INVARIANT HYPERSURFACES OF A
 MANIFOLD WITH (f, g, u, v, λ)-STRUCTURE

By Kentaro Yano and Masafumi Okumura

Introduction.

We have studied in [2] a differentiable manifold with (f, U, V, u, v, λ)-structure, that is, a differentiable manifold with tensor field f of type $(1,1)$, two vector fields U and V, two 1 -forms u and v and a function λ satisfying

$$
\begin{aligned}
f^{2} X & =-X+u(X) U+v(X) V \\
u(f X) & =+\lambda v(X),
\end{aligned} \quad f U=-\lambda V, ~ \begin{array}{ll}
v(f X)=-\lambda u(X), & f V=\lambda U \\
u(U)=1-\lambda^{2}, & u(V)=0 \\
v(U)=0, & v(V)=1-\lambda^{2},
\end{array}
$$

for any vector field X.
An (f, U, V, u, v, λ)-structure is said to be normal if it satisfies

$$
N(X, Y)+d u(X, Y) U+d v(X, Y) V=0,
$$

where $N(X, Y)$ is the Nijenhuis tensor of f defined by

$$
N(X, Y)=[f X, f Y]-f[f X, Y]-f[X, f Y]+f^{2}[X, Y]
$$

for any vector fields X and Y.
If there exists a positive definite Riemannian metric g such that

$$
\begin{gathered}
g(f X, f Y)=g(X, Y)-u(X) u(Y)-v(X) v(Y) \\
g(U, X)=u(X), \quad g(V, X)=v(X)
\end{gathered}
$$

for any vector fields X and Y, then we call the structure an (f, g, u, v, λ)-structure. In this case

$$
\omega(X, Y)=g(f X, Y)
$$

[^0]is a 2 -form.
A submanifold of codimension 2 of an almost Hermitian manifold admits an (f, g, u, v, λ)-structure and a hypersurface of an almost contact metric manifold admits the same kind of the structure.

In [2], we have proved
Theorem A. Let M be a complete manifold with normal (f, g, u, v, λ)-structure satisfying

$$
d u=\phi \omega, \quad d v=\omega,
$$

ϕ being a function. If $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero, then the manifold M is isometric with a sphere.

In [3], we have also studied normal (f, g, u, v, λ)-structures on submanifolds of codimension 2 in a Euclidean space and proved

Theorem B. Let a complete differentiable submanifold M of codimension 2 of an even-dimensional Euclidean space be such that the connection induced in the normal bundle of M has zero curvature. If the (f, g, u, v, λ)-structure induced on M is normal, then M is a sphere, a plane, or a product of a sphere and a plane.

The main purpose of the present paper is to study invariant hypersurfaces of a manifold with (f, g, u, v, λ)-structure. A hypersurface is said to be invariant if the tangent hyperplane is invariant by the action of f.

After stating some preliminaries in $\S 1$, we study in $\S 2$ general hypersurfaces of a manifold with (f, g, u, v, λ)-structure and obtain some general formulas valid for these general hypersurfaces.

In §3, we specialize these general formulas and obtain formulas valid for invariant hypersurfaces. We prove that an invariant hypersurface of a manifold with (f, g, u, v, λ)-structure admits an almost contact metric structure.

In $\S 4$, we study invariant hypersurfaces of M with normal (f, g, u, v, λ)-structure and prove that an invariant hypersurface of a manifold with normal (f, g, u, v, λ)structure satisfying $d v=\omega$ is a Sasakian manifold.

§1. The (f, g, u, v, λ)-structure.

Let M be a ($2 n+2$)-dimensional differentiable manifold covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$, where here and throughout the paper the indices h, i, j, k, \cdots run over the range $1,2, \cdots, 2 n+2$. Let there be given in M a tensor field f of type (1, 1), a Riemannian metric g, two 1 -forms u and v and a function λ, satisfying

$$
\left\{\begin{array}{l}
f_{j}{ }^{2} f_{\imath}{ }^{h}=-\delta_{j}^{h}+u_{j} u^{h}+v_{j} v^{h} \tag{1}\\
f_{j}{ }^{t} f_{\imath}{ }^{s} g_{t s}=g_{j i}-u_{j} u_{i}-v_{j} v_{i}, \\
f_{j}{ }^{i} u_{i}=+\lambda v_{j}, \quad f_{j}{ }^{i} v_{i}=-\lambda u_{j}, \\
f_{\imath}{ }^{h} u^{2}=-\lambda v^{h}, \quad f_{\imath}{ }^{h} v^{i}=+\lambda u^{h}, \\
u_{i} u^{2}=v_{i} v^{2}=1-\lambda^{2}, \quad u_{i} v^{i}=0,
\end{array}\right.
$$

where

$$
u^{h}=u_{i} g^{i h} \quad \text { and } \quad v^{h}=v_{i} g^{i h}
$$

$g^{i n}$ being contravariant components of the metric tensor. We can easily prove that

$$
f_{j i}=f_{j}{ }^{t} g_{t i}
$$

is a skew-symmetric tensor.
The set (f, g, u, v, λ) satisfying (1) is called an (f, g, u, v, λ)-structure on M. An M with (f, g, u, v, λ)-structure is orientable.

A typical example of an M with (f, g, u, v, λ)-structure is an even dimensional sphere in a Euclidean space.

