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ELON LINDENSTRAUSS

Abstract. We classify measures on the locally homogeneous space
Γ\SL(2, R)×L which are invariant and have positive entropy un-
der the diagonal subgroup of SL(2, R) and recurrent under L. This
classification can be used to show arithmetic quantum unique er-
godicity for compact arithmetic surfaces, and a similar but slightly
weaker result for the finite volume case. Other applications are
also presented.

In the appendix, joint with D. Rudolph, we present a maximal
ergodic theorem, related to a theorem of Hurewicz, which is used
in the proof of the main result.

1. Introduction

We recall that the group L is S-algebraic if it is a finite product of
algebraic groups over R, C, or Qp, where S stands for the set of fields
that appear in this product. An S-algebraic homogeneous spaces is the
quotient of an S-algebraic group by a compact subgroup.

Let L be an S-algebraic group, K a compact subgroup of L, G =
SL(2, R)× L and Γ a discrete subgroup of G (for example, Γ can be a
lattice of G), and consider the quotient X = Γ\G/K.

The diagonal subgroup

A =

{(
et 0
0 e−t

)
: t ∈ R

}
⊂ SL(2, R)

acts on X by right translation. In this paper we wish to study proba-
blilty measures µ on X invariant under this action.

Without further restrictions, one does not expect any meaningful
classification of such measures. For example, one may take L = SL(2, Qp),
K = SL(2, Zp) and Γ the diagonal embedding of SL(2, Z[1

p
]) in G. As

is well-known,

Γ\G/K ∼= SL(2, Z)\ SL(2, R). (1.1)
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Any A-invariant measure µ on Γ\G/K is identified with an A-invariant
measure µ̃ on SL(2, Z)\ SL(2, R). The A-action on SL(2, Z)\ SL(2, R)
is very well understood, and in particular such measures µ̃ are in finite-
to-one correspondence with shift invariant measures on a specific shift
of finite type [Ser85] — and there are plenty of these.

Another illustrative example is if L is SL(2, R) and K = {e}. In
this case we assume that the projection of Γ to each SL(2, R) factor is
injective (for example, Γ an irreducible lattice of G). No nice descrip-
tion of A-invariant measures on X is known in this case, but at least
in the case that Γ is a lattice (the most interesting case) one can still
show there are many such measures (for example, there are A-invariant
measures supported on sets of fractal dimension).

An example of a very meaningful classification of invariant measures
with far-reaching implications in dynamics, number theory and other
subjects is M. Ratner’s seminal work [Rat91, Rat90b, Rat90a] on the
classification of measures on Γ\G invariant under groups H < G gen-
erated by one parameter unipotent subgroups. There it is shown that
any such measure is a linear combination of algebraic measures: i.e. N
invariant measures on a closed N -orbit for some H < N < G. This
theorem was originally proved for G a real Lie group, but has been ex-
tended independently by Ratner and G.A. Margulis and G. Tomanov
also to the S-algebraic context [MT94, Rat95, Rat98].

In order to get a similar classification of invariant measures, one
needs to impose an additional assumption relating µ with the foliation
of X by leaves isomorphic to L/K. The condition we consider is that
of recurrence: that is that for every B ⊂ X with µ(B) > 0, for almost
every x ∈ X with x ∈ B there are elements x′ arbitrarily far (with
respect to the leaf metric) in the L/K leaf of x with x′ ∈ B; for a formal
definition see Definition 2.3. For example, in our second example of
G = SL(2, R)×SL(2, R), K = {e} this recurrence condition is satisfied
if µ in addition to being invariant under A is also invariant under the
diagonal subgroup of the second copy of SL(2, R).

Though it is natural to conjecture that this recurrence condition is
sufficient in order to classify invariant measures, for our proof we will
need one additional assumption, namely that the entropy of µ under
A is positive.

Our main theorem is the following:

Theorem 1.1. Let G = SL(2, R)×L, where L is an S-algebraic group,
H < G be the SL(2, R) factor of G and K a compact subgroup of
L. Take Γ to be a discrete subgroup of G (not necessarily a lattice)
such that Γ ∩ L is finite. Suppose µ is a probability measure on X =
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Γ\G/K, invariant under multiplication from the right by elements of

the diagonal group

(
∗ 0
0 ∗

)
. Assume that

(1) All ergodic components of µ with respect to the A-action have
positive entropy.

(2) µ is L/K-recurrent.

then µ is a linear combination of algebraic measures invariant under H.

We give three applications of this theorem, the first of which is to a
seemingly unrelated question: arithmetic quantum unique ergodicity.
In [RS94], Z. Rudnick and P. Sarnak conjectured the following:

Conjecture 1.2. Let M be a compact Riemannian manifold of neg-
ative sectional curvature. Let φi be a complete orthonormal sequence
of eigenfunctions of the Laplacian on M . Then the probability mea-
sures dµ̃i = |φi(x)|2 dvol tend in the weak star topology to the uniform
measure dvol on M .

A. I. Šnirel′man, Y. Colin de Verdière and S. Zelditch have shown in
great generality (specifically, for any manifold on which the geodesic
flow is ergodic) that if one omits a subsequence of density 0 the remain-
ing µ̃i do indeed converge to dvol [Šni74, CdV85, Zel87]. An important
component of their proof is the microlocal lift of any weak star limit
µ̃ of a subsequence of the µ̃i. The microlocal lift of µ̃ is a measure
µ on the unit tangent bundle SM of M whose projection on M is µ̃,
and most importantly it is always invariant under the geodesic flow on
SM . We shall call any measure µ on SM arising as a microlocal lift
of a weak star limit of µ̃i a quantum limit. Thus a slightly stronger
form of Conjecture 1.2 is the following conjecture, also due to Rudnick
and Sarnak:

Conjecture 1.3 (Quantum Unique Ergodicity Conjecture). For any
compact negatively curved Riemannian manifold M the only quantum
limit is the uniform measure dvolSM on SM .

Consider now a surface of constant curvature M = Γ\H. Then
SM ∼= Γ\PSL(2, R), and under this isomorphism the geodesic flow
on SM is conjugate to the action of the diagonal subgroup A on
Γ\PSL(2, R), and as we have seen in (1.1) for certain Γ < PSL(2, R),
we can view X = Γ\ SL(2, R) as a double quotient Γ̃\G/K with G =
SL(2, R) × SL(2, Qp). We will consider explicitly two kinds of lattices
Γ < SL(2, R) with this property: congruence subgroups of SL(2, Z) and
of lattices derived from Eichler orders in an R-split quaternion algebra
over Q; strictly speaking, the former does not fall in the framework of
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Conjecture 1.3 since Γ is not a uniform lattice. For simplicity, we will
collectively call both types of lattices congruence lattices over Q.

Any quantum limit µ on Γ\ SL(2, R) for Γ a congruence lattices over
Q can thus be identified with an A-invariant measure on Γ̃\G/K, so in
order to deduce that µ is the natural volume on Γ\ SL(2, R) one needs
only to verify µ satisfies both conditions of Theorem 1.1.

Closely related to (1.1), which for general lattices over Q holds for all
primes outside a finite exceptional set, are the Hecke operators which
are self adjoint operators on L2(M) which commute with each other and
with the Laplacian on M . We now restricted ourselves to arithmetic
quantum limits: quantum limits on Γ\ SL(2, R) for Γ a congruence
lattices over Q that arise from a sequence of joint eigenfunctions of the
Laplacian and all Hecke operators. It is expected that except for some
harmless obvious multiplicities the spectrum of the Laplacian on M is
simple, so presumably this is a rather mild assumption.

Jointly with J. Bourgain [BL03, BL04], we have shown that arith-
metic quantum limits have positive entropy: indeed, that all A-ergodic
components of such measures have entropy ≥ 2/9 (according to this
normalization, the entropy of the volume measure is 2). Unlike the
proof of Theorem 1.1 this proof is effective and gives explicit (in the
compact case uniform) upper bounds on the measure of small tubes.
The argument is based on a simple idea from [RS94], which was further
refined in [Lin01a]; also worth mentioning in this context is a paper by
Wolpert [Wol01]. That arithmetic quantum limits are SL(2, Qp)/ SL(2, Zp)-
recurrent is easier and follows directly from the argument in [Lin01a];
we provide a self-contained treatment of this in §8.

This establishes the following theorem:

Theorem 1.4. Let M = Γ\H with Γ a congruence lattice over Q. Then
for compact M the only arithmetic quantum limit is the (normalized)
volume dvolSM . For M not compact any arithmetic quantum limit is
of the form c dvolSM with 0 ≤ c ≤ 1.

We remark that T. Watson [Wat01] proved this assuming the Gener-
alized Riemann Hypothesis (GRH). Indeed, by assuming GRH Watson
gets an optimal rate of convergence, and can show that even in the
noncompact case any arithmetic quantum limit is the normalized vol-
ume (or in other words, that no mass escapes to infinity). We note
that the techniques of [BL03] are not limited only to quantum limits; a
sample of what can be proved using these techniques and Theorem 1.1
is the following theorem (for which we do not provide details, which
will appear in [Lin04]) where no assumptions on entropy are needed
(for the number theoretical background, see [Wei67]):



INVARIANT MEASURES AND ARITHMETIC QUE 5

Theorem 1.5. Let A denote the ring of Adeles over Q. Let A(A) de-
note the diagonal subgroup of SL(2, A), and let µ be a A(A)-invariant
probability measure on X = SL(2, Q)\ SL(2, A). Then µ is the SL(2, A)-
invariant measure on X.

Theorem 1.1 also implies the following theorem1:

Theorem 1.6. Let G = SL(2, R) × SL(2, R), and H ⊂ G as above.
Take Γ to be a discrete subgroup of G such that the kernel of its pro-
jection to each SL(2, R) factor is finite (note that this is slightly more
restrictive than in Theorem 1.1). Suppose µ is a probability measure
on Γ\G which is invariant and ergodic under the two parameter group

B =

((
∗ 0
0 ∗

)
,

(
∗ 0
0 ∗

))
. Then either

(1) µ is an algebraic measure, or
(2) the entropy of µ with respect to every one parameter subgroup

of B is zero.

This strengthens a previous, more general, result by A. Katok and
R. Spatzier [KS96], which is of the same general form. However, Ka-
tok and Spatzier need an additional ergodicity assumption which is
somewhat technical to state but is satisfied if, for example, every one
parameter subgroup of B acts ergodically on µ. While this ergodicity
assumption is quite natural, it is very hard to establish this assump-
tion in most important applications. In a recent breakthrough, M.
Einsiedler and A. Katok [EK03] have been able to prove without any
ergodicity assumptions a similar specification of measures invariant un-
der the full Cartan group on Γ\G for G a R-split connected Lie group
of rank ≥ 2. It should be noted that their proof does not work in a
product situation as in Theorem 1.6; furthermore, Einsiedler and Ka-
tok need to assume that all one parameter subgroups of the Cartan
group act with positive entropy. In §6 of this paper we reproduce a key
idea from [EK03] which is essential for proving Theorem 1.1 (if one is
only interested in Theorem 1.6 this idea is not needed).

The proof of both theorems uses heavily ideas introduced by M. Rat-
ner in her study of horocycle flows and in her proof of Raghunathan’s

1Indeed, let A be as above and A′ be the group of diagonal matrices in the
second SL(2, R) factor, so B = AA′. By a result of H. Hu [Hu93], if there is some
one parameter subgroup of B with respect to which µ has positive entropy, µ has
positive entropy with respect to either A or A′ (note that in this case for any one
parameter subgroup of B all ergodic components have the same entropy). Without
loss of generality, µ (and hence all its ergodic components) have positive entropy
with respect to A; invariance under A′ is a used to verify the recurrence condition
in Theorem 1.1.
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conjectures, particularly [Rat82, Rat83]; see also [Mor03], particularly
§1.4. Previous works on this subject have applied Ratner’s work to
classify invariant measures after some invariance under unipotent sub-
groups has been established; we use Ratner’s ideas to establish this
invariance in the first place. In order to apply Ratner’s ideas one needs
a generalized maximal inequality along the action of the horocyclic
group which does not preserve the measure; a similar inequlity was
discovered by W. Hurewicz a long time ago, but we present what we
need (and a bit more) in the appendix, joint with D. Rudolph. We men-
tion that a somewhat similar approach was used by Rudolph [Rud82]
for a completely different problem (namely, establishing Bernoullicity
of Patterson-Sullivan measures on certain infinite volume quotients of
SL(2, R)).

Both Theorem 1.1 and Theorem 1.6 have been motivated by results
of several authors regarding invariant measures on R/Z. We give below
only a brief discussion; for more details see [Lin03].

It has been conjectured by Furstenberg that the only non-atomic
probability measure µ on R/Z invariant under the multiplicative semi-
group {anbm} with a, b ∈ N \ {1} multiplicative independent (i.e.
log a/ log b 6∈ Q) is the Lebesgue measure. D. Rudolph [Rud90b] and
A. Johnson [Joh92] have shown that any such µ which has positive
entropy with respect to one element of the acting semigroup is indeed
the Lebesgue measure on R/Z (a special case of this has been proven
earlier by R. Lyons [Lyo88]). It is explicitly pointed out in [Rud90b]
that the proof simplifies considerably if one adds an ergodicity assump-
tion. This theorem is in clear analogy with Theorem 1.6, though we
note that in that case if one element of the acting semigroup has pos-
itive entropy it is quite easy to show that all elements of the acting
semigroup have positive entropy.

B. Host [Hos95] has given an alternative proof of Rudolph’s theorem.
The basic ingredient of his proof is the following theorem: if µ is a
invariant and is recurrent under the action of the additive group Z[1

b
]/Z

for a, b relatively prime then µ is Lebesgue measure (a similar theorem
for the multidimensional case is given in [Hos00]).

