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Abstract. This paper outlines some of my recent joint works with Q. Takahashi
on fixed point properties or ergodic properties for semigroup of nonexpansive
mappings on closed convex subsets of a Banach space and their relationship
with existence of left invariant mean on certain subspaces of bounded real-
valued functions on the semigroup.

1. INTRODUCTION

Let S be a semigroup, �∞(S) be the Banach space of bounded real valued
functions on S with the supremum norm. There is a strong connection between the
existence of an invariant mean (or submean) on an invariant subspace of �∞(S),
fixed point properties or ergodic properties of S when S is represented as a semi-
group of nonexpansive mappings on a closed convex subset of a Banach space. The
first such relation was established by W. Takahashi [67] where he proved:

Theorem 1.1. (W. Takahashi) Let S be a semigroup. If �∞(S) has a left
invariant mean, then S has the following fixed point property:

(F) Whenever S = {Ts; s ∈ S} is a representation of S as non-expansive
mapping from a non-empty compact convex subset C of a Banach space into C,
then C contains a common fixed point for S.

Theorem 1.1 was proved for commutative semigroup by R. DeMarr [9] for
commutative semigroup. Later in [25], we show that fixed point property (F) is

Received March 19, 2008.
2000 Mathematics Subject Classification: Primary 47A10; Secondary 43A07, 43A60.
Key words and phrases: Fixed property, Ergodic property, Nonexpansive mappings, Invariant mean,
Amenability, Weakly compact convex set, Left reversible semigroups, Topological semigroups.
This research is supported by NSERC Grant A-7679.

1525



1526 Anthony To-Ming Lau

equivalent to the existence of a left invariant mean on AP (S), the space of almost
periodic functions on the semigroup S.

It is the purpose of this paper to outline some of my joint works with W.
Takahashi and some recent results on such relations. It is our hope that this paper
will generate further research in the connection between nonlinear analysis and
amenability of semigroups.

This paper is organized as follows: In Section 3, we shall study the algebra
of (nonlinear) submean on subspaces of �∞(S). In Section 4, we shall outline the
relationship between invariant means (or submeans) and fixed point properties of
semigroups of nonexpansive mappings. Finally in Section 5 we shall discuss the
relation between amenability and ergodic type theorems and approximation of fixed
points.

2. SOME PRELIMINARIES

All topologies in this paper are assumed to be Hausdorff. If E is a Banach
space and A ⊆ E, then A and co A will denote the closure of A and the closed
convex hull of A in E, respectively.

Throughout this paper, all vector spaces are real. Let E be a Banach space and
let C be a subset of E. A mapping T from C into itself is said to be nonexpansive if
‖Tx−Ty‖ ≤ ‖x−y‖ for each x, y ∈ C. A Banach space E is said to be uniformly
convex if for each ε > 0, there exists δ > 0 such that ‖(x+y)/2‖ ≤ 1− δ for each
x, y ∈ E satisfying ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε.

Let E∗ be the topological dual of a Banach space E. The value of x∗ ∈ E∗ at
x ∈ E will be denoted by 〈x, x∗〉 or x∗(x). With each x ∈ E, we associate the set

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.
Using the Hahn-Banach theorem, it is immediately clear that Jx �= ∅ for each x ∈ E.
The multivalued operator J from E into E∗ is called the duality mapping of E. Let
S(E) = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the norm of E is said to
be Fréchet differentiable if for each x ∈ S(E), the limit limλ→0(‖x+λy‖−‖x‖)/λ
exists uniformly for y ∈ S(E). In this case, J is single-valued and

lim sup
λ→0 ‖y‖=1

∣∣∣
1
2‖x+ λy‖2 − 1

2‖x‖2

λ
− 〈y, Jx〉

∣∣∣ = 0

for each x ∈ E; see [11] for details.
The Banach space E is called smooth if the duality mapping J is single-valued.

E is said to be strictly convex if

‖x‖ ≤ 1, ‖y‖ ≤ 1 and x �= y imply
∥∥∥x+ y

2

∥∥∥ < 1.