The (f, g, u, v, λ)-structure is said to be normal if it satisfies

$$
\begin{equation*}
S_{j i}{ }^{h}=N_{j i}{ }^{h}+\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v^{h}=0, \tag{2}
\end{equation*}
$$

where

$$
\left.N_{j i}{ }^{h}=f_{j}{ }^{t} \nabla_{t} f_{\imath}{ }^{h}-f_{\imath} \nabla_{t} f_{j}{ }^{h}-\left(\nabla_{J} f_{\imath} t-\nabla_{\imath} f_{j}\right)\right) f_{l}{ }^{h}
$$

is the Nijenhuis tensor formed with $f_{2}{ }^{h}$ and ∇_{\jmath} denotes the operator of covariant differentiation with respect to the Christoffel symbols $\left\{{ }_{j}{ }_{i}{ }_{i}\right\}$ formed with $g_{j i}$.

In [2], we have proved
Theorem C. Let M be a manifold with normal (f, g, u, v, λ)-structure satisfying

$$
\begin{equation*}
\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i}, \tag{3}
\end{equation*}
$$

then we have

$$
\begin{equation*}
f_{j}^{t} \nabla_{h} f_{t i}-f_{2}{ }^{t} \nabla_{h} f_{t j}=u_{j}\left(\nabla_{i} u_{h}\right)-u_{i}\left(\nabla_{j} u_{h}\right)+v_{j}\left(\nabla_{i} v_{h}\right)-v_{i}\left(\nabla_{j} v_{h}\right) . \tag{4}
\end{equation*}
$$

§2 Hypersurfaces of M with (f, g, u, v, λ)-structure.

We consider a $(2 n+1)$-dimensional differentiable manifold V covered by a system of coordinate neighborhoods $\left\{U^{\prime} ; y^{a}\right\}$ where here and in the sequel the indices a, b, c, d, e run over the range $1,2, \cdots, 2 n+1$. We assume that the manifold V is immersed in M by the immersion $i: V \rightarrow M$ as a hypersurface $i(V)$ of M and that the equation of $i(V)$ of M are

$$
x^{h}=x^{h}\left(y^{a}\right) .
$$

If we put

$$
B_{a}{ }^{h}=\partial_{a} x^{h} \quad\left(\partial_{a}=\partial / \partial y^{a}\right),
$$

the Riemannian metric induced on $i(V)$ from that of M is given by

$$
g_{c b}=g_{j i} B_{c}{ }^{j} B_{b}{ }^{2} .
$$

We denote by N^{h} the unit normal to $i(V)$ such that the vectors $B_{1}{ }^{h}, B_{2}{ }^{h}$, $\cdots, B_{2 n+1}{ }^{h}, N^{h}$ form the positive orientation of M and by ∇_{c} the operator of covariant differentiation with respect to the Christoffel symbols $\left.\left\{c_{c}{ }^{a}\right\}\right\}$ formed with $g_{c b}$. Then we have equations of Gauss

$$
\nabla_{c} B_{b}{ }^{h}=h_{c b} N^{h},
$$

where

$$
\nabla_{c} B_{b}{ }^{h}=\partial_{c} B_{b}{ }^{h}+\left\{\begin{array}{c}
h \\
j \\
j
\end{array}\right\} B_{c}{ }^{j} B_{b}{ }^{2}-\left\{\begin{array}{c}
a \\
c
\end{array} \quad b\right\} B_{a}{ }^{h}
$$

is the so-called van der Waerden-Bortolotti covariant derivative of $B_{b}{ }^{h}$ and $h_{c b}$ is the second fundamental tensor and equation of Weingarten

$$
\nabla_{c} N^{h}=-h_{c}{ }^{a} B_{a}{ }^{h},
$$

where

$$
h_{c}{ }^{a}=h_{c b} g^{b a},
$$

$g^{b a}$ being contravariant components of the induced Riemannian metric tensor.
Now the transform $f_{2}{ }^{h} B_{b}{ }^{i}$ of $B_{b}{ }^{2}$ by $f_{\imath}{ }^{h}$ and the transform $f_{\imath}{ }^{h} N^{i}$ of N^{i} by $f_{\imath}{ }^{h}$ are respectively given by

$$
\begin{equation*}
f_{\imath}{ }^{h} B_{b}{ }^{i}=\varphi_{b}{ }^{a} B_{a}{ }^{h}+w_{b} N^{h}, \tag{5}
\end{equation*}
$$

where $\varphi_{0}{ }^{a}$ is a tensor field of type $(1,1)$ and w_{b} is a 1 -form in V, and

$$
\begin{equation*}
f_{\imath}{ }^{h} N^{i} \pm-w^{a} B_{a}{ }^{h}, \tag{6}
\end{equation*}
$$

where

$$
w^{a}=w_{b} g^{b a} .
$$

The vector fields u^{h} and v^{h} are respectively written as

$$
\begin{equation*}
u^{h}=B_{a}{ }^{h} u^{a}+\alpha N^{h} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{h}=B_{a}{ }^{h} v^{a}+\beta N^{h} \tag{8}
\end{equation*}
$$

along $i(V)$, where u^{a} and v^{a} are vector fields of V and α and β are functions of V.
Now applying the operator $f_{h}{ }^{k}$ to both members of (5), we find

$$
\left(-\delta_{i}^{k}+u_{i} u^{k}+v_{i} v^{k}\right) B_{b}{ }^{2}=\varphi_{b}{ }^{c}\left(\varphi_{c}{ }^{a} B_{a}{ }^{h}+w_{c} N^{h}\right)-w_{b} w^{a} B_{a}{ }^{h},
$$