Jointly with K. Schmidt [LS03] we have proved that if a ∈ Mn(Z) is a
non hyperbolic toral automorphism whose action on the n-dimensional
torus is totally irreducible then any a-invariant measure which is recur-
rent with respect to the central foliation for the a action on the torus
is Lebesgue measure. Like Host’s results, this is a fairly good (but not
perfect) analog to Theorem 1.1.
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The scope of the methods developed in this paper is substantially
wider than what I discuss here. In particular, in a forthcoming pa-
per with M. Einsiedler and A. Katok [EKL03] we show how using
the methods developed in this paper in conjunction with the meth-
ods of [EK03] one can substantially sharpen the results of the latter
paper. These stronger results imply in particular that the set of ex-
ceptions to Littlewood’s conjecture, i.e. those (α, β) ∈ R2 for which
limn→∞ n ‖nα‖ ‖nβ‖ > 0, has Hausdorff dimension 0.
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2. (G, T )-spaces

Let X be a locally compact separable metric space. We will denote
the metric on all relevant metric spaces by d(·, ·); where this may cause
confusion, we will give the metric space as a subscript, e.g. dX(·, ·) etc.
Similarly, Br(p) denotes the open ball of radius r in the metric space
p belongs to; where needed, the space we work in will be given as a
superscript, e.g. BX

r (x). We will assume implicitly that for any x ∈ X
(as well as any other locally compact metric space we will consider)
and r > 0 the ball BX

r (x) is relatively compact.
We define the notion of a (G, T )-foliated space, or a (G, T )-space for

short, for a locally compact separable metric space T with a distin-
guished point e ∈ T and a locally compact second countable group G
which acts transitively and continuously on T (i.e. the orbit of e under
G is T ). This generalizes the notion of a G-space for (locally compact,
metric) group G, i.e. a space with a continuous G action (see Example
2.2), as well as the notion of a (G, T )-manifold ([Thu97], §3.3).

Definition 2.1. A locally compact separable metric space X is said
to be a (G, T )-space if there is some open cover T of X by relatively
compact sets, and for every U ∈ T a continuous map tU : U × T → X
with the following properties:

(A-1) For every x ∈ U ∈ T, we have that tU(x, e) = x.
(A-2) For any x ∈ U ∈ T, for any y ∈ tU(x, T ) and V ∈ T containing

y, there is a θ ∈ G so that

tV (y, ·) ◦ θ = tU(x, ·). (2.1)

In particular, For any x ∈ U ∈ T, and any y ∈ tU(x, T ), V ∈
T(y) we have that tU(x, T ) = tV (y, T ).

(A-3) There is some rU > 0 so that for any x ∈ U the map tU(x, ·) is

injective on BT
rU

(e).

X is T -space if it is a (Isom(T ), T )-space, where Isom(T ) is the isometry
group of T .

Note that if X is a (G, T )-space, and if the action of G on T extends
to H > G then X is automatically also a (H, T )-space. The most
interesting case is when G acts on T by isometries. If the stabilizer in
G of the point e ∈ T is compact then it is always possible to find a
metric on T so that G acts by isometries.

Example 2.2. Suppose that G is a locally compact metric group,
acting continuously (say from the right) on a locally compact metric
space X. Suppose that this action is locally free, i.e. there is some
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open neighborhood of the identity BG
r (e) ⊂ G so that for every x ∈ X

g 7→ xg

is injective on BG
r (e). Then X is a (G, G)-space with tU(x, g) = xg

for every U ∈ T (if X is compact, we may take T = {X} though in
general a more refined open cover may be needed). We can identify G
(more precisely, the action of G on itself from the left) as a subgroup of
Isom(G) if we take dG to be left invariant (i.e. dG(h1, h2) = dG(gh1, gh2)
for any g, h1, h2 ∈ G).

When G is a group we shall reserve the term G-space to denote this
special case of the more general notion introduced in Definition 2.1.

For x ∈ X we set

T(x) = {U ∈ T : x ∈ U} .

Notice that by property A-2, y ∈ tU(x, T ) (which does not depend on
U as long as U ∈ T(x)) is an equivalence relation which we will denote

by x
T∼ y. For any x we will call its equivalence class under

T∼ the
T -orbit or T -leaf of x. This partition into equivalence classes gives us
a foliation of X into leaves which are locally isometric to T . We say
that a T -leaf is an embedded leaf if for any x in this leaf and U ∈ T(x)
the map tU(x, ·) is injective (note that if this is true for one choice of
x in the leaf and U ∈ T(x), it will also hold for any other choice).

Definition 2.3. We say that a Radon measure µ on a (G, T )-space X
is recurrent if for every measurable B ⊂ X with µ(B) > 0, for almost
every x ∈ B it holds that for every compact K ⊂ T and U ∈ T(x)
there is a t ∈ T \K so that tU(x, t) ∈ B.

Example 2.4. Suppose that G acts freely and continuously on X pre-
serving a measure µ. Then by Poincare recurrence, µ is G-recurrent if,
and only if, G is not compact.

In the context of nonsingular Z or R-actions (i.e. actions of these
groups which preserves the measure class), what we have called the
recurrent measures are known as conservative and play an important
role; for example, see §1.1 in [Aar97]. This definition seems to be just
what is needed in order to have nontrivial dynamics. For probability
measures, there is an alternative interpretation of this condition in
terms of conditional measures which we present later.
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3. restricted measures on leaves

Throughout this section, X is a (G, T )-space as in Definition 2.1 with
G ⊂ Isom(T ). For simplicity, we make the further assumption

The T -leaf of µ-almost every x ∈ X is embedded. (3.1)

Since X is second countable, it is also clearly permissible to assume
without loss of generality that T is countable. Let M∞(T ) denote
the space of all Radon (in particular, locally finite) measures on T ,
equipped with the smallest topology so that the map ν 7→

∫
fdν is

continuous for every continuous compactly supported f ∈ Cc(T ). Note
that since T is a locally compact separable metric space, M∞(T ) is
separable and metrizable (though in general not locally compact).

The purpose of this section is to show how the measure µ on X
induces a locally finite measure on almost every T -orbit which is well
defined up to a normalizing constant. More formally, if U ∈ T(x)
we define a measurable map x 7→ µU

x,T ∈ M∞(T ) with the properties

described below in Theorem 3.6; in particular, x 7→ µU
x,T satisfies that

there is a set of full measure so that for any two points x, y which are in
this set and on the same T leaf, and if θ ∈ G is the isometry determined
by (2.1) it holds that

θ∗µ
U
x,T ∝ µV

y,T , ∀U ∈ T(x), V ∈ T(y),

i.e. the left-hand side is equal to a nonzero positive scalar times the
right hand side. Note that even if µ is a probability measure, in general
µU

x,T will not be finite measures.

Sometimes, we will omit the upper index and write µx,T = µU
x,T .

Usually this will not cause any real confusion since tU(x, ·)∗µU
x,T does

not depend on U . It is, however, somewhat more comfortable to think
of µx,T as a measure on T since tU(x, ·)∗µU

x,T is in general not a Radon
measure.

Let S be the collection of Borel subsets of X. We recall that a sigma
ring is a collection of sets A which is closed under countable unions
and under set differences (i.e., if A, B ∈ A then so is A \ B). Unless
specified otherwise, all sigma rings we consider will be a countably
generated sigma rings of Borel sets, and in particular have a maximal
element.

Definition 3.1. Let A ⊂ S be a countably generated sigma ring, and
let C ⊂ A be a countable ring of sets which generates A. The atom
[x]A of a point x ∈ X in A is defined as

[x]A =
⋂

C∈C:x∈C

C =
⋂

A∈A:x∈A

A.
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two countably generated sigma rings A,B ⊂ S with the same maximal
element are equivalent (in symbols: A ∼ B) if, for every x ∈ X, the
atoms [x]A and [x]B are countable unions of atoms [y]A∨B of the sigma
ring A ∨ B generated by A and B.

Let A ⊂ S be a countably generated sigma ring, µ a Radon measure,
and assume that the µ-measure of the maximal element of A is finite.
Then we can consider the decomposition of µ with respect to the sigma
ring A, i.e. a set of probability measures {µAx : x ∈ X} on X with the
following properties.

(1) For all x, x′ ∈ X with [x]A = [x′]A,

µAx = µAx′ and µAx ([x]A) = 1, (3.2)

(2) For every B ∈ S, the map x 7→ µAx (B) is A-measurable,
(3) For every A ∈ A and B ∈ S,

µ(A ∩B) =

∫
A

µAx (B) dµ(x). (3.3)

We recall that if A ∼ B then there is a Borel set of full measure on
which

µAx |[x]A∨B

µAx ([x]A∨B)
=

µBx |[x]A∨B

µBx ([x]A∨B)
. (3.4)

If A is a sigma ring with maximal element U , and D ⊂ U we define
A|D = {A ∩D : A ∈ A}. Note that for any x ∈ D, [x]A|D = [x]A ∩D.
Similarly to (3.4), one has that on a Borel subset of D of full measure

µA|Dx =
µAx |[x]A∩D

µAx ([x]A ∩D)
. (3.5)

Let BT
r = BT

r (e) denote the ball of radius r around the distinguished
point e ∈ T . Note that if x ∈ U ∈ T, then tU(x, BT

r ) does not depend
on U ; slightly abusing notations we define for x ∈ X

BT
r (x) = tU(x, BT

r ) U ∈ T(x);

we set BT
r (x) = tU(x, BT

r ). In this notation, the T -leaf of x is BT
∞(x).

Lemma 3.2. Let x ∈ X and r > 0 be arbitrary. Fix V ∈ T(x) and

assume tV (x, ·) is injective on BT
20r. Then there is an ε > 0 so that the

set U = tV (Bε(x), BT
r ) satisfies

(1) any y, z ∈ U with y ∈ BT
10r(z) actually satisfy y ∈ BT

4r(z).
(2) U is a relatively compact (i.e. U is compact) open subset of X.
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Proof. By our assumptions on x and r, we know that x 6∈ tV (x, BT
20r \

BT
r (x)). By continuity of tV , and local compactness of T , we have that

there is a ε > 0 so that for every x′ ∈ Bε(x)

BT
20r(x

′) ∩Bε(x) ⊂ BT
2r(x

′). (3.6)

In order to see that 1. holds, suppose y1, y2 ∈ U with y1 ∈ BT
10r(y2).

Then there are x1, x2 ∈ Bε(x) so that yi ∈ BT
r (xi) for i = 1, 2. By the

triangle inequality, x1 ∈ BT
12r(x2), and so by (3.6) x1 ∈ BT

2r(x2). This
implies that indeed y1 ∈ BT

4r(y2).

Since clearly U ⊂ tV (Bε(x), BT
r ), and the later is compact since it is

the image by a continuous map of a compact set, the only thing which
still needs explanation at this point is why U is open.

Suppose z = tV (y, q) with y ∈ Bε(x) and q ∈ BT
r . Take V ′ ∈ T(z).

By Definition 2.1 there is some q′ ∈ BT
r with y = tV ′(z, q′). If z′ is very

close to z, we have that y′ = tV ′(z′, q′) is very close to y – close enough
that y′ ∈ Bε(x) and then z′ ∈ BT

r (y′) ⊂ U . �

Definition 3.3. A set A ⊂ X is an open T -plaque if for any x ∈ A:
(i) A ⊂ BT

r (x) for some r > 0 (ii) tV (x, ·)−1A is open in T for some
(equivalently for any) V ∈ T(x).

Definition 3.4. A pair (A, U) with A ⊂ S a countably generated
sigma ring and U ⊂ X its maximal element is called a r, T -flower
with center B ⊂ X if

(♣-1) B ⊂ U and U is relatively compact.
(♣-2) for every y ∈ U

[y]A = U ∩BT
4r(y).

(in particular, the atom [y]A is an open T -plaque)
(♣-3) if y ∈ B then [y]A ⊃ BT

r (y).

Corollary 3.5. Under the assumptions of Lemma 3.2, and with U 3 x
as in that lemma, there is a countably generated sigma ring A so that
(A, U) is a r, T -flower with center Bε(x).

Proof. Let U be the collection of all open subsets A of U so that if
y ∈ A then BT

4r(y) ∩ U ⊂ A.
We first show:

(∗) for every y, y′ ∈ U with y 6∈ BT
4r(y

′) one can find disjoint open
subsets A 3 y, A′ 3 y′ with A, A′ ∈ U .

By Lemma 3.2,

BT
4r(y) ∩BT

4r(y
′) = ∅;
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since both sets are compact, there is an ε′ > 0 so that for all z ∈
B(y, ε′), z′ ∈ B(y′, ε′)

BT
4r(z) ∩BT

4r(z
′) = ∅.

Suppose y ∈ V ∈ T, and that B(y, ε′) ⊂ V , and similarly for y′ (and a
corresponding V ′ ∈ T). Clearly,

A = tV (B(y, ε′), BT
4r)

A′ = tV ′(B(y′, ε′), BT
4r)

have the desired properties.
Consider the sigma ring A generated by the collection U . Clearly,

(A, U) satisfies ♣-1.
Define a relation y ^ y′ on U × U if y ∈ BT

4r(y
′). This is clearly an

equivalence relation. It is in fact a closed equivalence relation, since if

yi ^ y′i and yi → y, y′i → y′ with y, y′ ∈ U then y ∈ BT
4r(y

′), and in
view of definition of U this implies y ∈ BT

4r(y
′). By (∗) the quotient

space U/ ^ is Hausdorff; since U is sigma compact so is U/ ^. By
definition, the open sets on U/ ^ are precisely the images of sets in
U , and A can be identified with the Borel algebra on U/ ^, and so in
particular is countably generated.

Furthermore, for any y ∈ U , if y ∈ A ∈ U then by definition BT
4r(y) ⊂

A; if y 6∈ A ∈ U then BT
4r(y) ∩ A = ∅, so

[y]A =
⋂

A∈U : y∈A

A ∩
⋂

A∈U : y 6∈A

A{ ⊃ BT
4r(y) ∩ U. (3.7)

On other hand, by (∗), for every y′ ∈ U \BT
4r(y) there is a A ∈ U with

y′ 6∈ A 3 y, so in fact equality holds in (3.7), establishing ♣-2.
Since by Lemma 3.2 for any y ∈ B we have that BT

r (y) ⊂ U , ♣-2
implies ♣-3.

�

The following theorem is the main result of this section:

Theorem 3.6. Let X be a (G, T )-space, and µ a Radon measure on
X so that µ-a.e. point has an embedded T -leaf. Then there are Borel
measurable maps µV

x,T : V 7→ M∞(T ) for V ∈ T which are uniquely
determined (up to µ-measure 0) by the following two conditions:

(1) For almost every x ∈ V , we have that µV
x,T (BT

1 ) = 1.
(2) For any countably generated sigma ring A ⊂ S with maximal

element E, if for every x ∈ E the atom [x]A is an open T -plaque,
then for µ-almost every x ∈ E, for all V ∈ T containing x,

tV (x, ·)−1
∗µ

A
x ∝ µV

x,T |tV (x,·)−1[x]A .
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In addition, µV
x,T satisfies the following:

(3) There is a set X0 ⊂ X of full µ-measure so that for every

x, y ∈ X0 with x
T∼ y, for any U, V ∈ T with x ∈ U, y ∈ V and

for any isometry θ satisfying

tV (y, ·) ◦ θ = tU(x, ·) (3.8)

as in Definition 2.1 we have that

θ∗µ
U
x,T ∝ µV

y,T .