Invariant Means and Fixed Point Properties of Semigroup of Nonexpansive Mappings 1527

Let D be a subset of B where B is a subset of a Banach space E and let P be
a retraction of B onto D, that is, Px = x for each x ∈ D. Then P is said to be
sunny [64] if for each x ∈ B and t ≥ 0 with Px+ t(x− Px) ∈ B,

P
(
Px+ t(x− Px)

)
= Px.

A subset D of B is said to be a sunny nonexpansive retract of B if there exists a
sunny nonexpansive retraction P of B onto D. We know that if E is smooth and
P is a retraction of B onto D, then P is sunny and nonexpansive if and only if for
each x ∈ B and z ∈ D,

〈x− Px, J(z − Px)〉 ≤ 0.

For more details, see [69].
Let S be a semigroup. Then a subspace X of �∞(S) is left (resp. right)

translation invariant if � a(X) ⊆ X (resp. ra(X) ⊆ X) for all a ∈ S, where
(�af)(s) = f(as) and (raf)(s) = f(sa), s ∈ S.

A semitoplogical semigroup S is a semigroup with Hausdorff topology such
that for each a ∈ S, the mappings s 
→ a · s and s 
→ s · a from S into S are
continuous. Examples of semitopological semigroups include all topological groups,
the set M(n,C) of all n × n matrices with complex entries, matrix multiplication
and the usual topology, the unit ball of �∞ with weak∗-topology and pointwise
multiplication, or B(H) (= the space of bounded linear operators on a Hilbert
space H) with the weak∗-topology and composition.

If S is a semitopological semigroup, we denote by CB(S) the closed subalgebra
of �∞(S) consisting of continuous functions. Let LUC(S) (resp. RUC(S)) be the
space of left (resp. right) uniformly continuous functions on S, i.e. all f ∈ CB(S)
such that the mapping from S into CB(S) defined by s→ �sf (resp. s→ rsf) is
continuous when CB(S) has the sup norm topology. Then as is known (see [5]),
LUC(S) and RUC(S) are left and right translation invariant closed subalgebras
of CB(S) containing constants. Also let AP (S) (resp. WAP (S)) denote the
space of almost periodic (resp. weakly almost periodic) functions f in CB(S), i.e.
all f ∈ CB(S) such that {�af ; a ∈ S} is relatively compact in the norm (resp.
weak) topology of CB(S), or equivalently {raf ; a ∈ S} is relatively compact
in the norm (resp. weak) topology of CB(S). Then as is known [5, p. 164],
AP (S) ⊆ LUC(S)∩RUC(S), and AP (S) ⊆WAP (S). When S is a group, then
WAP (S) ⊆ LUC(S) ∩ RUC(S) (see [5, p. 167]).

3. SUBMEANS ON SEMIGROUPS

Let S be a non-empty set and X be a subspace of �∞(S) containing constants.
Then µ ∈ X∗ is called a mean on X if ‖µ‖ = µ(1) = 1. As is well known, µ is a
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mean on X if and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s)

for each f ∈ X.

By a (nonlinear) submean on X, we shall mean a real-valued function µ on X
satisfying the following properties:

(1) µ(f + g) ≤ µ(f) + µ(g) for every f, g ∈ X ;
(2) µ(αf) = αµ(f) for every f ∈ X and α ≥ 0;
(3) for f, g ∈ X, f ≤ q implies µ(f) ≤ µ(g);
(4) µ(c) = c for every constant function c.

Clearly every mean is a submean. The notion of submean was first introduced
by Mizoguchi and Takahashi [59].

Let SMX denote the set of submeans on X. For each φ ∈ SMX , −‖f‖ ≤
φ(f) ≤ ‖f‖ by (3) and (4). Hence SMX may be identified as a subset of the product
space Πf∈X [−‖f‖, ‖f‖ ], which is compact by Tychonoff’s Theorem. Hence SMX

is a compact convex subset of the product topological vector space Πf∈XRf , where
each Rf = R.

If S is a semigroup, and X ⊆ �∞(S) is a left translation invariant subspace of
�∞(S) containing constants, a mean (submean) µ on X is left [right] invariant if
µ(�af) = µ(f)[µ(raf) = µ(f)] for each a ∈ S, f ∈ X. (See [7], [61] and [62].)

