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Abstract

The study of geometric flows for smoothing, multiscale representation, and analysis

of two and three dimensional objects has received much attention in the past few

years. In this paper, we first present results mainly related to Euclidean invariant

geometric smoothing of three dimensional surfaces. We describe results concerning the

smoothing of graphs (images) via level sets of geometric heat-type flows. Then we

deal with proper three dimensional flows. These flows are governed by functions of the

principal curvatures of the surface, such as the mean and Gaussian curvatures. Then,

given a transformation group G acting on Rn, we write down a general expression for

any G-invariant hypersurface geometric evolution in R n . As an application, we derive

the simplest affine invariant flow for surfaces.
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1 Introduction

Geometric smoothing, multiscale representation, and analysis of two dimensional (2D) and
three dimensional (3D) objects are of extreme importance in different applications of com-
puter graphics, CAGD, and image analysis. These can be used for smoothing out noise or
for the representation of objects at different levels of detail. When one is interested in the
geometry of the given object, it is important to perform these operations in an intrinsic geo-
metric manner. Thus image processing via geometric driven diffusion-type flows has become
a major topic of research in the last few years [54]. In our work, the object is deformed via
a partial differential equation which is invariant with respect to a given symmetry group.

The smoothing and multiscale representation of planar objects was originally performed
by filtering their boundary with a Gaussian filter [9, 37, 68]. This process is equivalent
to deforming the curve via the classical heat flow which is of course an extrinsic process
unrelated to the geometry of the given image. As we will see in Section 2, this and other

problems of the classical heat flow can be effectively solved by replacing it with geometric
heat flows that were developed during the last few years [26, 27, 51, 55, 57, 59, 60].

The first question with which we want to deal in this paper is the problem of finding
analogous flows for smoothing and multiscale representation of 3D objects: We first present
results on geometric smoothing of graphs (images), via geometric smoothing of their level
sets. We will see that, based on the theory of planar geometric heat flows, useful results
may be obtained. We then discuss the smoothing of surfaces via proper three dimensional
flows. In this case, the surface deforms with velocity given by functions of its principal
curvatures. In order to make the paper accessible to the largest possible audience, many
of the background results are presented in a informal way, i.e., without the mathematical
details which may be found in the relevant references. The main goal of this part is to review
the literature on surface evolution relevant to volumetric smoothing.

In the second part of the paper, we extend the results first reported in [51] for planar
curves, to any dimension and any Lie group. We present the most general form of an invari-
ant geometric flow for hypersurfaces. We show that the invariant flows can be formulated
as functions of the invariant metric and invariant curvature. which are the basic differential

invariant descriptors, together with the variational (Euler-Iagrange) derivative correspond-
ing to this metric. We also show that if the transformation group is volume preserving, this
variational derivative is invariant as well. Then, as an example, we derive the simplest affine
invariant geometric flow for 3D surfaces.

This paper is organized as follows: In Section 2, we describe some of the key results related
to planar curve geometric smoothing, which will be helpful to motivate and understand the
surface theory. Basic concepts of 3D surface differential geometry are given in Section 3.

Then, in Section 4 we deal with a "2!"D theory of geo:.netric flows of surfaces which is
related to smoothing via level sets. Section 5 deals with proper 3D geometric smoothing.
In Section 6, we define the variational derivative, which we will need in order to formulate
and prove our result on the general form of an invariant hypersurface geometric evolution
in Section 7. Then in Section 8, we discuss affine invar'ant flows of surfaces, and some
concluding remarks are given in Section 9.
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2 Planar curve smoothing

In this section, we review some results on geometric smoothing of planar curves, which we
wish to extend to surfaces and in general to any dimension. As we will see in the sequel,
some of the desirable results that hold for planar curves, do not hold for surfaces. The results
described in this section will also be helpful in Section 4, where we describe the possibility
of smoothing graphs via level-sets smoothing.

We consider now planar curves deforming in time, where "time" represents "scale." Let
C(p, t) : S' x [0, r) -~ R 2 denote a family of closed embedded curves, where t parametrizes
the family, and p, independent of t, parametrizes each curve. Originally, the classical heat
flow was used for smoothing curves [9, 37, 38, 39, 40, 42, 44, 54, 68, 70]. In this case, the
curves deform according to the following flow:

OC 0 2C
at - p2' (1)

C(p, 0) = Co(p).

It is well-known that C(p,t) = [x(p,t),y(p,t)]T, satisfying (1), can be obtained from the

convolution of x(p, 0), y(p, 0) with the Gaussian g(p, t) defined by

g(p,t) := exp - 4/ . (2)

In order to separate the geometric concept of a planar curve from its formal algebraic
description, it is useful to refer to the planar curve described by C(p, t) as the image (trace)
of C(p, t), denoted by Img[C(p, t)] [57]. Therefore, if the curve C(p, t) is parametrized by a
new parameter w such that w = w(p, t), o9 > 0, the two images agree:

Img[C(p, t)] = Img[C(w, t)].

