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INVARIANT FUNCTIONS FOR AMENABLE SEMIGROUPS
OF POSITIVE CONTRACTIONS ON L'

By WaTaru TAakAHASHI

1. Imtroduction.

Let (X, &, m) be a o-finite measure space and 3 be an amenable semigroup of
positive contractions on L'=LYX, &,m). In this paper, we are interested in finding
necessary and sufficient conditions for the existence of a strictly positive element
which is invariant under every element 7 in an amenable semigroup of positive
contractions on L' and obtaining a generalization of well known ergodic theorem
proved for the case when X is the semigroup generated by a single positive con-
traction T on L'. So far various necessary and sufficient conditions for the existence
of invariant measure equivalent to m have been obtained by several authors for
the case when 2 is the semigroup generated by a single positive contraction T on
L'; that is, there are several conditions obtained by Hopf [14], Dowker [5] [6],
Calderdn [2], Hajian-Kakutani [12] and Sucheston [19] for the case of an operator
which arises from a measurable transformation, and by Ito [16] and Hajian-Ito [13]
for the case of an operator which arises from a Markov process. Furthermore,
these have been extended elegantly by Neveu [18] for the case of a positive con-
traction on L. In this paper, we extend some results obtained by Neveu [18] to
an amenable semigroup of positive contractions on L. On the other hand, the
ergodic theorem also has been obtained by several authors for the case when 2 is
the semigroup generated by a single operator. It was first proved by Birkhoff [1]
for point transformations with an invariant ¢-finite measure. For Markov processes,
Kakutani [17] proved it for a finite invariant measure and for bounded functions.
Hopf [15] extended it to a finite invariant measure and functions in L!. Dunford-
Schwartz [7] proved it for a o-finite invariant measure and functions in L%

Main results in this paper are the following; at first, we find necessary and
sifficient conditions for the existence of a strictly positive element which is invariant
under every T in 2; see Theorem 1. Secondly, we find several equivalent conditions
for no existence of non-trivial and non-negative element in L! which is invariant
under every T in 3; see Theorem 2. Finally, we extend the well known ergodic
theorem to an arbitrary amenable semigroup which has been proved for a single
positive contraction T with a strictly positive invariant function in L'; see Theorem
3. It is interesting to note that essentially same results (Theorem 1) were performed
by Y. Ito in a recent conference of the Mathematical Society of Japan.
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2. Preliminaries.

Let ¥ be an abstract semigroup and »(2) be the Banach space of all bounded
real valued functions on 2 with the supremum norm. For each seX and fem(2),
we define elements f; and f° in m(3) given by fi{(#)=f(st) and f5(¢)=r(#s) for all
teX. An element pem(2)* (the dual space of m(2)) is called a mean on m(Y) if
lpll=p)=1. A mean p is called left [right] invariant if p(fo)y=p(f) [(f*)=p()]
for all fem(>) and se¥. An invariant mean is a left and right invariant mean.
A semigroup which has a left invariant mean [right invariant mean] is called left
amenable [right amenable]l. A semigroup which has an invariant mean is called
amenable. Let X be an amenable semigroup, then YsN2tx¢ and s¥Ne¥=x¢ for
all s,teX [10] [11]. So, if we define an order £=s by feXsU({s}, 2 is a directed set.

LemMmA 1. Let X be a semigroup and M be the closed linear span of the subset
{fs—f, =1 fem(2) and sed} of m(2). Then, 2 is amenable if and only if 1 is
not contained in M. If X is an amenable semigroup with the order defined above
and f is an element of m(2), then we have

supinf f(f)=p(f)=infsup /(?)

Sor any invaviant mean p on m().