from which

$$
-B_{b}{ }^{k}+u_{b}\left(B_{a}{ }^{k} u^{a}+\alpha N^{k}\right)+v_{b}\left(B_{a}{ }^{k} v^{a}+\beta N^{k}\right)=\varphi_{b}{ }^{c}\left(\varphi_{c}{ }^{a} B_{a}{ }^{k}+w_{c} N^{k}\right)-w_{b} w^{a} B_{a}{ }^{k},
$$

by virtue of (7) and (8) and consequently, comparing the tangential part and the normal part of both members, we find

$$
\begin{equation*}
\varphi_{b}{ }^{c} \varphi_{c}^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}+w_{b} w^{a} \tag{9}
\end{equation*}
$$

and
(10)

$$
\alpha u_{b}+\beta v_{b}=\varphi_{b}{ }^{c} w_{c} .
$$

Applying the operator $f_{h}{ }^{k}$ to both members of (6), we find

$$
\left(-\delta_{i}^{k}+u_{i} u^{k}+v_{i} v^{k}\right) N^{i}=-w^{c}\left(\varphi_{c}{ }^{a} B_{a}{ }^{k}+w_{c} N^{k}\right),
$$

from which

$$
-N^{k}+\alpha\left(B_{a}{ }^{k} u^{a}+\alpha N^{k}\right)+\beta\left(B_{a}{ }^{k} v^{a}+\beta N^{k}\right)=-w^{c}\left(\varphi_{c}{ }^{a} B_{a}{ }^{k}+w_{c} N^{k}\right)
$$

by virtue of (7) and (8) and consequently

$$
\begin{equation*}
\alpha u^{a}+\beta v^{a}=-\varphi_{c}{ }^{a} w^{c} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha^{2}+\beta^{2}=1-w_{c} w^{c} . \tag{12}
\end{equation*}
$$

Applying the operator $f_{h}{ }^{k}$ to both members of (7), we find

$$
-\lambda v^{k}=\left(\varphi_{a}{ }^{c} B_{c}{ }^{k}+w_{a} N^{k}\right) u^{a}-\alpha w^{c} B_{c}{ }^{k},
$$

from which

$$
-\lambda\left(B_{c}{ }^{k} v^{c}+\beta N^{k}\right)=\left(\varphi_{a}{ }^{c} B_{c}{ }^{k}+w_{a} N^{k}\right) u^{a}-\alpha w^{c} B_{c}{ }^{k}
$$

by virtue of (8), and consequently

$$
\begin{equation*}
-\lambda v^{a}=\varphi_{c}{ }^{a} u^{c}-\alpha w^{a} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
-\lambda \beta=w_{a} u^{a} . \tag{14}
\end{equation*}
$$

Applying also the operator $f_{h}{ }^{k}$ to both members of (8), we find

$$
\lambda u^{k}=\left(\varphi_{a}{ }^{c} B_{c}{ }^{k}+w_{a} N^{k}\right) v^{a}-\beta w^{c} B_{c}{ }^{k},
$$

from which

$$
\begin{gathered}
\text { INVARIANT HYPERSURFACES } \\
\lambda\left(B_{c}{ }^{k} u^{c}+\alpha N^{k}\right)=\left(\varphi_{a}{ }^{c} B_{c}{ }^{k}+w_{a} N^{k}\right) v^{a}-\beta w^{c} B_{c}{ }^{k}
\end{gathered}
$$

by virtue of (7), and consequently

$$
\begin{equation*}
\lambda u^{a}=\varphi_{c}^{a} v^{c}-\beta w^{a} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \alpha=w_{a} v^{a} \tag{16}
\end{equation*}
$$

Considering the lengths of u^{h} and v^{h} and the inner product of u^{h} and v^{h}, we have

$$
\begin{align*}
1-\lambda^{2} & =u_{a} u^{a}+\alpha^{2} \tag{17}\\
1-\lambda^{2} & =v_{a} v^{a}+\beta^{2} \tag{18}\\
0 & =u_{a} v^{a}+\alpha \beta \tag{19}
\end{align*}
$$

Summing up, we have
(20)

$$
\left\{\begin{array}{l}
\varphi_{b}{ }^{c} \varphi_{c}{ }^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}+w_{b} w^{a}, \\
\alpha u^{a}+\beta v^{a}=-\varphi_{c}{ }^{a} w^{c} \\
\varphi_{c}{ }^{a} u^{c}=-\lambda v^{a}+\alpha w^{a}, \quad \varphi_{c}{ }^{a} v^{c}=\lambda u^{a}+\beta w^{a}, \\
\alpha^{2}+\beta^{2}=1-w_{a} w^{a}, \\
\lambda \alpha=w_{a} v^{a}, \quad \lambda \beta=-w_{a} u^{a}, \\
u_{a} u^{a}=1-\alpha^{2}-\lambda^{2}, \quad v_{a} v^{a}=1-\beta^{2}-\lambda^{2}, \\
u_{a} v^{a}=-\alpha \beta .
\end{array}\right.
$$

