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Abstract. Let (G, p, V) be a regular irreducible prehomogeneous vector space
defined over the real field R. We denote by P(x)} its irreducible relatively invariant
polynomial. Let ¥, u¥,u - - - u ¥V, be the connected component decomposition of the set
V—{xe V; P(x)=0}.Itis conjectured by [Mr4] that any relatively invariant hyperfunction
on ¥ is written as a linear combination of the hyperfunctions | P(x)|], whete | P(x)|} is
the complex power of | P(x)|* supported on P;. In this paper the author gives a proof
of this conjecture when (G 5, p, V) is a real prehomogeneous vector space of commutative
parabolic type. Our proof is based on microlocal analysis of invariant hyperfunctions
on prehomogeneous vector spaces.
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Introduction. Let P(x) be a homogeneous polynomial with real coefficients on a
real vector space V. We suppose that the determinant of the Hessian det(0P/0x;0x;)
does not vanish identically. We set Gg:={ge GL(V); P(g-x)=x(9)P(x)}, where x(g) is
a constant depending only on g e Gg. Then the function y(g) is a character of Gg. The
connected component of Gy containing the neutral element is denoted by G 5. We let
ViuV,u---u¥, be the connected component decomposition of the set V—{xeV;
P(x)=0}. We suppose that each ¥;isa Gz -orbit, i.e., (G, p, V) is a real prehomogeneous
vector space. Any relatively invariant polynomial is given by a non-negative integer
power of P(x). In this paper, we show that every relatively invariant hyperfunction is
necessarily obtained as a linear combination of the complex powers of P(x).

We shall explain our problem more precisely. Let

[P(x)|* if xeV;,

P Se=
[ PE: { 0 if x¢V,.

Then | P(x)|; is a continuous function when the real part Re(s) of s is positive, and can
be continued to the whole complex plane se C as a hyperfunction with a meromorphic
parameter s€ C. A hyperfunction T(x) which is expressed in the form

1
0.1 T(x)= Y. a{s)'| P(9) §]s=1,
satisfies T(g- x) = x(g)*- T(x) if a{s)’s are meromorphic functions defined near s= 4 such
that the right hand side of (0.1) is holomorphic with respect to s at s=21. We call a
hyperfunction T(x) a y*-invariant hyperfunction if it satisfies T(g-x)=x(g)*T(x) for all
geGy.

Our problem is the converse: is every y*-invariant hyperfunction T(x) expressed in
the form (0.1)? The purpose of this paper is to give a new approach to this problem
via microlocal analysis, and give an affirmative answer for an important class of
prehomogeneous vector spaces — the case where P(x) is an irreducible relatively invariant
polynomial of a regular prehomogeneous vector space of commutative parabolic type.
Our class contains the cases of real symmetric matrix spaces, of Hermitian matrices
over complex and quaternion fields and so on. (See the list (4.1)(4.5).) As a by-product,
it follows that the dimension of the space of y*-invariant hyperfunctions coincides with
the number of the connected components of ¥—{xe V; P(x)=0} (Theorem 5.6, 1) and
2)). Though we shall only deal with the cases of regular prehomogeneous vector spaces
of commutative parabolic type, our method is applicable to other examples provided
that they satisfy suitable conditions which would be verified by examining microlocal
structure of their holonomic system. See [Mr4].

The problem we treat in this paper seems to be dealt with at least implicitly by
several authors, for example, Rais [Ra], Rubenthaler [Rul], Stein [St], Weil [We], and
so on. In Ricci and Stein [Ric-St], almost the same problem was dealt with in the case



PREHOMOGENEOUS VECTOR SPACES 165

where V is the space of n x n complex Hermitian matrices and P(x)=det(x). They proved
that the dimension of the space of relatively invariant hyperfunctions corresponding to
¥’ equals the number of open orbits. These are all known partial answers to our problem.
The results in this paper are new except the cases (4.2) and (4.5).

The author expresses deep appreciation to Professor H. Rubenthaler for his
suggestion, encouragement and advice. Professor Kashiwara gave me useful advice.
Professor Wright’s research [Wr] on prehomogeneous vector spaces from adelic point
of view was implicitly stimulating for me. The advice of the referee and the editor was
kind, accurate and helpful for improvement of this paper. The author wishes to thank
them and their excellent works.

1. Formulation of the main problem. In this section we formulate our problem
in an exact form and provide fundamental notions and notation used in this paper.

1.1. Preliminary conditions and some definitions. Let (Gg, p, V) be a pre-
homogeneous vector space of dimension » defined over a complex number field C: it
means that there exists a Zariski-open orbit in V. We put S¢:=V,—p(G¢)- x,, where
p(G)- x4 is the necessarily unique open orbit in V.

We impose the following three conditions (1.1), 1)-3). The first condition is:

(1.1), 1) S is an irreducible hypersurface in V.
Then S is written as S¢={x € V; P(x)=0} with an irreducible polynomial P(x) on V.
We call S the singular set and a G-orbit in S¢ a singular orbit. Then the polynomial
P(x) is a relatively invariant polynomial with respect to geG.: P(p(g)x)=x(g)- P(x)
with a non-trivial character y(g) of G¢.. We say that P(x)is a relatively invariant polynomial
corresponding to the character x. From the condition (1.1), 1), any relatively invariant
polynomial is written as P(x)™ with a non-negative integer m.

The second condition is:

(1.1),2) The relatively invariant polynomial P(x) has a non-degenerate Hessian, i.e.,

det(0P/0x;0x;) does not vanish identically.

The condition (1.1),2) guarantees the regularity of the prehomogeneous vector space
(GCs P VC)

Let(Gg, p, V) beareal form of (G, p, V). Namely, G is the connected component
containing the neutral element of a real form Gy of G¢; V is a real form of ¥V, satisfy-
ing p(Gg)=GL(V). We denote S:=Sc,nV and call it the real singular set. Let
ViuV,u---u¥, be the connected component decomposition of ¥—S§. Then each
connected component V; is a G g-orbit. The final condition is:

(1.1),3) The restriction of P(x) on V can be taken as a polynomial with real

coefficients.

We now give some definitions.

(1.2) DermnTION (Relatively invariant hyperfunction). Let v(g) be a character of
G . We call a hyperfunction (resp. microfunction) T(x) on V a relatively invariant
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hyperfunction (resp. microfunction) corresponding to v, or simply, a v-invariant
hyperfunction, (tesp. microfunction) if it satisfies T(g-x)=v(g)T(x) for all ge G .

A hyperfunction (resp. microfunction) u(s, x) on Cx ¥V is said to be a hyperfunc-
tion (resp. microfunction) with a holomorphic parameter seC if it satisfies the
Cauchy-Riemann equation with respect to se C: (8/85)u(s, x)=0. If a(s)-u(s, x) is a
hyperfunction (resp. microfunction) with a holomorphic parameter seC for a
holomorphic function a(s), u(s, x) is said to be a hyperfunction (resp. microfunction)
with a meromorphic parameter seC.

(1.3) DermTioN (Linear combinations). Let u,(s, x), - - -, #(s, x) be hyperfunc-
tions with a meromorphic parameter seC and let a,(s), - - -, a(s) be meromorphic
functions near s=A€e C. If w(s, x):=Z§=1 a(s) - ufs, x) is holomorphic at s=4, then we
call T(x):=wl(s, x) ls= , a hyperfunction obtained as a linear combination of ugs, x)
@i=1,--,Dats=A

1.2. Main problem. The hyperfunction | P(x)|} with a meromorphic parameter
s€ C, which we shall mainly deal with in this paper, is defined in the following way. Let

| P(x) if xeV,,

1.4 P()[f:=
(1.4) | PO} I3 { 0 it gV,

for se C satisfying Re(s)>0. Then | P(x)|{ is a continuous homogeneous function on
V and can be viewed as a hyperfunction on V. Clearly, | P(x)|] is a hyperfunction with
a holomorphic parameter s if Re(s)>0. It can be continued to the whole se C as a
hyperfunction with a meromorphic parameter se C by the aid of b-function (see for
example [Sm-Sh, p. 139]). We also denote by | P(x)|] the hyperfunction with a mero-
morphic parameter se C by the analytic continuation of (1.4) to every se C.

Then we have:

PrOPOSITION 1.1. Let AeC. Any linear combination of |P(x)|} (i=1,---,1) at
s=A in the sense of (1.3) is a y*-invariant hyperfunction.

This proposition follows from the analytic continuation of the equation
| P(g-x)|5=x(g)y ‘| P(x)|; from the domain {se C; Re(s)>0}. The main problem that we
shall treat in this paper is the converse of Proposition 1.1.