Proof. If ¥ is amenable, by definition there exists an invariant mean on m(>).
Since u(f)=0 for all fe M, it is obvious that 1 is not contained in M. On the other
hand, if 1 is not contained in M, then there exists an element pem(3)* such that
Null=p)=1 and wu(f)=0 for all feM. Therefore, ¥ has an invariant mean. Let
¢ be a real number satisfying

c<supinf f(#).
K 3=t
Then there exists an element # such that ¢< f(¢) for all ¢=#. Since f“H)=s(u)>c¢

for all € and g is an invariant mean on m(Y), we have p(f)=p(f/*)=pc)=c.
Therefore,

sup ng FO=p(f).
Similarly, we obtain
uN= irslf SSQPf @-

Throughout this paper, let (X, &, m) be a finite or ¢-finite measure space and
let L'=L"X, F,m) and L°=L"(X, F,m) be Banach spaces with their respective
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norms defined as usual. Since L™ is the dual space of L', we use this duality to
write <f, &) for [f-hdm, where feL'and heL>. A notation 1p is the characteristic
function of a measurable set 7. Let T be a linear operator on L?, then we denote
the adjoint operator by T*. If T is a positive contraction on L?, then 7'* is also
a positive contraction on L*. The following Lemma was proved by Neveu [18].

LemMma 2. Let 2 be a positive linear form defined on L=, that is, let 2e(L™)%.
Then there exists the largest element gl such that the form induced by it on L=
verifies g=Ai. Moreover, the complement G={x:g(x)=0} of the support of g is the
largest set in F for which there exists heLy with h>0 on G and X%h)=0. In par-
ticular, if >0, then X(h)=0 for every heL?, h=x0. If g=0, then A(h)=0 for at least
one heL> such that £>0.

3. Invariant functions.

The main part of the following Theorem was proved by Neveu [18] for the
case when XY is the semigroup generated by a single positive contraction 7' on L.
The proof is similar to that of Neveu.

THEOREM 1. Let X be an amenable semigroup of positive contractions on L,
and let felL' be arbitrary but fixed and f>0. Then, the following conditions are
equivalent:

(1) there exists geL* such that ¢>0 and Tg=g for all T in X,

(2) if heL? and infr LTY, h) =0, then h=0;

) if heL: and sups infs<r {Tf, ) =0, then h=0;

4y if heL? and prlTf, h)=0 for an invariant mean p on m(l), then h=0;

(B) if heL? and Occo{T*h:Tc2}, then h=0 (heve coB is the closed convex
hull of BC L™ in the sense of L*-norm),

(6) if heL? and Y20 TFR<2 for some sequence {T3} in 2, then h=0;

(7) if hel® and T2 THh<oo for some sequence {Ti) in X, then h=0;

8) X2 T.f=co for any sequence {T;} in X

) if FeF and X7 THlp=1+c for some sequence (T3} in 3, then F=¢ (here
e>0 denotes an arbitrary but fixed number).

Proof. (1)=>(2). Take f, foe L* such that f >0 and f,>0. Since fo=af+(fo—af)*
for any real number ¢,

{Tfo, ) =alTF, B +\|(fo—af )|l |l
and hence if inf (T°f, A)=0, it is seen that
inf {(Tfs, i) =0.
7
If we take fo=g, we obtain {g, Z>)=0 and hence A=0.

(2)=>(3) is obvious.
(3)=(4) is obvious from Lemma 1
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4)=>(5). Let hel? and Occo{T*h:TeX). Then, for >0, there exists an
element X7, a;TFh (371 as=1 and «;=0 for each i) such that

ZlaiTjkh flli<e.
Now, we have
> 17l | S ot =su(77, 3 acrin)
=1 oo 1=1

é#r< Tf, f} aiT;"h>= f} aprlT, Tf, By
=1 =1

= 3% ayurTF, hy=aTH, .