Proof. Define

X ′ = {x : tV (x, ·)is injective for some (hence all)V ∈ T(x)} .

By our assumption (3.1), µ(X \X ′) = 0.
Since X is second countable, for any V ∈ T and k we can cover X ′∩V

by countably many balls BV
i,k ⊂ V which are centers of 10k, T -flowers

(AV
i,k, U

V
i,k). Note that these flowers can be chosen independently of µ.

Now take PV
k =

{
P V

i,k

}
to be a partition of V ∩X ′ into Borel sets with

each P V
i,k ⊂ BV

i,k. Using this partition, we can define an approximation

µV,k,∗
x,T : V ∩ X ′ → M∞(T ) to the system of conditional measures on

the T -leaves µV
x,T as follows:

µV,k,∗
x,T = tV (x, ·)−1

∗(µ
Ai,k
x )|BT

10k
if x ∈ P V

i,k.

It would be convenient to normalize in a consistent way the µV,k,∗
x,T

for different k. For this we need the following easy lemma:

Lemma 3.7. For every V ∈ T and i, k, for µ-almost every x ∈ UV
i,k

and for all ρ > 0

µ
AV

i,k
x (BT

ρ (x)) > 0. (3.9)

Proof. Set

Y =

{
x ∈ UV

i,k : ∃ρ > 0 µ
AV

i,k
x (BT

ρ (x)) = 0

}
.

By (3.3) and (3.2), we have that

µ(Y ) =

∫
UV

i,k

µ
AV

i,k
x (Y ∩ [x]AV

i,k
)dµ(x). (3.10)

Let x ∈ UV
i,k ∩X ′ and V ′ ∈ T(x). Set

Ỹ = tV ′(x, ·)−1
(
Y ∩ [x]AV

i,k

)
.
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Let ỹ ∈ Ỹ , and set y = tV (x, ỹ) (so in particular, y ∈ [x]AV
i,k
∩ Y ). By

definition of Y , for every such y there is a ρy so that

0 = µ
AV

i,k
y (BT

ρy
(y)) = µ

AV
i,k

x (tV ′(x, BT
ρy

(ỹ))).

Since T is second countable, a countable number of such open neigh-
borhoods BT

ρy
(ỹ) suffice to cover Ỹ , so

µ
AV

i,k
x (tV ′(x′, Ỹ )) = µ

AV
i,k

x̃ (Y ) = 0.

Integrating, (3.10) implies that µ(Y ) = 0. �

We now proceed with the proof of Theorem 3.6. Suppose (A(i), U (i))
for i = 1, 2 are ri, T -flowers with centers B(i) respectively, with 1 < r =
r1 ≤ r2 from the countable collection of flowers{

(AV
i,k, U

V
i,k) : V ∈ T, i, k ∈ N

}
. (3.11)

Set U (1,2) = U (1) ∩ U (2) and A(1,2) = A(1)|U(1,2) ∨ A(2)|U(1,2) .
By (3.4) and (3.5) for µ almost every x ∈ U (1,2)

µA
(1)

x |[x]A(1,2)
∝ µA

(2)

x |[x]A(1,2)
(3.12)

so for almost every x ∈ B(1) ∩B(2)

µA
(1)

x |BT
r (x)

µA(1)

x (BT
r (x))

=
µA

(2)

x |BT
r (x)

µA(1)

x (BT
r (x))

. (3.13)

Define X0 to be the set of x ∈ X ′ where

(1) Equation (3.9) holds for all flowers (AV
i,k, U

V
i,k) with x ∈ UV

i,k.
(2) For any two flowers as in (1), (3.12) holds.

Define for any x ∈ X0 and k ≥ 1

µV,k
x,T =

µV,k,∗
x,T

µV,k,∗
x,T (BT

1 )
;

by (3.13) we see that for every k < k′ and x ∈ X0

µV,k
x,T = µV,k′

x,T |BT
10k

Define

µV
x,T =

{
limk→∞ µV,k

x,T for x ∈ V ∩X0

0 otherwise.

It is clear that Theorem 3.6.(1) holds; we verify (2) and (3).
Suppose A ⊂ S is a countably generated sigma ring with maximal

element E, and that for every x ∈ E, [x]A is an open T -plaque. Without
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loss of generality we may assume that there is some k0 so that for every
x,

[x]A ⊂ BT
10k0 (x), (3.14)

since otherwise we may replace E by Ẽ = {x ∈ E : (3.14)holds } for k0

sufficiently large, and A by A|Ẽ. Note that by (3.14), for any i, V ,

[x]A ⊂ [x]AV
i,k0

for every x ∈ BV
i,k0

∩ E.

To show (2), it is sufficient to note that by (3.4) and (3.5), for every
i, V , for almost every x ∈ E ∩BV

i,k0

µAx ∝ µ
AV

i,k0
x |[x]A (3.15)

since by definition for almost every x ∈ V there is some i for which

µ
AV

i,k0
x |BT

10k0
∝ [tV (x, ·)]∗(µV

x,T )|BT

10k0
.

We are left with showing (3). Suppose that x, y ∈ X0 with x
T∼ y,

and let U, V, θ be as in (3.8). Let r > 0 be arbitrary, and fix r0 satisfying
x ∈ BT

r0
(y). Choose k such that 10k > r0 + r, and define i, j by

x ∈ PU
i,k y ∈ P V

j,k.

We wish to show that

(θ∗µ
U
x,T )|BT

r
∝ µV

y,T |BT
r
. (3.16)

Set A(1) = AU
i,k,A(2) = AV

j,k, and let A(1,2) be a mutual refinement as

above. By Definition, the right hand side is equal to ([tV (y, ·)−1]∗(µ
A(2)

y ))|BT
r
.

For the left-hand side,

(θ∗µ
U
x,T )|BT

r
=
(
[θ ◦ tU(x, ·)−1]∗(µ

A(1)

x )
)
|BT

r

= [tV (y, ·)−1]∗
(
µU

x,T |BT
r (y)

)
.

Since k was chosen sufficiently large so that [x]A(1,2) = [y]A(1,2) , by (3.12)

µU
x,T |BT

r (y) ∝ µV
x,T |BT

r (y)

and (3.16) is established. �

We note the following easy consequence of the construction of the
conditional measures; we leave the proof to the reader

Proposition 3.8. Let A ⊂ X be a measurable set with µ(A) > 0.
Then for µ-almost every x ∈ A and U ∈ T(x),

(µ|A)U
x,T ∝ µU

x,T |tU (x,·)−1A.
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4. recurrent measures and conditional measures on
T -leaves

Throughout this section, X is a T -space as in Definition 2.1. In
Definition 2.3 we have defined the notion of a T -recurrent measure.
Here

we give an alternative criterion when µ is a probability measure. As
in the previous section, we assume for simplicity that µ-almost every
T -leaf is embedded. For the case of a Z-action which preserves the
measure class of µ this is the Halmos Recurrence Theorem (see §1.1 in
[Aar97]).

Proposition 4.1. A probability measure µ is T -recurrent if, and only
if, for µ-almost every x and U ∈ T(x) we have that

µU
x,T (T ) = ∞. (4.1)

Remark: Consider the following very simple example of a T -structure
where X = T = G, a noncompact locally compact metric group, with
the T -structure corresponding to the action of G on itself by multipli-
cation from the right, and µ the Haar measure on G. This measure is
clearly not recurrent. However for a.e. x we have that µU

x,T is simply a
Haar measure on G, in particular infinite.

Proof that (4.1) holds a.s =⇒ µ is recurrent. Assume the contrary holds.
Then there is a r0 and a set B1 with positive measure so that

B1 ∩ tU(x, T \BT
r0

) = ∅, ∀x ∈ B1, x ∈ U ∈ T. (4.2)

To simplify the analysis, we assume without loss of generality that
there is some U ∈ T with B1 ⊂ U .

By (4.1), there is a r1 > r0 and a subset U1 ⊂ U with measure
µ(U1) > µ(U)− µ(B1)/2 so that for any x ∈ U1

µU
x,T (BT

r1
) > 100µ(B1)

−1µU
x,T (BT

r0
). (4.3)

We now take B to be B1 ∩ U1; clearly µ(B) > µ(B1)/2.
We will need the following:

Lemma 4.2. There is r1, T -flower (A, E) with base B′ ⊂ B satisfying
µ(B′) > µ(B)/2.

Proof. By replacing B with a compact subset of measure only slightly
less than µ(B) we may assume without loss of generality that B is
compact. By our standing assumption (3.1), we can also assume that

tU(x, ·) is injective on BT
20r for every x ∈ B. We now take E to be the

sigma compact set
E = tU(B, BT

r1
(y)).
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Observe that for any y1, y2 ∈ E, if

y1 ∈ BT
∞(y2) (4.4)

then in fact y1 ∈ BT
3r1

(y2). Indeed, since yi ∈ E there are zi ∈ B so

that yi ∈ BT
r1

(zi) (again for i = 1, 2). By (4.2), either

z1 ∈ BT
r0

(z2), or (4.5)

BT
∞(z1) ∩BT

∞(z2) = ∅. (4.6)

equation (4.4) is not consistent with (4.6), so (4.5) holds, hence by the
triangle inequality y1 ∈ T2r1+r0(y2).

In the same way that Corollary 3.5 was deduced from Lemma 3.2,
Lemma 4.2 can be deduced from the above observation: in particular,
we define A as the sigma ring generated by the relatively open subsets
A of E with the property that if y ∈ A then BT

3r1
(y) ⊂ A. �

We now return to the proof of Proposition 4.1. Decompose the mea-
sure µ|E according to the sigma ringA constructed in the above lemma.
By Theorem 3.6, for almost every x ∈ E, and in particular for almost
every x ∈ B

µAx = cx,AtU(x, ·)∗
(
µU

x,T |tU (x,·)−1([x]A)

)
. (4.7)

By (4.2) and (4.3), and by ♣-3 applied to the flower (A, E), for any x
satisfying (4.7),

µAx (B′) ≤ µAx (BT
r0

(x))

<
µ(B1)

100
µAx (BT

r1
)

≤ µ(B1)µ
A
x (E)

100
.

(4.8)

For almost every y ∈ E with µAy (B′) > 0, (4.8) holds for at least one
x ∈ [y]A ∩B′, and so

µ(B′) =

∫
E

µAy (B′)dµ(y)

≤ µ(B1)

100

∫
E

µAy (E)dµ(y)

=
µ(B1)µ(E)

100
≤ µ(B1)

100
.

Since µ(B′) ≥ µ(B)/2 ≥ µ(B1)/4 we have a contradiction. �
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Proof that µ is recurrent =⇒ (4.1) holds a.s. Assume (4.1) does not hold
on a set of positive µ measure. Then there is a set B of positive measure
and r0 > 0 so that for every x ∈ B

µU
x,T (T ) < ∞ and µU

x,T (BT
r0

) > 0.9µU
x,T (T ) (4.9)

(as usual, the above expression is independent of U as long as x ∈ U ∈
T). Without loss of generality, we can take this set B to be a subset of
X0, with X0 as in Theorem 3.6 item (3).

Suppose now that x ∈ B and y = tU(x, t) ∈ B with t ∈ T , x ∈
U ∈ T and y ∈ V ∈ T. Then as in Theorem 3.6,

(θU,V (x, y))∗µ
U
x,T = cx,yµ

V
y,T ,

hence

µV
y,T (BT

r0
)

µV
y,T (T )

=
µU

x,T (BT
r0

(t))

µU
x,T (T )

and so by (4.9) we have that

BT
r0
∩BT

r0
(t) 6= ∅

and t ∈ BT
2r0

. In other words, for any x ∈ B we have that tU(x, T )∩B ⊂
BT

2r0
(x) and we are done. �

Proposition 4.3. Let G be a locally compact metric group, and X a
G-space as in Example 2.2. Let µ be a probability measure on X, and
as usual we assume that the G orbit of almost every x is embedded,
i.e. the action is free on a co-null set. Then µ is G-invariant if, and
only if, for µ-almost every x the conditional measure µx,G is a right
invariant Haar measure on G.

(Note that since in the case of G-spaces arising from a G-action the
maps tU are independant of U ∈ T, we can omit the elements of the
atlas we are using in all notations.)

Proof. Proof that if µx,G is Haar measure almost surely then µ
is G-invariant.

Let HG denote a right invariant Haar measure on G. We will show
that for almost every x ∈ X and r > 0 there is an ε > 0 so that if
f ∈ L∞(µ) with supp f ⊂ Bε(x) then∫

f(y)dµ(y) =

∫
f(yg)dµ(y) ∀g ∈ BG

r . (4.10)

Indeed, take x to be a point for which g 7→ xg ≡ t(x, g) is injective
on BG

20r, and (A, U) a r, G-flower with center Bε(x) (see Corollary 3.5).
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Suppose supp f ⊂ Bε(x). Then∫
f(y)dµ(y) =

∫
U

∫
f(y′)dµAy (y′)dµ(y).

By Theorem 3.6.(3), and our assumption on µy,G, for almost every y

µAy ∝ [t(y, ·)]∗HG|[y]A ;

since supp f ⊂ Bε(x) we know by Corollary 3.5 that for any y′ ∈ [y]A
for which f(y′) 6= 0, y′g ∈ [y]A for g ∈ BG

r . Hence for all y ∈ U∫
f(y′)dµAy =

∫
f(y′g)dµAy .

Integrating, we get (4.10) for f satisfying supp f ⊂ Bε(x).
In order to obtain (4.10) for general bounded compactly supported

measurable functions we proceed as follows: let f be such a function,
and set f̃(y) = f(yg). Let δ > 0 be arbitrary. Find a compact set
K ⊂ X so that

‖f − f · 1K‖1,µ ,
∥∥∥f̃ − f̃ · 1Kg−1

∥∥∥
1,µ

< δ

we may further assume that the G-orbit of every x ∈ K is an embedded
orbit. Then we can write f · 1K = f1 + · · · + fk with each fi as in the
previous paragraph, and then (4.10) implies the same for f · 1K , and∣∣∣∣∫ fdµ−

∫
f̃dµ

∣∣∣∣ ≤ ∣∣∣∣∫ f · 1Kdµ−
∫

f̃ · 1Kg−1dµ

∣∣∣∣+
+ ‖f − f · 1K‖1,µ +

∥∥∥f̃ − f̃ · 1Kg−1

∥∥∥
1,µ
≤ 2δ

and we are done.
For the converse direction we need the following easy fact:

Lemma 4.4. Let ν be a Radon measure on a locally compact second
countable group G. Let V ⊂ G be an open neighborhood of the identity
e ∈ G, and M a countable dense subset of G. Assume that for every
open A ⊂ V and for every g ∈ M we have that

ν(A) = ν(Ag).