§3. Invariant hypersurfaces of M with (f, g, u, v, λ)-structure.
We now assume that the hypersurface $i(V)$ is invariant, that is, the tangent hyperplane of $i(V)$ is invariant by the linear transformation $f_{2}{ }^{h}$. Then we have

$$
\begin{equation*}
f_{\imath}{ }^{h} B_{b}^{i}=\varphi_{b}^{a} B_{a}^{h} \tag{21}
\end{equation*}
$$

that is,

$$
\begin{equation*}
w_{b}=0 \tag{22}
\end{equation*}
$$

Thus (20) becomes
(23)

$$
\left\{\begin{array}{c}
\varphi_{b}{ }^{c} \varphi_{c}{ }^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}, \\
\alpha u^{a}+\beta v^{a}=0, \\
\varphi_{c}{ }^{a} u^{c}=-\lambda v^{a}, \quad \varphi_{c}{ }^{a} v^{c}=+\lambda u^{a}, \\
\alpha^{2}+\beta^{2}=1, \\
\lambda \alpha=0, \quad \lambda \beta=0, \\
u_{a} u^{a}=1-\alpha^{2}-\lambda^{2}, \quad v_{a} v^{a}=1-\beta^{2}-\lambda^{2}, \\
u_{a} v^{a}=-\alpha \beta
\end{array}\right.
$$

From equation (7), (8) and

$$
\alpha u^{a}+\beta v^{a}=0, \quad \alpha^{2}+\beta^{2}=1,
$$

we find

$$
N^{h}=\alpha u^{h}+\beta v^{h} .
$$

Thus we have
Theorem 1. The normal to an invariant hypersurface i(V) of M with (f, g, u, v, λ)-structure is in the plane spanned by two vector fields u^{h} and v^{h}.

Since $\alpha^{2}+\beta^{2}=1$, at least one of α and β is different from zero and consequently, from $\lambda \alpha=0, \lambda \beta=0$, we have $\lambda=0$ and consequently (23) becomes

$$
\left\{\begin{array}{l}
\varphi_{b}{ }^{c} \varphi_{c}{ }^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}, \tag{24}\\
\alpha u^{a}+\beta v^{a}=0, \\
\varphi_{c}{ }^{a} u^{c}=0, \quad \varphi_{c}^{a} v^{c}=0, \\
\alpha^{2}+\beta^{2}=1, \\
u_{a} u^{a}=1-\alpha^{2}, \quad v_{a} v^{a}=1-\beta^{2}, \quad u_{a} v^{a}=-\alpha \beta
\end{array}\right.
$$

Now we put

$$
V_{\alpha}=\{P \in i(V) \mid \alpha(P) \neq 0\}
$$

and

$$
V_{\beta}=\{P \in i(V) \mid \beta(P) \neq 0\} .
$$

Then, V_{α} and V_{β} are both open in $i(V)$ and $V_{\alpha} \cup V_{\beta}=i(V)$, because of the fact that $\alpha^{2}+\beta^{2}=1$.

In V_{α}, from $\alpha u^{a}+\beta v^{a}=0$, we have

$$
u^{a}=-\frac{\beta}{\alpha} v^{a},
$$

and consequently

$$
\begin{equation*}
u_{b} u^{a}+v_{b} v^{a}=\frac{\beta^{2}}{\alpha^{2}} v_{b} v^{a}+v_{b} v^{a} \tag{25}
\end{equation*}
$$

$$
=\frac{1}{\alpha^{2}} v_{b} v^{a}
$$

by virtue of $\alpha^{2}+\beta^{2}=1$. Thus, putting

$$
\begin{equation*}
\eta_{b}{ }^{(\alpha)}=\frac{1}{\alpha} v_{b} \tag{26}
\end{equation*}
$$

we have

$$
\begin{equation*}
u_{b} u^{a}+v_{b} v^{a}=\eta_{b}{ }^{(\alpha)} \eta^{a(\alpha)} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{a}{ }^{(\alpha)} \eta^{a(\alpha)}=1, \tag{28}
\end{equation*}
$$

by virtue of $u_{a} u^{a}+v_{a} v^{a}=2-\left(\alpha^{2}+\beta^{2}\right)=1$, where

$$
\eta^{a(a)}=\eta_{b}{ }^{(\alpha)} g^{b a} .
$$

We also have in V_{α}

$$
\begin{equation*}
u_{b} u_{a}+v_{b} v_{a}=\eta_{b}{ }^{(a)} \eta_{a}{ }^{(\alpha)} . \tag{29}
\end{equation*}
$$

In the same way, in V_{β}, we put

$$
\eta_{b}{ }^{(\beta)}=-\frac{1}{\beta} u_{b}
$$

Then, the equations similar to (27), (28) and (29) are valid for $\eta_{b^{(\beta)}}$ in V_{β}. On the other hand, in $V_{\alpha} \cap V_{\beta}$, we have

$$
\begin{aligned}
\eta_{b}^{(\beta)} & =-\frac{1}{\beta} u_{b}=-\frac{1}{\beta}\left(-\frac{\beta}{\alpha} v_{b}\right) \\
& =\frac{1}{\alpha} v_{b}=\eta_{b}{ }^{(\alpha)},
\end{aligned}
$$

which shows that if we define a 1 -form η by

$$
\eta=\left\{\begin{array}{lll}
\eta_{b}{ }^{(\alpha)} d y^{b} & \text { in } & V_{\alpha} \\
\eta_{b}{ }^{(\beta)} d y^{b} & \text { in } & V_{\beta},
\end{array}\right.
$$