MAIN PrOBLEM. Let A€ C. Is any y*-invariant hyperfunction obtained as a linear
combination of | P(x)|i at s=2 in the sense of (1.3)?

We shall solve this problem by translating it to a problem of estimating the
dimension of the solution space of a linear differential equation. Let %, be the complex
Lie algebra of the complex linear algebraic group G¢. Let dp and Jdy be the infinitesimal
representations of p and y, respectively. Consider the following system of linear dif-
ferential equations M, with one unknown function u(x) on the complex vector space ¥V:
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(1.5) m,; (<dp(A) - X, 56—> —s&x(A))u(x) =0 forall Ae%..
x

Here <, > means the canonical bilinear form on V¢ x V', where V§is the dual space of V.

Next we consider hyperfunction solutions on the real vector space V of the
holonomic system 9%, We use the same notation x, d/0x on the real vector space V as
on the complex vector space V.. Let ¢ be the real Lie algebra of G5. Then, since
Yc=9% +\/?1g as a real Lie algebra, we have:

<dp(A) x, i> _sdy(A)
ox

0 0
=<<dP(A1) X, a> _35X(A1))+\/ -1 <<dp(A2)'x, 5;> —s‘sX(Az)) s

where A=A, +\/—_1A2 €% with A, A,€%. Then, if u(x) is a hyperfunction solution
on ¥V to M, then u(x) is a solution of the system:

(<dp(A) ‘X, 6i> — séx(A))u(x) =0 forall Ae%
x

on the real vector space V. Hence if u(x) is y*-invariant, then u(x) is a solution to M,
and vice versa. The vector space S2£(M;) of hyperfunction solutions to M, coincides
with the vector space of y*-invariant hyperfunctions.

PROPOSITION 1.2. For any fixed A€ C, the dimension of the space of linear
combinations of | P(x)|} in the sense of (1.3) at s=A is the number | of the connected
components of V— 8. Consequently, dim(2¢(IM,)) = 1.

The proof of this propostion is not difficult. See for example Oshima-Sekiguchi
[Os-Se], Proposition 2.2,

Our problem is reduced to showing that dim(¥%¢(R;)) </. By Proposition 1.1 any
x*-invariant hyperfunction is written as a linear combination of | P(x)| at s=A4, since
the dimension of such linear combinations is > /. The rest of this paper is thus devoted
to the proof of dim(¥¢(M,)) <! for prehomogeneous vector spaces of commutative
parabolic type.

2. Regular prehomogeneous vector spaces of commutative parabolic type. In this
section we define prehomogeneous vector spaces of commutative parabolic type and
give the complex holonomy diagrams of the holonomic systems I, defined by (1.5).
All the results in this section were obtained in [Ki].

2.1. Prehomogeneous vector spaces of parabolic type. The notion of pre-
homogeneous vector spaces of parabolic type was introduced by Rubenthaler [Ru2].
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For a semi-simple complex Lie algebra %, he extracted a Z-graded structure,

2.1 4=0FP 9,
ieZ
satisfying [¥;, 4;]c %, ., ;. The Lie algebra %, acts on 4, by the adjoint action. Denoting
by G, the exponential group of %,, we naturally have a representation of G, on %,;.
He gave a general method to get a Z-gradation in the form (2.1) by using the root
system of the semi-simple Lie algebra 4. Then (G, %) forms a prehomogeneous vector
space by Vinberg [Vi]. In [Ru2] such a pair (G,, ¥;) is called a prehomogeneous vector
space of parabolic type. [Ru2] first studied systematically Z-gradations of semi-simple
Lie algebras and classified regular prehomogeneous vector spaces of parabolic type.
Particularly, consider the case that 4 has a Z-gradation,

(22) $=9_,09%9,0%,,

that is to say, ¢¥;={0} for |j|>2. Then, elements of ¥, commute with each other. We
call (G, 9,) a prehomogeneous vector space of commutative parabolic type, which we
are interested in. Any irreducible prehomogeneous vector space of commutative
parabolic type is obtained by a Z-gradation in the form (2.2) of a simple Lie algebra
%. There are several kinds of irreducible prehomogeneous vector spaces of commutative
parabolic type, but they have common distinguished properties. We can deal with them
in a unified way.

Muller-Rubenthaler-Schiffmann [Mu-Ru-Sc] gave the complete list of irreducible
prehomogeneous vector spaces of commutative parabolic type. It consists of seven kinds
of prehomogeneous vector spaces. See Table I in [Mu-Ru-Sc]. Among them, type A4,
(n#2k+1 and p#k+1) and type E4 are non-regular prehomogeneous vector spaces.
Type B, and type D, , are representations of a general orthogonal group of odd and
even degree, respectively. We may look upon them as prehomogeneous vector spaces
of the same kind. Here is the list of irreducible regular prehomogeneous vector spaces
of commutative parabolic type:

2.3)

1) Type C, (m=1,2, ---). ((Mu-Ru-S¢, Table I, C,], and [Ki, §2, 2-2]).
Gc=GL,(C), Vc=Sym,(C). For (g, x)eG¢ x V¢, plg): x—g-x-'g. An irreducible
relatively invariant polynomial P(x)=det(x). The corresponding character of P(x)
is y(g)=det(g)*. Gt = SL,(C). The dimension of ¥ is n=m(m+ 1)/2. Here, Sym, (C)
means the space of m x m complex symmetric matrices and det(x) is the determinant
of x. .

2) Type A, (k=2m+1, m=1,2, ---). ((Mu-Ru-Sc, Table I, 4, (k=2m+1,
p=m+1)}and [Ki, §2, 2-1]). Gc=GL,(C)x SL,(C), V¢=M,(C). For ((g;, g,), x)
€Gex Ve, p(g): x— g, x-'g,. An irreducible relatively invariant polynomial is
P(x)=det(x). The corresponding character of P(x) is y(g)=det(g,)det(g;). GL=
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SL,(C) x SL,(C). The dimension of ¥V, is n=m?.

3) Type D, , (m=1,2, - --). (Mu-Ru-Sc, Table I, D,,, , and [Ki, §2, 2-3]).
Gc=GL,,(C), Ve=Alt,,(C). For (g, x)e G x Ve, plg): x— g-x-'g. An irreducible
relatively invariant polynomial is P(x)=Pff(x). The corresponding character of P(x)
is y(g) =det(g). G}=SL,,(C). The dimension of ¥ is n=m(2m—1). Here, Alt,,(C)
means the space of 2m x 2m alternating matrices and Pff(x) is the Pfaffian of
x e Alt,, (C).

4) Type E,. ((Mu-Ru-Sc, Table I, E;] and [Ki, §6]). Gc=GL(C) x E4,
Ve=Her;(€,). For ((4;, 92), X) €Gc x V¢, p(g): x—>g(g,-x). An irreducible rel-
atively invariant polynomial is P(x)=det(x). The corresponding character of P(x)
is x(9)=g3. Gt=E.. The dimension of V. is n=27. Here, Eq is the complex
exceptional Lie group of type E4 and € is the complex Cayley algebra. Her;(€()
stands for the space of 3 x 3 Hermitian matrices over &.. The group E4z¢ acts on
Her,(€,) as the lowest dimensional irreducible representation of Eg¢ and is defined
as the connected subgroup of GL(Her;(€)) consisting of the elements which leave
P(x) invariant. We denote by g-x the action of ge Egc on xe V.

5) Type B, (m=2k+1) and D,,, ; (m=2k) with k=1, 2, - - -. ((Mu-Ru-Sc,
Table I, B, and D, . ;] and [Sm-Ka-Ki-Os, Example 9.2]). G¢=GL,(C) x SO, (C),
Ve=C™. For ((91, 92), x)€Ge % V¢, p(g): x—g,(g,x). An irreducible relatively
invariant polynomial is P(x) ="x- x. The corresponding character of P(x) is y(g)=g3.
G}=S0,(C). The dimension of ¥V is n=m.

Although [Mu-Ru-Sh] investigated their structure from a unified view point, we rather
follow [Ki] and [Sm-Ka-Ki-Os} which studied them on a case-by-case basis, since we
need individual information found in the latter. It is easily checked that they satisfy
the conditions (1.1), 1) and 2).