Then ν|V ∝ HG|V , with HG a right invariant Haar measure on G.

This follows, for example, quite readily from the construction of Haar
measure (§58, Theorem B of [Hal50]); alternatively, it is also an easy
consequence of the existence and uniqueness of Haar measure. We omit
the details. Note that if V = BG

r then since we have chosen dG to be
left invariant we see that V −1 = V and V −1V ⊂ BG

2r.
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Proof that if µ is G-invariant then µx,G is Haar measure
almost surely.

As in the converse direction, it is enough to show that for every
3r, G-flower for µ-almost every every y in the center B of this flower

µy,G|BG
r/2
∝ HG|BG

r/2
.

Suppose A1, A2, . . . is a countable base for the topology of Ũ =
t(B, BG

r ). By the definition of a 3r, G-flower, for every i and g ∈ BG
2r

we have that Aig ⊂ U and so by G-invariance of µ∫
U

µAy (Ai)dµ(y) = µ(Ai) = µ(Aig) =

∫
U

µAy (Aig)dµ(y).

Using Theorem 3.6.(2) this gives that for every g ∈ BG
2r and µ-almost

every x ∈ B

µx,G((t(x, ·)−1(Ai ∩ [x]A)) = µx,G((t(x, ·)−1(Ai ∩ [x]A)g) (4.11)

Note that since Ai form a basis for the topology of U , any open subset
of BG

r is a countable union of sets from the collection{
(t(x, ·)−1(A1 ∩ [x]A), . . .

}
.

Let M be a dense countable subset of BG
2r. Then for almost every

x ∈ B equation (4.11) holds for every g ∈ M and i. For such x
the measure µx,G satisfies all the conditions of lemma 4.4, and we are
done. �

5. Expanding and contracting foliations

Definition 5.1. Let X be a (G, T )-space, and α : X → X a homeo-
morphism of X. Let H > G be a subgroup of the group of homeomor-
phisms Hom(T ) of T . Then α preserves the (H, T )-structure of X
if for any U, V ∈ T, for any x ∈ U ∩ α−1V , there is a homeomorphism
θ = θU,V

α,x ∈ H fixing e (i.e. θ(e) = e) so that

α ◦ tU(x, ·) = tV (αx, ·) ◦ θ. (5.1)

Note that if tU(x, ·) is injective (which we assume holds for almost every
x), then θ is uniquely determined.

We point out the following special important cases (as always, we
assume that G < Isom(T )):

(1) α preserves the T -leaves if it preserves the (Hom(T ), T )-
structure.

(2) α acts isometrically on the T -leaves if it preserves the
(Isom(T ), T )-structure.
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(3) α uniformly expands (contracts) the T -leaves if it pre-
serves the T -leaves and there is some c > 1 so that θ as in
(5.1) can be chosen to satisfy d(θx, θy) > cd(x, y) (d(θx, θy) <
c−1d(x, y)) respectively.

We remark that the notion as above can be extended to any group
action (so Definition 5.1 treats the case of the Z-action generated by
α), with the exception of (3) above for which one needs at least an
order on the acting group. Explicitly, we shall say that an R-action
α· uniformly expands T if for every s > 0 the homeomorphism αs is
uniformly expanding. Though for simplicity we state the results of this
section for a Z-action, all statements and their proofs remain equally
valid for R-actions.

An almost immediate corollary of the construction of the systems of
conditional measures µU

x,T is the following:

Proposition 5.2. Let X be a T -space. Assume that α : X → X is a
homeomorphism that acts isometrically on T -leaves and preserves the
measure µ. Then for µ almost every x ∈ X,

µV
αx,T = [θU,V

α,x ]∗µ
U
x,T , U ∈ T(x), V ∈ T(αx). (5.2)

Proof. By the properties of conditional measures listed on p. 11, if
A is a countably generated sigma ring of Borel subsets of a Borel set
E ⊂ X, for µ almost every x ∈ E

α∗µ
A
x = µαA

αx . (5.3)

However, in view of Lemma 3.2, Corollary 3.5, and Theorem 3.6
item (2), the equation (5.3) implies the proposition. �

Let µ a probability measure on the space X, and α a homeomorphism
of X preserving µ. The ergodic decomposition can be constructed in
several ways, one which is the following. Consider the sigma algebra
E of Borel subsets of X which are (strictly) α-invariant (in the case
of R-action, E will be the collection of Borel subsets of X which are
αs-invariant for all s). This sigma algebra is usually not countably
generated, and so has no well-defined atoms. However, since (X,µ) is
a Lebesgue space, the conditional measures µEx are well-defined. It is
fairly easy to see from the definition that almost surely the measures µEx
are α-invariant. A slightly deeper fact is that they are also α-ergodic.
The standard decomposition µ =

∫
µExdµ(x) for this sigma algebra E is

called the ergodic decomposition, and each µEx is called (in a somewhat
loose sense) an ergodic component (see for example §3.5 of [Rud90a]).

We recall the following well known property of contracting foliations,
which dates back at least to E. Hopf (c.f. e.g. [KH95], §5.4).
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Proposition 5.3. Let X be a T -space and α : X → X a homeo-
morphism that uniformly expands the T -leaves. Let µ be a α-invariant
probability measure on X, and E ⊂ X an α-invariant Borel set. Then
there is a Borel set E ′ ⊂ X with µ(E4E ′) = 0 consisting of complete
T leaves, i.e. such that for every x ∈ E ′ it holds that BT

∞(x) ⊂ E ′.

Proof. We first find, for every δ > 0 a Borel Eδ consisting of complete
T leaves with µ(E4Eδ) < δ. By measurability, find C ⊂ E ⊂ U with
C compact, U open, and µ(U \ C) < δ/2. Let f : X → [0, 1] be a
continuous function such that f |C = 1 and f |U{ = 0.

Set

Eδ =

{
x : lim

N→∞

1

N

N∑
n=0

f(T−nx) > 1
2

}
.

Since f is continuous and α contracts T , the set Eδ is a union of
complete T leaves. Furthermore

Eδ \ E ⊂

{
x : lim

N→∞

1

N

N∑
n=0

f(T−nx)− 1E(T−nx) ≥ 1
2

}

E \ Eδ ⊂

{
x : lim

N→∞

1

N

N∑
n=0

1E(T−nx)− f(T−nx) ≥ 1
2

}
,

so by the (usual) maximal inequality applied to α

µ(E4Eδ) ≤ µ

{
x : lim

N→∞

1

N

N∑
n=0

∣∣f(T−nx)− 1E(T−nx)
∣∣ ≥ 1

2

}
≤ 2 ‖f − 1E‖1,µ ≤ δ.

Once we have shown how to construct the sets Eδ, we can take

E ′ =
∞⋃
i=1

∞⋂
j=1

E2j

which is easily seen to satisfy all the conditions of the proposition. �

Corollary 5.4. Let X be a T -space, α : X → X and µ as in Proposi-
tion 5.3. Let E be the sigma algebra of α-invariant Borel sets. Then

(1) for µ-almost every x and µEx almost every y

(µEx)y,T = µy,T .

(2) for every E ∈ E with positive µ measure, for µ-a.e. x ∈ E

(µ|E)x,T = µx,T .
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Proof. We first prove (1). By Proposition 5.3, without loss of generality
E consists of full T leaves. It follows that for every r, T -flower (A, U),
the set E ∩ U is an element of A.

It follows from the properties of conditional measures that for a.e.
x ∈ E ∩ U

(µ|E)Ax = µAx
hence in view of the way the conditional measures µx,T have been con-
structed in the proof of Theorem 3.6 using a countable number of flow-
ers (µ|E)x,T = µx,T for a.e. x ∈ E as claimed.

We proceed to prove (2). Again it is enough to show that for every
r, T -flower (A, U), for µ-almost every x ∈ U and µEx almost every y

(µEx)Ay = µAy . (5.4)

Let E ′ = {E ∩ U : E ∈ E}, Ẽ < Ẽ a countably generated sub-sigma
algebra equivalent to E modulo µ-null sets, and Ẽ ′ = Ẽ ∨

{
U,U{

}
. Then

for almost every x ∈ U ,

µE
′

x = µẼ
′

x ∝ µẼx|U = µEx|U . (5.5)

As we have already seen, it follows from Proposition 5.3 that up to
sets of measures zero E ′ is contained in A: i.e. that for every E ∈ E
there is a A ∈ A so that µ((E ∩ U)4A) = 0. Thus (µE

′
x )Ay = µAy for

a.e x ∈ U and µEx almost every y, and so by (5.5), equation (5.4), and
hence this corollary, follow. �

6. A lemma of Einsiedler-Katok and its generalization

A key point in [EK03] is the following important observation by
Einsiedler and Katok. While the statement given in [EK03] is given in
a somewhat less general context, their proof carries out without any
substantial difficulties to the framework of T -spaces. The heart of the
arguments is a variation on Hopf’s argument.

Definition 6.1. Let X be a T -space, and α : X → X acts isometrically
on T - leaves. We shall say that x′ ∈ X is asymptotically in the T -leaf

of x ∈ X if there is some x′′
T∼ x so that for any sequence ni for which

{αnix} (hence {αnix′′}) is relatively compact, d(αnix′′, αnix′) → 0 as
i →∞.

Note that in general there seems to be no reason why this should be
a symmetric relation.

Lemma 6.2. Let X be a T -space and α : X 7→ X a homeomorphism
that acts isometrically on T leaves. Suppose that µ is a α-invariant
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probability measure on X (as usual, we also assume that for µ almost
every x, each T -leaf is embedded.)

Then there is a co-null set X0 such that for every x, x′ ∈ X0 so that
x′ is asymptotically in the T -leaf of x, we have that

µU ′

x′,T ∝ Φ∗µ
U
x,T , U ∈ T(x), U ′ ∈ T(x′), (6.1)

for some Φ ∈ Isom(T ).

Remark: It will transpire in the proof of Lemma 6.2 that this Φ can
be chosen so that for some sequence ni

lim αnitU(x, t) = lim αnitU ′(x
′, Φ(t))), (6.2)

(in particular, both limits exist). Thus, if there is some Φ′ which sat-
isfies that whenever {αnitU(x, t)} is relatively compact,

dX(αnitU(x, t), αnitU ′(x
′, Φ′(t)) → 0

then Φ = Φ′, a fact that will be useful for us when we will actually
try to identify this element Φ in certain cases. Note that it is easy to
calculate explicitly the constant of proportionality by comparing the
measure of the set BT

1 .

Proof. We show that for every ε > 0 there is a set Xε on which (6.1)
holds with µ(Xε) ≥ 1 − ε. Since the maps x 7→ µU

x,T are Borel, hence
µ-measurable, for every ε > 0 there is a compact set X ′

ε of measure
≥ 1− ε2/100 on which this map is continuous. By the maximal ergodic
theorem, there is a compact subset Xε ⊂ X ′

ε so that:

(P-1) For every x ∈ Xε,

lim 1
n

n∑
i=0

1X′
ε
(αnx) ≥ 1− ε.

(P-2) For every x ∈ Xε equation (5.2) holds.
(P-3) µ(Xε) > 1− ε.
(P-4) Xε is a subset of X0 of Theorem 3.6.(3).

Suppose now that x, x′ ∈ Xε with x′ asymptotically on the T -leaf of

x. Let x′′
T∼ x with d(αnx′′, αnx′) → 0, and U ∈ T(x), U ′ ∈ T(x′). By

P-1, there is an infinite sequence of ni so that both αnix and αnix′ ∈ X ′
ε.

Since X ′
ε is compact, by passing to a subsequence if necessary we may

assume that

αnix → z, αnix′ → z′, (z, z′ ∈ Xε.)

Note that this implies in particular that αnix′′ → z′, and so

from x
T∼ x′′ it follows that z

T∼ z′.
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Let V ∈ T(z), V ′ ∈ T(z′). For i large enough, αnix ∈ V and αnix′ ∈
V ′. Let

θni
= θU,V

αni ,x θ′ni
= θU ′,V ′

αni ,x′

as in Definition 5.1.
Without loss of generality, by passing to a subsequence if necessary,

we can assume that there is a limit θ = limi→∞ θni
and θ′ = limi→∞ θ′ni

.
Let θz,z′ be an isometry as in Definition 2.1 so that

tV ′(z′, ·) ◦ θz,z′ = tV (z, ·).

Set Φ = [θ′]−1 ◦ θz,z′ ◦ θ. Then since y 7→ µV
y,T is continuous and since

for all i large enough αnix ∈ V, αnix′ ∈ V ′

µV
z,T = lim µV

αnix,T = lim[θni
]∗µ

U
x,T = θ∗µ

U
x,T (6.3)

µV ′

z′,T = lim µV ′

αnix′,T = lim[θ′ni
]∗µ

U ′

x′,T = θ′∗µ
U ′

x′,T . (6.4)

By Theorem 3.6,

µV ′

z′,T ∝ [θz,z′ ]∗µ
V
z,T ; (6.5)

together, equations (6.3) – (6.5) give (6.1).
Furthermore,

αnitU(x, t) = tV (αnix, θni
(t)) → tV (z, θ(t)) = tV ′(z′, θz,z′ ◦ θ(t))

αnitU ′(x
′, Φ(t)) = tV ′(αnix′, θ′ni

◦ Φ(t)) → tV ′(z′, θ′ ◦ Φ(t)) = tV ′(z′, θz,z′ ◦ θ(t)).

establishing (6.2). �

Suppose that H = H1 × H2 acts nicely from the right on X as in
Example 2.2; this gives X a H1-structure and a H2-structure in the
obvious way. We wish to extend this notion to more general circum-
stances. Since we will have to deal simultaneously with several different
structures, where necessary we shall add the structure we are dealing
with to the notation, e.g. tU ;S etc. If S, T are metric spaces, we shall
take dS×T = max(dS, dT ). We will also assume that the components of
the marked element e ∈ S×T are the marked elements (again denoted
by the same symbol e) of S and T .