then η is well defined on $i(V)$.
Thus, from (24), (27), (28) and (29), we find

$$
\left\{\begin{align*}
\varphi_{b}{ }^{c} \varphi_{c}{ }^{a}=-\delta_{b}^{a}+\eta_{b} \eta^{a}, \tag{30}\\
\varphi_{b}{ }^{a} \eta_{a}=0, \quad \varphi_{b}{ }^{a} \eta^{b}=0, \\
\eta_{a} \eta^{a}=1,
\end{align*}\right.
$$

where η_{a} is the components of the 1 -form η and $\eta^{b}=\eta_{a} a^{a b}$.
From

$$
f_{j}^{t} f_{i}^{s} g_{t s}=g_{j i}-u_{j} u_{i}-v_{j} v_{i},
$$

we find, by transvection with $B_{c}{ }^{j} B_{b}{ }^{2}$,

$$
f_{j}{ }^{t} f_{i}{ }^{s} g_{t s} B_{c}{ }^{j} B_{b}{ }^{i}=g_{c b}-u_{c} u_{b}-v_{c} v_{b},
$$

from which

$$
\varphi_{c}{ }^{e} B_{e}{ }^{t} \varphi_{b}{ }^{d} B_{d}{ }^{s} g_{t_{s}}=g_{c b}-u_{c} u_{b}-v_{c} v_{b}
$$

by virtue of (21), and consequently

$$
\begin{equation*}
\varphi_{c}{ }_{c}^{e} \varphi_{b}{ }^{d} g_{e d}=g_{c b}-\eta_{c} \eta_{b} \tag{31}
\end{equation*}
$$

by virtue of (27). Thus we have proved
Theorem 2. An invariant hypersurface of a manifold with (f, g, u, v, λ)-structure admits an almost contact metric structure.
§4. Invariant hypersurfaces of M with normal (f, $\boldsymbol{g}, \boldsymbol{u}, \boldsymbol{v}, \lambda)$-structure.
We now assume that the (f, g, u, v, λ)-structure of M is normal, that is,

$$
\begin{equation*}
S_{j i}{ }^{h}=N_{j i}{ }^{h}+\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v^{h}=0 . \tag{32}
\end{equation*}
$$

It will be easily verified that, for an invariant hypersurface $i(V)$, we have

$$
\begin{equation*}
N_{j i}{ }^{h} B_{c}{ }^{j} B_{b}{ }^{i}=n_{c b}{ }^{a} B_{a}{ }^{h}, \tag{33}
\end{equation*}
$$

where $n_{c b}{ }^{a}$ is the Nijenhuis tensor formed with $\varphi_{b}{ }^{a}$:

$$
\begin{equation*}
n_{c b}{ }^{a}=\varphi_{c}{ }_{c}^{e} \nabla_{e} \varphi_{b}{ }^{a}-\varphi_{b}{ }^{e} V_{e} \varphi_{c}{ }^{a}-\left(\nabla_{c} \varphi_{b}{ }^{e}-\nabla_{b} \varphi_{c}{ }^{e}\right) \varphi_{e}{ }^{a} . \tag{34}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) B_{c}{ }^{j} B_{b}{ }^{i} & =\nabla_{c}\left(u_{j} B_{b}{ }^{i}\right)-\nabla_{b}\left(u_{j} B_{c}{ }^{i}\right) \\
& =\nabla_{c} u_{b}-\nabla_{b} u_{c}
\end{aligned}
$$

by virtue of

$$
\nabla_{c} B_{b}{ }^{2}=\nabla_{b} B_{c}{ }^{2}
$$

and consequently

$$
\begin{equation*}
\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) B_{c}{ }^{j} B_{b}{ }^{i} u^{h}=\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a} B_{a}{ }^{h}+\alpha\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) N^{h} . \tag{35}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) B_{c}{ }^{j} B_{b}{ }^{i} v^{h}=\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a} B_{a}{ }^{h}+\beta\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) N^{h} . \tag{36}
\end{equation*}
$$

Thus, from (32), (35) and (36), we have

$$
\begin{aligned}
\left\{u_{c b}{ }^{a}\right. & \left.+\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a}\right\} B_{a}{ }^{h} \\
& +\left\{\alpha\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right)+\beta\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right)\right\} N^{h}=0,
\end{aligned}
$$

from which

$$
\begin{equation*}
n_{c b}{ }^{a}+\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a}=0 \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right)+\beta\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right)=0 . \tag{38}
\end{equation*}
$$

Since we have easily

$$
u_{b}=-\beta \eta_{b}, \quad v_{b}=\alpha \eta_{b},
$$

we get

$$
\begin{aligned}
& \nabla_{c} u_{b}-\nabla_{b} u_{c}=-\beta\left(\nabla_{c} \eta_{b}-\nabla_{b} \eta_{c}\right)-\left(\nabla_{c} \beta\right) \eta_{b}+\left(\nabla_{b} \beta\right) \eta_{c}, \\
& \nabla_{c} v_{b}-\nabla_{b} v_{c}=\alpha\left(\nabla_{c} \eta_{b}-\nabla_{b} \eta_{c}\right)+\left(\nabla_{c} \alpha\right) \eta_{b}-\left(\nabla_{b} \alpha\right) \eta_{c},
\end{aligned}
$$

from which

$$
\begin{equation*}
\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right) u^{a}+\left(\nabla_{c} v_{b}-\nabla_{b} v_{c}\right) v^{a}=\left(\nabla_{c} \eta_{b}-\nabla_{c} \eta_{b}\right) \eta^{a} \tag{39}
\end{equation*}
$$

by virtue of $\alpha^{2}+\beta^{2}=1$. Thus, (37) gives

$$
\begin{equation*}
n_{c b}{ }^{a}+\left(\nabla_{c} \eta_{b}-\nabla_{b} \eta_{c}\right) \eta^{a}=0 . \tag{40}
\end{equation*}
$$

Thus we have
Theorem 3. An invariant hypersurface of a manifold with normal (f, g, u, v, λ)structure admits a normal almost contact metric structure.