We see that different parametrizations of the curve will give different results in (1),
i.e, different Gaussian multi-scale representations. This is an undesirable property, since
parametrizations are in general arbitrary, and may not be connected with the geometry

of the curve. We can attempt to solve this problem choosing a parametrization which is
intrinsic to the curve, i.e., that can be computed when only Img[C] is given. A natural
parametrization, for Euclidean invariant smoothing, is the Euclidean arc-length defined by

v(p) := f( dt,

and the re-parametrization is obtained via C o v. This parametrization means that the curve
is traveled with constant velocity, 1I C,, 1_ 1. The initial curve Co(p) can be re-parametrized
as Co(v), and the Gaussian filter g(v, t), or the corresponding heat flow, is applied using this
parameter. The problem is that the arc-length is a time-dependent parametrization, i.e., v(p)
depends on time. Also, with this kind of re-parametrization, some of the basic properties of
scale-spaces are violated. For example, the order is not preserved, i.e., if Co and Co are two
initial curves, boundaries of planar shapes, such that Co C Co, it is not guaranteed that this
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order is preserved in time. Also, the semi-group property, which means that C(tl) can be

obtained from C(t2 ) for any O < t 2 < tl, can be violated with this kind of re-parametrization.

The theory described below solves these problems.

Assume now that the family C(p, t) evolves (changes) according to the following general

evolution equation

{C at = Ad +,B: (3)
C(p,O) =Co(p),

where K is the inward Euclidean unit normal, T is the unit tangent [64], and a and 3 are
the tangential and normal components of the evolution velocity vs, respectively.

The following lemma shows that under certain conditions, the tangential velocity does
not affect Img[.].

Lemma 1 ([21]) Let 3 be a geometric quantity for a curve, i.e., a function whose defini-
tion is independent of a particular parametrization. Then a family of curves which evolves
according to

Ct = aT + a3A

can be converted into the solution of

Ct = &T +3

for any continuous function a, by changing the space parametrization of the original solution.
Since 3 is a geometric function, /3 = / when the same point in the (geometric) curve is
considered.

In particular, this result shows that Img[C(p, t)] = Img[e(w, t)], where C(p, t) and C(w, t)
are the solutions of

Ct = aLTf + i

and

Ct = 3A(,

respectively. For proofs of the lemma, see [21] and [57].
In other words, Lemma 1 means that if the normal component of the velocity is a geomet-

ric function of the curve, then Img[-] (which represents the "geometry" of the curve) is only
affected by this normal component. The tangential component affects only the parametriza-
tion, and not Img[.] (which is independent of the parametrization by definition). Therefore,
assuming that the normal component /3 of it (the curve evolution velocity) in (3) does not
depend on the curve parametrization, we can consider the evolution equation

aC _3/ (4)
a9t=
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where 3 = v . JK, i.e., the projection of the velocity vector on the normal direction.
The evolution (4) was studied by different researchers for different functions fl. A key

evolution equation is the one obtained for f3 = I, where n is the Euclidean curvature defined
by [64]

0 2C
av2

In this case, the flow is given by

C_ -i . (5)

Equation (5) has its origins in physical phenomena [6, 24, 28]. It is called the Euclidean
shortening flow, since the Euclidean perimeter shrinks as fast as possible when the curve
evolves according to (5) [28]. Gage and Hamilton [26] proved that a planar embedded
convex curve converges to a round point when evolving according to (5). (The term "round
point" has the following meaning: Let C(t) be the curve at time t, which shrinks to a point
as t _T* . Dilate C(t) to get a new curve C(t) centered at the origin and enclosing area 7r.

Then we say that C(t) converges to a round point provided the dilated curves converge to
the unit circle as t -- T*.) Grayson [27] proved that a planar embedded smooth non-convex

curve remains smooth and simple, and converges to a convex one, and from there to a round
point via the Gage and Hamilton result. Note that in spite of the local character of the
evolution, global properties are obtained, which is a very interesting feature of this flow. For
other results related to the Euclidean shortening flow, see [1, 6, 21, 26, 27, 28, 35].

Next note that if v denotes the Euclidean arc-length, then [64]

a2C

tCS =
= v

2

Therefore, equation (5) can be written as

c, = c,,. (6)

Note that equation (6) is not linear, since v is a function of time (the arc-length gives a
time-dependent parametrization). Equation (6) is also called the (Euclidean) geometric heat
flow (compare it with the classical heat equation (1)).

Equation (6) (or (5)) has been proposed by different researchers for defining a multi-
scale representation of closed curves [36, 42, 69] (see [42] for extended analysis). Note that
in contrast with the classical heat flow, the Euclidean geometric one defines an intrinsic,

geometric, multi-scale representation. Of course, in order to complete the theory, we must
prove that all the basic properties required for a multi-scale smoothing hold for the flow (6).
This can be found in [42, 60], and in general are straightforward consequences of the results
in [6, 26, 27].

Note that equation (5) (or its analogue (6)) is only Euclidean invariant, since it is based
on Euclidean differential geometry. We have extended this theory to the affine group in
[55, 56, 57, 58, 59] using affine differential geometry, and also presented a general approach
for the formulation of geometric flows for any Lie group in [51, 59]. In general, let r denote
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the invariant arc-length of a given Lie group, i.e., its simplest invariant parameterization.
The geometric heat flow of the group is obtained via

ac(p, t) _

2C(p, t)
At - Or2 (7)

C(p, 0) = Co(p).

For linear groups, it is easy to prove that, since r is an invariant of the group, so are C,,
and the flow (7). The flow is invariant for non-linear groups as well, since 9 is the unique
invariant derivative of the group (see [51, 59]). More general invariant flows are obtained if
the group curvature X is incorporated into the flow:

C(p, t a2C(p, t) _ ) 
= (X, Xr, *-· 2 (8)at ar2

C(p, ) = Co(p),

where 9(-) is a given function. Since the group arc-length and group curvature are the basic
invariants of the group transformations, it is natural to formulate (8) as the most general

geometric invariant flow. In [51] we proved that (8) is indeed the most general geometric
invariant flow for subgroups of the projective group, and the geometric heat flow is the
simplest possible one for a number of important groups. These results we extend here for
higher dimensions and general Lie groups.