We shall say that a S × T -structure of X is a product structure if it
is a (Isom(S) × Isom(T ), S × T )-structure. Note that it is immediate
that if the S × T -structure of a S × T -space X is a product structure
then it induces a S-structure on X and a T -structure on X with the
same atlas

T as before by taking for any x ∈ U ∈ T, s ∈ S and t ∈ T ,

tU ;T (x, t) = tU ;S×T (x, (e, t)) tU ;S(x, s) = tU ;S×T (x, (s, e))
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Lemma 6.3. Let X be a (Isom(S) × Isom(T ), S × T )-space. Suppose

that x ∈ X is such that the map tV,S×T (x, ·) is injective on BS×T
20r for

some (hence all) V ∈ T(x). Then there is an open set U 3 x (not
necessarily in T), and countably generated sigma rings A = A;S×T and
A;S,A;T ⊃ A of Borel subsets of U , and ε > 0 so that

(C-1) (U,A;R) is a r, R-flower with base Bε(x) for R = S, T, S × T .
(C-2) for every y ∈ V ,

[y]A;R
= [y]A ∩BR

4r(y) R = S, T.

Proof. Let U and ε be as in Lemma 3.2 applied for the S×T -structure
of X. Note that automatically, U and ε also satisfy 1-2 of Lemma 3.2
also for the T structure of X.

We can now apply Corollary 3.5 three times, once for the S × T -
structure, once for the S-structure and once for the T -structure of X
to obtain three countably generated sigma rings A = A;S×T , A;S and
A;T of Borel subsets of V which satisfy C-1.

C-2 follows immediately from the way these sigma rings are con-
structed in Corollary 3.5. �

Proposition 6.4 (Einsiedler-Katok Lemma). Suppose that X is a
(Isom(S) × Isom(T ), S × T )-space. Let α : X 7→ X be a homeomor-
phism preserving the S, T , and S × T structures of X. Suppose that
α acts isometrically on the S-leaves and uniformly contracts the T -
leaves. Let µ be a α-invariant measure on X so that for almost every
x its S × T -leaf is an embedded leaf. Then for µ almost every x and
all U ∈ T(x)

µU
x,S×T = µU

x,S × µU
x,T .

Proof. Let X0 be a co-null set contained in both the co-null set of
Lemma 6.2 applied to the S-structure of X, and the co-null set of
Theorem 3.6.(3) applied to the three structures of X as a S-space, a
T -space and a S × T -space.

Let r > 1 be arbitrary, and x0 ∈ X any point whose S × T -leaf is
embedded.

Step 1: We show that there is some ε > 0 so that for µ-almost every
x ∈ BX

ε (x0) and any V ∈ T(x) there is a measure νx,r on BT
r so that

µV
x,S×T |BS×T

r
= µV

x,S|BS
r
× νx,r.

We now apply Lemma 6.3 on x0 and r to get a ε > 0, an open set U0

and three sigma rings of subsets of U0 with the properties cited above.
Fix x ∈ X0 ∩B(x0, ε) and U ∈ T(x). Set

t(x) = tU ;S×T (x, ·), xs,t = t(x)(s, t).
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Since the S × T -structure of X is a product structure, we have for
every (s, t) ∈ S × T and V ∈ T(xs,t) isometries βV

s,t ∈ Isom(S) and

γV
s,t ∈ Isom(T ) so that for all s, s′ ∈ S, t, t′ ∈ T

tU ;S×T (x, (s′, t′)) = tV ;S×T (xs,t, (β
V
s,t(s

′), γV
s,t(t

′))). (6.6)

Since α contracts the T -leaves, it follows that if {αnix} is relatively
compact (and so {αnixs,t} is relatively compact for all s, t)

dX(αnixs,t, α
nixs,t′) → 0 ∀t, t′ ∈ T. (6.7)

In particular, for every (s, t), we have that xs,t is asymptotically
on the S-leaf of x and vice versa. By Lemma 6.2, we know that for
every s, t for which xs,t ∈ X0 and V ∈ T(xs,t), there is some Φ so that
µU

x,S ∝ Φ∗µ
V
xs,t,S

, and that this Φ satisfies (6.2) for x and xs,t. By (6.6)

and (6.7) we have that if {αnix} is relatively compact

dX(αnitU ;S(x, s′), αnitV,S(xs,t, β
V
s,t(s

′))) → 0,

so by the remark following Lemma 6.2 we
have that Φ = βV

s,t, i.e.

µV
xs,t,S ∝ [βV

s,t]∗µ
U
x,S (6.8)

Let ζt : S 7→ S × T be the map s 7→ (s, t), and let πS : S × T → S
and πT : S × T → T be the natural projections; in particular πS ◦ ζt

is the identity transformation S → S. Assume that xs,t ∈ X0, that
(s, t) ∈ BS×T

r = BS
r ×BT

r and V ∈ T(xs,t). By (6.8) and (6.6) we know
that for any bounded K ⊂ S

[t(x)]∗

(
µV

xs,t,S|K
)
∝ [t(x)]∗

(
([βV

s,t]∗µ
U
x,S)|K

)
= [t(x) ◦ ζt]∗

(
µU

x,S|βV
s,t
−1

(K)

)
.

We now use Theorem 3.6 and the above to show

µA;S
xs,t
|BS

r (xe,t) ∝ [tV ;S(xs,t, ·)]∗
(
µV

xs,t,S|BS
r (βV

s,t(e))

)
∝ [t(x) ◦ ζt]∗

(
µU

x,S|BS
r

)
.

(6.9)

We evaluate the implicit constant by evaluating the measure given to
BS

1 (xe,t) in both sides of (6.9). Applied to this set the right hand side
can be explicitly calculated:(

[t(x) ◦ ζt]∗
(
µU

x,S|BS
r

))
(BS

1 (xe,t)) = µU
x,S

(
BS

r ∩ πS ◦ t(x)
−1(BS

1 (xe,t))
)

= µU
x,S(BS

1 ) = 1,



INVARIANT MEASURES AND ARITHMETIC QUE 29

hence

1

µ
A;S
xs,t(B

S
1 (xe,t))

µA;S
xs,t
|BS

r (xe,t) = [t(x) ◦ ζt]∗
(
µU

x,S|BS
r

)
. (6.10)

Note that as long as xs,t ∈ [x]A the normalizing factor depend only on
t (see 1. on page 11)

Since A = A;S×T ⊂ A;S we know that for µ-almost every x

µAx =

∫
µA;S

y dµAx (y). (6.11)

We rewrite the above equation using (6.10)

µAx |BS×T
r (x) =

∫
µA;S

y |BS×T
r (x)∩[y]A;S

dµAx (y)

∝ [t(x)]∗

(∫
π−1

T (BT
r )∩t(x)

−1([x]A)

dµU
x,S×T (s, t) c(t)[ζt]∗µ

U
x,S|BS

r

)
= [t(x)]∗

(
νU

x,r;T × µU
x,S|BS

r

)
(6.12)

with

c(t) = µA;S
xs,t

(BS
1 (xe,t)) = µA;S

xs,t
(BS×T

1 (x))

and ν a measure supported on BT
r ⊂ T defined by

νU
x,r;T (A) =

∫
π−1

T (A)∩t(x)
−1([x]A)

c(t) dµU
x,S×T (s, t).

Step 2: We now show that for any δ > 0 there is a set B ⊂ Bε(x0)∩X0

of measure ≥ (1− δ)µ(Bε(x0)) so that

νU
x,r;T ∝ µU

x,T |BT
r

∀x ∈ B. (6.13)

Assume for the moment (6.13) is established. By taking δ → 0 we
deduce that for almost every x ∈ Bε(x0) we have that

µU
x,S×T |BS×T

r
∝ µU

x,S|BS
r
× µU

x,T |BS
t
,

and from the way we have normalized the conditional measures it is
immediate that in fact equality holds (i.e. the implicit constant above
is one). By taking a countable sequence ri → ∞, and for every ri a
countable sub cover of the collection of balls of the type BX

ε (x0) which
covers all points of X whose S × T -leaf is embedded, the proposition
is established (note that ε implicitly depends both on x0 and on ri).
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It remains to establish (6.13). Similarly to (6.11) since A ⊂ A;T we
can write

µAx |BS×T
r (x) =

∫
µA;T

y |BS×T
r (x)∩[y]A;T

dµAx (y)

∝
∫

BS
r

µA;T
xs,e
|BT

r (xs,e) d[πS]∗[µ
U
x,S×T |(t(x))

−1[x]A ](s). (6.14)

Let ζ̃s : T 7→ S × T be given by ζ̃s : t 7→ (s, t). Equation (6.12) can be
rewritten as

µAx |BS×T
r (x) ∝

∫
BS

r

[t(x) ◦ ζ̃s]∗ν
U
x,r;T dµU

x,S(s) (6.15)

comparing (6.14) and (6.15) we see that µU
x,S and [πS]∗[µ

U
x,S×T |(t(x))

−1[x]A ]

are in the same measure class and that µU
x,S almost surely

µA;T
xs,e
|BT

r (xs,e) ∝ [t(x) ◦ ζ̃s]∗ν
U
x,r;T . (6.16)

Equation (6.16) is almost what we are seeking; however, we still need
to show that for almost every x this equation holds at the specific value
of s = e. This we achieve in the following way: Let B̃ ⊂ Bε(x0) ∩X0

be a compact set with

µ(B) ≥ (1− ε)µ(Bε(x0));

on which
y 7→ µA;T

y |BT
r (y)

is continuous (with respect to the weak star topology of probability
measures on X). By (6.16) there is a subset B of full measure of x ∈ B̃
for which there is some sequence si → e on which (6.16) holds. We
also require that Theorem 3.6.(2) holds for x ∈ B. Then since

µA;T
xsi,e

|BT
r (xsi,e) → µA;T

x |BT
r (x) [t(x) ◦ ζ̃si

]∗ν
U
x,r;T → [t(x)]∗ν

U
x,r;T ,

by (6.16)

µA;T
x |BT

r (x) ∝ [t(x)]∗ν
U
x,r;T ,

or, using Theorem 3.6.(2)

µU
x,T |BT

r (x) ∝ [t(x)]∗ν
U
x,r;T ,

and we are done. �

Corollary 6.5. Let X be a S × T -space and α : X → X as in Propo-
sition 6.4. Then there is a set X0 of full measure so that for every

x
S×T∼ x′ with x, x′ ∈ X0, U ∈ T(x), U ′ ∈ T(x′)

µU ′

x′;T ∝ γ∗µ
U
x;T ,
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where γ ∈ Isom(T ) is defined by

tU ′;S×T (x′, ·) ◦ (β, γ) = tU ;S×T (x, ·) for some β ∈ Isom(S).

7. Invariant Structures and Measure Rigidity

We recall our main theorem: let H = SL(2, R), equipped with some
left invariant Riemannian metric dH , L an S-algebraic group, and K <
L a compact subgroup. Set T = L/K and dT a L-invariant metric on
T .

Let Γ be a discrete subgroup of H × L, and take X = Γ\H × T .
Note that we do not assume that Γ is a lattice. We take

dH×T ((h, t), (h′, t′)) = max(dH(h, h′), dT (t, t′))

since the action of Γ preserves this metric, there is a unique metric dX

on X so that the projection π : H × T → X is locally an isometry.
For the sequel, we will need to assume that Γ is “irreducible” in the
following (rather weak) sense that

Γ ∩ L = {e} (7.1)

(note that in the above equation L is identified with its image in H×L)
The group H acts on X from the right, and in addition X has the

structure of a (L, T )-space. Together this gives X the structure of a
(H×L, H×T )-space; in particular this structure is a product structure.
Let T be an common atlas for the T and H-structures of X; since the H-
structure of X comes from a group action, the local maps tU ;H(x, h) =
xh are independent of U ∈ T.

Let

a(t) =

(
e−t 0
0 et

)
A = {a(t) : t ∈ R}

n+(t) =

(
1 t
0 1

)
N+ =

{
n+(t) : t ∈ R

}
n−(t) =

(
1 0
t 1

)
N− =

{
n−(t) : t ∈ R

}
.

Theorem 7.1. Let X = Γ\H ×T be as above, and µ be a A-invariant
and T -recurrent probability measure on X. Assume that all A-ergodic
components of µ have positive entropy. Then µ is N+-invariant.

Proof of Theorem 1.1 assuming Theorem 7.1. By assumption, µ is A-
invariant. Using the involution i : g 7→ (gt)−1 on H (which we also
consider as an involution on H × T fixing the second coordinate) we
obtain a new measure µ′ on X ′ = Γ′\H×T with Γ′ = i(Γ) by first lifting
µ to the product H × T , applying the involution i and then projecting
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back to X ′. The hypotheses in Theorem 7.1 remain satisfied for X ′

and µ′, hence µ′ is N+-invariant, which shows that µ is N− invariant.
It follows that µ is invariant under H, and Theorem 1.1 now follows

from the S-algebraic versions of Ratner’s theorem [MT94, Rat95]. �

Lemma 7.2. Let X be as in Theorem 7.1, and µ a T -recurrent, A-
invariant probability measure on X. Then for every sufficiently small
ε > 0, for every set B ⊂ X with µ(B) > 0 for almost every x ∈ B

there is a point y
T∼ x with

y ∈ B ∩ (Bε(x) \BN+×T
1 (x)) (7.2)

Proof. We first claim that for µ-almost every x ∈ X, it holds that the
N+ × T -leaf of x is embedded. Indeed, the irreducibility condition
on Γ implies that every T -leaf, without exception, is embedded. So if
the N+ × T -leaf of x is not embedded, there are some s 6= 0 so that

x
T∼ xn+(s), say xn+(s) = tU ;T (x, t) for t 6= e.
Consider the orbit of x under the semigroup {a(−t) : t ≥ 0}. Almost

surely, xa(−t) would return infinitely often to some compact set K.
Suppose t1 < t2 < . . . is a sequence of such times with ti → ∞, and
without loss of generality we may assume that xa(−ti) → x0. Then
xn+(s)a(−ti) = xa(−ti)n

+(e−2tis) → x0, and there is some t′ 6= e and
U ′ so that x0 = tU ′;T (x0, t

′): a contradiction, which implies that almost
surely the N × T -leaf of xn is embedded.