Therefore, pr{Tf, &y=0. We obtain 2=0 by (4).
(5)=>(6). Let AeLy and X7, T#h<2 for some sequence {73} in 3. From the

inequalities
1, . 1 2

i < . ¥

> Trh= nEOTlh_ "

=0

for n=1,2, ---, it follows that Occo{T'*h: T€X}. Therefore, we obtain 2=0 by (5).
@D=>A). We define 2 by ix(h)=pus{Tf, k) for all zeL>. It is obvious that 2 is
a positive linear form satisfying

(A =1 M- 1] eor
Also, for any seL” and T,e2,
ATER)= TS, TER) = prlTo TS, Iy
=pr{TS, by =)

Since 2e(L*)¥, there exists the largest element ¢ in L' with ¢g=21 by Lemma 2.
This element ¢ is invariant under each 7 in J. In fact,

Ty, iy =Lg, T*hy =XT*hy=(h)

for keL: and hence Tg=2. This implies T¢=g. On the other hand, since T*1=1
and A(7T*1)=1, we have (A—g)}(T*1)=(1—g)1) and hence {Tg,1>=<g,1>. Therefore,
Tg=g for all T in 2. Now, we show ¢>0. By (4), if AeL? and %0,

0<p2lTS, by =4().

Besides, suppose that G={x:¢(x)=0} is nonempty. Then, by Lemma 2, there exists
heL3 such that 2>0 on G and a(%)=0. This is a contradiction. Therefore, G=¢

and hence we have ¢>0.
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The proofs of the remained parts have need of the following Lemma which is
a generalization of lemma 3 in [18].

LemMMA 3. Teke helL” with 0=h=1 and f >0, feL' with
sup inf (Tf, &>=0,
8§ S=r

then, there exists for each 0>0 an element hye LY such that hi=h, {f, h—h:;y<d and
o T#h; =<1 for some sequence {T,: [=T,=T\=--} in 2.

Proof. Take f,feeL! such that f>0 and f,>0. Then, since the condition
sup inf <Tf, £y =0 implies

sup inf {T'fo, &) =0,
S S=T
we can choose U;eZ inductively such that {f, Uk <é/2 and

<(U]—1U]—2"'UI+ Uj—l"'U2+"'+U]—1U]—2+ U]—l‘l‘[)f, U;kh><2—]§-
Define

o= ZO(UJ+1U]--..U1+ UyiaUj U o+ Uy s Us+ Uy )b
i=
= Z(UjUj—l"‘Ul+ UjUj_l.--U2+...+Uj+I)*U‘>’!<+1h
J=0

and then A;=(h—ho)*. Obviously, 0=k;=% and h;=h—h,. We will show that
(f, h—hsy<é. In fact,

Oﬂ—mé<ﬂZWWhmM+@m%+mHﬁHVWM>
7=0

8

= 3 AUy Uit Up-Ust o+ Uyt DS, Uiahd
0

7

< QL 27Uthg=4.

£y
[ ngk

To finish the proof of Lemma 3, it suffices to show that
Fow=h+ Ukiahs + (U2 Ui Y54 H(Unige - U ) s =1

for all nonnegative integers i, k. The sufficiency of the above inequality is clear
by taking ¢=0, I=To, T1=U,, To=UU, -, T,=U;U,_4++ Uy, -, and letting k—oo.

It is obvious that F, =1 for all 7. Assume that the inequality is true for all
i and for the value £—1. From
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Fov=hs+ Ufilhs+ Uiahs - +(Ussie Uira)*hs)
=+ Uk (o + Ufirihs+ -+ (Uisrri-1- Urirr1)*hs)
=l Ut Fory i1,

we obtain that F,:=1 on {z:A;(x)=0}. On the other hand, we have that on
{z: hs(x) >0}, hs=h—h, and hence

Fo=h+ Urihs+ - +(Usne Uy ) ¥4
Zhet Uih+ -+ (Upre- Usp)*h
=hitho=h=1.

This completes the proof of Lemma 3.
We prove that (6)=>(3). Let £ZeL% such that

sup inf {Tf, k> =0.
S S8=T

We can assume without loss of generality that 0=/4=<1 and

sup inf {T'f, 2> =0.
S S=ET

By Lemma 3, there exists %;e L such that A;=#h, {f,h—h:><d and 3o, T*h;=<1
for some sequence {73} in Y. Since (6) implies 4;=0, we obtain {f, A)<d for all
0>0. Therefore, we have %2=0.