2.2. Holonomic systems I, for prehomogeneous vector spaces of commutative
parabolic type. The prehomogeneous vector space (2.3), 1) (resp. (2.3), 2), (2.3), 3),
(2.3), 4), (2.3), 5)) were treated in [Ki, §2, 2-2] (resp. [Ki, §2, 2-1], [Ki, §2, 2-3], [Ki,
§6], [Sm-Ka-Ki-Os, Example 9.2 for m=1]) and its complex holonomy diagram and
its b-function were computed there. We shall quote from them required results in a
slightly different form in Propositions 2.1 and 2.2. Since the proofs can be found in
[Ki] or [Sm-Ka-Ki-Os], or can be easily checked after direct computations, we omit the
proof.

PROPOSITION 2.1. (1) The prehomogeneous vector spaces (Gg, p, V¢) in (2.3),
1), 2), 3) and 4) have the Gc-orbit decompositions )] ,Sic="V, with Sic={xeVg;
rank(x)=m—i}. In particular, Soc=Vc—S¢ with Sc={xe V¢, P(x)=0} and S,=
U2, Sic. Here we let m=3 in the case of (2.3), 4).

(ii) The prehomogeneous vector space (Gg, p, V¢) in (2.3), 5) has the orbit
decomposition | i2=0 Sic= V¢, with Soc={x€ V¢; P(x)#0}, S;c={x€ V¢ P(x)=0}—{0},
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and S2c= {0}

PROPOSITION 2.2. Let M, (se C) be the holonomic system defined by (1.5) for one
of the prehomogeneous vector spaces (2.3), 1)-5). Then:

(1) Type C, (m=1,2,---)

0 —s—l~ -is—i(i:l) —(i+1)s~(i—+1:(i2—) -—(m—l)s—(m_fl)m —mszLmZ_L”
VAR () I (M
Q . \J o/ it g Ay [ O
Aoc G+D Ay A <S+“) Aivic An-1c <3+ ) Amc
* 2 2
(2) Type A, (k=2m+1,m=1,2, ---)
.2 . 2 _ 2
0 -s—% —is—'7 —(i+1)s~(l+21) —m—tys- "V —ms—%—
O () () () M
./ / , Ny
Aoc e+ A Aic (s+1) Airre Am-1c {s+m) Amc
(3) Type Dy, (m=1,2, --°)
0 —~T~% _is_KZi?—'D —(i+1)s—(:+‘i22—w —(m—l)s—('w‘l#:2 Ams—m(gz';_l)
WA () () () O
_/ AN TN/
Agc (s+1) A Ae GHZED 40 Ao G+Im=D
4) Type £,
1 . 27
0 —:—? —25—5 —(1+l)s—7
M) ()
) U O
Age  GFD A (s+5) A 69 Ao

() Type By (m=2k+1,k=1,2, -+*) Type Dy (m=2k+1), k=1,2, ")

0 —s—o ~25—;
FE
O O O
(s+1) mn
Aoc A <S+5) Az

FIGURE 1.
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(1) The characteristic variety ch(I,) is given by

24 ch(@)= U 4ic,
i=0
with
Ae=T$cVc-

where, we let m=3 for the case 4) and m=2 for the case 5). Each Ay is a Lagrangian
irreducible component of ch(I,), hence (2.4) gives the irreducible component decomposition
of ch(I,).

(ii) Their holonomy diagrams are as in Figure 1. Type C,, (m=1,2, - - -) is Figure
1, (1); Type A, (k=2m+1, m=1,2, ---) is Figure 1, (2); Type D,,,, (m=1,2, --+) is
Figure 1, (3); Type E, is Figure 1, (4); Type B, (m=2k+ 1) and Type Dy, ; (im=2(k+1))
with k=1, 2, - - - are Figure 1, (5).

Proor. (i) is a direct consequence of the argument in [Sm-Ka-Ki-Os] and
Proposition 2.1.

(i) See{Ki, §2, 2-2], [Ki §2, 2-1}, [Ki, § 2, 2-3], [Ki, § 6] and [Sm-Ka-Ki-Os, Exam-
ple 9.2 (m=1)), respectively. We add arrows for convenience, although the original ho-
lonomy diagrams in [Ki] or [Sm-Ka-Ki-Os] do not contain them. The orders and the
“factors of b-functions” are computed from the definition of [Sm-Ka-Ki-Os]. q.e.d.

[Sm-Ka-Ki-Os] and [Ki] computed the b-functions of the complex powers of the
relatively invariant polynomials of some regular irreducible prehomogeneous vector
spaces by utilizing this holonomy diagrams. A b-function is, by definition, a polynomial
b(s) satisfying Q(8/0x)- P(x)** ! = b(s)- P(x)’ where P(x) and Q(y) are irreducible relatively
invariant polynomials on V. and the dual space V§, respectively. The b-function is a
polynomial in s, and is determined uniquely up to constant multiple. One of the main
theorems of [Sm-Ka-Ki-Os] is that b-functions of prehomogeneous vector spaces are
obtained as the products of all “factors of b-functions”. We give the b-functions of the
prehomogeneous vector spaces in (2.3) for later reference. See [Ki] and [Sm-Ka-Ki-Os].

PROPOSITION 2.3. The b-functions of regular prehomogeneous vector spaces (2.3),
1)-5) are given by:

2.5) 1) b(s)= ﬁ <s+%> .

i=1

2) bs)=]]G+9).

i=1

3) b(s)= ljl (s+(2i—1)).
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3

4) bs)=]] G+@i-=3)=(+1)s+5)(s+9).

i=1

5) b(s)=(s+ 1)<s+%> .

3. Holonomic systems on the real locus and its solutions. In this section we study
real micro-local strucrure of IR, near a normal intersection of two Lagrangian
subvarieties of codimension one. There is a simple relation between microfunction
solutions on the two Lagrangian subvarieties (Proposition 3.3). It will help the
determination of hyperfunction solutions of 9, in §5.

3.1. Solutions with a holomorphic parameter s. Let u(s, x) be a hyperfunction
or microfunction solution to M, with a holomorphic parameter se C. Then u(s, x) can
be restricted to the subset {(s,x)eCx V;s=4,xe ¥} and the restriction u(s, x)|,-,
is a solution to M. If u(s, x) is a solution with a meromorphic parameter se C and if
u(s, x) has a pole at s=4 of order m, then (s— A)"u(s, x)|s= a1 1s well-defined and is a
solution to M;. Namely, the lowest order coefficient of the Laurent expansion of u(s, x)
at s=/ is a solution to M,. For example, | P(x)|} is a hyperfunction with a mero-
morphic parameter se C.

We now consider the support or the singular spectrum of the solutions.

PropoSITION 3.1. Let A be a fixed point in C. Let f(x) be a hyperfunction (resp.
microfunction) solution to the holonomic system 3R, on V(resp. on T*V). Then we have:

3.1 ﬁ.(f (x)) =ch(M,)nT*V, (resp. supp(f(x)) cch(M)nT*V),

where S.3. stands for the singular spectrum on T* V. In particular, if f(s, x) is a hyperfunction
(resp. microfunction) solution with a holomorphic parameter s C, then the hyperfunction
(resp. microfunction) f(x):=f(A, x) for each A€ C satisfies (3.1).

This porposition is well known. We omit the proof. See [Ka2], [Ka3] or [Ka4].

The real locus ch(IN,) n T* Vis denoted by ch(IM,)x and is called the real characteristic
variety. The characteristic variety ch(0t,) has the irreducible component decomposition:
ch(M)=J7, 4ic. We denote by A, the real locus A;,cnT*V. Then A,z may not be
of real dimension n while A, is always of complex dimension n. In other words, it may
not be a real conic Lagrangian subvariety in T*V, i.e., a subvariety of dimension » in
T*¥ on which the real canonical 2-form ) [_, dx; A d¢,; vanishes. So we have to assume
the following condition:

(3.2) Each A4 is a real Lagrangian subvariety in T*V .

Then each A;g is a real form of A,c.
Recall that the set of generic points of A, in ch(IR,) is denoted by Ajc:={pe A;c; (1)



PREHOMOGENEOUS VECTOR SPACES 173

A,c 1s non-singular near p, (2) p is not contained in any other irreducible components
Aje (j#10)}. Since A is a non-singular open dense subvariety in A, its real locus
Ajc:=A{nT*V is a non-singular open dense subvariety in A;g. The subvariety Afg
decomposes into a finite number of connected components. Let A= ;;1 Ai be the
connected component decomposition. Let U be an open set in T*¥V such that
Unch(M)g=Un A4 with a connected component A/ of A%. Then the support of a
microfunction solution on U is contained in A{nU. We call it a microfunction
solution on Ai by abuse of language. We have the following theorem on a microfunction
solution on A

PROPOSITION 3.2. For each fixed A€ C and for any point pe Al there is a
one-dimensional microfunction solution space to W, near p. In particular, if there exists
a non-trivial global microfunction solution on A}, then it is uniquely determined up to
constant multiple, and non-vanishing on Ai.