Now let ε > 0 be arbitrary. Cover X by countably many balls Bi

of radius ε/2, and throw away those whose intersection with B has
measure 0. By T -recurrence, for µ-almost every x ∈ Bi ∩ B there is a
t ∈ T \BT

1 and U ∈ T(x) such that y = tU ;T (x, t) ∈ Bi ∩B. Note that
Bi ⊂ Bε(x). We also know that for µ-almost every x ∈ Bi ∩ B, the

N+ × T -leaf of x is embedded so y 6∈ BN+×T
1 (x). Together this gives

(7.2). �

Let +a : R → R be the map x 7→ x + a, and ×a : R → R be the map
x 7→ ax.

Lemma 7.3. Let µ be a A-invariant measure on X. Then the following
sets

Z = {x : µx,N+ = HN+}
= {x ∈ X : ∀a ∈ R µx,N+ = (+a)∗µx,N+}

Y = {x ∈ X : ∃as.t.µx,N+ ∝ (+a)∗µx,N+}

satisfy µ(Y \ Z) = 0.
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Proof. Set for y ∈ Y

Ry = {a > 0 : µy,N+ ∝ (+a)∗µx,N+}
r(y) = infRy.

Since r(·) satisfies that r(ya(−t)) = e−2tr(y), by A-invariance of µ
Poincare recurrence implies that r(y) = 0 for µ-almost every y ∈ Y .

Choose some arbitrary nonnegative compactly supported test func-
tion φ ∈ Cc(R) which is nonzero in a neighborhood of 0. Then a.s.∫

φ(t)d(+a)∗µy,N+ > 0 for any a ∈ Ry, and so we may define κy :
Ry → R by

exp(κy(a)) :=
d(+a)∗µy,N+

µy,N+

=

∫
φ(t + a)dµy,N+∫

φ(t)dµy,N+

.

Since the map a 7→
∫

φ(t + a)dµy,N+ is continuous, so is κy(a); and if
r(y) = 0 (which we recall happens a.s. for y ∈ Y ) we now see that in
fact Ry = R+ and κy(a) = κy(1) · a. In view of this last expression, we
set κy = κy(1).

We now again use the fact that µ is invariant under the A-action,
which implies that

[×e2t ]∗µy,N+ ∝ µya(t),N+

hence κy = κya(t)(e
2t) or

κy = e2tκya(t).

Again Poincare recurrence implies that κy = 0 for almost every y ∈ Y ,
in other words that almost every y ∈ Y is in Z. �

A crucial ingredient in the proof is Ratner’s H-property for the horo-
cycle flow on SL(2, R) ([Rat82], Lemma 2.1 and [Rat83], Definition 1).
This property is related but distinct from Ratner’s R-property which
is used in the proof Raghunathan’s conjecture (see [Rat92], p. 22 for
the special case of G = SL(2, R) and [Rat90b] for the general case).
We present below a form of the H-property that is convenient for our
purposes. At its heart, is the following elementary calculation:

Lemma 7.4. There is some universal constant C > 0 so that for any
δ, t ∈ R with 1

δ
> t > 1 > δ,

n−(δ)n+(t) ∈ n+

(
t

1 + δt

)
BH

Ctδ.
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Proof. Indeed, this is simply an exercise in matrix multiplication:

n−(δ)n+(t) =

(
1 0
δ 1

)
·
(

1 t
0 1

)
=

(
1 t
δ 1 + tδ

)
=

(
1 t

1+δt

0 1

)(
1

1+tδ
0

δ 1 + tδ

)
∈
(

1 t
1+tδ

0 1

)
BH

Ctδ.

�

Lemma 7.5. For any compact subset X ′ ⊂ X and ρ ∈ (0, 1), there are
C and η0 > 0 so that for any ε < η0 and x, x′ ∈ X ′ with

x′ ∈ Bε(x) \BN+×T
1 (x)

there is some a so that for any τ with ρa < |τ | < a

x′n+(τ) ∈ BCε1/2(xn+(τ ′))

with C−1 < |τ − τ ′| < C.

In addition to our use of the H-property, our strategy of proof is
similar to that used by Ratner, particularly in [Rat82, Rat83].

7.1. A simplified proof of Theorem 7.1. Initially, we give the proof
of Theorem 7.1 given an additional technical assumption, which allows
us to avoid a complication in the proof, clarifying the ideas involved.

additional assumptions: The additional assumption is that the
conditional measures µx,N+ satisfy the doubling condition, i.e. there is
a constant ρ ∈ (0, 1) so that for µ-almost every x ∈ X and all r > 1

µx,N+(BN+

r ) > 2µx,N+(BN+

ρr ). (7.3)

Let Z and Y be as in Lemma 7.3. By Proposition 4.3, Theorem 7.1
is equivalent to µ(X \ Z) = 0. Assume by contradiction that this is
false. Let µ′ = µ|X\Z . It is immediate from the definition of recurrent
measures that the restriction of a recurrent measure is recurrent, so µ′

is T -recurrent. Clearly Z is A-invariant (up to a set of µ-measure 0),
and so µ′ is A-invariant.

Since Z is A-invariant, it follows from Corollary 5.4.(1) that for al-
most every x 6∈ Z

µ′x,N+ = µx,N+ .

Replacing µ by µ′ if necessary, it is enough to show that µ(Z) = 0 (or
equivalently that µ(Y ) = 0) leads to a contradiction.

Let ε > 0 be arbitrary. For any such ε we can find a compact subset
X1 of X with measure ≥ 1− ε with the following properties:
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(X-1) X1 is disjoint from Y .
(X-2) The map x 7→ µx,N+ is continuous on X1 (with respect to the

topology on M∞(N+) given in §3).
(X-3) X1 is a subset of the set the full measure in Corollary 6.5 applied

to the N+ × T structure of X.
(X-4) X1 is a subset of the set of full measure in Theorem 3.6.(3) for

the N+, T , and N+ × T structures of X.

We remark that we can find X1 satisfying X-2 by Lusin’s theorem
[Fed69, p. 76], since x 7→ µx,N+ is a Borel measurable map from X to
the separable metric space M∞(N+).

We now apply a version of the maximal ergodic theorem for not
necessarily invariant measures which will be proved in the appendix
(Theorem A.1). According to the theorem, there is a set X2 (which we
may as well assume is a compact subset of X1) of measure ≥ 1−C1ε

1/2

(with C1 some universal constant) so that

(X-5) for every x ∈ X2 and any r > 0∫
BN+

r

1X1(xn+(s))dµx,N+(s) ≥ (1− ε1/2)µx,N+(BN+

r ) (7.4)

Let δ > 0 be very small (depending on ε) to be determined later.
Since µ is T -recurrent, by (7.2) it follows that for almost every x ∈ X2

there is a x′
T∼ x so that

x′ ∈ X2 ∩Bδ(x) \BN+×T
1 (x).

As long as δ is small enough, this implies that x and x′ satisfy the
assumptions of Lemma 7.5. Let a be as in that corollary with ρ as in
(7.3). Clearly, if δ is small enough a will be much bigger than 1.

Let
G1 = {s ∈ R : xn+(s) ∈ X1}
G2 = {s ∈ R : x′n+(s) ∈ X1} .

(7.5)

Since x, x′ ∈ X1 and x
T∼ x′ we have that µx,N+ = µx′,N+ . Furthermore,

since x, x′ ∈ X2 and a > 1

µx,N+({s : ρa < |s| < a} \Gi) ≤ ε1/2µx,N+(BN+

a )

≤ 2ε1/2µx,N+({s : ρa < |s| < a}), i = 1, 2,
(7.6)

where we have used (7.3) to pass from the first to the second line. By
X-4, for all x ∈ X1,

µx,N+(BN+

a ) > 0.
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Thus if ε < 0.01

µx,N+({s : ρa < |s| < a} ∩G1 ∩G2) > 0

and in particular there is a s0 ∈ {s : ρa < |s| < a}∩G1 ∩G2. Consider
now the pair of points y = xn+(s0), y

′ = x′n+(s0) ∈ X1. By Lemma
7.5, we know that

y′ ∈ BC(ρ)δ1/2(yn+(τ))

for some τ so that |τ | is in a fixed interval I ⊂ R+ which does not
contain 0. Note that since µx,N+ = µx′,N+ , and since x, x′, y, y′ all in
X1,

µy,N+ ∝ (+−s0)∗µx,N+

= (+−s0)∗µx′,N+

∝ µy′,N+ ,

(7.7)

and by comparing the measure of BN+

1 one sees that in fact

µy,N+ = µy′,N+ . (7.8)

Applying this with a sequence δi → 0 we get a sequence yi, y
′
i ∈ X1;

since X1 is compact we may as well assume that yi → y, y′i → y′ and
necessarily

y′ = yn+(τ) τ ∈ I ∪ −I

y, y′ ∈ X1.

Furthermore, since on X1 the map x 7→ µN+,x is continuous, and
since for all i by (7.8)

µN+,yi
= µN+,y′i

we get that

µN+,y = µN+,y′ = µN+,yn(τ). (7.9)

Once again using the fact that y, y′ ∈ X1 we also know that

µN+,yn(t) ∝ (+−τ )∗µN+,y (7.10)

hence either y or y′ is in Y , contrary to the fact that Y is disjoint from
X1.

7.2. A complete proof of Theorem 7.1. In the proof just given in
§7.1, substantial use has been made of the doubling condition (7.3).
The key to overcoming this difficulty is the observation that for a given
constant ρ < 1 the set

Rρ(x) =
{

r : µx,N+(BN+

r ) > 2µx,N+(BN+

ρr )
}

(7.11)
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which is the set where a doubling condition holds, has a very different
behavior when we replace x by xa(t) than the set of all r that satisfy
the conclusion of Lemma 7.5, i.e. the set

Dρ,C,γ(x, x′) =

{
r : ∀s, ρr < |s| < r : x′n+(s) ∈ Bγ(xn+(s′))

with C−1 < |s− s′| < C

}
,

for, e.g. γ = Cε1/2 (for technical reasons, we will actually need to use
the slightly bigger γ). This gives us hope that by flowing along the
flow associated with the subgroup A we might be able to arrange to
have the doubling condition precisely where we need it.

Before we actually carry out the proof, we need the following stan-
dard fact in a nonstandard terminology:

Theorem 7.6. Let µ be a A-invariant probability measure on X. Then
µ is N+-recurrent if, and only if the entropy with respect to the action
of a(1) by right multiplication of almost every a(1) ergodic component
µEξ is positive.

We could have just as well considered ergodic components of the
full A-action: in general, an ergodic component for the R-action cor-
responding to A can fail to be ergodic under the Z-action generated
by a(1), but the entropy of this R-ergodic component is equal to the
entropy of almost every Z-ergodic subcomponent.

In essence, this theorem is a corollary of a Theorem of Ledrappier
and Young ([LY85], Theorem B.). Strictly speaking, however, the re-
sults of that paper which deal with smooth actions on smooth compact
manifolds do not apply here. In the S-algebraic context a suitable vari-
ant of this theory can be found in §9 of [MT94]. With slightly more
work Theorem 7.6 (which is only place where S-algebraicity is used in
the proof of Theorem 7.1), can be proved for general locally compact
L, but it is not clear how useful such an extension would be.

Proof of Theorem 7.6. Let α be the map x 7→ xa(1), and µ =
∫

µEξ dµ(ξ)
be the ergodic decomposition of µ with respect to α (see §5), and let
hα(µEξ ) denote the entropy of multiplication from the right by a(1) of

the ergodic component µEξ .

We will show that µ-almost surely, if hα(µEξ ) > 0 then for µEξ -almost
every y, we have that µy,N+ (which by (quote corollary: about ergodic
decomposition).(2) is equal to (µEξ )y,N+) is infinite, and conversely if

hα(µEξ ) > 0 then for µEξ -almost every y, we have that µy,N+ is finite,
indeed equal to the atomic measure δ0 with a single atom with measure
one at 0.
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As a preliminary step, we note that the sets

E1 := {x : µx,N+ is finite } ⊃ {x : µx,N+ = δ0} =: E2

satisfy
µ(E1 \ E2) = 0. (7.12)

Indeed, define

r(x) =

{
inf
{

r > 0 : µx,N+BN+

r > 1
2
µx,N+BN+

∞

}
if x ∈ E1

0 otherwise.

Then for µ-almost every x we have that r(x) = e−1r(α(x)). By Poincare
recurrence this implies that r(x) = 0 almost surely, which is equivalent
to (7.12).

Let now ν = µEξ be an ergodic component. By [MT94], Proposition
9.2 there is a countably generated Borel sigma algebra A of subsets of
X with the following properties:

(i) A is subordinate to N+, i.e. for every x we have that there is
some r > 0 so that [x]A ⊂ BN+

r (x) and for ν-almost every x we
have that there is some ε > 0 so that [x]A ⊃ BN+

ε (x).
(ii) A < α−1(A)
(iii) the mean conditional entropy Hν(A|αA) is equal to the entropy

hα(ν).

By definition, the mean conditional entropy is given by

Hν(A | αA) = −
∫

log ναA
x ([x]A)dν(x)

= −
∫

log
νx,N+ [x]αA
νx,N+ [x]A

dν(x).

(7.13)

Since E2 is α-invariant (up to a set of measure 0), for almost every ξ we
have that ν(E1) = ν(E2) can be either 0 or 1. In the case ν(E2) = 1,
by (iii) and (7.13) we see that hα(ν) = 0.

In the case ν(E1) = 0 we have that since for ν-almost every x the
measure νx,N+ is infinite,

log
νx,N+([x]αkA)

νx,N+([x]A)
=

k−1∑
i=0

log
να−ix,N+([α−ix]αA)

να−ix,N+([α−ix]A)
→∞.

Since ν is a α-invariant, the above equation implies that

ν

{
x : − log

νx,N+ [x]αA
νx,N+ [x]A

> 0

}
> 0. (7.14)

Thus if ν(E1) = 0 then the integral (7.13) is positive, and so is hα(ν).
�
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Corollary 7.7. If the entropy of almost every A-ergodic component µEx
with respect to the action of A is positive, then there is a ρ so that

X (ρ) =
{

x : µx,N+(BN+

1 ) > 2µx,N+BN+

ρ )
}

has µ(X (ρ)) > 1− ε.

Note that Rρ(x) is related to X (ρ) by

Rρ(x) =
{
e2t : xa(−t) ∈ X (ρ)

}
. (7.15)

We now set X3 to be a compact subset of the set X2 defined in §7.1,
equation (7.4) with µ(X3) ≥ 1 − C2ε

1/4 so that for every x ∈ X3 and
τ > 0 and with ρ as in Corollary 7.7

1
τ

∫ 0

−τ

1X2(xa(s))ds ≥ (1− ε1/4)

1
τ

∫ 0

−τ

1X2(xa(s))ds ≥ (1− ε1/4)

1
τ

∫ τ

0

1X (ρ)(xa(s))ds ≥ (1− ε1/4)

1
τ

∫ 0

−τ

1X (ρ)(xa(s))ds ≥ (1− ε1/4).