The group normal C,, is in general not perpendicular to the curve, i.e., it is not parallel
to the Euclidean unit normal Aj. Based on Lemma 1, we know that the effective velocity
is obtained by the projection of the group normal onto the Euclidean normal. Using this
result, the flows (7) and (8) can be expressed in Euclidean terms by projecting the group
normal onto the Euclidean normal, and expressing the group curvature via the Euclidean
one and its derivatives. For example, in the affine case, where r is replaced by the affine

arc-length s given by [12, 55]

S(P) := fo[Cq, Cqe]l/3d~,

the Euclidean-type geometric flow analogue to (7) is given by [55, 56, 57, 59]

Ct = /%1/3j~. (9)

We proved that as in the Euclidean case, any non-convex curve converges to a convex one,
and from there to an ellipse, when evolving according the aAine heat flow. We also showed
that the curve remains smooth, and all the properties of scale-spaces hold [57]. This flow was

also discussed by Alvarez et al. in [2]. Using the theory of viscosity solutions and evolution
of graphs, they also proved the uniqueness of the flow under a number of conditions, which

are natural for image processing. In [51] we proved that this flow is unique solely under the
requirement of being "simplest flow with the affine group as symmetry group." This flow was
also used in [2, 58] for image enhancement (see next section!. For results on other interesting
groups, as the similarity and projective ones, see [51, 59, 60]. It is important to note that
for example in the similarity and projective case, in contrast with the Euclidean and affine
ones, the evolving curve can develop singularities [51].
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Before concluding this section, let us point out another of the undesirable properties of
Gaussian filtering that is also solved using geometric heat flows. A curve deforming according
to the classical heat flow shrinks in a non-computable form. This is due to the fact that the
Gaussian filter also affects low frequencies of the curve coordinate functions [44]. Different
authors proposed different solution to this problem, while always remaining in the area of
Gaussian or linear filtering, i.e., non-geometric smoothers [31, 40, 44]. When a curve evolves
according to a geometric heat flow, the shrinking factor can be computed, since the rate of
change of area, length, or any other geometric quantity can be computed exactly. Based on
this, in [60] we showed how to replace the geometric heat flow (7) by an analogous one, which

keeps the area (length) constant. The approach is based on formulating a new geometric
flow which deforms the curve according to the flow (7) while simultaneously expanding the
plane in order to preserve area (length). This way, a geometric smoother without shrinking
is obtained.

3 Basic 3D differential geometry

Inthis section we present basic concepts on surface differential geometry. For- details see for
example [13, 30, 64]. We first define a regular surface:

Definition 1 A subset S C R 3 is a regular surface if, for each p E S, there exists a

neighborhood V and a map x : U -. V n S of an open set U C R2 such that

1. x is differentiable. This means that if we write

X(u, V) = [(U ), y(u, V), (U, V)] , (U, V) U,

the functions x, y, z have continuous partial derivatives of all orders in U.

2. x is a homeomorphism. This means, using the previous condition, that x has an inverse
which is continuous.

3. For each q C U, the differential dxq: R 2 -- R 3 is one-to-one.

The following definitions present two special kinds of regular surfaces which will be ana-
lyzed in detail in following sections: graphs and star-shaped surfaces.

Definition 2 If ~ : U C R 2 -- R is a differentiable function, then the surface given by

(x, y, (zx, y)), for (z, y) E U, is a regular surface and is called a graph.

Definition 3 A regular surface that can be represented as a map from S 2 to R 3 is called
a star-shaped surface with respect to a point xo in its interior if every ray starting at xo
intersects the surface only once.

Definition 4 The tangent plane Tp(S) to a regular surface S at a point p E S is the set
of tangent vectors to all parametrized curves of S passing through p. The regularity of the
surface guarantees the existence of such a plane.
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Given a parametrization of x : U C R2
-S of a regular surface S at a point p E S, we

can obtain the unit normal vector to the surface at each point q of x(U) by the rule

(q ) Xu A Xv (q)X

Based on this normal vector, we can define the Gauss map:

Definition 5 Let S C R 3 be a surface with an orientation given by N. The map N : S -* R 3

takes its values in the unit sphere S2 , and is called the Gauss map of S.

The following definition presents the normal curvature of a curve on a regular surface.

Definition 6 Let C be a regular curve in S passing through p C S, In the Euclidean curvature

of C at p, and cos 0 :=< K, N >, where K is the normal vector to the curve and N1 the

normal vector to S at p. The number i,n := n cos 8 is called the normal curvature of C C S

at p.

Therefore, the normal curvature is the length of the projection of the curvature vector

Kn] over the normal to the surface at p. See Figure 1. An important result [64] guarantees

that all curves lying on a surface S and having at a given point p E S the same tangent

line, have at this point the same normal curvature. Therefore, the normal curvature is an

intrinsic property of the surface and the given direction on it, and not of the selected curve.

Given a unit vector v E Tp(S), the intersection of the plane containing v and N is called the
normal section of S at p along v. In a neighborhood of p, this normal section is a regular

curve, whose normal vector at p is in the direction of N, and its curvature is therefore equal

to the normal curvature along v at p.

We are ready to define the principal curvatures of S at a point p:

Definition 7 The maxima ("1) and minimal (K2 ) normal curvatures at p E S, for all

directions v E Tp(S), are called the principal curvatures at p. The corresponding directions

el and e2 are called the principal directions at p.

