∣∣∣sin

(
π
m

4
χu

)∣∣∣
p3
]− 1

p1

(78)
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The parameter χ ∈ [0, 1] is provided by the user. Values of χ near zero make the represented curve close to
a straight segment. Values of χ close to 1 make the curve almost a closed path.

The positive real numbers m, p1, p2, p3 are also inputs. In particular, m identifies the number of rota-
tional symmetries. If m = 4 and p ≡ p1 = p2 = p3 = 2, then the superformula (77) identifies arcs of circle
(when µ = 1) or ellipse (when µ ̸= 1).

If the value of p is increased, then “quasi corners” appear. The quasi corners do not present discontinuity
of the derivatives (as it would be for actual corners). The concept is shown in Figure 6.

Figure 7 shows some examples of different curves obtained from the superformula. Particularly interesting
is the effect of the sign of µ: if µ is positive, then the C-wing “closes” from above. If µ is negative the reverse
happens.

Figure 6. superformula: quasi corners obtained by increasing the parameter p.

Figure 7. Superformula for different sets of the parameters

The superformula can be further exploited and more shapes can be obtained. This can be analytically
shown as follows. Suppose that a given shape needs to be rotated (without violation of the symmetry with
respect to z). First the superformula (see equation 77) is written in an auxiliary coordinate system (indicated
as ŷ and ẑ) and the parameter µ is set equal to 1:

{
ŷ (u) = −R (πχu) · sin (πχu)

ẑ (u) = +R (πχu) · cos (πχu)
(79)

Second, if the figure needs to be rotated by an angle πϑ, then equation (79) is modified with the formal
substitution χu→ χu+ ϑ:

{
y⋆ (u) = −R⋆ [π (χu+ ϑ)] · sin [π (χu+ ϑ)]

z⋆ (u) = +R⋆ [π (χu+ ϑ)] · cos [π (χu+ ϑ)]
(80)
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where y⋆, z⋆, and R⋆ are the new quantities obtained after the above mentioned formal substitution is
implemented.

Third, the actual dimensionless coordinates ỹ and z̃ are obtained from (80) by multiplication of the
rotation matrix. The factor µ is introduced at this stage to change the wing vertical aspect ratio:


 ỹ (u)

z̃ (u)


 =


 cos (πϑ) sin (πϑ)

−µ sin (πϑ) µ cos (πϑ)




 y⋆ (u)

z⋆ (u)


 (81)

The superformula corresponding to the rotated shape is then





ỹ (u) = R⋆ [π (χu+ ϑ)] ·
[
− sin [π (χu+ ϑ)] · cos (πϑ) + cos [π (χu+ ϑ)] · sin (πϑ)

]

z̃ (u) = µR⋆ [π (χu+ ϑ)] ·
[
+ sin [π (χu+ ϑ)] · sin (πϑ) + cos [π (χu+ ϑ)] · cos (πϑ)

] (82)

The concept is explained in Figure 8.

Figure 8. Example of modification of the Superformula.

As previously anticipated, not all values of the parameters provide corner-free curves. It should be noted
that the mathematical derivations and demonstrations of this work are valid only for curves that do not
present any corner. Thus, the selection of the superformula’s parameters needs to be done with care. Unless
otherwise specified, the superformula used in the different cases is reported in (77) and (78).

The invariant procedure proposed in this work can also be used if the geometry is described by a smooth
piecewise function (with no corners). This means, for example, that (smooth) cubic splines could be effec-
tively employed to investigate wings of interest for the designer.
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XIV. Results

A. Numerical Study: Convergence Test

The numerical solution is carried out by adopting the procedure shown in Figure 5. The crucial part is the
solution of the integral equation. The method is discussed in section XII. Figure 9 shows a convergence study
for a C-wing which is obtained from the superformula (equations (77) and (78)) by setting the parameters
shown in the figure. It can be observed that when parameter n (see equation (71) and Figure 9) is larger
than 50 the solution practically does not change and a convergence is reached. Moreover, the convergence
of the optimal aerodynamic efficiency ratio ε is even faster and with n = 40 the correct value is reached.

In the authors’ experience the wing system of Figure 9 is one of the most numerically challenging cases.
Nevertheless, the performance of the numerical method is excellent. In other cases a far smaller number of
terms is sufficient to achieve the desired accuracy.