(7.16)

The existence of such a set is guaranteed by the maximal ergodic the-
orem (this time in the classical, i.e. measure preserving, context).

Now take δ > 0 to be very small, and find x, x′ ∈ X3 so that

d(x, x′) < δ and x
T∼ x′ using Poincare recurrence for T as in §7.1.

δ will be determined later, but in particular we demand that δ < η0

with η0 as in Lemma 7.5 applied to the compact subset X1.
The following lemma is simply a somewhat more quantitative version

of the argument in the simplified proof of §7.1.

Lemma 7.8. Let X and µ be as in Theorem 7.1. Let X2 a compact
subset of X as in §7.1. Then for any sufficiently small δ > 0, and any
C > 0 if x, x′ ∈ X2 satisfy

(*-a) d(x, x′) < δ

(*-b) x
T∼ x′

(*-c) x is not in the same N+-leaf as x′

(*-d) Dρ,C,γ(x, x′) ∩Rρ(x) 6= ∅
then there is a s ∈ R and a s′ with C−1 < |s′| < C so that:

(*-1) y = xn+(s) and y′ = x′n+(s) are both in X1.
(*-2) y ∈ Bγ(y

′n+(s′))
(*-3) µy,N+ = µy′,N+
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Proof. We first remark that *-3 follows from *-1 since y
T∼ y′ and for

any two T -equivalent points in X1

µy,N+ = µy′,N+ .

Thus we need only to prove we can find a s ∈ R so that both *-1
and *-2 hold.

As in §7.1, equation (7.5), we set

G1 = {s ∈ R : xn+(s) ∈ X1}
G2 = {s ∈ R : x′n+(s) ∈ X1} ,

and we note once more that since x, x′ ∈ X1, we have that µx,N+ =
µx′,N+ . Let a ∈ Dρ,C(x, x′) ∩ Rρ(x); clearly if δ is small a � 1. Since
x, x′ ∈ X2 we have that for i = 1, 2,

µx,N+({s : ρa < |s| < a} \Gi) ≤ ε1/2µx,N+(BN+

a ); (7.17)

and since a ∈ Rρ(x) we get

(7.17) ≤ 2ε1/2µx,N+({s : ρa < |s| < a}).

This implies (as long as ε < 0.01) that there is some

s0 ∈ {s : ρa < |s| < a} ∩G1 ∩G2.

Set y = xn+(s0), y′ = x′n+(s0). By our choice of s0, both y and y′ are
in X1. Since a ∈ Dρ,C(x, x′) we have that

y′ ∈ Bγ(yn+(s′))

with C−1 < |s′| < C and we are done. �

Lemma 7.9. Let ρ ∈ (0, 1) be arbitrary. Then for any sufficiently
small δ > 0, for any x, x′ ∈ X1 with d(x, x′) < δ at least one of the
following holds, for some constant C0 that do not depend on δ:

(1) There is some ξ1 > C−1
0 δ−1/2 so that for all 0 < t < κ |ln ξ1|,

ξ1 ∈ Dρ,C0,δ1/4(xa(−t), x′a(−t))

for some fixed absolute constant κ > 0.
(2) There is some ξ1 > C−1

0 δ−1/2 so that for all

κ′ |ln ξ1| < t < 2κ′ |ln ξ1|

we have that

e−tξ1 ∈ Dρ,C0,δ1/4(xa(−t), x′a(−t))

where again κ′ > 0 is an absolute constant.



INVARIANT MEASURES AND ARITHMETIC QUE 41

Proof. Define sa, s+, s− by

x′
M∼ xn−(s−)n+(s+)a(sa)

d(x′, xn−(s−)n+(s+)a(sa)) < δ
(7.18)

(since X1 is compact, it is an immediate consequence of the definition
of the metric on X that there are indeed such sa, s+, s−). It also follows
that |sa| , |s+| , |s−| < Cδ for some constant C (we note that throughout
this proof, C, C1, etc. stand for some large constants that do not
depend on δ, with the agreement that each constant can be taken to
be as large as you want and may depend only on the constants that
have appeared before.)

From (7.18) and the fact that H acts isometrically on the T leaves
of X it follows that

x′a(−τ)n+(ξ)
M∼ xn−(s−)n+(s+)a(sa)a(−τ)n+(ξ)

d(x′a(−τ)n+(ξ), xn−(s−)n+(s+)a(sa)a(−τ)n+(ξ)) < δ.
(7.19)

Using the formula from Lemma 7.4, we see that assuming |ξ| > 1, τ > 0
and ∣∣ξ2e2τs−

∣∣ , |2ξsa| ≤ 1

we have that

xn−(s−)n+(s+)a(sa)a(−τ)n+(ξ) = xa(−τ)n−(e2τs−)n+(e−2τs+ + e−2saξ)a(sa)

∈ xa(−τ)n+

(
e−2τs+ + e−2saξ

1 + e2τs−(e−2τs+ + e−2saξ)

)
BH

C1ξe2τ |s−|

∈ xa(−τ)n+(ξ − 2saξ − e2τs−ξ2)BH
σ

(7.20)
with

σ = C2 max(ξe2τ |s−| , e−2τ |s+| , |ξ|−1). (7.21)

Combining (7.20) with (7.19) we get that

x′a(−τ)n−(ξ) ∈ Bmax(σ,δ)(xa(−τ)n−(ξ′)) with

ξ′ = ξ − 2saξ − e2τs−ξ2.
(7.22)

There are now two cases, corresponding to the two cases in the
lemma:

Case 1: |sa| > |s−|10/21.
In this case we take ξ1 = |sa|−1, and consider τ in the range

0 < τ < τ0 = 0.01 ln ξ1.
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Note that in particular ξ1 > C−1δ−1. Let ξ′ be as in (7.22). Then for
any ξ is the range ρξ1 < ξ < ξ1 we have that∣∣e2τs−ξ2

∣∣ ≤ ξ2.02
1 |s−| ≤ ξ2.02

1 |sa|2.1 ≤ |sa|0.08 ≤ δ0.08,

while the other hand |2saξ| > 2ρ so for δ small enough, depending only
on ρ,

ρ

2
≤ |ξ′ − ξ| =

∣∣2saξ + e2τs−ξ2
∣∣ ≤ 2

and so for appropriate choice of C0 by (7.22)

ξ1 ∈ Dρ,C0,max(σ,δ)(xa(−τ), x′a(−τ)).

By (7.21)

σ = C2 max(ξe2τ |s−| , e−2τ |s+| , |ξ|−1)

≤ C2 max(|sa|1.08 , Cδ) ≤ C3δ,

which is substantially better than the estimate ≤ δ1/4 that we needed.

Case 2: |sa| ≤ |s−|10/21.

In this case we take ξ1 = |s−|−1/2, and consider τ in the range

0.05 ln ξ1 < τ < 0.1 ln ξ1.

Then for any ξ in the range ρe−τξ1 < ξ < e−tξ1

ρ ≤
∣∣e2τs−ξ2

∣∣ ≤ 1

and

|saξ| < e−τξ1 |sa| ≤ ξ0.95
1 |sa| ≤ |s−|0.475−10/21 ≤ |Cδ|0.001 ,

and so once again if δ is small enough (depending only on ρ) and ξ′ as
in (7.22)

ρ

2
|ξ − ξ′| ≤ 2,

i.e. e−τξ1 ∈ Dρ,C0,max(σ,δ)(xa(−τ), x′a(−τ)).
We are left with estimating σ in this case:

σ = C2 max(ξe2τ |s−| , e−2τ |s+| , |ξ|−1)

≤ C2(|s−|0.475 , δ, |s−|0.5) ≤ C3δ
0.475

which is again better than advertised. �

Lemma 7.10. Let ρ be as in Corollary 7.7, and x, x′ ∈ X3 so that

d(x, x′) < δ and x
T∼ x′ for a sufficiently small δ. Then if ε (the
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constant used in the definition of X3) is smaller than some absolute
constant there is a τ ≥ 0 so that

Dρ,C0,δ1/4(xa(−τ), x′a(−τ)) ∩Rρ(xa(−τ)) 6= ∅, (7.23)

xa(−τ) ∈ X2 (7.24)

x′a(−τ) ∈ X2. (7.25)

Proof. There are two (very similar) cases corresponding to the two cases
of Lemma 7.9 applied to x, x′:

Case (1) of Lemma 7.9 holds:
Let ξ1 be as in Lemma 7.9.(1). We know that for all τ ∈ (0, κ log ξ1),

ξ1 ∈ Dρ,C0,δ1/4(xa(−τ), x′a(−t′))

so we need to check that there is some τ in the above range for which
simultaneously (7.24), (7.25) and

ξ1 ∈ Rρ(xa(−τ)) (7.26)

all hold. We can rewrite (7.26) using (7.15) as

xa(−τ − 1
2
ln ξ1) ∈ X (ρ). (7.27)

Using (7.16), since x, x′ ∈ X3, we know that∫ κ ln ξ1

0

1X2(xa(−s))1X2(x
′a(−s)) ds ≥ (1− 2ε1/4)κ ln ξ1. (7.28)

On the other hand, using the same equation∫ 0

−(
1
2
+κ) ln ξ1

1X\X (ρ)(xa(s)) ds ≤ ε1/4 ln ξ1

so in particular∫ κ ln ξ1

0

1X\X (ρ)(xa(−s− 1
2
ln ξ1)) ds ≤ ε1/4 ln ξ1 (7.29)

Combining (7.28) with (7.29) we see that as long as

ε1/4(2κ + 1) < κ

(which certainly holds for ε less than some absolute constant) there is
a τ as in the statement of Lemma 7.10

Case (2) of Lemma 7.9 holds:
Again let ξ1 be as in Lemma 7.9.(2). We know that for all τ ∈

(κ′ log ξ1, 2κ
′ log ξ1),

e−τξ1 ∈ Dρ,C0,δ1/4(xa(−τ), x′a(−t′))
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so again we need to check that there is some τ in the above range for
which simultaneously (7.24), (7.25) and

e−τξ1 ∈ Rρ(xa(−τ)) (7.30)

i.e.

xa(−1
2
τ − 1

2
ln ξ1) ∈ X (ρ).

Similarly to the previous case, we can estimate the measure of the
parameters τ in the required range which fails to satisfy one of the
assumptions of Lemma 7.10:∫ 2κ′ ln ξ1

κ′ ln ξ1

1X2(xa(−s))1X2(x
′a(−s)) ds ≥ (1− 2ε1/4)2κ′ ln ξ1.

and ∫ 2κ′ ln ξ1

κ′ ln ξ1

1X\X (ρ)(xa(−1
2
s− 1

2
ln ξ1)) ≤ ε1/4 ln ξ1.

It is again clear that if ε is smaller than some absolute constant there
will be a parameter τ satisfying all the conditions of this lemma. �

Conclusion of proof of Theorem 7.1. We have already shown that for

any δ > 0 we can find a pair of points x, x′ ∈ X3 with x
T∼ x′ and

d(x, x′) < δ.
By Lemma 7.10 there is some τ so that

Dρ,C0,δ1/4(xa(−τ), x′a(−τ)) ∩Rρ(a(−τ)x) 6= ∅,
xa(−τ) ∈ X2

x′a(−τ) ∈ X2.

By Lemma 7.8 there is some s so that for some s′ in a fixed bounded
closed subset S ⊂ R \ {0}

y := xa(−τ)n+(s) ∈ X1

y′ := x′a(−τ)n+(s) ∈ X1

y ∈ Bδ1/4(yn+(s′))

µy,N+ = µy′,N+

Since z 7→ µz,N+ is continuous on X1, X1 is compact, and δ arbitrarily
small, we see that there must be points z, z′ ∈ X1 with

z = z′n+(s′) for some s′ ∈ S, µz,N+ = µz′,N+

a contradiction to the definition of X1. �
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8. Hecke Maas forms and recurrent measures

In this section we take G to be the linear algebraic group of invertible
elements in a quaternion division algebra defined over Q. Assume that
G is unramified over R and Qp, and take G = G(R) × G(Qp). Take
Γ = G(Z[1

p
]), or more precisely the diagonal embedding of this group in

G. Then as is well-known, Γ is a lattice in G. More generally, one may
take a congruence sub group of this lattice of order relatively prime
to p – everything mentioned below is equally valid for such a lattice,
and except for minor notational nuisances the arguments need not be
modified.

We take K∞ < G(R) and Kp = G(Zp) < G(Qp) to be the respective
maximal compact subgroups, and take K = K∞×Kp. Let C denote the
center of G(R), considered as a subgroup of G. As is well-known, M =
CΓ\G/K can be identified as a compact quotient of the hyperbolic half
plane H, and X = CΓ\G/Kp a compact quotient of SL(2, R). Finally,

set X̃ = CΓ\G, πp the projection x 7→ xKp,
π∞ the projection x 7→ xK∞, and πp,∞ = πp ◦ π∞.
Let Cp = G(Qp) ∩ CΓ, where we identify between G(Qp) and its

image in G. This is always a subgroup of the center of G(Qp); indeed,
this is just the multiplicative group of nonzero rationals viewed as a
subgroup of the nonzero quaternions. Thus G(Qp)/Cp is a group which

acts freely and continuously on X̃. This group no longer acts on M or
X; however, this action has not completely disappeared: if one takes
a G(Qp) orbit xG(Qp) ⊂ CΓ\G then for any x ∈ X̃, the map t[x] :
gCpKp 7→ πp(xg) is an embedding of T = G(Qp)/CpG(Zp) (i.e. of a
p+1-regular tree with some additional algebraic structure) in X. What
is more, if y = xg ∈ xG(Qp), then t[x](T ) = t[y](T ) and t[y]−1◦t[x] is a
tree automorphism: indeed, it is simply the map qCpKp 7→ g−1qCpKp.
Finally, for any y ∈ X one can find a neighborhood y ∈ U ⊂ X in
which there is a continuous section τU of the bundle X̃ → X, which
gives us a map tU : U × T → X defined by

tU(y′, q) = t[τU(y′)](q).