Definition 8 If a regular connected curve C on S is such that all its tangent lines are

principal directions, then C is said to be a line of curvature.

It is important to know that the knowledge of the principal curvatures and directions

allows one to compute the normal curvature at any other direction. In particular, if 0 is the

angle between v C Tp(S) and el, then

tv,(0) = c1 Cos 2 9 + n 2 sin2
0.

Finally, we can present the definitions of Gaussian and mean curvatures:

Definition 9 The Gaussian curvature is the determinant of the differential of the Gauss

map, and thus is given by

K = n 1l 2. (10)

Definition 10 The mean curvature is the negative of one half the trace of the differential
of the Gauss map, and thus is given by

H = 1 2 (11)
2
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4 Smoothing graphs via level-sets

In this section we consider graphs, i.e., maps from U C R 2 to R+. The results here described

can be applied to smoothing images, which provide particular examples of graphs. One way

of smoothing a graph is to smooth its level-sets according to one of the geometric heat flows

described in Section 2. This topic has been studied in different works [2, 3, 15, 22, 23, 52, 58],

and we wish to present some of the basic results here.

Let 4 : R x R x [0, T) -* R+ be a graph. In the case of an image, cP(x, y, t) represents

the gray-value at the point (x, y) at time (scale) t. Define the level set X,(t) of b as

XC(t) := {(, y) : (2X, y,t) = c}, (12)

and assume that this level set evolves according to

-at = (13)

where /3 is, as before, a geometric function of the level set, and Kr its normal. We are

-interestednow in studying the-behavior of · when the level sets evolves according to (13).

In the following we assume that b is negative in the interior and positive in the exterior of

the zero level set. By differentiation (12) with respect to t we obtain:

V4,(X, t) ;t + 4t(X, t)= O. (14)

(This equation holds for all level sets. Therefore, the subindex is removed from X.) Note

that for the level sets, the following relation holds:

I Vat 11~ = 2. (15)

In this equation, the left side is written in terms of the surface 4, while the right side depends

just on the curve X. The combination of equations (13) to (15) gives

· t = -/ 11 V4 1I, (16)

which gives the evolution equation of the graph when its level sets evolves according to (13).

Alvarez et al. [3] recently proposed an algorithm for image selective smoothing and edge

detection which is based on the flow (16) for /3 = a, i.e., for the Euclidean heat flow of the

level sets. In this case, the image (graph) evolves according to

t =f(l G * V ) 1 Vt 1 div ( 1 II (17)

where G is a smoothing kernel (for example, a Gaussian), and f(p) is a nonincreasing function

which tends to zero as p -- oo. Equation (17) can be interpreted as follows [3]:
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1. The term

I( V<b ) 

which is equal to <e, where $ is the direction normal to V4P, diffuses 4 in the direction

orthogonal to the gradient VD, and does not diffuse in the direction of V-4. Thus, the

image is being smoothed on both sides of the edge, with minimal smoothing at the

edge itself. It can be shown that the evolution

-It IVb 11 div( V 1 )
11=,,~ i··i III

is identical to

2,,, - 2,%by4 + 2yy

At = 2 + ~2 )(18)

which means that the level sets of 4c move according to the Euclidean heat flow [3, 52].

For general results concerning the evolution of level sets, see [15, 22, 52, 62].

2. The term

f(ll G * V4 11I)

is used for the enhancement of the edges. If IIVII is "small", then the diffusion is

strong. If IIVIll is "large" at a certain point (, ,y), this point is considered as an edge

point, and the diffusion is weak.

Recapping, equation (17) gives an anisotropic diffusion, extending the ideas first proposed

by Perona and Malik [53]. The equation looks like the level sets of 4I are moving according

to Euclidean heat flow, with the velocity value "altered" by the function f(-).

This flow was extended to the affine case in [58] (see also [2]). In this case, the level sets

evolve according to the affine heat flow, and therefore, the graph evolves according to

cIt = ( z2vcI%,_ - 24cIIy + I, 2I, )1 /3. (19)

If we compare equation (18) with equation (19), we observe that the denominator is elim-

inated in the latest one. As pointed out in [58], this maIes the numerical implementation

of the affine image smoothing more stable than the Euclidean one. The affine flow was

compared to the Euclidean one and to the classical heat flow in [43] for MRI images, and

produced much better results, as expected.

In real applications, like image smoothing, the original surface, and its level sets, are

non-smooth. Therefore, the previous theory should be extended to non-smooth curves. In

[2, 15, 22, 23], the authors studied the evolution of surfaces via level-sets flows, and extended

this type of flows to non-smooth curves using the theory of viscosity solutions [18]. They
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also proved the existence of a unique "physical" weak solution to the flow, which can be

interpreted as an extension of curvature flows for singular curves. The existence of a unique

solution for Lipschitz initial curves, was studied for the affine heat flow in [8] with a different

approach as well. Therefore, we conclude that the theory of level-sets flows is well developed

for non-smooth initial curves as well, allowing the practical implementation of this kind of

smoothing process in real applications like image smoothing. Note that the algorithm for

curve evolution proposed by Osher and Sethian [52] is based precisely on level set evolutions,

making this work one of the first in the area. Figure 2 presents an example of the use of the

affine smoother for edge detection.