Figure 9. Study of the convergence of the numerical method

B. Validation

The present invariant procedure for the induced drag minimization correctly predicts the well known result44

about the classical wing loaded with elliptical distribution. The analytical derivations proving this fact are
omitted for brevity.

Other validations are performed by comparing the aerodynamic specific efficiency with known39 values
relative to lifting lines represented by circular arcs. The correlation is excellent (see Figure 10). Other
validations will be presented later when the C-wings will be discussed.

In all the results the prescribed lift (not relevant as far as the specific aerodynamic efficiency is concerned)
is modified case by case so that the graphical plots of the optimal circulation are the clearest possible.

C. Effects of the Vertical Aspect Ratio

To investigate the effect of the vertical aspect ratio, a wing whose lifting line is a parabola is considered.
That is, the lifting line has equation z̃ = µỹ 2. Figure 11 shows that increasing µ (and so the vertical aspect
ratio) reduces the optimal induced drag Dopt

ind with respect to the reference value Dref
ind represented by the

optimal induced drag of an elliptically loaded cantilevered wing. Figure 11 also shows the optimal circulation
distributions for µ = 0 (case of classical wing), µ = 0.25, and µ = 0.5. A simplified formula for the ratio
Dopt

ind/D
ref
ind is also provided in Figure 11. It can be observed that increasing the vertical aspect ratio is highly

beneficial as far as the induced drag is concerned. It has been numerically verified that very large vertical
aspect ratios produce practically induced-drag-free systems. This is in agreement with the tables reported
in Reference [30] and with the discussion reported in section 20, page 135 of Reference [31].

Another interesting qualitative aspect is that the gradients of the optimal circulation decrease in mag-
nitude when the vertical aspect ratio is increased (see Figure 12). This is consistent with the observation
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Figure 10. Optimal conditions of lifting arcs: validation. In parenthesis the results obtained from Reference
[39] are reported.

that high vertical aspect ratio corresponds to very low levels of induced drag, quantity that is known to be
directly linked to the gradients of the circulation.

D. Effects of the Winglets on the Induced Drag

It is well known that the adoption of winglets substantially reduces the induced drag. Different design options
are possible. A few of these options are presented in Figure 13. It is possible to observe that the vertical
winglets provide the best specific aerodynamic efficiency. However, the lowest induced drag is obtained by
having an obtuse angle (which determines a higher wing span, see Figure 13 c) ).

E. Effects of the Wing Curvature on the Optimal Induced Drag

As previously discussed in section XIII, changing the parameters of the superformula dramatically changes
the shape of the lifting line (see Figure 6). This also affects the induced drag, as demonstrated in Figure
14. In particular, if the C-wing becomes increasingly similar to a portion of rectangle (Figure 14) then the
optimal induced drag is substantially reduced.
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Figure 11. Optimal induced drag of a parabolical wing for increasing vertical aspect ratio.

Figure 12. Variation of the optimal circulation and specific aerodynamic efficiency with increasing vertical
aspect ratio. In all these cases it is p1 = p2 = p3 = 40 and m = 4.

F. Quasi-Closed C-Wing Minimum Induced Drag Conjecture (QCWMIDC)

It is of a relevant engineering interest to investigate what happens when the C-wing is modified until it
becomes a quasi-closed system. Figure 15 presents the results. It can be observed a reduction of the gradients
of the optimal circulation (fact earlier noted) when the system is almost a closed system. Moreover, the
optimal induced drag is reduced. Reference [39] analytically demonstrated that the optimal distribution
is not unique and adding a constant circulation does not change the optimal induced drag. However, the
demonstration was limited to elliptical annular wings. This concept is also included by Kroo in Reference
[10], where a discussion on closed systems is presented. In particular, it is possible to read (page 17):

...the optimal load distribution is not unique. One may superimpose a vortex loop with constant circulation
on any of these wing geometries. This changes the local loading, but because the circulation is constant, the
wake (and hence the lift and drag) is unchanged.

Moreover, Kroo links on page 18 this fact to the C-wing concept:
...We can, however, add a fixed circulation to the [closed] system so that the lower wing carries the entire lift

and the upper wing carries none. The lift and vortex drag are unchanged. This is the reason that the C-wing
geometry in figure 2 so closely approximates the drag of the boxplane: we simply adjust the constant circulation
increment so that the inner part of the upper wing is not needed.
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Figure 13. Optimal conditions for different types of winglets.