Proor. By definition, 9, is a simple holonomic system on AJ. Therefore its
microfunction solution space on A/ is one-dimensional. For a detailed proof, see for
example the proof of Theorem 4.2.5 in [Sm-Kw-Ka]. qg.e.d.

3.2. Real holonomy diagrams. The aim of this subsection is to introduce the
real holonomy diagrams of the holonomic system I, on V. We have given the complex
holonomy diagram of a holonomic system 9, in order to see the geometric configuration
of intersections of codimension one among the Lagrangian irreducible components of
ch(M,). We would like to do the same for the real locus ch(IR,)g. Since, it is too
complicated to describe all the intersections of all the real Lagrangian subvarieties in
ch(M)g, however, we confine ourselves to writing down intersections between two
irreducible components in ch(MM)g. Let A, and A,, have a regular intersection of
dimension n—1. The intersection is necessarily transversal. Let . be an irreducible
component of A,cnA,c. Then we have the complex holonomy subdiagram Figure 2,
(1). In Figure 2, (1), (p(s)+ 1) =q,(s)— q,(s)+(1/2). Here q,(s) and g,(s) are the orders of
M, on A, and A, respectively, and (p(s)+ 1) is the factor of b-function from A,¢
to Ape. See [Sm-Ka-Ki-Os]).

Recall that we denote by A2 and Ajg the sets of generic points of A,z and A,x
in ch(M,)g, respectively. Let [ [ AL =A%z and | |, A§= A3, be the connected component
decompositions of Ag and A3, respectively. We denote by (2¢),., the set of non-singular
points of X¢. Then (Z¢),., is an (n—1)-dimensional non-singular complex algebraic
subvariety and its real locus (Zg)ep:=(Z¢)egN T*V is an (n—1)-dimensional real
algebraic subvariety by the condition (3.2). Let ]_[82 *=(Zg)rey be the connected
component decomposition of (Zg)ye,-

Take a connected component 2° and let pe Z°. Then we have T, A,gn T4 g = T,2°,
that is to say, A,z and A,g have the (n—1)-dimensional regular intersection Z° in a
neighborhood of p, which is transversal. Since A_g and A,z are n-dimensional, 2°* divides
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A.r and A,y into two connected parts near p, i.e., A,g—2° and A,z—X* have two
connected components in a sufficiently small neighborhood of p. On the other hand,
we have A,g—X°*=A%% and A,z—2°=A}g Hence there exist two connected
components, A% and A% in A%, and, A} and A} in AJg, which are the connected
components near p. Namely,

(3.4 Ag—22=AJA8, and A,g—Zc=AJ[]A]

in a neighborhood of p. The indices «, 8, y and § do not depend on the choice of the
point pe 2*. In order to describe such a geometric situation in ch(,)g, we express each
connected component of A%z and Ajg by a circle and write the situation (3.4) by Figure
2, (2). In the diagram Figure 2, (2), each circle stands for a connected component in
Ajgg or Ajg and the cross means an (n— 1)-dimensional intersection in (2g),.,. Thus by
representing each connected component by a circle and each connected component of
(ZR)reg DY a cross, and by connecting circles, we obtain a diagram consisting of circles
and crosses like Figure 2, (2).

(3.5) DermntTION (Real holonomy diagram). We call the diagram thus obtained

M

9.5) 4(5)
A  (POFD A
@

)

94(5) 94(5)

P .U

FIGURE 2.
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a real holonomy diagram of the intersection of A,z and A,z at XZp, or of the complex
holonomy diagram Figure 2, (1).

In §4.2 we draw real holonomy diagrams of M, for several real forms, which were
partly obtained in {Mrl].

3.3. Relations of microfunction solutions. Now we prove that there exist some
linear relations among the microfunction solutions on A%, A% and A}, A3.

(3.6) DeriNITION (Critical points of ;). Suppose that M, has a holonomy
subdiagram Figure 2, (1). We say that Ae C is a critical point of M, or M, is critical
at s=1, from A, to Ay, if p(l) is a negative integer. Otherwise, we say that 1 is
non-critical from A ¢ to Aye.

ReEMARk. When we look upon the above holonomy diagram Figure 2, (1) as the
one with the inverse arrow Figure 2, (3), the critical points of MM, are 1 e C satisfying
—p()e{0, —1, —2, - - -}. Namely the set of critical points from A,¢c to A,¢ and those
form A,¢ to A, are disjoint and their union is {se C; p(s)e Z}.

ProrosiTION 3.3. Let AeC. Let A, and Ayc be two irreducible Lagrangian
subvarieties in ch(M,) having the complex holonomy diagram Figure 2, (1). Let A%, A%
and A}, A} be two pairs of connected components of A%y and Ajg, respectively, having
the real holonomy diagram Figure 2, (2).

(1) For each seC, the space of microfunction solutions to W, near p is
two-dimensional.

(2) IfW, is not critical at s=A from A, to Ay, ie., p(A)#~1, —2, —3, - - -, then
the microfunction solutions to M, on A} and A} are determined by the microfunction
solutions on A% and A%, If M, is not critical at s= A from Ayg to Ay, ice., p(A)#0,1,2, - -,
then the microfunction solutions to M, on A% and A® are determined by the microfunction
solutions on A} and A},

(3) Suppose that WM, is critical at s= A from A ¢ to Ay, ie.,p(A)=—1, =2, —3, - - -,
Let v(x) be a microfunction solution to M,. The v(x)| 4z is determined by v(x)l 48 and vice

versa. If the support of v(x) is contained in Ayg, then v(x)| ¢ is determined by o(x)| .y and
vice versa.

ProOF. The holonomic system IR, is transformed to the following holonomic
system £, , through a real quantized contact transformation.

(xl . r(s))u(x) —0,

O0x,

0
(37) 5:"r(s),p(s) <x2 a— _p(s)>u(x) =0 )
X2
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0
6-3u(x)=6—x4u(x)= 6—"“0‘)—0 >

with

Ar={(x, )eT*V; x,=y,=y3="""=y,=0},

Apr={(%, Y)eT*V; x;=x,=p3="""=y,=0},

p=(0, +dxy),

Zi={(x, )eT*V; x,=x,=y,=ys="""=y,=0}.
Here, (x, * -+, X,, ¥4, * * *, y,) means real coordinates of 7*V¥. This fact is proved as a

special case of Theorem 6.3 in [Sm-Ka-Ki-Os ]. Though the proof given in [Sm-Ka-Ki-Os]
is the one for holonomic systems in the complex domain, it works well in the real
domain by real analytic contact transformation instead of holomorphic contact
transformation. Namely, that the real version of Theorem 6.3 in [Sm-Ka-Ki-Os] is easily
justified.

Therefore the problem is reduced to showing Proposition 3.3 for the holonomic
system £, ., defined in (3.7). Namely what we have to show is the following; let u(x)
be a microfunction solution to £,;, ., defined near the point p= (0, +dx,)e T*V;if u(x)
is zero on Alg:={(x, y)eT*V;x,=y,="--=y,=0, x, #0}, then u(x) is zero near p.
We need the following obvious Lemma 3.3.1.

LemMa 3.3.1. Let X, and X, be two real analytic manifolds. Let

m,: Pi<x1’ ai>“(x1)=0 (i=1, -, ky)

X1
0 )

M, : Qj<x2a _(3 )v(x2)=0 (=1, -, ky)
X2

be holonomic systems on X, and X,, respectively. We denote by S0t (I,), ot (IM,) the

spaces of hyperfunction or microfunction solutions. Consider the holonomic system on
X, xX,:

M, QM : Pi<x1, ai

1

)“(xp x,)=0,

0
Qj(XZ’ Ex_)u(xl’ x2)=0 s (l= 1, T, k19j= 1’ Tt kz) .

2
Then the solution space Sot (M, ®M,) is given by Fot (M) R St (M,,).

We set p(4):=v and (1) :=pu. By Lemma 3.3.1, the holonomic system &, , is given
by Qu,v = 9:Rl ®m2 ®im3 with
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0
M, : (xl T—u)u(x1)=0 near (0, +dx,)eT*R,

X1

m,: <x2 —6——v>v(x2) =0 near (0,0)eT*R,
0x,

G, a
M, : a—w(x3, e X)= =—WxXs, ", X,)=0  near (0,0)eT*R""2.