We now assume that the normal (f, g, u, v, λ)-structure satisfies

$$
\begin{equation*}
\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i} . \tag{41}
\end{equation*}
$$

Transvecting (41) with $B_{c}{ }^{j} B_{b}{ }^{i}$, we find

$$
\left(\nabla_{c} v_{i}\right) B_{b}{ }^{i}-\left(\nabla_{b} v_{j}\right) B_{c}{ }^{j}=2 f_{j i} B_{c}{ }^{j} B_{b}{ }^{i},
$$

or

$$
\nabla_{c}\left(v_{i} B_{b}{ }^{i}\right)-\nabla_{b}\left(v_{j} B_{c}{ }^{j}\right)=2 f_{j i} B_{c}{ }^{j} B_{b}{ }^{i},
$$

or

$$
\begin{equation*}
\nabla_{c} v_{b}-\nabla_{b} v_{c}=2 \varphi_{c b} \tag{42}
\end{equation*}
$$

by virtue of

$$
\nabla_{c} B_{b}{ }^{i}=\nabla_{b} B_{c}{ }^{2} \quad \text { and } \quad f_{j i} B_{b}{ }^{i}=\varphi_{b}{ }^{e} B_{e j},
$$

where

$$
B_{e j}=B_{e}{ }^{k} g_{k j} .
$$

In [2], we have proved Theorem C , that is, let M be a manifold with normal (f, g, u, v, λ)-structure satifying (41), then we have

$$
f_{j}{ }^{t} \nabla_{h} f_{t i}-f_{i}{ }^{t} \nabla_{h} f_{t j}=u_{j}\left(\nabla_{i} u_{h}\right)-u_{i}\left(\nabla_{j} u_{h}\right)
$$

(43)

$$
+v_{j}\left(\nabla_{i} v_{n}\right)-v_{i}\left(\nabla_{j} v_{h}\right) .
$$

Transvecting (43) with $B_{c}{ }^{j} B_{b}{ }^{2} B_{a}{ }^{h}$ and taking account of (21), we find

$$
\begin{aligned}
& \varphi_{c}^{e} B_{e}{ }^{t}\left(\nabla_{a} f_{t i}\right) B_{b}{ }^{i}-\varphi_{b}{ }^{e} B_{e}{ }^{t}\left(\nabla_{a} f_{t j}\right) B_{c}{ }^{3} \\
= & u_{c}\left(\nabla_{b} u_{n}\right) B_{a}{ }^{h}-u_{b}\left(\nabla_{c} u_{h}\right) B_{a}{ }^{h}+v_{c}\left(\nabla_{b} v_{h}\right) B_{a}{ }^{h}-v_{b}\left(\nabla_{c} v_{n}\right) B_{a}{ }^{h},
\end{aligned}
$$

or

$$
\begin{aligned}
& \varphi_{c}^{e} \nabla_{a}\left(f_{t i} B_{e}{ }^{t} B_{b}{ }^{i}\right)-\varphi_{b}{ }^{e} \nabla_{a}\left(f_{t j} B_{e}{ }^{t} B_{c}{ }^{j}\right) \\
= & u_{c}\left\{\nabla_{b}\left(u_{h} B_{a}{ }^{h}\right)-u_{h} \nabla_{b} B_{a}{ }^{h}\right\}-u_{b}\left\{\nabla_{c}\left(u_{h} B_{a}{ }^{h}\right)-u_{h} \nabla_{c} B_{a}{ }^{h}\right\} \\
& +v_{c}\left\{\nabla_{b}\left(v_{h} B_{a}{ }^{h}\right)-v_{h} \nabla_{b} B_{a}{ }^{h}\right\}-v_{b}\left\{\nabla_{c}\left(v_{h} B_{a}{ }^{h}\right)-v_{h} \nabla_{c} B_{a}{ }^{h}\right\}
\end{aligned}
$$

or

$$
\begin{aligned}
& \varphi_{c}^{e} \nabla_{a} \varphi_{e b}-\varphi_{b}{ }^{e} \nabla_{a} \varphi_{e c} \\
= & u_{c}\left(\nabla_{b} u_{a}-\alpha h_{b a}\right)-u_{b}\left(\nabla_{c} u_{a}-\alpha h_{c a}\right)+v_{c}\left(\nabla_{b} v_{a}-\beta h_{b a}\right)-v_{b}\left(\nabla_{c} v_{a}-\beta h_{c a}\right)
\end{aligned}
$$

by virtue of

$$
f_{t i} B_{e}{ }^{t} B_{b}{ }^{i}=\varphi_{e b}
$$

and equations of Gauss, or again

$$
\begin{equation*}
\varphi_{c}{ }^{e} \nabla_{a} \varphi_{e b}-\varphi_{b}{ }^{e} \nabla_{a} \varphi_{e c}=u_{c}\left(\nabla_{b} u_{a}\right)-u_{b}\left(\nabla_{c} u_{a}\right)+v_{c}\left(\nabla_{b} v_{a}\right)-v_{b}\left(\nabla_{c} v_{a}\right), \tag{44}
\end{equation*}
$$