We abbreviate left invariant submean to LISM and left invariant mean to LIM.
Depending on time and circumstances, the value of a submean (or mean) µ at

f ∈ X will also be denoted by µ(f), 〈µ, f〉 or µtf(t).
A semitopological semigroup S is left reversible if any two closed right ideals

of S have non-void intersection.

Lemma 3.1. Let S be a semitopological semigroup andX be a left translation
invariant subspace of CB(S) containing constants and which separates closed
subsets of S. If X has a LISM, then S is left reversible.

Proof. Let µ be a LISM of X, I1 and I2 be disjoint nonempty closed right
ideals of S. By assumption, there exists f ∈ X such that f ≡ 1 on I1 and f ≡ 0
on I2. Now if a1 ∈ I1, then �a1f = 1. So,

µ(f) = µ(�a1f) = 1.

But if a2 ∈ I2, then �a2f ≡ 0. So µ(f) = µ(�a2f) = 0, which is impossible.

Corollary 3.2. If S is normal and CB(S) has a LISM, then S is left
reversible.
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Corollary 3.3. If S is normal and CB(S) has a LISM, then AP (S) has a
LIM.

Proof. This follows from Corollary 3.2 and [25, Corollary 3.3].

Remark 3.4. The class S of all left reversible semitopological semigroups
includes trivially all topological semigroups which are algebraically groups, and all
commuting topological semigroups.

The class S is closed under the following operations.

(a) If S ∈ S and S′ is a continuous homomorphic image of S, then S′ ∈ S.

(b) Let Sα ∈ S, α ∈ I and S be the topological semigroup consisting of the set
of all functions f on I such that f(α) ∈ Sα, α ∈ I, the binary operation
defined by fg(α) = f(α)g(α) for all α ∈ I and f, g ∈ S, and the product
topology. Then S ∈ S.

(c) Let S be a topological semigroup and Sα, α ∈ I, topological sub-semigroups
of S with the property that S = ∪Sα and, if α1, α2 ∈ I, then there exists
α3 ∈ I such that Sα3 ⊇ Sα1 ∪ Sα2. If Sα ∈ S for each α ∈ I, S ∈ S.

Let SM be the set of submeans on �∞(S). For µ ∈ SM and f ∈ �∞(S), define

µ�(f)(s) = µ(�sf)

for each s ∈ S. Then

‖f‖ ≤ inf (�sf)(t) ≤ µ(�sf)(t) ≤ sup (�sf) ≤ ‖f‖

for each s ∈ S. So µ�f ∈ �∞(S). Hence if ψ, µ ∈ SM, we may define

〈ψ � µ, f〉 = 〈ψ, µ�(f)〉.

If ψ, µ ∈ SM , then ψ � µ ∈ SM .
A semigroup S is called a left zero semigroup if all of its elements are left

zeros which means that xy = x for all x, y ∈ S. Similarly S is called a right zero
semigroup if xy = y for all x, y ∈ S. The (possibly empty) set of idempotents of a
semigroup S is denoted by E(S).

Let X, Y be nonempty sets and G be a group. Let K = X ×G× Y. Given a
map δ : X × Y → G, we define a sandwich product on K by

(x, g, y) ◦ (x′, g′, y′) =
(
x, gδ(y, x′)g′, y′

)
.

Then (K, ◦) is a simple group (i.e. no proper two-sided ideals) and any semigroup
isomorphic to a simple group of this kind is called a paragroup.
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Let S be a compact semigroup. It is called a right topological semigroup if the
translations x 
→ xs (s ∈ S) are continuous.

Theorem 3.5. Π = (SM,�) is a compact right topological semigroup. Fur-
ther, the following conditions hold:

(a) Π has a minimal ideal K and

K � E(pΠ)× pΠp×E(Πp)

where p is any idempotent of K and pΠ = {p � s : s ∈ Π} with similar
definition for pΠp and Πp. Also, E(pΠ) is a right zero semigroup, E(Πp) is
a left zero semigroup and pΠp = pΠ ∩ Πp is a group.

(b) The minimal ideal K need not be a direct product, but is a paragroup with
respect to the natural map

δ : E(pΠ)×E(Πp) → pΠp : (x, y) 
→ x� y.