Figure 14. The parameter p is associated with the curvature of the wing. For p = 2, the C-wing is a semi-ellispe,
while for p → ∞ the C-wing presents quasi-corners.
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Figure 15. Quasi-closed C-wing system.

These concepts are also graphically presented in Figure 24 of Reference [39]. However, the fact that
a quasi-closed C-wing presents the same optimal induced drag has not been formally demonstrated in the
literature. What References [10] and [39] report is named here Quasi-closed C-Wing Minimum Induced
Drag Conjecture (QCWMIDC).

QCWMIDC is verified in Figure 10, where the quasi-closed circular arc presents the same optimal induced
drag (and efficiency) of the corresponding circular wing.29,39 Another qualitative proof of QCWMIDC can
be derived by taking the boxwing introduced in Reference [10] and presenting a height-to-wingspan ratio
equal to 0.2. As can be seen from Figure 16, the conjecture is verified. Moreover, the present invariant

Figure 16. Verification of the Quasi-Closed C-Wing Minimum Induced Drag Conjecture.

minimization procedure exactly reproduces the value of the specific aerodynamic efficiency of 1.46 as can be
seen on Figure 2 of Reference [10]. It should be noted that all the wings analyzed in Figure 16 were obtained
by setting µ = −0.2. If all the other parameters are kept the same but it is set µ = 0.2, then a mirrored
system is obtained and the optimal induced drag and aerodynamic specific efficiency do not change. In other
words, it has been numerically verified the Minimum induced Drag Curvature-Invariance Theorem earlier
demonstrated.

QCWMIDC is also verified for elliptical annular wings, for which there is analytical closed-form solution
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of the specific aerodynamic efficiency.39 The details are omitted for brevity.

G. Minimum Induced Drag Conditions for Wings of Various Shapes

The present invariant induced drag minimization procedure is now adopted to study various configurations.

1. Optimal Distributions and Specific Aerodynamic Efficiencies for V-Shaped Wings

The optimal circulation and specific aerodynamic efficiency of various cases are reported in Figure 17. The
beneficial effects of vertical aspect ratio and winglets are confirmed.

Figure 17. Optimal conditions for various V-shaped wings and effects of winglets. The superformula used to
generate these cases is reported in equation 82

2. Optimal Distributions and Specific Aerodynamic Efficiencies for Highly Non-planar Wings

Figures 18, 19, and 20 show the optimal circulation distribution and specific aerodynamic efficiencies for
various configurations. It is confirmed that highly non-planar wings present great beneficial in the induced
drag reduction. It can also be observed that the Quasi-Closed C-Wing Zero Gradient Optimal Circula-
tion Theorem is satisfied. This confirms the analytical demonstration earlier presented (see the discussion
presented in section X).

XV. Conclusions

Under the hypotheses of linear potential flow and rigid wake aligned with the freestream, an invariant
formulation for the induced drag minimization of a generic non-planar single-wing system has been presented
for the first time. The Euler-Lagrange equation is obtained with a variational method. It is an integral
equation which contains only the unknown circulation and not its derivatives. The kernel presents a first
order singularity.

Munk’s Minimum Induced Drag Theorem is naturally deduced in the derivation of the optimal conditions
and the constant of proportionality, not explicitly reported by Munk, is determined in this work. The original
theorem presented by Munk is then reformulated as the Augmented Munk’s Minimum Induced Drag Theorem
(AMMIDT):

When the lifting system has been translated into a single plane (Munk’s stagger theorem), the induced drag
will be minimum when the component of the induced velocity normal to the lifting element at each point is
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Figure 18. Optimal conditions for various highly non-planar wings. The superformula used to generate these
cases is reported in equation 82
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Figure 19. Optimal conditions for various highly non-planar wings. The superformula used to generate these
cases is reported in equation 77
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Figure 20. Optimal conditions for various highly non-planar wings. The superformula used to generate these
cases is reported in equation 82

proportional to the cosine of the angle of inclination of the lifting element at that point. The constant of
proportionality is the ratio between the freestream velocity and the optimal aerodynamic efficiency.

