KODAT MATH. SEM. REP.
23 (1971), 290—304

INVARIANT HYPERSURFACES OF A
MANIFOLD WITH (f, g, u, v, 2)-STRUCTURE

By KeENTARO YANO AND MasarumMi OKUMURA

Introduction.

We have studied in [2] a differentiable manifold with (f, U, V, #, v, A)-structure,
that is, a differentiable manifold with tensor field f of type (1, 1), two vector fields
U and V; two 1-forms # and » and a function 21 satisfying

[ X=—X+uX)U+v(X)V,
wWfX)=+wX), [fU=-2V,
o(fX)=—2(X), [fV=2U,

wWU)=1-2, w(V)=0,

o(U)=0, u(V)=1-2,

for any vector field X.
An (f, U, V, u, v, 2)-structure is said to be normal if it satisfies

N, Y)+du(X, Y)U+dv(X, Y)V=0,
where N(X, Y) is the Nijenhuis tensor of f defined by
NX, V)=[fX, YIS/ X, YI-fIX, fY]+/?X, Y]

for any vector fields X and Y.
If there exists a positive definite Riemannian metric ¢ such that

o(fX, fY)=9(X, Y)—u(X)u(Y )—v(X)(Y),
o(U, X)=u(X),  o(V, X)=v(X)

for any vector fields X and Y, then we call the structure an (f, g, %, v, A)-structure.
In this case

o(X, Y)=9(fX,Y)
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is a 2-form.

A submanifold of codimension 2 of an almost Hermitian manifold admits an
(f, 9, u, v, 2)-structure and a hypersurface of an almost contact metric manifold
admits the same kind of the structure.

In [2], we have proved

THEOREM A. Let M be a complete manifold with normal (f, g, u, v, 2)-structure
satisfying

du=go, dv=w,

¢ being a function. If A(1—2%) is almost everywhere non-zero, then the manifold M
is isometric with a sphere.

In [3], we have also studied normal (f, g, %, v, 2)-structures on submanifolds of
codimension 2 in a Euclidean space and proved

THEOREM B. Let a complete differentiable submanifold M of codimension 2
of an even-dimensional Euclidean space be such that the connection induced in the
normal bundle of M has zero curvature. If the (f, g, u, v, 2)-structure induced on
M is normal, then M is a sphere, a plane, or a product of a spherve and a plane.

The main purpose of the present paper is to study invariant hypersurfaces of
a manifold with (f, g, #, v, A)-structure. A hypersurface is said to be invariant if
the tangent hyperplane is invariant by the action of f.

After stating some preliminaries in §1, we study in §2 general hypersurfaces
of a manifold with (f, g, %, v, 2)-structure and obtain some general formulas valid
for these general hypersurfaces.

In §3, we specialize these general formulas and obtain formulas valid for
invariant hypersurfaces. We prove that an invariant hypersurface of a manifold
with (f, g, %, v, 2)-structure admits an almost contact metric structure.

In §4, we study invariant hypersurfaces of M with normal (f, g, %, v, 2)-structure
and prove that an invariant hypersurface of a manifold with normal (f, g, %, v, 2)-
structure satisfying dv=w is a Sasakian manifold.

§1. The (£, g, u, v, 2)-structure.

Let M be a (2r+2)-dimensional differentiable manifold covered by a system of
coordinate neighborhoods {U; xz"}, where here and throughout the paper the indices
h,i,4, k, - run over the range 1, 2, ---, 2n+2. Let there be given in M a tensor
field f of type (1, 1), a Riemannian metric ¢, two 1-forms # and » and a function
2, satisfying
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I ==t uut+v "
f.ltfzsgts =gji— UjUi— VU,
(1) fifui=+2v,,  fifvi=—2uj,
flrur=—nw",  fri=4u",
wut =vt =1—22, w0t =0,
where
ut =u;gt" and vh=v,g'*,
g*"* being contravariant components of the metric tensor. We can easily prove that
Fi=ri9u

is a skew-symmetric tensor.