(c) For any idempotent p ∈ K, pΠ is a minimal right ideal and Πp is a minimal
left ideal.

(d) The minimal left ideals in Π are closed and homeomorphic to each other.

Remark 3.6.

(a) Theorem 3.5 remain valid if SM is replaced by SMX whenX is a left trans-
lation invariant and left introverted subspace of �∞(S) containing constants,
i.e. for each µ ∈ SMX and f ∈ X, the function µ�(f) ∈ X.

(b) If X ⊆ �∞(S) is left translation invariant and left introverted and contains
constants, then

(i) X is right translation invariant,
(ii) for each f ∈ X, Kf = the w∗-closed convex hull of {raf : a ∈ S} ⊆ X.

The following is an analogue of Lemma 1 in [13] and the Localization Theorem
(Theorem 5.2) in [72] (see also [13] and [27]):

Theorem 3.7. Let X be a left invariant and left introverted subspace of �∞(S)
containing constants. Then X has a left invariant submean if and only if for each
f ∈ X, there exists a submean µ (depending on f) such that µ(f) = µ(� sf) for
all s ∈ S.

Example 3.8. If µ is a left invariant mean on �∞(S), then µ(h) = 0 for any
h = (f1 − �a1f1) + · · ·+ (fn − �anfn), f1, . . . , fn ∈ �∞(S), a1, . . . , an ∈ S. But
this is no longer true for left invariant submean.
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Let S = free group on two generators a, b. Define µ(f) = sup f(s). Then
µ(�af) = µ(f) for all a ∈ S (this is the case when aS = S for all a ∈ S, i.e. µ is
a left invariant submean on �∞(S). But if A = all elements in S that begin with a
or a−1 (reduced word), and f = 1A, and

h =
(
�ba−1f − �ab−1a(�ba−1f)

)
+

(
(−f) − �b−1a−1(−f)

)
,

then µ(h) < 0 (see Theorem 3.8).

Theorem 3.9. Let X be a left translation subspace of �∞(S) containing
constants. The following are equivalent:

(a) X has a left invariant mean.
(b) For s1, . . . , sn ∈ S and f1, . . . , fn ∈ X+ = {f ∈ X : f ≥ 0}, there exists a

submean µ on X such that

µ
( n∑

i=1

fi

)
≤ µ

( n∑
i=1

�sifi

)
.

Notes and remarks.

(i) Results in this section are contained in [45].
(ii) Using implicitly the notion of the submean µ(f) = sup{f(t); t ∈ G} of a

group G, f ∈ �∞(G), Despic and Ghahramami gave in [10] a simple proof
of a result of B.E. Johnson on weak amenability of the group algebra of a
locally compact group.

4. SUBMEANS AND FIXED POINT PROPERTY OF SEMIGROUPS

A closed convex subset K of a Banach space E has normal structure [6, p. 39]
if for each bounded closed convex subset H of K which contains more than one
point, there is a point x ∈ H which is not a diametral point of H, i.e., sup {‖x−ν‖ :
ν ∈ H} < δ(H), where δ(H) = the diameter of H.

Belluce and Kirk [4] first proved that ifK is a nonempty weakly compact convex
subset of a Banach space and if K has complete normal structure, then every family
of commuting nonexpansive self-maps on K has a common fixed point. Later
Lim [52, Theorem 3] extended this theorem to a continuous representation of a
left reversible semitopological semigroup S as nonexpansive mappings on a weakly
compact convex set K with normal structure.

If S is a semigroup and X is left translation invariant, a submean µ on X is
left subinvariant if µ(�af) ≥ µ(f) for each f ∈ X and a ∈ S. A representation
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S = {Ts; s ∈ S} as mappings from a subset C of a Banach space into C is called
X-admissible if for each x, y ∈ C, the function t→ ‖Ttx− y‖ belongs to X.

Theorem 4.1. Let C be a non-empty weakly compact convex subset of a
Banach space E. If C has more than one point and normal structure, then C
satisfies:
(P) Whenever S is a semigroup, X is a closed left translation invariant subspace of
�∞(S) containing constants with a left subinvariant submean µ, S = {T s; s ∈ S}
is an X-admissible representation of S as nonexpansive mappings from C into C,
then the set Ax = {y ∈ C; µt‖Ttx − y‖ = ρx} is a proper subset of C for some
x ∈ C, where ρx = inf {µt‖Ttx − y‖; y ∈ C}. Furthermore, for each x ∈ C the
set Ax is non-empty, closed, convex, and Ts-invariant.