X5 X,,
We now examine the space of microfunction solutions to £, , near p. We have
(3.8) Ff(M)=a (x;+i0F -I'(—yp), with aeC.
SotM)=a |x,|% +b-|x,|~, with a,beC when v#—-1, -2, -3, - -,
=a (x,+10)"+b-(x,—i0)* with a,beC when v#0,1,2, - .
Sot(M3)=a, with a constant function aecC.

The microfunction (x, +i0)*- I'(— ) defined near (0, dx,)e T*V is the boundary value
of the holomorphic function I'(—y)-z4 from the upper half plane {z, =x,+./—1y;;
X1, y1€R, y,>0}. Here we take a suitable branch of the holomorphic function z4 on
it. Regarded as a microfunction defined near (0, dx,)e T*V, it is well defined for all
pe C. The microfunction | x, |*% (resp. | x,|*) is a hyperfunction on R defined by

% ._{|x2|“ on x,>0
21+ =
0 on x,<0
v
<rcsp.|x2|".:={|x2| on x2<0>
0 on x,>0

which is a hyperfunction with a holomorphic parameter ve C obtained by the analytic
continuation from Re(v)>0 and is well-defined for v#£ —1, -2, - --
We set

{u+(x)=(x1+i0)“'F(—u)'|xz|”+ ,
u_(xy=(x; +i00'-I'(—p)| x|,
{u+(X)=(x1+i0)“'1"(—u)'(x2+i0)”,
u”(x)=(xq +i0f - I'(—p)-(x, —i0)",
When v is not an integer, the vector space spanned by u*(x) and u~(x) coincides with
that generated by u,(x) and u_(x). The pairs of microfunctions {u,(x), u_(x)} or
{u*(x), u”(x)} give a basis for the space of microfunction solutions for £, , near p by
Lemma 3.3.1. Thus the proof of (1) is completed.

Next we prove (2). First we suppose that v# —1, —2, ---. Let u(x) be a micro-
function solution of £, , defined near p. Then u(x) is written as a,, - u . (x)+a_ -u_(x) with

for v#-—-1,-2,---

for v#0,1,2,---.
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a,,a_e€C. Weset A :=A,zgn{x,>0} and A :=A,zn{x,<0}. Then A=A v A;
near the point p. Since u,(x)|,; =0, u_(x)|,+=0 and u.(x)|,z #0, u_(x)|,; #0,
we have u(x)|,+ =a, ‘u,(x)|,+ and u(x)| - =a_ -u_(x)| ;. Thus the values of a, and a_
are determined by the restrictions u(x)] 4+ and u(x)| 4;- This means that a microfunc-
tion solution u(x) of M, is determined by the data of u(x) on A%. Thus the data of
u(x) on Ajg are determined by those on A%y if v=p(A)# —1, —2, - - -. Next we sup-
pose that v#£0, 1,2, - - -. Then u(x) is written as b, -u*(x)+b_-u"(x) with b,,b_eC.
We put A, :=A,xn{y,>0} and A, :=A,xn{y,<0}. Since u*(x)|,; =0, u™(x)|,; =0
and u*(x)| 17 #0,u™(x)| 4; #0, we have u(x)| 43 =b ., u* (x)| o7 and u(x)| 4; =b_-u~(x)| ;-
Thus the values of b, and b_ are determined by u(x)l 45 and u(x)| 4; - This means that
a microfunction solution u(x) to MM, is determined by the data of u(x) on A2g. Thus
the data of u(x) on A%, are determined by those on Afg if v=p(1)#£0,1,2, ---.

As in the proof of (3), suppose that v=—1, —2, —3, - --. By (3.8), the space of
microfunction solutions of M, is given by

Fot M) =a-(x,+i0)"+b-67"" V(x,)

where §Y(x,) is the i-th derivative of the delta-function for the variable x,. Indeed, we
have (const.) x 67" V(x,) =(x, + i0)’ —(x, —i0)". The space of microfunction solutions
of M, and M, are the same as those of (3.8). Then, by Lemma 3.3.1, the microfunctions
Uy (x)=(x, +i0y* - T(—p)- 6" V(x,) and u,(x)=(x; +i0)* - I'(—p)*(x,+10)" give a basis
of the space of microfunction solutions of £, , near p. It is clear by the definition that
supp(u;(x))=AJu A8 and supp(u,(x)) > A%U A near p. In particular, u,(x) and u,(x)
generate the solution space. Therefore, for any microfunction solution v(x), v(x)| A%uA?
is written as a-uz(x)| a2u 42 With ae C. Thus the value of v(x) on A} is determined by
the value on Af and vice versa. If the support of v(x) is contained in A, then v(x) is
a constant multiple of u,(x) and hence the value of v(x) on A} is determined by the
value of »(x) on A and vice versa. q.ed.

4. Real forms of prehomogeneous vector spaces of commutative parabolic type. In
this section we give the list of the real forms of prehomogeneous vector spaces of
commutative parabolic type and write down their real holonomy diagrams.

4.1. The list of real forms. We consider the following real forms.
4.1) Type C, (m=1,2,--).
i) (Gg, V)=(GL,(R)", Sym,(R)).
Here, Sym,(R) stands for the space of m x m symmetric matrices over R.
(4.2) Type 4, (k=2m+1,m=1,2,---).
i) (Gg, V)=(GL{(R)* x SL,(C), Her,(C)).
Here Her,(C) is the space of m x m complex Hermitian matrices.
ii) (Gg, V)=(GL,(R)* x SL,(R), M,(R)).
Here M, (R) is the space of m x m real matrices.
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(43) Type D,,,, (m=1,2,---).
) (Gi, V)=(GL,(R)" x SL,(H), Her,(H).
Here H stands for the quaternion field over R and Her,(H) is the space of
m x m quaternion Hermitian matrices.
i) (Gg, V)=(GL,n(R)", Alt,,(R)).
Here Alt,, (R) stands for the space of 2m x 2m alternating matrices over R.
(4.4) Type E,.
i) (Gg, V)=(GL,(R)* x E}, Hery(€R)).
Here, €% is the space of division Cayley number field over R and Her,(€4%)
means the space of 3 x 3 Hermitian matrices over €%. The group E? is the
subgroup of GL* (Her;(€ %)) consisting of the elements which leave P(x) = det(x)
invariant.
i) (Gg, V)=(GL(R)" x E}, Her3(€R)).
Here, €% is the space of split Cayley number algebra over R and Her,(€%)
means the space of 3 x 3 Hermitian matrices over €. The group ES is the
subgroup of GL*(Her;(€%)) consisting of the elements which leave P(X)=
det(x) invariant.
(4.5) Type B, (n=2k+1)and D, ; (m=2(k+1)) with k=1,2, - - -.
D (Gi, V)=(GL,(R)* x SO(p, q; R), R™), (p, >0 and p+q=m).
It is easy to check that the above real forms satisfy the condition (1.1), 3) in addition
to (1.1.), 1) and 2). The restriction of P(x) to ¥ can be taken to be a polynomial with
real coefficients.

ReMARK. 1) T. Kimura determined all the real forms of irreducible regular
prehomogeneous vector spaces in 1975, although the result was not published.

2) For the cases (4.1), (4.2) and (4.5), there are other real forms which do not
satisfy the condition (3.2).

4.2. Real holonomy diagrams of M,. For the real forms listed in (4.1)}(4.5), we
now give the real holonomy diagrams of all the intersections of codimension one in
the complex holonomy diagrams of M, in Proposition 2.2. The same result was ob-
tained by [Su].

Let M, be the holonomic system defined in (1.5) for one of the prehomogeneous
vector spaces (2.3), 1)-5). The number m is defined there. We set n to be the dimension
of V.. By Proposition 2.2, 1) the characteristic variety ch(,) has the irreducible
component decomposition given by (2.4): ch(M)=J ., Aic With A;,c=T% V¢ where
S;c are G-orbits defined in Proposition 2.1. Note that each A,¢ is a G,-invariant subset
in T*V, when we identify T*¥, with V¢ x V& The action of G¢ on the dual space V§
is through the contragredient representation. Let (G, p, V) be a real form of the
prehomogeneous vector space (G, p, V¢). In the same way as in the complex case, T*V
is naturally identified with ¥ x ¥*, on which G§ acts. The real locus ch(3R,)g of the
characteristic variety ch(t,) is given by
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(4.6) ch( )= 'L—Jo Air
with A;g=A;cn T*V. Each Az is a G5-invariant subset.
In particular, we suppose that:
4.7 each orbit S;z=S8;cn ¥V is a real form of ;..