5 Geometric surface evolution

In this section, we summarize some of the main results on the evolution of surfaces according

to functions of their principal curvatures. This topic was first investigated by Brakke [11] for

mean curvature flows, and by many others since then. In contrast to the results presented

in Section 4, where the surface flow was driven by 2D evolutions of level sets, the flows

analyzed-now will be governed by proper 3D equations. We will analyze both graph flows

and pure surface flows. As we will see, in contrast to the planar case, different constraints

must be imposed to the initial surface in order to the evolving surface remain smooth. See

also Section 9. In Sections 7 and 8, we will write down a general expression for an invariant

evolution of a given hypersurface with respect to a transformation group acting on R n.

Huisken analyzed boundary-initial value problems of mean curvature flows in [33] (see

also [34] for a nice review of some of the results). He proved that a smooth initial surface

defined on a bounded domain Q with vertical contact angle 1 in its boundary fSt, remains

smooth and converges to a constant value when evolving in the vertical direction (the z

axes when viewed as a 2D graph), with velocity equal to the mean curvature. Note that

the problem has both initial and boundary conditions (imposed by the vertical contact).

This result means that for a graph (or image) possessing the vertical condition property,

the curvature decreases as a function of time, and the surface is smoothed. He also proved

that if a2Q has non-negative mean curvature, then an initial smooth surface So converges to

the solution of the minimal surface equation when evolving according to the mean curvature

flow while keeping its value equal to a given function in the boundary gQf. See also Chopp

[16] for the computation of minimal surfaces using this geometric flow.

Further results on evolution of graphs via mean curvature, without boundary conditions,

were obtained by Ecker and Huisken in [19]. Here, the authors proved that any polynomial

growth for the height and the gradient of the initial surface is preserved during the evolution.

They also proved that, for Lipschitz initial data with linear growth, the flow has a solution for

all times. The asymptotic behavior of the evolving surface was also studied by the authors,

proving that under certain conditions, the surface converges to self-similar solutions of the

mean curvature flow. It is very important to note that this condition, which is related to

the fact that the initial graph is "straight" at infinity, is necessary and sufficient. Therefore,

with this result we may also conclude that not every graph will converge to a self-similar

1The gradient is parallel to the normal.



solution, and some other conditions must be added for convergence.

The initial-boundary problem related to the evolution of surfaces by mean curvature was

also studied recently by Oliker and Uraltseva in [48]. In this case, in contrast with the

aforementioned problem studied by Huisken, the boundary condition is given by the graph

attached to a zero value, i.e., the boundary of the surface remains fixed (S _ 0 in aQ). The

authors studied the existence of generalized solutions to the mean curvature flow for arbitrary

domains. They showed that such a solution my develop singularities at the boundary at some

finite time. It is precisely the possibility of the development of singularities in the boundary

which makes it a generalized solution. These singularities disappear after that, and the

solution becomes smooth up to the boundary. The authors also gave sufficient conditions on

the domain Q and the initial surface So for this problem to have classical solutions for all

time. The asymptotic behavior of the surface was studied as well, showing that a normalized

solution of the mean curvature flow with fixed boundary, approaches exponentially the first

eigenfunction of the Laplace operator with Dirichlet data in Qt. The evolution also "picks

up" the symmetries of the domain Q. For example if Q is a sphere, then asymptotically the

solution becomes radially symmetric. From the results of Oliker and Uraltseva, we conclude

again that not every surface with fixed boundaries becomes smooth in time. For the surface

to became smooth, constraints on the initial data and the geometry of the boundary must

be added. Some of these results were extended in [49] for functions of the mean curvature

and other boundary conditions.

Oliker also studied the evolution of surfaces via the Gaussian curvature in [45, 48]. In

[45], the author assumed that the domain Q is convex, and the surface is attached to the

boundary aft. He studied the existence of self-similar solutions, and also showed, as in the

mean curvature flow, that the solution to the flow "picks up" the symmetries of the domain.

The results presented above and in previous sections, are related to graphs or surfaces

with boundary conditions. Those results can be used for example for smoothing images,

when those images satisfy the required properties. We deal now with the evolution of proper

(closed) 3D structures.

The first results concerning the evolution of surfaces, are related to the evolution of

convex ones. For convex surfaces, analogous results to those proved in the plane by Gage and

Hamilton are valid. Huisken proved in 1984 [32] that a convex surface evolves into a round

point2 when evolving in the normal direction with velocity equal to the mean curvature,

remaining smooth during the flow. Chow [17] proved the same result when the velocity

is given by the square root of the Gaussian curvature. He actually proved existence of a

smooth solution for any (positive) power of the Gaussian curvature. All these results were

related to surfaces contracting in time, i.e., moving inward. Urbas investigated the expanding

evolution of convex surfaces in [66, 67]. He studied the expansion of convex surfaces by a

family of positive, symmetric, and concave functions of their principal radii of curvature,

proving that a smooth initial surface remains smooth, and its normalized version converges

to a sphere. See the aforementioned papers and references therein for more details about

the behavior of convex surfaces deforming via geometric flows. (The above results hold more

generally for convex hypersurfaces. Here Chow [17] shows convergence to a round point when

evolving according to the n-th root of the Gaussian curvature, where n is the dimension of

2 The normalized surface evolves into an sphere.

12



the hypersurface.)