This theorem is the key to prove the following generalization of Lim’s fixed
point theorem [52] for left reversible semigroups of nonexpansive mappings.

Theorem 4.2. Let S be a semitopological semigroup, let C be a nonempty
weakly compact convex subset of a Banach space E which has normal structure
and let S = {Ts; s ∈ S} be a continuous representation of S as nonexpansive self
mappings on C such that the map S × C → C defined by (s, x) → T sx, s ∈ S,
x ∈ X is continuous when S×C has the product topology. Suppose RUC(S) has
a left subinvariant submean. Then S has a common fixed point in C.

Corollary 4.3. ([52]). Let S be a left reversible semitopological semigroup.
Let D be a nonempty weakly compact convex subset of a Banach space E which
has normal structure and let S = {T s; s ∈ S} be a continuous representation of S
as nonexpansive self mappings on D. Then S has a fixed point in D.

Proof. If S is left reversible, define µ(f) = infs supt∈sS f(t). Then the proof of
Lemma 3.6 in [42] shows that µ is a submean on CB(S) such that µ(�af) ≥ µ(f)
for all f ∈ CB(S) and a ∈ S, i.e., µ is left subinvariant.

Example 4.4. E. Hewitt [15] has constructed a regular Hausdorff space T such
that the only real continuous functions on T are the constant functions. Let (U, ◦)
be any discrete left amenable semigroup (e.g., U = a commutative semigroup). Let
S = T × U with multiplication defined by

(t1, u1) · (t2, u2) = (t1, u1 ◦ u2),

with t1, t2 ∈ T, u1, u2 ∈ U and product topology. Then S is a semitopological
semigroup which is not left reversible since (t, u) · S = {(t, u ◦ u′); u′ ∈ U} is a
closed right ideal of S, and (t1, u) · S ∩ (t2, u) · S = φ if t1 �= t2. However, if φ
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is a left invariant mean on �∞(U) and t0 ∈ T, then the positive functional m on
CB(S) defined by

m(t) = φ(ft0) for every f ∈ CB(S)

is a left invariant mean, where ft0(u) = f(t0, u) for every u ∈ U. In particular, for
any such semitopological semigroup S, our fixed point theorem Theorem 4.2 applies
but the fixed point theorem of Lim [52] for left reversible semigroup (Corollary 4.3)
does not (see also [17]).

A discrete semigroup is called left amenable if �∞(S) has a left invariant mean.
When S is a discrete semigroup, the following implication diagram is known:

S left amenable
⇓ ⇑/

S left reversible
↘�↖

⇓ ⇑/ WAP (S) has LIM
↙↗

AP (S) has LIM

The implication “S is left reversible =⇒ AP (S) has a LIM” for any semitopo-
logical semigroup was established in [25]. During the 1984 Richmond, Virginia
conference on analysis on semigroups, T. Mitchell [58] gave two examples to show
that for discrete semigroups “AP (S) has LIM” �=⇒ “S is left reversible” (see [29]
or [49]). The implication “S is left reversible=⇒ WAP (S) has LIM” for discrete
semigroups was proved by Hsu [20]. Recently, it is shown in [49] that if S1 is the
bicyclic semigroup generated by {e, a, b, c} such that e is the unit of S1 and ab = e

and ac = e, then WAP (S) has a LIM, but S1 is not left reversible. Also if S2 is
the bicyclic semigroup generated by {e, a, b, c, d}, where e is the unit element and
ac = bd = e, then AP (S2) has a LIM, but WAP (S2) does not have a LIM.

Theorem 4.5. Let S be a left reversible discrete semigroup. Then S has the
following fixed point property:

Whenever S = {Ts : s ∈ S} is a representation of S as norm nonexpansive weak ∗-
weak∗ continuous mappings of a norm-separable weak ∗-compact convex subset C
of a dual Banach space E into C, then C contains a common fixed point for S.