by virtue of $\alpha u_{c}+\beta v_{c}=0$.
From (43) we find

$$
\begin{aligned}
& \nabla_{a}\left(\varphi_{c}{ }_{c} \varphi_{e b}\right)-\left(\nabla_{a} \varphi_{c} e^{e}\right) \varphi_{e b}-\varphi_{b}{ }^{e} \nabla_{a} \varphi_{e c} \\
= & u_{c}\left(\nabla_{b} u_{a}\right)-u_{b}\left(\nabla_{c} u_{a}\right)+v_{c}\left(\nabla_{b} v_{a}\right)-v_{b}\left(\nabla_{c} v_{a}\right),
\end{aligned}
$$

or

$$
\nabla_{a}\left(-g_{c b}+\eta_{c} \eta_{b}\right)-2\left(\nabla_{a} \varphi_{c}^{e}\right) \varphi_{e b}
$$

(45)

$$
=u_{c}\left(\nabla_{b} u_{a}\right)-u_{b}\left(\nabla_{c} u_{a}\right)+v_{c}\left(\nabla_{b} v_{a}\right)-v_{b}\left(\nabla_{c} v_{a}\right) .
$$

Substituting

$$
u_{c}=-\beta \eta_{c}, \quad v_{c}=\alpha \eta_{c}
$$

into the right hand member of (45), we have

$$
\begin{aligned}
& \left(\nabla_{a} \eta_{c}\right) \eta_{b}+\eta_{c}\left(\nabla_{a} \eta_{b}\right)-2\left(\nabla_{a} \varphi_{c}^{e}\right) \varphi_{e b} \\
= & \beta^{2}\left\{\eta_{c}\left(\nabla_{b} \eta_{a}\right)-\eta_{b}\left(\nabla_{c} \eta_{a}\right)\right\}+\beta\left(\nabla_{b} \beta\right) \eta_{c} \eta_{a}-\beta\left(\nabla_{c} \beta\right) \eta_{b} \eta_{a} \\
& +\alpha^{2}\left\{\eta_{c}\left(\nabla_{b} \eta_{a}\right)-\eta_{b}\left(\nabla_{c} \eta_{a}\right)\right\}+\alpha\left(\nabla_{b} \alpha\right) \eta_{c} \eta_{a}-\alpha\left(\nabla_{c} \alpha\right) \eta_{b} \eta_{a},
\end{aligned}
$$

or

$$
\begin{equation*}
2\left(\nabla_{a} \varphi_{c}^{e}\right) \varphi_{e b}=\eta_{c}\left(\nabla_{a} \eta_{b}-\nabla_{b} \eta_{a}\right)+\eta_{b}\left(\nabla_{a} \eta_{c}+\nabla_{c} \eta_{a}\right) \tag{46}
\end{equation*}
$$

by virtue of $\alpha^{2}+\beta^{2}=1$.
On the other hand, using (38) and (42), we find

$$
\alpha\left(\nabla_{c} u_{b}-\nabla_{b} u_{c}\right)=-2 \beta \varphi_{c b},
$$

from which

$$
\begin{equation*}
\alpha\left(\nabla_{c} \eta_{b}-\nabla_{b} \eta_{c}\right) \eta^{a}=2\left(\alpha v^{a}-\beta u^{a}\right) \varphi_{c b} \tag{47}
\end{equation*}
$$

because of (39) and (42).
Substituting

$$
u^{a}=-\beta \eta^{a}, \quad v^{a}=\alpha \eta^{a}
$$

into (47), we have

$$
\begin{equation*}
\alpha\left(\nabla_{c} \eta_{b}-\nabla_{b} \eta_{c}\right)=2 \varphi_{c b} \tag{48}
\end{equation*}
$$

because of $\alpha^{2}+\beta^{2}=1$.
This shows that α does not vanish everywhere on $i(V)$. Thus, from (46) and (48), we have
(49)

$$
2 \alpha\left(\nabla_{a} \varphi_{c}^{e}\right) \varphi_{e b}=2 \varphi_{a b} \eta_{c}+\alpha \eta_{b}\left(\nabla_{a} \eta_{c}+\nabla_{c} \eta_{a}\right),
$$

from which

$$
\begin{equation*}
\nabla_{a} \eta_{c}+\nabla_{c} \eta_{a}=0, \tag{50}
\end{equation*}
$$

because α never vanishes on $i(V)$.
Consequently we have

$$
\begin{equation*}
\alpha \nabla_{b} \eta_{a}=\varphi_{b a} \tag{51}
\end{equation*}
$$

by virtue of (48).
Substituting (50) into (49), we find

$$
\begin{equation*}
\alpha\left(\nabla_{a} \varphi_{c}^{e}\right) \varphi_{e b}=\varphi_{a b} \eta_{c} . \tag{52}
\end{equation*}
$$