The situation for non-convex surfaces is much more complicated and still the subject

of much research (see for example [7, 29, 63]). In general, a non-convex surface evolving

according to the mean curvature will not remain smooth, or even connected, as we can see

from the famous dum-bell example. The question is if we can ensure for certain class of

non-convex surfaces that they remain smooth and connected when evolving according to

some geometric flow. Gerhardt [25] considers star-shaped surfaces under an outward unit

normal flow; similar results were also obtained in [65]. More precisely, Gerhardt studies the

evolution of those surfaces in the outward normal direction, with velocity equal to a function

k, where k = 1/f(-I, rI 2 ), being f a positive, symmetric function on an open, convex and

symmetric cone in R 2. The function f is also assumed to be homogeneous of degree one,

concave and increasing in the cone, as well as zero on its boundary. An example of this

function is of course the mean curvature. For these functions, he proved that an initial

star-shaped surface remains smooth and star-shaped. When the surface is normalized, it

converges into an sphere. Other results, such as short-term existence for the mean curvature

flow for Lipschitz initial data, can be found for example, in [20].

We conclude this section with some remarks on weak solutions of the aforementioned

geometric flows. As pointed out in Section 2, in [15, 22], the geometric evolution of level

sets was studied in the framework of viscosity solutions. In [22] the mean curvature flow

is analyzed, while in [15] more general evolution equations are studied. In both papers the

authors showed the existence of a unique weak solution for partial differential equations in

which the level sets evolve in time according to the mean curvature. Short-term existence

of a classical (smooth) solution is proved as well (see also [23]). Therefore, even if the initial

surface does not hold one of the properties which are required for long-term existence of

classical solutions-for example convexity-nevertheless, a unique weak solution can be con-

structed, based on the theory of viscosity solutions. These results allows one to generalize

the definition of mean curvature flows also for non-smooth surfaces. Of course, the general-

ized definition coincides with the classical one when the surface is smooth and the flow can

be defined in the framework of classical differential geometry. These generalized flows also

satisfy some of the analogous properties to the planar case. For example:

1. The order is preserved. If So and So are two initial surfaces, and St and St are the

corresponding generalized solutions of the mean curvature flow, and So C So, then

St C St for all t > 0.

2. The distance between two surfaces increases with time.

These and other properties are proved for planar curves, for geometric heat flows, in [6, 26,

27, 55, 57, 59].

The evolution of surfaces as level sets of higher order ones was proposed and also studied

experimentally by Osher and Sethian in [52, 62].
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6 Variational derivatives

In order to present our results on the general form of an invariant evolution equation3 , we

need to recall a basic concept from the calculus of variations - the variational derivative of
a functional. The full details may be found in [50]. We work in an open domain M of the
Euclidean space X x U, where X = RP has coordinates x = (xl,... ,x P ) representing the
independent variables, and U = R has coordinate u representing the dependent variable.
(For simplicity, and since our applications are all of this form, we restrict our attention to the
case of a single dependent variable u, although extensions to several dependent variables are
straightforward.) We use the notation u ( ' ) to denote the collection of all partial derivatives
UJ = djU up to order n. Here J = (j, . . . ,jk), 1 < j, < p, is a symmetric multi-index of
order #J = k < n. The variables (x, u(n)) provide coordinates in the n-th order jet space

(or bundle) associated with M.

An n-th order variational problem consists of finding the extremals (maxima or minima)
of a functional

[u] = L(x,u(n))dx, (20)

over some class of functions u = f(x) defined over a domain D C X, subject to certain

boundary conditions. We assume that the integrand L(x, u(n)), which is referred to as the

Lagrangian of the variational problem, is a smooth function of x, u and the derivatives of u.

Theorem 1 The smooth extremals of the variational problem C[u] must satisfy the Euler-

Lagrange equation

n cdL
E(L) (-D)J = , = l,...,q. (21)

#J=o 

In (21), for each multi-index J = (jl,...,jk), we define the total derivative (-D)J

(-1)#JDj1 · Dj2, .. Dj,.

The differential operator E = (El,..., Eq) giving rise to the Euler-Lagrange equation is
known as the variational derivative. For example, in the c iase of one independent and one

dependent variable, the Euler-Lagrange equation associated with a Lagrangian L(x, u(n)) is

the ordinary differential equation

DL__ (D~ L D L Dn
-u T-(, ' uxY .... ,, ) = 

where Un = D u is the n-th order derivative of u. For nondegenerate n-th order Lagrangians,

the Euler-Lagrange equation has order 2n.

The proof of Theorem 1 relies on the analysis of variations of the extremal u. In general,

a one-parameter family of functions u(x, e) a family of variations of a fixed function u(x) =

3When we deal with evolution equations, we refer to flows depending on only first order time derivatives,
but, possibly, higher order space derivatives. The importance of this kind of flows in image processing was
analyzed in [2].
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u(x, 0) provided that, outside a compact subset K C D, the functions are all the same:
u(x, e) = u(x) for Z EC D \ K. An integration by parts argument shows that if u(x, e) is any
one-parameter family of variations of a fixed function u(x) = u(x, 0), then

dg[f(', )] : , E(L) * v dx, (22)

where v(x) = au(x, E)/lE,=o. (Usually, this formula is used in the case u(x, e) = u(x)+ev(x),

where v(x) has compact support, but adding in higher order terms in E has no effect.) In
particular, if u(x) is an extremal of the variational problem, then, by elementary calculus,
the left hand side of (22) must vanish. Since this happens for all variations v(x), we deduce
the necessary conditions in Theorem 1. CD

7 Invariant hypersurface flows

Let G be a finite-dimensional, connected transformation group acting on an open subset
M C X x U __ RP+1 of the space of independent and dependent variables. In this section,
we write-down the general form that any G-invariant evolution in p independent and one
dependent variable must have. Thus for p = 1, we get the family of all possible invariant
curve evolutions in the plane under a given transformation group, and for p = 2 the family
of all possible invariant surface evolutions a given transformation group.