The set (f, g, #, v, 2) satisfying (1) is called an (f, g, #, v, )-structure on M. An
M with (f, g, #, v, A)-structure is orientable.

A typical example of an M with (f, g, %, v, A)-structure is an even dimensional

sphere in a Euclidean space.
The (f, g, u, v, 2)-structure is said to be normal if it satisfies

(2) Sﬁ"=Nﬂ”+(Vjui——%uj)u"+(l7jvi—l7ivj)v"=0,
where
Nt =f ) Vf—f 0 f S~V ot =P f D

is the Nijenhuis tensor formed with f,* and F, denotes the operator of covariant
differentiation with respect to the Christoffel symbols {,*;} formed with g;;.
In [2], we have proved

TueoREM C. Let M be a manifold with normal (f, g, u, v, 2)-structure satisfying
(3) Vivi—Vw; =21,
then we have

(4) IV fo—FdVnfei=wui(Vun) —:(Vun) +0;(Vivn) —vi(Vjon).

§2 Hypersurfaces of M with (f, g, u, v, 1)-structure.

We consider a (2z+1)-dimensional differentiable manifold V7 covered by a
system of coordinate neighborhoods {U’; y*} where here and in the sequel the indices
a, b, ¢, d, e run over the range 1, 2, ---, 2n+1. We assume that the manifold V is
immersed in M by the immersion i: V—M as a hypersurface (V) of M and that
the equation of (V) of M are
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xh=x"(y).
If we put
ah = aa$h (aa = a/aya)’

the Riemannian metric induced on # V) from that of M is given by
gev =i Be! By

We denote by N* the unit normal to #7V7) such that the vectors By, B.",
+++y Benii®, N form the positive orientation of M and by /. the operator of covariant
differentiation with respect to the Christoffel symbols {;%} formed with g;. Then
we have equations of Gauss

VcBbh = kch hr
where

h

rsraso| 1o —| 0 |
ji c b
is the so-called van der Waerden-Bortolotti covariant derivative of By* and 4, is

the second fundamental tensor and equation of Weingarten

VeN*=—hBg",
where
he® =heg™,
¢*® being contravariant components of the induced Riemannian metric tensor.

Now the transform f,*By¢ of B;* by f,* and the transform f,*N? of Nt by f*
are respectively given by

(5) f'Byt=p"Ba" +ws N*,
where ¢, is a tensor field of type (1,1) and w, is a 1-form in ¥, and
(6) J"Ni= —w*B,",
where
wazwbgba.

The vector fields #* and »" are respectively written as

(7) u"=Ba"u+aN"
and
(8) v*= B+ BN"

along #(V'), where #® and »® are vector fields of ¥ and a and j are functions of V.
Now applying the operator f,* to both members of (5), we find
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(—0%+ wu;u* 4+ v,0%) By* = 0p°(0c*Ba" + w. N*) —wow®Bo",
from which

._.Bblc+ ub(Bakua'+aNk)+Ub(Ba,kUa+‘BNk)=§0bc(§0caBak+chk)—u)bwa'Bak,
by virtue of (7) and (8) and consequently, comparing the tangential part and the
normal part of both members, we find

(9) PP = —08 + upt®+ Vo0 + Www®
and
(10) auy+ ‘BZ)(; = ngcwc.

Applying the operator f»* to both members of (6), we find
(=t uu® +v0*) N = —w*(p* Bo* +w.N*),

from which

— N*+a(Bius+aN®)+ f(Ba v+ BN*) = —w(p.* B +weN*)

by virtue of (7) and (8) and consequently

(1) au®+ put= — o u’
and
12) a’+ pE=1—wwns.