(2)=>(8). Let {Ti} be a sequence in X and foeL'NL> with f,=0. If we define
hel? by A=fol+ X526 T.S)* with the convention (+c0)~'=0, then obviously
A2 T.)= fo with the convention 0-co=0 and hence

Sh- S T fdm=3 Sh-T,fdm: ST F, By <oo,
2220 1=0 =0
Therefore, inf, {T.f, #) =0 and hence we obtain ~2=0 by (2).

®)>(7). Take heLy such as 32, T¥h<oo for some sequence {7;} in ¥ and
take foeL*NL> with f,>0. If we define f’eL! by

fr= f0<1+ % T;“h>_1,
then f/>0 and f/(X7y T¥*h)=<fo. Therefore, we obtain
(3 Tfh)dng@o T.f7)-hdm<oo
and hence 2=0 by (8).

(7)=>(6) and (7)=>(9) are obvious.
9 =>(3). Take heL? such as
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sup inf {Tf, &) =0.
S 8S=T

If F={x:h(x)>a} where ¢>0, then we obtain
sup inf {Tf, 17y =0.
S S=T

Let ¢ >0 and d=e¢’/(1+¢). From Lemma 3, there exists /4;eL? such that
hs=lp, {f,1lp—hs> <9 and X=,T*h; <1 for some sequence {7y} in . If
F. .={z: h(x)>1/(1+¢)}, then F.. isa subset of F satisfying (f,lr—1p, ,><e¢ and

e8!

=1+-e.

e, e

Ms

T#lr

2=1

Therefore, we obtain F,.=¢ from (9) and hence F=¢. Finally, since a is
arbitrary, we obtain 42=0.

We obtain necessary and sufficient conditions for no existence of invariant
measure weaker than .

TuroreM 2. Lel Y be an amenable semigroup of positive contractions on L*
and fel' be arbitrary but fixed and f>0. Then, the following conditions are
equivalent:

Q) if gell and Tog=g for all T in 2, then g=0;

(2) there exists he L> such that h>0 and

inf (TF, h> =0;
T

(3) there exists he L™ such that h>0 and
sup inf {T'f, &> =0;
S S=T

(4) there exists he L™ such that h>0 and
vr{Tf, 1y =0,

where p is an invaviant mean on m(X);
(5) there exists he L™ such that h>0 and

Occo{T*h:TeX};

(6) there exists he L™ such that k>0 and 3%, TFHh<2 for some sequence {T;}
in X

(7) therve exists he L™ such that h>0 and 7. T¥h<oo for some sequence {T;}
in X
®) o Tuf<oo for some sequence {13} in X

(9) there exist positive real numbers M, | co and elements F,' X in F such
that 3720 T¥lp, =1+ M, for some sequence {T.} in X,
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Proof. (1)>(2), 3) or (4). Let Xh)=u<XTf,hy for all keL~. Then ie(L>)*.
From Lemma 2, we can find geL) such that g=2 and Tg=g¢ for all TeX. Since
(1) is valid, ¢=0. Therefore, by Lemma 2, there exists ze¢L* such that A>0 on
X={x:9(x)=0} and

0=2(A) = (TS, h)ésgp §2£ (TS, iy
zinf {T'f, ) =0.

4)=>(3)=>(2) is obvious.
2)=>(1). Take foeL! with f,>0. Since the condition inf {Tf, z)=0 implies

inf <Tfo, 1> =0,

by taking fo=g¢, we obtain
iTTlf Ty, iy =<g, =y =0.

Therefore, we have g=0.
(5)=>4) and (6)=>(5) are obvious from (4)=>(5) and (5)=>(6) in Theorem 1.
(3)=>(6). The proofs of the rest have need of the following Lemma.