We let

w = gdx1 A ... A dxP = g dx,

denote a G-invariant p-form. Note that we can consider the function g(x, u(n)) as a La-

grangian of the G-invariant variational problem C[u] = fw. In applications, then, the p-

form w represents the G-invariant element of arc length, or surface area. The Euler-Lagrange

equations associated with w, then, describe the G-invariant minimal curves or surfaces. We

will always assume that the Euler-Lagrange equations are not identically zero, E(g) £ O.

The infinitesimal generators of G are vector fields of the form

v = (x, U)0, + cp(, U)a = a (x,')aa1 +" + p(, )xu)a + p(x,u)')a (23)

on M. The characteristic of the vector field (23) is the first order function

Q(X, u()) = (X, u) - E (i(, u) a (24)
i=1

We let pr v denote the prolongation of the vector field v to the jet space. The explicit

formulae for the prolongation can be found in [50].

We now prove the following key result:

Lemma 2 Let pr v be the prolongation of the vector field v = ,(x,u)9," + O(zx, u)do. Let

L dx be a (Lagrangian) p-form. Then

E[pr v(L) + LDiv ,] = pr v(E[L]) + (Qu + Div ~)E[L]. (25)
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Here

= Q = aO (26)
a1 - i= ax i"

and Div E = P Di is the total divergence of the ` 's.

Proof. Let u(x, ) = u(x) + ev(x) + .-. be a one-parameter family of variations of a

fixed function u(x) (as in Section 6). Let u(x, e, t) = exp(tv)u(x,E) be the corresponding

transformed functions, as in [50]. The fact that the variations have compact support in D

implies that, for t sufficiently small, the family u(z, t, s) also satisfies the relevant boundary

conditions. As we shall see, (25) is just a statement of the equality of mixed partials. We

compute the derivative

a2 t_[U(X, E, t)]
O'Eat ,,.,.,,,,, c=t=O

in two-different ways, using the variational formula (22) and the basic definition of the group

action on a function. We first note that, expanding u(z, e, t) in a Taylor series in e and t,

we have

u(x, E, t) = u(X) + ev(x) + tQ(x, u(x)) + etQU(x, u(2))v(X) +.... (27)

First differentiating with respect to e, we find, as in section 6,

a [u( XE, t)] = I E(L)[u(x, t)] * v(x, t)dx

where u(x, t) = u(z,0, t), v(z, t) = au(, 0, t)/ae. Note that, by the preceding expansion

(27),

v(x, t) = v(x) + tQU(, u())v() + - -.... (28)

Therefore

ade2 1[u(x, , t)] = {pr v(E(L))v + E(L)QUv + E(L)vDiv f}dx,

the final term coming from the change in the p-form dx due to the group transformations.

On the other hand, if we first differentiate with respect to t, we find

[u( , e, t)] t=O pr v(L)[u(x, e)] + L[u(x, e)]Div ~}dx.

Therefore,

ae-2 L-[u(x,e,t)] = E[pr v(L)+ LDiv ~]dz.

(9,-(9t ' ,E )IC=t=O 1D
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Since these two integrals must agree for arbitrary variations v, we conclude the truth of the

identity (25). 0

Remark. In particular, if L = g, then the p-form g dx is G-invariant, so

pr v(g) + gDiv I = 0. (29)

Therefore (25) implies the identity

pr v[E(g)] + (Div J + Q,)E(g) = 0, (30)

where E = E(g).

We can now prove the main result of this paper:

Theorem 2 Notation as above. Then every G-invariant evolution equation has the form

zUt E( I, (31)
E(g)

_where I is a differential invariant of G.

Proof. Let

-u = P (32)

be a G-invariant flow. Then

pr v[ut - P] = Quut - pr v[P] = 0. (33)

Thus, the evolution (32) is invariant if and only if

QuP = pr v[P]. (34)

Next note that we get from (34, 30) that

pr v[E(g)P] = pr v[E(g)]P + pr v[P]E(g)

= (-Div ~ - Qu)E(g)P + QuE(g)P

= (-Div ,)E(g)P. (35)

Therefore,

pr v [E(g)P] - E(g)Ppr v[g] - gpr v[E(g)P]

E(g)P(-Div ~) + E(g)PDiv 

9

This means that E(g)P/g is invariant, hence

P= 9 I
E(g)

17



where I is a G-invariant function, which completes the proof. E[

Remark. Theorem 2 and Lemma 2 also extend to several dependent variables (suitably

reinterpreted, since you can't divide by E(g)). Here you need as many independent volume

forms as the number of dependent variables, and the 1/E(g) becomes the matrix inverse of

the variational derivatives of the volume forms.

We should also remark that an alternative proof of Theorem 2, based on the "variational

bicomplex", was communicated to us by Ian Anderson and Juha Pohjanpelto.

We will call a group G acting on M C X x U volume preserving if it leaves the (p + 1)-

form dx A du = dx1 A ... A dxp A du invariant. Equivalently, using (26), the infinitesimal

condition reads

P 0~i a0
0 -9= + -9 u= Div ~ + Q,. (36)

i=1

Proposition 1 Suppose G is a connected transformation group, and g dx a G-invariant p-

form such that E(g) $ O. Then E(g) is a differential invariant if and only if G is volume

preserving.

Proof. This follows trivially from the fundamental equation (30) and the infinitesimal

volume preserving condition (36). Since

pr v[E(g)] + (Div I + Q.)E(g) = 0,

we conclude that E(g) is invariant, i.e., pr v[E(g)] = 0, if ard only if (36) holds. [

Corollary 1 Let G be a connected volume preserving transformation group. Then the G-

invariant flow of lowest order has the form

ut = cg, (37)

where w = g dx1 A ... A dxP is the invariant p-form of minimal order such that E(g) $~ 0.