Applying the operator f,* to both members of (7), we find
— 0= (" BF +wa N¥)u*—aw’ B,
from which
— X(BFv°+ BN?) = (0o B + wa N *)u®— aw’ B.*

by virtue of (8), and consequently

13) — =@ U’ —aw®
and
14) —AB=wans®.

Applying also the operator f,* to both members of (8), we find
2t* = (pa° B +wo N¥)o*— puw’ B,

from which
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I(Bckuc + aN") = (SDa,chk + WaNk)va—ﬁchck,

by virtue of (7), and consequently

(15) U= 00" — Bu®
and
(16) Aa=wgv%

Considering the lengths of #"* and »* and the inner product of #* and o we
have

an 1—2=uau’+a?,
18) 1—2=00°+ B,
19) 0=uz0"+ap.

Summing up, we have
O6°pc = — 05 + wst®+ Ve + wow?,
an®+ ‘Bva= __gocawc

o U’ =—"+aw?, v’ =Au+ pw®,

(20) a*+ Br=1—waw?,
Aa=wq,v%, AB=—wqu?,
U =1—a’—2, v =1—-p—-1%,
U= —ap.

§3. Invariant hypersurfaces of M with (f, g, u, v, 2)-structure.

We now assume that the hypersurface (V) is invariant, that is, the tangent
hyperplane of #(V) is invariant by the linear transformation f,*. Then we have

21 Si"Byt=py*Ba",
that is,
(22) wy=0.

Thus (20) becomes
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[ PoCpc®=—0y +upu®+vp°, -

au®+pv*=0,
U= — 0%, @eV° = + 2%,
(23) a+ =1,
Ja=0, =0,
uu*=1—a®—2%, v°=1—p—2,
\ U= —af.

From equation (7), (8) and
au®+ pv*=0, a*+ =1,
we find
NP =qu"+ pv*.
Thus we have

THEOREM 1. The normal to an invarviant hypersurface (V) of M with
(f, g, #, v, 2)-structure is in the plane spanned by two vector fields u* and v*.

Since a?+ p*=1, at least one of « and g is different from zero and consequently,
from 2a=0, 23=0, we have 1=0 and consequently (23) becomes

©o°Qc = —05 + ust® + 0%

au®+ pv*=0,
24 octu’=0, cv°=0,
a’+ =1,
um®=1—a?  00°=1-F,  u"=—ap.

Now we put

Ve={Pei(V)|a(P)=0}
and

Ve={Pei(V)|p(P)=0}.

Then, V, and V; are both open in #V) and V,U V=iV, because of the fact
that a®+g2=1.

In V,, from au®+ pv*=0, we have

B

ut=— 1o,
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and consequently

2
wUpt®+ V0% = —é-z- V0 +0p0%
a

(25)

= —p0*
o?

by virtue of a?+4g2=1. Thus, putting

(26) wO=-u,
we have

27) U™+ V0% =1 W5t
and

(28) 7yt =1,

by virtue of wau®+v,0*=2—(a?+ %=1, where

7O =g 9"
We also have in TV,
29) Uptha+VsVa =17 0.

In the same way, in V, we put

PP =— —%—ub.

Then, the equations similar to (27), (28) and (29) are valid for 7® in V,.
On the other hand, in V,N ¥V, we have

1
= =

which shows that if we define a 1-form 5 by
{ »n®@dy*  in V.,
B dy? in Vs

then 5 is well defined on (V).
Thus, from (24), (27), (28) and (29), we find
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Po°pe™ = — 0 + 1",
(30 o*7a=0,  @"*=0,
7ay*=1,

where 7, is the components of the 1-form » and »?=7.g%.
From

[ qs=gii—uu;—v;0;,
we find, by transvection with BB,

Si' fi89esBe! By' = gep— et —Vcls,
from which
SoceBetSDI)dBdsg ts =0co— Uclhp— Vclp

by virtue of (21), and consequently
31) $Dce¢bdged =dcdb—Ncho
by virtue of (27). Thus we have proved

THEOREM 2. An invariant hypersurface of a manifold with (f, g, u, v, 2)-struc-
ture admits an almost contact metric structure.