LeMMA 4. For hel> with 0<h=1 and >0, felL! with
sup inf {Tf, &) =0,
S S=T

there exists an element h'eL> such that 0O<A =h and Yo T W =1 for some
sequence (T, I=To=Ty=---} in 2.

Proof. Take f,e L* with f, >0. Then, since the condition sup inf {7T'f, 4)=0
implies
sup inf (T'fo, &) =0,
S S=T

we can find U;e2 inductively such that {f, U¥ky <1/2* and
U)o Upegr o Us+ Uy Ut oo+ Uyt Uy o+ Uy + D f, UFhy <2-94D,

For i=1,2, .-, define
hi= Z(U]+1Uj"‘Ul+ Uprro U+ 4+ UJ+1U]'+ U]+1)*h
7=t
= Z:(UjUj—l"'U1+Uj“'U2+"'+Uj+1)*U‘>7k+1/l
7=t .

and A.-e=(h—h)*. Obviously, 0=h:-:=<#k and A,-«=h—h,; for all i, We can show
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by the method of Lemma 3 that {f, s—A,~:>=<2" for all . Define A’€L3 by

= 1
W=, e hm.
&

Then, we have {x:A/(z)>0}=U.{z: h:-i(x)>0} and
S f-hdméSf-(k—hz—i)dm§ %
{ha—5=0}

Therefore, we obtain 4’>0. Also, we can show by the method of Lemma 3 that
Fokp=ha-04+ U¥osho-2(Upsa Up i) *ho-9+ - +(Upipr+ Upa) *he-r=1

for all nonnegative integers ¢, & and a fixed nonnegative integer p. Taking i=0
and Tv=I, T\=U,, -, Ty=U,Ui—y---Uy, -+ and letting k—oo, we obtain 2 T5Fhe-»
=1 for all p. Therefore, 3=, T¥h’<1. This completes the proof of Lemma 4.
The proof of (3)=>(6) is obvious from Lemma 4. (6)=(7) is also clear. (7)=>(8)
is obvious from (8)=>(7) in Theorem 1.
(8)=>(2). Let {Ti} be a sequence in X such that 32, 7. f<co. If we define
h=fo(14+ 320 T.f)t where foe L'NL> with fo>0, then 2>0 and

ir}f (TS, By =0.
In fact, from A(3 2.0 T.)=f,, we obtain
Sh(i TJ)dm: 31T, by < oo
1 =0 =0

(3)=>(9). Let % be an element in L= such that 0<4=1 and
sup inf {T'f, A =0.
S S=T
Then by Lemma 4, there exists #’¢L= such that 0<A#’'=/ and Y2, T*h' =1 for

some [=Ty=T,=---. Since A’ is strictly positive, there exist positive real numbers
M, 1 oo such that

Fo={x: 1'(z)>1/1+ M)} 1 X.
We can also show that T3, T¥lr,=1+4+3,. In fact, since (1+M,)Ah' =15,
¥ Ty = (14 M) Y TH =14+ M,
=0 =0
$)>(®6). Let M, oo, M,=0 and F, 1 X, FaeF such that 372, T¥lr,=1+M,
for some sequence {73} in Y. if we choose k&, such that 1+ M,<2% and define

|
ho= Z Wan—Fn_ly

n=0
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then %, is strictly positive and 32, T%4,<2. In fact,

oo o 1
Z T;,khoz Z Tf(; Wan_Fn—l)

Il

1
Z g (BT

1
= é} Senim (Z T§<1F”>§ P S 1+ M)

n

This completes the proof of Theorem 2.

4. Ergodic theorem.

In this section, let (X, &, m) be a finite measure space. The following Theorem
is a generalization of the well known ergodic theorem for the case when X is the
semigroup generated by a single positive contraction 7 in 2.

TuroreM 3. Let (X, F,m) be a finite measure space and X be an amenable
semigroup of positive contrvactions T on L* and suppose that T1=1 for all T in 2.
If felY and B={A:T*1,=14, T€X}, then the conditional expectation E(f|B) of f
relative to B is contained in co{Tf: T}, where coB is the closed comvex hull of
Bc L' in the sense of L*-norm.