Transforming (52) with $\varphi_{d}{ }^{b}$ and taking account of

$$
\varphi_{e b} \varphi_{d}{ }^{b}=g_{e d}-\eta_{e} \eta_{d},
$$

we find

$$
\alpha\left(\nabla_{a} \varphi_{c}{ }^{e}\right)\left(g_{e d}-\eta_{e} \eta_{d}\right)=\eta_{c}\left(g_{a d}-\eta_{a} \eta_{d}\right)
$$

or

$$
\alpha \nabla_{a} \varphi_{c d}+\alpha\left(\nabla_{a} \eta_{e}\right) \varphi_{c}{ }^{e} \eta_{d}=\eta_{c}\left(g_{a d}-\eta_{a} \eta_{d}\right)
$$

by virtue of $\varphi_{c}{ }^{e} \eta_{e}=0$.
Substituting (51) into the last equation, we have

$$
\alpha \nabla_{a} \varphi_{c d}+\varphi_{a e} \varphi_{c}{ }^{e} \eta_{d}=\eta_{c}\left(g_{a d}-\eta_{a} \eta_{d}\right)
$$

or

$$
\begin{equation*}
\alpha \nabla_{a} \varphi_{c d}=\eta_{c} g_{a d}-\eta_{d} g_{a c} \tag{53}
\end{equation*}
$$

by virtue of $\varphi_{a e} \varphi_{c}^{e}=g_{a c}-\eta_{a} \eta_{c}$.
Now we prove the
Lemma. In an invariant hypersurface of a manifold with normal (f, g, u, v, λ)structure satisfying $\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i}, \alpha$ is constant.

Proof. Substituting

$$
v^{a}=\alpha \eta^{a}
$$

into (42), we find

$$
\alpha\left(\nabla_{c} \eta_{b}-\nabla_{b} \eta_{c}\right)+\left(\nabla_{c} \alpha\right) \eta_{b}-\left(\nabla_{b} \alpha\right) \eta_{c}=2 \varphi_{c b},
$$

from which

$$
\begin{equation*}
\left(\nabla_{c} \alpha\right) \eta_{b}=\left(\nabla_{b} \alpha\right) \eta_{c} \tag{54}
\end{equation*}
$$

because of (48).
Transvecting (54) with η^{b} and making use of $\eta_{b} \eta^{b}=1$, we have

$$
\nabla_{c} \alpha=\rho \eta_{c}, \quad \rho=\eta^{b}\left(\nabla_{b} \alpha\right),
$$

from which

$$
\nabla_{d} \nabla_{c} \alpha=\left(\nabla_{d} \rho\right) \eta_{c}+\rho \nabla_{d} \eta_{c},
$$

or

$$
\alpha \nabla_{d} \nabla_{c} \alpha=\alpha\left(\nabla_{d} \rho\right) \eta_{c}+\rho \varphi_{d c} .
$$

Transvecting the last equation with $\varphi^{d c}$, we have

$$
\rho=0 .
$$

Thus, $\nabla_{c} \alpha$ being zero, α is constant. This completes the proof of the lemma.
Since α is constant, we get

$$
2 \varphi_{b a}=\partial_{b}\left(\alpha \eta_{a}\right)-\partial_{a}\left(\alpha \eta_{b}\right) .
$$

This equation, together with the first two equations of (30), shows that

$$
(\alpha \eta) \wedge(d(\alpha \eta))^{n}=\alpha\left(\eta \wedge \varphi^{n}\right) \neq 0
$$

because α never vanishes on $i(V)$.
Consequently we have

$$
\eta \wedge(d \eta)^{n} \neq 0
$$

Thus η is a contact form on $i(V)$.
On the other hand, substituting (53) into

$$
S_{c b}{ }^{a}=\varphi_{c}{ }^{e}\left(\nabla_{e} \varphi_{b}{ }^{a}\right)-\varphi_{b}^{e}\left(\nabla_{e} \varphi_{c}{ }^{a}\right)-\left(\nabla_{c} \varphi_{b}^{e}-\nabla_{c} \varphi_{c}^{e}\right) \varphi_{e}{ }^{a}+\left(\nabla_{c} \eta_{b}-\nabla_{b} \eta_{c}\right) \eta^{a},
$$

we have

$$
\begin{aligned}
\alpha S_{c b}{ }^{a}= & \varphi_{c}^{e}\left(\eta_{\delta} \delta_{e}^{a}-\eta^{a} g_{e b}\right)-\varphi_{b}^{e}\left(\eta_{c} \delta_{e}^{a}-\eta^{a} g_{e c}\right) \\
& -\left(\eta_{b} \delta_{c}^{e}-\eta^{e} g_{c b}-\eta_{c} \delta_{b}^{e}+\eta^{e} g_{b c}\right) \varphi_{e}^{a}+2 \varphi_{c b} \eta^{a}=0 .
\end{aligned}
$$

Since, α is a non-zero valued function on $i(V)$, we have

$$
S_{c b}{ }^{a}=0
$$

Thus, we have proved
Theorem 4. An invariant hypersurface of a manifold with normal (f, g, u, v, λ)structure satisfying

$$
\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 f_{j i}
$$

is a Sasakian manifold.

Bibligraphy

[1] Sasaki, S., and Y. Hatakeyama, On differentiable manifolds with contact metric structures. J. of the Math. Soc. of Japan, 14 (1962), 249-271.
[2] Yano, K. and M. Okumura, On (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep. 22 (1970), 401-423.
[3] Yano, K., and M. Okumura, On normal (f, g, u, v, λ)-structures on submanifolds of codimension 2 in a Euclidean space. Kōdai Math. Sem. Rep. 23 (1971), 172197.

Tokyo Institute of Technology, and
Saitama University.

[^0]: Received October 8, 1970.