§4. Invariant hypersurfaces of M with normal (7, g, u, v, 2)-structure.

We now assume that the (f, g, %, v, A)-structure of M is normal, that is,
(32) Sji" =N+ (Vjus — Vi )u + (Vo — Vi j)o™ =0.

It will be easily verified that, for an invariant hypersurface i( V), we have
(33) N;i* B Byt =n%B,",
where 7, is the Nijenhuis tensor formed with ¢,
(34) 166> = e Ves® — 0o Vo0 — (Vepo® — Vope®)pe®.

On the other hand, we have

(V13— Vinej) By Byt = V(1 By*) — V(2 j Be?)

= Vet — Vythe
by virtue of
V.By'=V,B.*
and consequently
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(35) (Pyr;— Vi) Be? Byt = (Vo — Vot Bo™ + a( Vot — Vo) N
Similarly, we have
(36) (Viv;— Vi) B Byiv* = (Pers— Vs )0 Ba™ + B(Petvs — Vv ) N .
Thus, from (32), (35) and (36), we have
{#eo®+ (Petes — Vorte)uu® + (Vevy — Vv )v*} Bo*
+{aPerts— Votac) + p(Fetro— Popvc)} N =0,

from which

37 10+ (Petbo— Vothe)ru® + (Pevp — Vyve)v* =0
and

(38) a(Verty— Vythe) + B(Fevs— o) =0.

Since we have easily
up=— B, Vy=an,
we get
Vetts—Vothe =~ B(Verpp—PVone) — (VeB)o + (PoB)es
Vevs— Vove=a(Venp — Vone) + (Veat)pp— (Vs )7e,
from which
(39) (Pt — Vstoyu®+ (Pevo— Vyoe)v® = (Vs — Pepp )y
by virtue of a%+p2=1. Thus, (37) gives
(40) 7™+ (Pepp— Vome)y =0.
Thus we have

THEOREM 3. An invariant hypersurface of a manifold with normal (f, g, u, v, 2)-
structure admits a normal almost contact metric structure.

We now assume that the normal (f, g, %, v, A)-structure satisfies
(41) Vivi—Viv;=2f .
Transvecting (41) with B/B,!, we find

(Pevs) Bt —(Py0;) B =2 s B By,
or
V(03 Bo*)— Vo(vB.’) =21 11 B By,
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or

(42) Vevy—Vyv. = 2$0cb

by virtue of

VcBbi = Vbch' and fjiBbi = gobeBej,
where
Bej = Bekgk 70

In [2], we have proved Theorem C, that is, let M be a manifold with normal
(f, 9, u, v, 2)-structure satifying (41), then we have

I3 VS es—1t P feg=u(Viren) —nui(Vjun)
(43)
+0;(Vivn) —vi(Pjon).

Transvecting (43) with B,/By*B," and taking account of (21), we find
SDceBet(V af ti)Bbi_sﬁbeBel(V a.f t]‘)Bc]
= uc( Vbuh)Bah - ub( chh)Ba,h + vc( vah)Bah — Z)b( chh)Bah,

or
§OceVa(ftiBetBbi) - ?beVa(fthethj)
=uc{V; b(uhBa.h) —unV; bBah} —up({Ve c(uhBah) —unl, cBah}
+0e{Ps(v3,Ba™) — 1.V Ba™} — 0{ V(05 Ba*) — 01 Ve Ba}
or

0 Vaper— s Vapec
=u(Vstha—ahpa)—wo(Vetho—ahea) + (V0o — Bhoa) — 0s(Vero— Bhica)
by virtue of
J1Bé By = Ped
and equations of Gauss, or again