Proof. Since T*1=1 for all T in 2, it is obvious that Xe ®. That @& is a o-
field is obvious from that @r={A:T*14=1,) for each Tin Y is a g-field. We will
show that {Tf: TeX} is weakly sequentially compact. To show this, it suffices to
show that countable additivity of the integrals [z T/ dm is uniform with respect
to Tin 2. (See p. 292 in [8].)

Let f,=min (f, 1) for all #=1,2, .. and ¢>0. Since f, |/, by the Lebesque’s
convergence theorem, there exists an integer #,>0 such that ||f—f, |1 <e¢/2. Fix
this integer 7, and determine a number §=¢/2n, If m(E)<J, we have

TF B =T gy 1> +{Tf —Tfnpy 15
=T (1), 1) +||T(f—Fp)llx
=nem(E) (1 f—fa,lls
<ef2+4¢2=¢

for all T in Y. Therefore, it follows that the countable additivity of the integrals
JzTf dm is uniform with respect to 7'in 5. Since {Tf: 7€} is weakly sequentially
compact, it follows that co{Tf: TeZX} is weakly compact (see p. 430 and p. 434
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in [8]). On the other hand, since {Tf: T€2X} is invariant under each T in ¥ and
each 7 in X is weakly continuous and linear, ¢co{Tf: 7€} is also invariant under
each T'in 3. Now, by using Day’s fixed point theorem [4], we can find an element
ueco{Tf:TelX} such that Tu=u for all T'in X¥. We will show that this function
% is B-measurable. Let  be a real number, then it is obvious that T (#—al)=#—al
for all T in X. Therefore,
(u—al)*—(u—al)y =T(u—al)*—T(u—al)".
By positivity of 7, we obtain that
(u—a)* =T w—al)* and (u—al)"=T(u—al)".
Hence, it follows by ||7'||=1 that
(u—al)*=T{u—al)* and (u—al) " =T(w—al).
Therefore,
Tmin (1, #n(x—al)*)=<min (1, n(z—al)*)
for all »=1,2, ..- and hence
T min (1, n(u—al)*)=min (1, n(e—al)").
Since min (1, #(z—a1)*) 1 liusa, as #—oo0, we obtain that T1yse=1lwsafor all T in
Y. By using this, we shall obtain that « is $-measurable. In fact, since
T*lysay=T*1=1, we obtain
1(u>a)T*1(u>a)§1(u>a)

and hence following equalities

S(lxu>m_1[u>a1T*1(u>a1)dm
:m({”>a})—Sliu>a1T*1(u>a)dm
=m({u>a})—8Tlm>a,1m>a]dm

:m({u>a})_Sl[u>a]1[u>a]dm:0'

Therefore, we have

1(u>al =1m>a)T*1(u>a)-
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Besides, since

ST*lm>¢” dm =S Tl‘l(u>a]dm

= Slw>a,dm =m({% >(Z}),

we obtain 7*1,.4,=1i4>q,. Therefore # is $B-measurable.
Finally, we show that #=F(f|®). Let Ae$ and

S e T, f€Go(Tf : Te3)
2=1
where ", a;=1 and a;=0 for i=1,2,---,#. Then

<i aTofy La D= 3 il f, THLad
=1 =1

= Z ailf, Ly =<, 1.

If ", a;T.f—u in the sense of L'-norm, it follows that {w, 1> ={f,14). On the
other hand, we know that

i 1=CE(f|D), 1.

Therefore,
Cu, Loy =<E(f| D), Ly
for all Ae . Since u is @-measurable, we obtain that #=F(f|B).

ReEMARK. It is obvious that #» is a unique invariant function in co{Tf: Te€Z}.
For the case when X is the semigroup generated by a single positive contraction
T on LY, 1/n 372 T tends to E(f|B) in the sense of L!'-norm.
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