Remark. The p-form of minimal order will be unique unless G has a differential invariant

of equal or lower order than g.

8 Affine invariant surface flows

In this section, we describe the simplest possible affine invariant surface evolution. This gives

the surface version of the affine shortening flow for curves. This equation was also derived

using completely different methods by [4]. Note that besides affine invariance, a number of

properties were required in [4] to obtain the flow we present below (some of these properties

are related to the importance of the flow being an "evolution equation"). In our approach,

after the starting point of formulation of an evolution equation, the only requirement besides
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the affine invariance, is to be the simplest possible flow. That is, the only requirement is
"the simplest flow which admits the affine group as its symmetry group."

We define the (special) affine group on R 3 as the group of transformations generated by

SL 3 (R) (the group of 3 x 3 matrices with determinant 1) and translations.
Let S be a smooth strictly convex surface in R 3 , which we write locally as the graph

(x, y, u). The Gaussian curvature is given by

UUyy - Uxy

(1 + U2 + U2)2'

Now from [10, 12], the affine invariant metric is given by

g = K 1/4 detg = 1/4 + u2 + u2,

where gij are the coefficients of the first fundamental form.

Thus from Corollary 1, we conclude:

Corollary 2 Notation as above. Then

Ut = CK1/41 + u2 + (38)

(for c a constant) is the simplest affine invariant surface flow. This corresponds to the global
evolution

St = cr1/4 , (39)

where J. denotes the inward normal.

We will call the evolution

St = t' R, (40)

the affine surface flow. Note that it is the surface analogue of the affine heat equation (9).

Remarks.

1. Recently, it has been announced that a convex (C 2 ) surface will converge to an el-
lipsoidal point under the affine surface flow (40); [5, 47]. Indeed, one must verify

that the affine curvature [30] becomes constant for the corresponding normalized di-
lated surfaces flow. (Another possibility would be to show that the affine isoperimetric
inequality converges to the right value [41].) Of course, this result generalizes in a
straightforward way to convex hypersurfaces in any dimension (where one uses the
(n + 2)-nd root of the Gaussian curvature for n the dimension of the hypersurface).

2. In general, Chow [17] has shown that a convex hypersurface converges smoothly to a

point under the flow defined by any power f > 0 of the Gaussian curvature. Moreover,
it is shown that for 0f = 1/n where n is the dimension of the hypersurface, the point is
round. Other than P = i/n, 1/(n + 2), the shape of the point is not known.
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3. Finally, V. Caselles and C. Sbert have recently shown that a dumb-bell does not become
singular under the flow (40) [14] (they actually take (t1/4) + as velocity). This is in
contrast to flow via mean curvature. On the other hand, they also presented examples
where the flow disconnects an initially connected non-convex surface. Several examples

of this flow, as well as the mean curvature one, can be found in this paper as well.

9 Concluding remarks

In this work, we first reviewed basic results concerning geometric smoothing of surfaces.

We considered both 2-D smoothing processes, based on smoothing graphs via level set
smoothing, and pure 3D processes. When dealing with 3D surfaces, we presented results
related to the evolution of graphs and pure three dimensional objects. The results concerned
the evolution via functions of the principal curvatures, such as the mean and Gaussian
curvatures. Unfortunately, the results expected from the planar theory do not hold in the
3D case. An arbitrary regular surface can develop singularities when evolving according to
the Gaussian or mean curvature, or even other more general functions as we described in
this paper. Therefore, these kind of flows cannot be used for smoothing -general surfaces.
However, they can be used for specific graphs or surfaces, e.g. star-shaped surfaces. We
are currently investigating the evolution of surfaces by other functions of their principal

curvature. Our goal with these functions is to achieve surface flows with analogous behavior
to those of planar geometric flows, and then to be able to perform geometric smoothing of
more general surfaces.

Another topic that we are currently investigation is the possibility of smoothing 3D
surfaces via geometric 2D flows applied to curves on the surface, different from the level
sets. One possibility is to smooth lines of curvature, or lines of maximal slope. The main
advantage of smoothing 3D objects via 2D geometric flows is the existence of a well developed
theory for these kind of flows, as we saw in Section 2.

In the second part of the paper we presented a general formulation for invariant geometric
flows of hypersurfaces. This result completes the theory started in [51] for planar curves.
We showed that the invariant flows can be formulated as functions of the invariant metric

and invariant curvature, which are the basic differential invariant descriptors, together with
the variational derivative of this metric. As an example, we derived the simplest affine
invariant geometric flow for 3D surfaces. We also showed that if the transformation group
is volume preserving, this variational derivative is invariant as well. Note that the invariant
geometric flows for planar curves are smoothing processes for both the Euclidean and special

affine groups, but not for the similarity, full affine, and projective ones [51]. One of the key
differences among these groups is that the first two are area preserving while the others are
not. We are currently investigating if there is any connection between the lack of smoothing
and the lack of invariance of the variational derivative for non-area preserving groups. For

such groups, we are also investigating the use of different invariant metrics to define geometric
smoothing processes. These metrics can be used either to define different "heat flows,"
obtained via derivatives according to the corresponding arc-length, or to derive geometric
variational problems which can define smoothing processes.
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Figure Captions

1. Normal curvature diagram.

2. Denoising based on the affine invariant scale-space. The original image is presented

first, then the noisy one, and then steps (different times) of the smoothing process.
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