The general formulation can also be used to demonstrate induced drag theorems. In particular, the Min-
imum Induced Drag Curvature-Invariance Theorem (MIDCIT) and the Quasi-closed C-Wing Zero-gradient
Optimal Circulation Theorem (QCWZOCT) are introduced, demonstrated and the implications on the min-
imum induced drag conditions for various wing systems are discussed.

An efficient numerical procedure for the minimization problem is also introduced. This could be used
in the early stages of the design for a quick estimate of the optimal induced drag conditions. Within a few
seconds on a common laptop, the present procedure (implemented in MATLAB) provides optimal circulation
distributions, aerodynamic efficiency, and induced drag.

It is numerically verified that a quasi-closed C-wing presents the optimal induced drag of the correspond-
ing closed system. Although a formal demonstration is not available yet, this confirms the claims in the
literature.

Open questions still need an answer. Besides the demonstration of the conjecture that a quasi-closed
C-wing presents the same optimal efficiency of the corresponding closed wing, it needs to be investigated the
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issue of asymptotic behavior of the optimal induced drag of boxwings (see the discussion earlier presented
in the introduction). Moreover, a formal proof of the Augmented Munk’s Minimum Induced Drag Theorem
for closed systems and multi-wings is not yet available. Future work will address these open questions and
investigate the existence of additional induced drag theorems.

XVI. Appendix: A Useful Mathematical Identity

Under the assumption that has been made on the curve ℓ, i.e., on its parametrization ψ(u), u ∈ [−1, 1],
and on the circulation Γopt, it can be shown that the mathematical identity reported below, that have been
used to derive some of the key results presented in this paper, holds.

Let δ(η) be a smooth function in [−a, a] vanishing at the endpoints −a, a. Then, the following relation
holds:

a∫

−a

δ (η)

a∫

−a

−
dΓopt (ξ)

dξ
Y (η, ξ) dξdη =

a∫

−a

Γopt (η)

a∫

−a

− δ′(ξ) Y (η, ξ) dξdη (83)

To prove this relation, recalling (33) the left hand side of (83) is rewritten as follows:

a∫

−a

δ (η)

a∫

−a

−
dΓopt (ξ)

dξ
Y (η, ξ) dξdη =

a∫

−a

δ (η)

a∫

−a

−
dΓopt (ξ)

dξ

(
−

d

dη
ln |r (ξ)− r (η)|

)
dξdη (84)

Next, it is recalled (see, for example, Remark 1 in [52]), that the (inner) Cauchy principal value integral
of the right hand side can be rewritten in the form:

a∫

−a

−
dΓopt (ξ)

dξ

(
−

d

dη
ln |r (ξ)− r (η)|

)
dξ = −

d

dη

a∫

−a

dΓopt (ξ)

dξ
ln |r (ξ)− r (η)| dξ

Integrating by parts the latter integral, and recalling that Γopt(−a) = Γopt(a) = 0, the following relationship

a∫

−a

−
dΓopt (ξ)

dξ

(
−

d

dη
ln |r (ξ)− r (η)|

)
dξ =

d

dη

a∫

−a

− Γopt (ξ)
d

dξ
ln |r (ξ)− r (η)| dξ =: F ′(η)

is further obtained. Thus, the left hand side of relation (83) takes the form:

a∫

−a

δ(η)F ′(η)dη

Under the assumptions made on the function δ(η), and noticing that F (η) has only a log singularity at
the endpoints η = −a, a, the latter integral can be integrated by parts. This gives:

a∫

−a

δ(η)F ′(η)dη = −

a∫

−a

δ′(η)F (η)dη

that is,
a∫

−a

δ(η)F ′(η)dη =

a∫

−a

δ′(η)

a∫

−a

− Γopt (ξ)

[
−

d

dξ
ln |r (ξ)− r (η)|

]
dξdη

Finally, taking advantage of the identity (see [53], p. 171):

a∫

−a

dξ

a∫

−a

−
Φ(η, ξ)

ξ − η
dη =

a∫

−a

dη

a∫

−a

−
Φ(η, ξ)

ξ − η
dξ
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where in the case under consideration the function Φ(η, ξ) := δ′(η) Γopt(ξ)Y (ξ, η) (ξ−η) = −δ′(η) Γopt(ξ) q(ξ, η)
satisfies the smoothness assumptions required in [53], after exchanging η with ξ the wanted identity (83) is
obtained.
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