Naturaily, we have

AiR= T;:C Vcn T* V= T;l,cny V= T;l V

V.
Here, T§ .V is the real conormal bundle of the subvariety S;g in V. Thus the real locus
of A;c is a real form of A, and hence the condition (3.2) is satisfied if so is (4.7). We
show that the condition (4.7) is satisfied in all real forms of (4.1)(4.5) by the case-by-case
calculations in the following. Furthermore, we construct A;, as a union of some
G4 -orbits in ¥ x V* and calculate the real holonomy diagrams.

The first case. Consider the cases i) in (4.1)(4.4). The vector space V is (4.1)
Sym,,(R), (4.2) Her,,(C), (4.3) Her,(H) or (4.4) Her;(C%), respectively. The real locus
S;g of the Gg-orbit S;c in V is

Sir=SicnV={xeV, rank(x)=m—i}, (i=0,1,---,m).

The subset S is a G -invariant subset and decomposes into the following G g -orbits:
Sie=J7<, 8, where S} is the Gz -orbit generated by

Each S is a real form of S;¢ because the real dimension of S coincides with the complex
dimension of §;.. Therefore, the condition (4.7) is satisfied.

By the inner product {(x, y>:=Retr(x-'p) for x, ye ¥V, we identify V with its dual
space V*. The group G5 acts on V as the dual space by the contragredient repre-
sentation and the orbit decomposition of V¥ as the dual space is the same as that for V.
We denote by 27 =the Gg-orbit in ¥ x V* generated by the point

1 0.
[ [, Jorer
0; —1

m—j—q
where i+j>m, 0<p<m—iand 0<g<m—j. Then we have:

PROPOSITION 4.1.

(4.8) Ag= U .
mzk=i,0<p<m-—k
mzjzn—i,0<g<m-—j
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(4.9 = U zni..
p<
=<q

These propositions can be verified by a routine but a little complicated computation.
See the method in [Sm-Ka-Ki-Os]. In [Mrl], the author has carried out the orbit
decomposition (4.8) in the cases i)-iii). We omit the proof here.

We denote by AP the G z-orbit P2 _,, which is a connected component of A{g.
By computing the action of the Lie algebra %, we see that AP (0<p<m—i, 0<¢<i)
are G g-orbits in ¥ x V* and hence real Lagrangian subvarieties. The other orbits in
A;g are strictly less dimensional than n. In particular, we may write

(4.10) A= U 4apre.
TN

By Proposition 4.1, we have

P — P.q
AgN Ay 1p= U 227
m>2k>i+1,0<p<m—k
mzjzn—i,0<qs<m-j

The non-singular locus of A,gn A, ;g is given by

— P
(AirNA; 4 (R)reg= U 2P -1
O<psm-—i-1
O<gx<i

By computing the action of the Lie algebra %5, we see that each orbit Z¢, "2 .,
(0<p<m—i—1,0<g<i) is a connected component of (A;gNA;; g, and is an
(n—1)-dimensional G g -orbit. Thus we have the following proposition.

PROPOSITION 4.2. The (n— 1)-dimensional intersection of A;x and A, g is re-
presented by the real holonomy diagram as in Figure 3, (1). Here 1<p<n—i,0<g<i.

~ The second case. Next we consider the cases ii) in (4.2)«(4.4). Then V is (4.2)
M, (R), (4.3) Alt,,(R) and (4.4) Her;(€%), respectively. The real locus S;5z of the orbit
Sic 18 Sig=SicnV={xeV;rank x=n—i}, for (4.2) and (4.4), Sig=S,cnV={xeV;
rank x=2(n—i)} for (4.3). The subset S;z is G5-invariant and decomposes into the
following Gg-orbits: Sop=S83uS,; with S§j={xeV;P(x)>0} and S;={xeV;
P(x)<0}, and S;g (i>1) is a single Gg-orbit. By the inner product {x, y):=tr(x-'y)
for x, ye ¥ on ¥, we identify ¥ with its dual space V*. The group G acts on V* by
the contragredient action. The vector space ¥* has the same orbit decomposition by
the contragredient action of Gg. We denote by A¢ the G4 -orbit in ¥ x V* generated

by the point,
Im—i om—i
<[ :| : [ £ :|> for (4.2) and (4.4),
0; I

i—-1
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@

(3) when p=1
AP ALt AT Ay
N\ /
A3 A} A} A3 A} A3
AT AT A% A9
when p>1

and
1

(I

with i=0,1, ---, m and ¢e= + 1. Here

J

—i Om—i
Jou [
0. I

:I ® J) s for (4.3),

i—1

L]

and ® means the tensor product of matrices. Let Z; ; be the G g-orbitin V' x V'* generated

by the point,
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Im—i Oj
([ :l , [ ]) for (4.2) and (4.4),
0; I

m—j

e [

m=j

and

] ® J) for (4.3),

with i+j>m, m>i>0 and m>j>0. Then we have:

PROPOSITION 4.3.

4.11) Aig=(A;" UA{)U( U Z,w.).
j;il—i
4.12) Ce=AFuA; .

We omit the easy proof. The G-orbits A and A; are n-dimensional. The other
orbits in A;p are of dimension strictly less than n. By Proposition 4.3, we have
AignA; s 1= rsi+1 Zi; The non-singular locus of A;gnA;, g is X,y pm—; which is

jzm—i
an (n— 1)-dimensional G 5 -orbit.

PROPOSITION 4.4. The (n—1)-dimensional intersections of A;x and A, g are
represented by the real holonomy diagrams Figure 3, (2).

The third case. Finally we consider the case i) of (4.5). We may suppose that
g=p>0. The vector space V is R". Without loss of generality we may assume that ¥V
is a vector space having the inner product:

I
4.13) {x,y>="x-1,,-y  where Ipq=|:” I] with p+g=n.
T q

The group SO(p, g; R) is the subgroup of GL(¥) consisting of elements leaving the
inner product invariant. We can identify ¥* with ¥ by the inner product. Thus the real
contangent space 7*V is naturally viewed as V' x V*. We set:

(4.14) p3=(1,0,--,0;0,---,0), pi=(0,---0;1,0,--,0),
p(2)=(—1,0, <. 0;0, "',0),
(1>=(1’0’ ...’0;1’0, ...,0)’ p}=(1’0’ ...,0; _1,0, ...’0)’
9-(0, --+,0;0,---,0).

The expression (x;; x,) means the coordinate in R"= ¥ with x, € R? and x, € R%. When
p=1, the points in (4.14) generate mutually different G -orbits. When p> 1, the orbits
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generated by pg and p? (resp. p¢ and p}) are the same. We denote by XP#*=the
G -orbit in ¥ x V* generated by the point (p?, £p9), (¢= +). Then we have:

PROPOSITION 4.5.
1) When p=1, we have the following disjoint decompositions of A;x and A%.

@.15) Aon=< U 2513'*)U( U Zﬁ’:%*)uzgzg'*'

p=0,1,2 r=0,1
— D> ,0,+ 0,q,+ 0,0,+
Am-( U Z‘{)‘{”)U( 283 >U< U 224 )Uzz,z .
P=Oj,:1 p=0,1 g=0,1
il

(4.16) A3n=< U 2(’313’+)-
p=0,1,2

o __ 0.9, +
2R 22,0 .
q=0,1,2

2) When p>1, we have the following disjoint decompositions of A;g and Al
(i=0,1,2).

@) ton=( U 263 Juztgtuzgg,
¥4

(4.18) ‘6n=< U12813'+>~

We omit the easy proof. We set
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(4.19) Af)=23?2‘+ (i=0,1,2),
A= (i=0,1and e=+),
Ay=Z%%" (i=0,12),

when p=1 and set

(4.20) AL=ZES*  (i=0,1),
A5=29*  (e=4),
AL=Z%6%  (i=0,1),

when p> 1. The orbits in (4.19) and (4.20) are n-dimensional and the other orbits in
A;r are of dimension strictly less than n. By Proposition 4.5, we have

onnAm=< U 211,',%'+>U2(2)I(2)'+a

p=0,1

0.g,+ 0,0,+
Amn/lzn:( 224 )Uzz,z >
1

q=0,
where p=1 and we have
AogN A1 g=Z99*uzd%",
AN Ag=Z33*uZ3%",
where p> 1. The real holonomy diagrams are given by the following proposition.

PROPOSITION 4.6. The (n—1)-dimensional intersections of A;g and A; g are
represented by the real holonomy diagrams Figure 3, (3).

5. Proof of the main theorem. In this section we prove the main theorem for the
real forms listed in (4.1)~(4.5) of regular prehomogeneous vector spaces of commutative
parabolic type.