Notes and remarks
(i) Both Theorems 4.1 and 4.2 are contained in [43]. Theorem 4.5 was proved

in [42, Theorem 5.3] (see also [46] for a more general result).
For other related results, we refer the readers to [6, 9, 12, 18, 19, 26, 30, 32,
37, 41, 44, 53, 54, 56, 57, 66] and [67].
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(ii) It can be shown that the following fixed point property on a discrete semigroup
S implies S is left amenable:
(G) Whenever S = {Ts : s ∈ S} is a representation of S as norm non-
expansive weak∗-weak∗ continuous mappings of a weak∗-compact convex
subset C of a dual Banach space E into C, then C contains a common fixed
point for S.

Problem 1. Does left amenability of S imply (G)?
(iii) Quite recently the author and Y. Zhang [49] are able to establish the following

related fixed point property.

Theorem 4.6. Let S be a separable semitopological semigroup. If WAP (S)
has a left invariant mean, then S has the following fixed point property:

Whenever S = {Ts; s ∈ S} is a continuous representation of S as non-expansive
self mappings on a weakly compact convex subset C of a Banach space E such
that the closure of S in CC with the product of weak topology consists entirely of
continuous functions, then C contains a common fixed point of C.

(iv) It has been proved by Hsu [20] (see also [6]) that if S is discrete and left
reversible, and S = {Ts; s ∈ S} is a representation of S as weakly con-
tinuous nonexpansive mappings on a weakly compact convex subset C of a
Banach space, then C has a common fixed point for S. Note that it follows
from Alspach’s example [1] that there exists a commutative semigroup of
nonexpansive mappings on a weakly compact convex subset of L1[0, 1] with
no common fixed point. But as is well known, �∞(S) always has an invari-
ant mean when S is commutative. Also Schechtman [66] has shown that
there exists a weakly compact convex subset W of L1[0, 1] and a sequence
T1, T2, . . . of commuting nonexpansive operators of W into itself such that
any finite number of them have a common fixed point but there is no common
fixed point for the entire sequence.

Note that L1[0, 1] is isometrically isomorphic to L1(T), the group algebra of
the circle group T, and A(Z), the Fourier algebra of the integer group (Z,+).
For related works (motivated by Alspach’s example [1]) concerning the weak fixed
point property on the group or Fourier algebra of a locally compact group and other
related geometric properties, we refer the reader to: [33, 34, 47, 31], and [50].

5. ERGODIC THEOREMS AND APPROXIMATION OF FIXED POINTS

Let S be a semigroup and X be a translation invariant subspace of �∞(S)
containing 1. A mean µ ∈ X∗ is called a finite mean if there exists λ1, . . . , λn ≥ 0,
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t1 . . . , tn ∈ S such that
n∑

i≡1
λi = 1, and µ =

n∑
i≡1
λiδti , where δt is the point evaluation

at t, t ∈ S.
A net {µα} of means on X is said to be asymptotically invariant if

lim
α

(
µα(�sf) − µα(f)

)
= 0 and lim

α

(
µα(rsf) − µα(f)

)
= 0

for each f ∈ X and s ∈ S, and it is said to be strongly regular if

lim
α

‖�∗sµα − µα‖ = 0 and lim
α

|r∗sµα − µα‖ = 0

for each s ∈ S, where �∗s and r∗s are the adjoint operators of �s and rs, respectively.
Such nets were first studied by Day in [7], where they were called weak∗ invariant
nets and norm invariant nets, respectively.

It is well known [7] that a semigroup S is left amenable if and only if there is a
net {µα} of finite means on �∞(S) such that {µα} is asymptotically left invariant,
i.e. lim

α

(
µα(�sf) − µα(f)

)
= 0 for each f ∈ �∞(S), s ∈ S. A remarkable result

of Day [7] shows that if S is left amenable, then there is a net {µα} of finite means
which is left strongly regular (i.e. ‖�sµα − µα‖ → 0 for each s ∈ S see also [60]
for an elegant proof of this).

Theorem 5.1. If S is an amenable semigroup, then there is a strong regular
net {µα} consisting of finite means on �∞(S). Furthermore, if S is countable, then
{µα} may be taken to be a sequence.