(44) §Dce Va$0eb - §0l78 Va§0ec = uc( Vbua) - ub(cha) + l)c( Vbl)a) — vb(cha),

by virtue of awu.+ pv.=0.
From (43) we find

V. a.(SDceSDeb) - (Va$0ce)<Peb - ?be 14 afPec

=ue(Vstta) —us(Vetha) + 0(Pova) — 0s(Ves),
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or
Va(—ger+ 77c77b) - 2(7 aSDce)SDeb
(45)
=e(Vstha) —s(Vetta) +0e(Vsva) — Vo (Veva)-
Substituting
Ye=—P"c, Ve=ane

into the right hand member of (45), we have
(V aﬂc)ﬂb + 770(‘7 aﬂb) _Z(V aSDce)Soeb
= B*{ne(Psa) —mo(Fena)} + BPof)nena— B(PeB)pena

+a*{7e(Psma) — pp(Pena)} + a(Pra)penpa — a(Vea)npya,
or

(46) 2(Pape®)peo =1e(Varpp— Voa) +pp(Pane + Venpa)
by virtue of a%+p2=1.
On the other hand, using (38) and (42), we find
a(Petty— Pytae) = —2Bpcs,

from which
47 a(Fenp—Vope)n®=2av®— Bu)pes
because of (39) and (42).
Substituting
" v =ar®
into (47), we have
(48) a(Veqn—Vsne) =20

because of a®+p2=1.
This shows that « does not vanish everywhere on (V). Thus, from (46) and
(48), we have

(49) 2a (V aSDce)§0eb = 2§0ab770 +a 770(‘7 ale + Vc?]a),
from which
(50) 17 a%e + Vc77a =0,

because a never vanishes on (V).
Consequently we have
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(51) aVypa=pa

by virtue of (48).
Substituting (50) into (49), we find

(52) a(V, a¢ce)¢eb = QapNe.
Transforming (52) with ¢s* and taking account of

PerPa’ = Gea—7NeNas
we find
a(Vape?)gea—nena) = 1e(gaa—2a7a)
or
alVapea+a(Vane)pena=1e(gaa —1ana)

by virtue of @c®7.=0.
Substituting (51) into the last equation, we have

alVapea+ Qac0tna=ngaa—"nana)
or
(53) aVaSDcd =NcJad —Nd9ac

by virtue of @eec®=gac—Na7e-
Now we prove the

LEMMA. In an invariant hypersurface of a manifold with normal (f, g, u, v, 2)-
structure satisfying Vip,—Viv;j=2f;, a is constant.

Proof. Substituting
Vi=ay
into (42), we find
a(Venp—Vsne) + (Peat)go — (Poa) e = 2¢c,
from which
(54) (Pearypp=(Pyar)ne

because of (48).
Transvecting (54) with »* and making use of 77°=1, we have

Vear=pre, p=71"(Vs),
from which

VaVea=Pap)pe+ oVane.
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or

alVgVca=a(Vap)ne+ ppac.

Transvecting the last equation with ¢%, we have
0=0.
Thus, V,a being zero, a is constant. This completes the proof of the lemma.
Since a is constant, we get
2¢p0=05(a7a) —dalanp)-

This equation, together with the first two equations of (30), shows that

(ap A(d(an)*=a(nN\¢™)=0,

because « never vanishes on (V).
Consequently we have

A\ (dp"=0.

Thus 7 is a contact form on (V).
On the other hand, substituting (53) into

Sev®= e (Pepo®) — 0o°(Pepe®) — (Pepo® — Vope?)pe® + (Pepp— Vome)n®
we have
aSer® =@ (0§ —7"er) — Po°(1c0e —7"ec)
— (o0 —71°ger — 105+ 1 Goe)pe® + 20c0m* =0.
Since, « is a non-zero valued function on i(V), we have
Seo®=0.
Thus, we have proved

THEOREM 4. An invariant hypersurface of a manifold with normal (f, g, u, v, 2)-
structure satisfying

Vjvi—Vw]=2fﬁ

is a Sasakian manifold.
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