5.1. Critical points for P(x)°. Let (Gg, p, V) be one of the real forms of the
prehomogeneous vector spaces in (4.1)-(4.5). We always suppose that a relatively
invariant polynomial P(x) on V is taken to be with real coefficients. Let b(s) be the
b-function of the complex form (G, p, V¢) of (Gg, p, Vg)- The explicit form is given
in (2.5).

(5.1) DeriNiTION (Critical points). We set Crit(P(x)*) :={ie C; b(A+k)=0 with
some non-negative integer k}. We call an element of Crit(P(x)’) a critical point for P(xy'.

We may express the b-functions as b(s)=[ [}, (s—4) with 0> 4, = —1>1,> - >
A where 4., - - -, 4, are negative integers or negative half-integers by Proposition 2.3.
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Definition (5.1) says that 1=4,—p with a non-negativé integer p and an integer i if
A e Crit(P(x)").

PROPOSITION 5.1. Let A be a complex number.

(1) If A¢Crit(P(x)), then M, is not critical at s=A from A to A;yic for
i=0,1, -, m—1.

2) If 2eCrit(P(x)), then A<2,.

(3) If A<A,, then M, is not critical at s=1 from A, ¢ to Ay for i=0,1, -- -,
m—1.

(4) Suppose that A€ Crit(P(x)) and J,,< A< A,. Let k be a positive integer <m—1.
If Ao 1 <A<y, then W, is not critical at s=A from Ayc to A;, ¢ for any i>k and M, is
not critical at s=A from A;, ¢ to Ay for any i<k—1.

Proof. (1) By Definition (5.1), if A€ Crit(P(x)%), then there exist a root 4; of b(s)
and a non-negative integer p such that 1=, —p. Each (s—4,) is the factor of b-function
of M, from A;_ ;o to A;c. We set p(s)+1=(s—4,). Then p(1)= —p—1 and it is a negative
integer. By Definition (3.6), M, is critical from A;_; to A;c at s=A4A.

(2) If AeCrit(P(x)*), then there exist 4; and a non-negative integer p such that
A=A;—p. Thus A=4,—p<i;<A,.

(3) Note that the factor of b-function of M, from A, ;¢ to A;cis —s+ 4,4, + 1.
Then we have (—s+A;4+ D|yoz= A+ +1= =4, +4,,,+1>1, since A<4, <
A;+q for all i. The I, is not critical at s=4 from A;, ¢ to A;c.

(4) The factor of b-function of M, from A;c to A;, ¢ (resp. from A, ;¢ t0 Ay)
is (s—A;41) (resp. (—s+4;4,+1)). Thus, if i>k, then we have s—A4;,|,-;=4—
Aiv1>Ap s 1—A;+1=0, and hence M, is not critical at s=4 from A;cto A; ;¢ fi<k—1,
then we have (—s+A4;+D)|si=—A+A +12—AL+d +1>2 -4 +4+1=1,
and hence M, is not critical at s=4 from A, ¢ to A;c. g.e.d.

5.2. Proof of the main theorem at non-critical points.

PROPOSITION 5.2. Let A¢Crit(P(x)®). Then the dimension of the space of x*-
invariant hyperfunctions is the number | of the connected components of V— Sg.

Proor. It suffices to prove that the dimension of the space of y*-invariant
hyperfunctions is at most /, since it is at least / by Proposition 1.2.

Let u(x) be a y*-invariant hyperfunction. Then u(x) is a solution to the holonomic
system MM, (see §1). The function u(x) is real analytic, since M, is an elliptic system
on V—S, ie., the characteristic variety is (¥—S)x {0}. Thus we have u(x)|,_s=

:=1 a;" | P(x)| ;‘|y_ s» because any y* invariant real analytic function on a connected
component ¥, is written as a constant multiple of | P(x) |}

Consider the hyperfunction v(x):=u(x)—Y;_, a;'| P(x)|} on V. Then o(x) is a
hyperfunction solution of M, and is zero on V—S. Now look upon wv(x) as the
microfunction sp{v(x)) on T*V. Then the support of sp(i(x)) is contained in
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ch(M)g=ch(M)nT*V. The real characteristic variety ch(M,)z has the irreducible
component decomposition ch(M)pg=|Ji_,4ir (scc (4.6)). Among the irreducible
components, Aqg is the zero section Vg x {0}. The set Agg of generic points has the
connected component decomposition Ajg="V¥; x{0}u ¥, x{0}u---u¥,x{0}. Since
the hyperfunction v(x) is zero on each connected component V;, the microfunction
sp(v(x)) is zero on each V;x {0} (i=1, ---,I).

LeMMA 5.2.1. For anarbitrary complex number A, let v(x) be a hyperfunction solution
to WM,. Suppose that M, is not critical at s=2 from Aic to A;, (¢ (resp. Ay 1c 10 Aie). If

the microfunction sp(v(x)) is zero on Ay (resp. Al 1r), then it is zero on A}, g (resp.
Alg) as well.

@

FIGURE 4.
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PrOOF. Let A},, be a connected component in A?,,g. Then there exist two
connected components A%, A% of A% and A2, ; of A?, ;g which form the real holonomy

diagram Figure 4, (1). This easily follows from the real holonomy diagrams calculated
in Proposition 4.2, 4.4 and 4.6.

Let v(x) be a hyperfunction solution to the holonomic system IR, such that sp(v(x))
is zero on A%. Then sp(v(x)) is zero on A% and A2. Since M, is not critical at s=4 from
Ayc to A, ;¢ by assumption, sp(v(x)) is zero on A?,, and A?,, in a neighborhood of
the intersection of A,z and A, ;g by Proposition 3.3, (2). Moreover sp(v(x)) is zero on
Al and A2, globally. Thus sp(v(x)) is zero on A%, , fror every index p. Thus means
that sp(v(x)) is zero on all the connected components of A2, ;. When 9, is not critical
at s=4 from A;, ¢ to A;c, we can show the converse in the same way and complete
the proof of Lemma 5.2.1.

By Proposition 5.1, (1), if A ¢ Crit(P(x)*), then M, is not critical at s=21 from A,
to A;, ¢ foralli=0, 1, - - -, m—1. Therefore, by induction on i, if sp(v(x))| 43, =0, then
sp((x)) | 42, =0 for all i=0,1, - -+, m.

LEMMA 5.2.2. For anarbitrary complex number A, let v(x) be a hyperfunction solution
to the holonomic system M. If the microfunction sp(1(x)) is zero on A%y for alli=0, - - -,
m, then v(x)=0 as a hyperfunction on V.

A theorem more general than Lemma 5.2.2 was proved in [Mr3], which would be
an interesting result in itself. We omit the proof.

Consider the hyperfunction solution v(x) in the form u(x)—Y';_, a;-| P(x)|} again.
Since sp(v(x)) is zero on Ay, it is zero on A% g, A%k, - * *» A%g by induction from Lemma
5.2.1, and hence it is zero on |J[+, Ax. By Lemma 5.2.2, we have v(x)=0, which means
u(x) =Z§= , @;'| P(x)|}. Thus we see that any x*-invariant hyperfunction u(x) is expressed
as a linear combination of | P(x)|? (i=1, - - -, I) if A¢ Crit(P(x)). Hence the dimension
of the space of y*-invariant hyperfunctions is at most /. Thus we have the desired
result. g.e.d.

COROLLARY 5.3. Let A¢ Crit(P(x)"). Then any y*-invariant hyperfunction is written
as a linear combination of | P(x)|{ at s=A in the sense of (1.3).

Proor. We have seen in Proposition 5.2 that the space of linear combinations of
| P(x)|5 at s=2 coincides with the space of y*-invariant hyperfunctions. Thus we have
the desired results. q.e.d.

5.3. Proof of the main theorem at critical points.

PROPOSITION 5.4. Let A€ Crit(P(x)’). Then the dimension of the space of y*-invariant
hyperfunctions is I, the number of the connected componenis of V— Sg.

Proor. It suffices to prove that the dimension of the space of y*-invariant
hyperfunctions is at most /. When AeCrit(P(x)’), we may suppose that A<i; by
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Proposition 5.1, (2). First we prove Proposition 5.4 when A<4,,.

LEMMA 5.4.1. Suppose A<JA,. Then the dimension of the space of y*-invariant
hyperfunctions is at most .

ProoF. Let 9%£(M,) be the space of hyperfunction solutions of M, on T*V. We
denote by S/(M,) | 4c, the space of the restrictions to Ajy of the sp-image of elements
of S¢(M,). Recall that A2, decomposes into / connected components by Proposition
4.1, 4.3 and 4.5. Then /(M) | 42, is at most /-dimensional because S/ (M,) is one
dimensional on each connected component of 4% by Proposition 3.2.