Let S be a semigroup and let C be a closed, convex subset of a reflexive
Banach space F. Let S = {Tt : t ∈ S} be a representation of S as nonexpansive
(or simply a nonexpansive semigroup on C) mappings from C into itself such that
{Tt(x); x ∈ S} is relatively weakly compact for each x ∈ S. We denote by F (S)
the set of common fixed points of S, i.e., ∩t∈S{x ∈ C : Ttx = x}. For x ∈ C, we
also denote by Q(x) the set ∩s∈S co{Ttsx : t ∈ S}. A mapping A from C into itself
is said to be a finite average of S if there exists λ1, . . . , λn ≥ 0 with

∑n
i=1 λi = 1

and t1, . . . , tn ∈ S such that A =
∑n

i=1 λiTti. Let X be a subspace of �∞(S) such
that 1 ∈ X and S is X-admissible. Then Tµx or

∫
Ttxdµ(t) defines an element

in C using the bi-polar theorem (see [35]) for each mean µ on X and x ∈ C. We
remark that A is a finite average of S if and only if there is a finite mean µ on X
such that A = Tµ.

The following result which we shall need is well known; for example, see [21].

Lemma 5.2. Let S be a semigroup, let C be a closed, convex subset of a
Banach space E, let S = {Tt : t ∈ S} be a nonexpansive semigroup on C such
that {Tt : t ∈ S} is relatively weakly compact for each x ∈ C, let X be a subspace
of B(S) such that 1 ∈ X and S is X-admissible. Let µ be a mean on X. Then
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(i) Tµ is a nonexpansive mapping from C into itself;

(ii) Tµx = x for each x ∈ F (S);

(iii) Tµx ∈ co{Ttx : t ∈ S} for each x ∈ C;

(iv) if X is rs-invariant for each s ∈ S and µ is right invariant, then T µTt = Tµ

for each t ∈ S.

In 1975, Baillon [3] proved that: If C is a closed, convex subset of a Hilbert
space and T is a nonexpansive mapping from C into itself such that the set F (T )
of fixed points of T is nonempty, then for each x ∈ C, the Ces àro mean

Sn(x) =
1
n

n∑
k=1

T kx

converges weakly to some y ∈ F (T ). In this case, putting y = Px for each x ∈ C,

P is a nonexpansive retraction from C onto F (T ) such that PT = TP = P
and Px ∈ co {Tnx : n = 1, 2, . . .} for each x ∈ C. In [68], Takahashi proved the
existence of such a retraction for an amenable semigroup of nonexpansive mappings
on a Hilbert space: If S is an amenable semigroup, C is a closed, convex subset
of a Hilbert space H and S = {T t : t ∈ S} is a nonexpansive semigroup on C
such that the set F (S) of common fixed points of S is nonempty, then there exists
a nonexpansive retraction P from C onto F (S) such that PT t = TtP = P for
each t ∈ S and Px ∈ co {Ttx : t ∈ S} for each x ∈ C. Rodé [65] also found a
sequence of means on a semigroup, generalizing the Cesàro means, and extended
Baillon’s theorem as follows: If S, C, H, and S are as above and {µα} is an
asymptotically invariant net of means, then for each x ∈ C, {T µαx} converges
weakly to an element of F (S). Further, for each x ∈ C, the limit point of {T µαx}
is the same for all asymptotically invariant nets {µ α} of means. From their results,
we know that for each x ∈ C, {Tµαx} converges weakly to Px for all asymptotically
invariant nets {µα} of means; see [70]. These results were extended to a uniformly
convex Banach space whose norm is Fréchet differentiable in the case where S is
commutative by Hirano, et al. [16]. However, it has been an open problem whether
Takahashi’s result and Rodé’s result can be fully extended to such a Banach space
for an amenable semigroup; see [71]. On the other hand, Day [7] proved the
following ergodic theorem for an amenable semigroup of bounded linear operators
on a Banach space: If S is an amenable semigroup and S = {T t : t ∈ S} is a
bounded representation of S as bounded linear operators on a Banach spaceE, then
there exists a net {Aα} of finite averages of S such that limα ‖Aα(Tt−I)‖ = 0 and
limα ‖Tt−I)Aα‖ = 0 for each t ∈ S. In this case, there is also a projection P from
E onto F (S) such that PTt = TtP = P for each t ∈ S and Px ∈ co {Ttx : t ∈ S}
for each x ∈ E.
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The following ergodic theorem answered the open problem posed above.

Theorem 5.3. If S is an amenable semigroup S = {T t : t ∈ S} is a nonexpan-
sive semigroup on a closed, convex subset C in a uniformly convex Banach space
E such that for each x ∈ C, {Ttx; t ∈ S} is bounded and F (S) �= ∅, then there
exists a nonexpansive retraction P from C onto F (S) such that PT t = TtP = P
for each t ∈ S and Px ∈ co {Ttx : t ∈ S} for each x ∈ C. In this case, there
exists a net {Aα} of finite averages of S such that for each t ∈ S and for each
bounded subset B of C, limα ‖AαTtx−Aαx‖ = 0 and limα ‖TtAαx−Aαx‖ = 0
uniformly for x ∈ B. Also, if the norm of E is Fr échet differentiable then for each
x ∈ C, Px is the unique common fixed point in Q(x) = ∩ s∈Sco {Ttsx : t ∈ S}.
Furthermore, if {µα} is an asymptotically invariant net of means, then for each
x ∈ C, {Tµαx} converges weakly to Px. If S is countable, then {Aα} can be
chosen to be a sequence.

For the case of compact convex subsets of a strictly convex and smooth Banach
space, we have the following strong convergence theorems for approximation of
common fixed points of Halpern’s types (see [14]):

Theorem 5.4. Let S be a left amenable countable semigroup and S = {T t :
t ∈ S} be a representation of S as nonexpansive mappings from a compact convex
subset C of a strictly convex and smooth Banach space E into C. Then there exists
a {An} of finite averages of S such that for each sequence {α n} in [0, 1] with

properties lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞, the sequence {xn} defined by x1 = x,

and
xn+1 = αnx+ (1 − αn)An(xn)

converges strongly to Px, where P denotes the unique sunny nonexpansive retrac-
tion of C onto F (S).

Notes and remarks
(i) Theorem 5.1 is the consequence of a more general result on ϕ-amenability

in [24, Proposition 5.6]. It was used implicitly in the proof of Theorem 4.4
in [39]. Furthermore if S is a countable left amenable semigroup, then there
is a sequence {µn} which is strongly left regular i.e. ‖�∗sµn − µn‖ → 0 for
each s ∈ S (see [24, Proposition 3.6]). Such a sequence is important for
approximation of fixed points.

(ii) Lemma 5.2 implies that if S = {Tt; t ∈ S} is a representation of a semigroup
S as non-expansive mappings from a weakly compact convex subset C of a
Banach space E into C, then F (Tµ) contains F (S) for any mean µ on a sub-
spaceX of �∞(S) such that 1 ∈ X and the functions f(t) = 〈Ttx, x

∗〉, x ∈ C,

x∗ ∈ E∗. The following theorem was proved in [35].
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Theorem 5.5. Let S be a semigroup with an identity, and S = {T t : t ∈ S}
be a representaiton of S as nonexpansive mappings from a compact convex subset
C of a Banach space E into C. Then for any left invariant mean µ on AP (S),
F (S) = F (Tµ).

The following problem is still open:

Problem. Let S be a left amenable semigroup and let S = {Ts : s ∈ S} be
a representation of S as nonexpansive mappings from a weakly compact convex
subset C of a Banach space into C and C has normal structure. Then F (S) �= 0
(see [52]). Let µ be a left invariant mean on �∞(S). Does F (S) = F (Tµ)?

See also [22] and [23] for related results.

(iii) Theorem 5.3 is contained in the paper [39], and Theorem 5.4 follows also
from Theorem 4.1 of [35] and Theorem 5.1 above. However, the existence
of a (sequential) strongly regular net for a (countable) amenable semigroup
is established only recently in [24, Proposition 3.6]. This partially answers
Problem 8 in [44].

Approximations of common fixed point for semigroup of nonexpansivemappings
have been of significant interest in recent years. Related works can also be found
in [28, 36, 40, 51, 55, 63].
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