Let v(x) be a hyperfunction solution of 9t; on ¥V such that sp(v(x)) | 42,=0. Then

(-2) spu(x))| 4,=0  forall i=0,1,---,m.

Indeed, since I, is not critical at s=4 from A, ¢ to A;c for all i=m—1,m-2, ---, 0,
by Proposition 5.1 (3), sp(v(x))|4s,,,=0 implies that sp(v(x)) ] 45 =0 for i=m—1,
m—2, ---,0 by Lemma 5.2.1. Thus, by induction on i, we have (5.2). Moreover, (5.2)
means that v(x)=0 as a hyperfunction on ¥ by Lemma 5.2.2. Thus, for two solutions
01(x), v5(x)e St (M), if sp(V(x))] 42, = sP(v(X))| 42.,» then vy(x)=1,(x). Therefore any
hyperfunction solution v(x) of M, is uniquely determined by the data sp(1(x)) | 42, Hence
the dimension of the hyperfunction solutions of I, is at most /.

LemMMa 5.4.2. Let AeCrit(P(x)’) and suppose that A, <A <A,. Then the dimension
of the space of y*-invariant hyperfunctions is at most I-dimensional.

ProoF. We show Lemma 5.4.2 by reducing it to the following sublemma.

SUBLEMMA 5.4.2.1. Let AeCrit(P(x)f) and suppose that A.,<A<A,. Then
St (M) |4 v a2, is at most I-dimensional.

Sublemma 5.4.2.1 implies Lemma 5.4.2. Indeed, let v(x) be a hyperfunction solution
of MM, on ¥ such that sp(u(x))|42_,,v 42,=0. Then

(53) sp(v(x))

Since M, is not critical at s=4 from A;c to A;, ¢ for all i=k, k+1,---,m—1, by
Proposition 5.1 (4), sp(v(x))| 4, =0 implies that sp((x))|,, =0 for i=k+1, k+2,

--,m—1 by Lemma 5.2.1. Similarly, since I, is not critical at s=2 from 4;, ;¢
to A;c for all i=k—2, k-3, - - -, 0, by Proposition 5.1 (4), sp(v(x))| 4¢, ,,=0 implies that
sp((x)) | 42, =0 for i=k—2, k—3, ---,0 by Lemma 5.2.1. Thus, by induction on i, we
have (5.3). Moreover, (5.3) means that v(x)=0 as a hyperfunction on ¥ by Lemma
5.2.2. Therefore any hyperfunction solution v(x) of M, is uniquely determined by the
data sp((x)) | 4z_,,v 4z, This implies that the dimension of the hyperfunction solutions
of M, is at most /if A,,< A < 1;. Thus we complete the proof of Lemma 5.4.2 if Sublemma
5.4.2.1 is proved.

45=0, forall i=0,1,---,m.
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PROOF OF SUBLEMMA 5.4.2.1. We consider the cases of i) in (4.1)«4.4). The num-
ber / coincides with m+1 in these cases. The connected component decompositions of
AS_ g and A%, were given in Proposition 4.1. The real holonomy diagrams of the
(n—1)-dimensional intersections between A, _, g and A, is given by Figure 4, (2) with
I<p<n—k+1 and 0<g<k—1 (see Proposition 4.2).

We set W:=50(M) | az_,cuaz0 W1:={(x)e W;v(x)
to prove

54) 1) dim W, <m—k+1,
2) dim (W/W )<k,

which means that dim W=m+1=1.

As for (5.4), 1), let v(x) be an element of W,. Thus 1(x) is zero on Af*4, and ALZ{"
in the real holonomy diagram Figure 4 (2). Since I, is critical at s=4 from 4,_,
to A,c, the value of v(x) on Af~1*! is determined by the value of v(x) on A4
by Proposition 3.3, (3). Therefore, by induction on g, the values of v(x) on A7~ !4
(g=0, 1, - - -, k) are determined by the value of v(x) on A2~ . Hence the values v(x) | Al
is completely determined by the data v(x)\U »-10 because Agg consists of the

t<pem—k+1 Ak

connected componentsin {Jo<,<m-x A5 (see (4.10)). Since the dimension of the solution
O<gs<k

space on the connected component Af~*° is one for each p=1,2, - - -, m—k+1, we
have (5.4), 1).

To show (5.4), 2), let v,(x) and v,(x) be elements of W. If v,(x) —v,(x) € W, then v,(x)
and v,(x) coincide with each other in W/W, and vice versa. Namely, the representative
of vy(x) in W/W, coincides with that of v,(x) if and only if v;(X)| e, =Va(X) {42,
Therefore the dimension of the space %/(M;) | 42 15 18 the dimension of (W/W,).

Let v(x) be an element of W. In the real holonomy diagram Figure 4 (2), the value
of v(x) on AP4, is determined by the value of 1(x) on AP {9 by Proposition 3.3 (3),
because M, is critical at s=4 from A,_,c to A, Therefore, by induction on p, the
values of v(x) on A4, (p=0,1, - - -, m—k+1) are determined by the value of v(x) on
AQ4,. This means that the values 1(x)|,, ,, are completely determined by the data
v(x)|UOquH apa. The dimension of the solution space on the connected component
AP is one for each g=0, - - -, k--1 and hence we have (5.4), 2). dim(W/W,)<k.

By (5.4), 1) and 2), we have dim W=dim(W/W,)+dim W, <m+1=1[. Then we
complete the proof of sublemma 5.4.2.1 in the cases of i) in (4.1)(4.4).

Next we consider the cases ii) in (4.2)-(4.4). The number /=2 in these cases. The
connected component decompositions of A_ , r and A, were given in (4.12) as i=k—1
and k. The real holonomy diagrams of the (n— 1)-dimensional intersections of A,_
and A,g is given by Figure 4, (3) as proved in Proposition 4.3. The holonomic system
I, is critical at s=A from A, _,c to A,¢, hence M, is not critical at s=4 from A, to
Ay ¢ Therefore, %£(MM,)| 45 _,, is determined by the data %%¢(M,)| 4¢,. Since A2 5

42 .,=0}. We would like
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has only two connected components, the dimension of %%/(I,)
the dimension of S%¢(MM,) | 42_,cu 42e

Lastly, we consider the case (4.5). In Proposition 4.6, the real holonomy diagram
of (4.5) was proved to have the same form as that in the first case (resp. second case)
when p=1 (resp. p>1). Thus we can prove this sublemma for the third case in the

same way as in the first case or the second case. Thus we complete the proof of Sublemma
5.4.2.1.

42_,. 18 two and so is

By Lemma 5.4.1 and Lemma 5.4.2, we obtain the result claimed in Proposition 5.4.

COROLLARY 5.5. Let AeC be a critical point for P(x)’. Then any y*-invariant
hyperfunction is written as a linear combination of | P(x)|; at s=A in the sense of (1.3).

This corollary is proved in the same way if we use Proposition 5.4 instead of
Proposition 5.2.

5.4. Conclusions and a remark.

THEOREM 5.6. Let (Gg, p, V) be a one of the real forms in (4.1y+4.5). Let 1 be
an arbitrary comlex number. Then:

1) The dimension of the space of y*-invariant hyperfunctions coincides with the
number of the connected components of V—{xeV; P(x)=0}.

2) Any y*-invariant hyperfunction is a tempered distribution and is written as a
linear combination of | P(X)|; defined in (1.4) at s= A in the sense of (1.3).

The claim 1) is the direct consequence of Proposition 5.2 and 5.4. The claim 2)
follows from Corollary 5.3 and S.5.
As an application of Theorem 5.6, we have the following:

THEOREM 5.7. Let (G4, p, V) be a real form in (4.1)44.5). We put G:={geGg;
x(g)=1}. Then any G y-invariant tempered distribution whose support is contained in the
real singular set Sg={x¢€ Vg; P(x)=0} is obtained as a linear combination of negative
order Laurent coefficients of | P(x)|; (i=1, - - -, I) at poles.

PrOOF. [Mr2, Theorem 2.7] proved that the theorem is valid if the singular set
Sc={xe V¢ P(x)=0} decomposes into a finite number of G¢-orbits. Here,
G¢:={geGg; x(g)=1}. It is easily checked by calculating the action of the Lie algebra
¢ on V. that any G-orbits in the singular set S¢ is actually a Gg-orbit. The finiteness
of the G¢-orbit decomposition was proved in Proposition 2.1. q.e.d.
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