In this way we see that X has a natural T -space structure. Take T
to be some open cover of X with sets U as above. Since T can be
naturally identified with the tree it is natural to take them metric on
T to be normalized so that the distance between nearest neighbors is
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1; with this normalization3, for every g ∈ G(Qp)/Cp we have that

dT (gKp, g

(
pl 0
0 1

)
Kp) = l.

This structure as a T -space is intimately connected with the Hecke
operators Tp. Indeed, let q1, q2, . . . , qp+1 be the nearest neighbors of
the distinguished point e ∈ T . Then for any function f on X one can
define Tpf by

Tpf(x) =

p+1∑
i=1

f(tU(x, qi)),

where U ∈ T is a neighborhood of x (this does not depend on U).

Theorem 8.1. Let Φi be a sequence of eigenfunctions of Tp in L2(X)∩
C(X), with ‖Φi‖2 = 1. Suppose that the probability measures |Φi|2 dvol
converge in the weak star topology to a measure µ. Then µ is T -
recurrent.

remark: If X is not compact, it is not necessarily true that µ is a
probability measure. If µ is the trivial 0 measure, then either agree to
call it T -recurrent or excluded this case from the theorem.

In [Wol01, Lin01a] it was shown that every arithmetic quantum limit
can be realized as a weak star limit of |Φi|2 dvol with Φi Hecke eigen-
functions in L2(X) ∩ C(X) as above, hence the following is a direct
corollary of Theorem 8.1:

Corollary 8.2. Let X, p and T be as above. Then every arithmetic
quantum limit on X is T -recurrent.

If f is a function f : T → C, we let

Spf(x) =
∑

dT (x,y)=1

f(y)

more generally, set Spkf(x) =
∑

dT (x,y)=k f(y).

The following easy estimate (very similar to the one used in[BL03])
is the heart of the proof of Theorem 8.1.

Lemma 8.3. If ST f = λf for f : T → C and λ ∈ R, then for all
n ≥ 0 we have that ∑

y∈BT
n

|f(y)|2 ≥ C0n |f(e)|2 , (8.1)

with C0 an absolute constant that does not depend on λ or even on p.

3and identifying G(Qp) with GL(2, Qp)
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Proof. There are two cases: |λ| > 2p1/2 and |λ| ≤ 2p1/2. We begin with
the former case. Since Spk can be expressed as a polynomial in Sp, we
get that f is an eigenfunction of Spk . Let λpk be the corresponding
eigenvalue. As one may verify, e.g. by induction, if we set cosh α =∣∣∣ λ
2p1/2

∣∣∣ then

n∑
k=0

λp2k = pn sinh(2n + 1)α

sinh α
≥ (2n + 1)pn.

In other words,∣∣∣∣∣∣
∑

dT (e,y)∈{0,2,...,2n}

f(y)

∣∣∣∣∣∣ ≥ (2n + 1)pnf(e).

Applying Cauchy Schwartz, we get∑
dT (e,y)∈{0,2,...,2n}

|f(y)|2 ≥ n2 |f(e)|2 .

We now turn to the case |λ| ≤ 2p1/2. We proceed similarly to the
previous case: we set cos θ = λ

2p1/2 , and use the identity

n∑
k=0

λp2k = pn sin(2n + 1)θ

sin θ
. (8.2)

Subtracting (8.2) with n = k − 1 from the same equation for n = k,
and using Cauchy Schwartz inequality, we get

∑
d(e,y)=2k

|f(y)|2 ≥

∣∣∣∑d(e,y)=2k f(y)
∣∣∣2

(p + 1)p2k−1

=

∣∣λp2k

∣∣2 |f(e)|2

(p + 1)p2k−1

≥ 1

2

[
sin(2k + 1)θ

sin θ
− sin(2k − 1)θ

p sin θ

]2

≥ c |f(e)|2 if (2k + 1)θ mod π ∈ [2π/5, 3π/5].

Since it is easy to see that if n > c1/θ

n∑
k=1

χ[ 2π
5

, 3π
5

]((2k + 1)θ mod π) > c2n,

we get that (8.1) holds for n > c1/θ.
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On the other hand, if n ≤ c3/θ for a sufficiently small absolute

constant c3 one has that sin(2n+1)θ
sin θ

≥ n so by (8.2) we have that for
such n ∣∣∣∣∣

n∑
k=0

λp2k

∣∣∣∣∣ ≥ npn

and so ∑
y∈BT

2n

|f(y)|2 ≥ cn2 |f(e)|2 ≥ cn |f(e)|2 .

By suitably choosing C0 in (8.1) the bounds we obtained for n > c1/θ
and n < c3/θ suffice to prove this equation in all cases. �

Fix some left invariant metric on G(R); since it is left invariant, it
gives rise to a well-defined metric dX(·, ·) on X. Define the injectivity
radius rinj as

rinj = min
{
dG(R)(g1, g2) : g1, g2 ∈ G(R) with πp(g1) = πp(g2)

}
.

Corollary 8.4. Let µ be a measure on X as in Theorem 8.1. Let
n ∈ N and x ∈ V ∈ T be arbitrary, and take 0 < r < rinj/3 so that
BX

r (x) ⊂ V . Then ∑
y∈t(x,BT

n )

µ(BX
r (y)) ≥ C0nµ(BX

r (x)). (8.3)

Remark: the restriction BX
r (x) ⊂ V is not essential. It is used merely

to simplify notations, and is not really a limitation since we will only
be interested in small balls.

Proof. X is a T -space with the additional nice property that tV (·, q) :
V → X is an isometry for every V ∈ T and q ∈ T . This in particular
implies that for any y = tV (x, q) and any f ∈ L1(X)∫

BX
r (y)

f(z)d vol(z) =

∫
BX

r (x)

f(tV (z, q))d vol(z).

Now let Φi ∈ C(X)∩L2
1(X) be an eigenfunction of the Hecke operator

Tp. Let µi be the measure defined by µi(A) =
∫

A
|Φi(z)|2 d vol(z). Then

∑
y∈tV (x,BT

n )

µi(B
X
r (y)) =

∑
y∈tV (x,BT

n )

∫
BX

r (y)

|Φi(z)|2 d vol(z)

=

∫
BX

r (x)

∑
q∈BT

n

|Φi(tV (z, q))|2 d vol(z).

(8.4)
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Now since Φi is an eigenfunction of Tp, we get that for every z ∈ V
the map q 7→ Φi(tV (z, q)) is an eigenfunction of Sp and we may apply
Lemma 8.3 to get

(8.4) ≥ C0n

∫
BX

r (x)

|Φi(z)|2 d vol(z) = µi(B
X
r (x)). (8.5)

By definition, µi
w−→ µ, so for any open set U ⊂ X we have that

µ(U) ≤ lim µi(U) ≤ lim µi(U) ≤ µ(U)

Applying this to (8.5) one gets (8.3). �

Proof of Theorem 8.1. Let ε > 0 be arbitrary. Let n0 > (C0ε)
−1.

Let x ∈ X and r be sufficiently small so that all the balls BX
r (y)

with y ∈ t(x, BT
n ) are pairwise disjoint. Without loss of generality we

also assume that r < rinj/3, and that there is some V ∈ T so that
BX

r (x) ⊂ V .
Set U =

⋃
y∈t(x,BT

n ) BX
r (y), and take A be the measurable partition

whose atoms are precisely the sets t(y, BT
n ) for y ∈ BX

r (x). If C1 is a
countable algebra of Borel subsets of BX

r (x) generating the sigma ring
of Borel measurable subsets of BX

r (x) then

C =

{⋃
V ∈T

tV (C ∩ V, BT
n ) : C ∈ C1

}
is a countable algebra of Borel subsets of U generating A. Since the
topology on T is the discrete topology A satisfies the conditions of part
(2) of Theorem 3.6: every atom of A is clearly an open T -plaque.

Decompose the measure µ|U := µ(· ∩U) according to the sigma ring
A, obtaining a system of conditional measures µAy (each supported on
a finite subset of U) so that for any B ⊂ U

µ(B) =

∫
U

µAy (B ∩ [y]A)dµ(y). (8.6)

Define a : U → BX
r (x) by

a(y) = [y]A ∩BX
r (x) (8.7)

(more precisely, a(y) is a unique element of the set on the right hand
side of (8.7)). Set ν = a∗(µ|U) and for every q ∈ BT

n set

νq = tV (·, q)−1
∗(µ|BX

r (tV (x,q))).

Thus ν and all νq are measures supported on BX
r (x) and νe = µ|BX

r (x).

Note also said that ν =
∑

q νq. In particular for every q ∈ BT
n we

have that νq � ν, and we set ρq to be the Radon-Nykodim derivative
ρq = νq

ν
.
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Using this we can write for any B ⊂ U

µ(B) =
∑
q∈BT

n

[tV (·, q)∗νq](B ∩BX
r (tV (x, q)))

=

∫
BX

r (x)

∑
q∈BT

n

ρq(y)χB(tV (y, q))dν(y).
(8.8)

Comparing (8.6) with (8.8) we see that for ν-almost every y

µAx ({tV (y, q)}) = ρq(y).

By the theorems on differentiation of measures [Mat95]) for ν-almost
every y

ρq(y) = lim
s→0

νq(B
X
s (y))

ν(BX
s (y))

also note that except for a countable set of radii s, we have that
νq(∂BX

s ) = 0. Furthermore, Lemma 3.7 implies that ρe 6= 0 almost
surely. Using this and Corollary 8.4 we see

that for ν-almost every y

µAx ([y]A)

µAx ({y})
=

∑
q∈BT

n
ρq(y)

ρe(y)

= lim
s→0

∑
q∈BT

n
νq(B

X
s (y))

νe(BX
s (y))

= lim
s→0

∑
q∈BT

n
νq(BX

s (y))

νe(BX
s (y))

≥ C0n.

It follows form part (2) in Theorem 3.6 that for µ-almost every y we
have that

µV
x,T (BT

n ) ≥ C0n.

In other words, µ is T -recurrent in a rather quantitative and uniform
way! �

Appendix A. A maximal ergodic theorem for non
invariant measures (joint with D. Rudolph)

The maximal ergodic theorem states that for any probability measure
µ on the space X invariant under a Rd-action x 7→ t;Rd(x, s), if we define
for any function f on X

M(f)[x] = sup
r>0

1

vol(Br)

∫
Br

∣∣f(t;Rd(x, s))
∣∣ ds
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then for any f ∈ L1(X, µ)

µ {x : M(f)[x] > R} <
Cd ‖f‖1

R
,

with Cd a universal constant depending on d.4

In 1944 W. Hurewicz [Hur44] proved a version of the pointwise er-
godic theorem, using a maximal ergodic theorem, valid for a general
recurrent measurable Z-action on a probability measure space. It is
most often quoted today with additional assumption that the action
be measure class preserving; however this assumption, which was not
made in the original paper, is not a natural one for the purposes of this
paper.

Hurewicz also claimed to have a similar theorem for R-actions (which
is the case used in the proof of Theorem 1.1) but neither the statement
nor the proof of this theorem appear to have been written.

The main result of this appendix is the following version of a maximal
ergodic theorem in the non measure preserving setting. In what follows,
we take T to be Rd or more generally any (locally compact, second
countable) metric space with a transitive metric preserving action on
which the Besicovitch covering theorem holds (see [Mat95], Theorem
2.7). More precisely, we need that there would be some number P (T )
so that for any bounded subset A ⊂ T and family of closed balls B so
that every point of A is a center of some ball of B there is a finite or
countable collection of balls Bi ∈ B such that they cover A and every
point of T belongs to at most p(T ) balls Bi.

Theorem A.1. Let T be a metric space satisfying the Besicovitch cov-
ering theorem, and let X be a (Isom(T ), T )-space, and α : X → X be a
homeomorphism that uniformly expands the T -leaves. Suppose that µ
is a α invariant probability measure on X, and that for µ-almost every
x its T -leaf is embedded. Define

Mµ(f)[x] = sup
r>0

1

µx;T (Br)

∫
Br

|f(t;T (x, s))| dµx;T (s).

Then

µ {x : Mµ(f)[x] > R} <
CT ‖f‖1

R
,

with CT a universal constant depending only on T .

4The maximal ergodic theorem is known in much greater generality for actions
of general amenable groups (see [Lin01b]). We do not know if our results here can
also be similarly extended.
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The main novelty in the (proof of the) above theorem is the intro-
duction of the Besicovitz covering theorem to this context. This allows
in particular to treat non measure preserving Rn-actions, for which
relatively little seems to have been done. We note that the assump-
tion regarding the existence of a measure preserving leaf expanding
homeomorphism α is not needed; we have not made an effort to prove
an optimal theorem (deferring this to a later paper) but a theorem
sufficient for the purposes of this paper and probable generalizations.

The following lemma allows us to translate Theorem A.1 to a ques-
tion about covers of T .

Lemma A.2. Let X be as in Theorem A.1. For every r, δ > 0 there
is a subset X ′ and a sigma ring A of subsets of X ′ so that

[x]A ⊂ BT
∞(x) for every x ∈ X ′ (A.1)

µ
{
x ∈ X ′ : BT

r (x) ⊂ [x]A
}

> 1− δ. (A.2)

Proof. First we show that there is a subset X ′′ with µ(X ′′) > 1− δ, a
r′ > 0, and a sigma ring A′ with ∪A′ ⊃ X ′′ so that (A.1) and (A.2)
hold for x ∈ X ′′, A′ and r′. This does not use α-invariance of µ.

Indeed, let K ⊂ X be a compact set with µ(K) ≥ 1 − δ/2 so
that every x ∈ K has an embedded T -leaf. We use Corollary 3.5 to
construct finitely many 1, T -flowers, say {(Ai, Ui)}i=1,...,N with centers

{Bi}i=1,...,N , so that the centers Bi cover K (see Definition 3.4). Define,
for every 0 < a ≤ r

Ui,a =
{
x : BT

a (x) ⊂ Ui

}
Ai,a = {A ∩ Ui,a : A ∈ A} .

Notice that by ♣-3 in Definition 3.4 we have that Bi ⊂ Ui,r.
Set r′ = δ/4N . Since µ(Ui) < 1, there must be a r′ < a(i) ≤ r − r′

so that

µ(Ui,a−r′ \ Ui,a+r′) < 2r′.

Now, take

A′ =
N∨

i=1

Ai,a(i)

(i.e. A′ is the sigma ring generated by the union
⋃N

i=1Ai,a(i)) and set

X ′′ =
⋃N

i=1(Ui,a(i)).
It is clear that for every x ∈ X ′′, the atom [x]A′ ⊂ BT

∞(x), so we only
need estimate

µ
{
x ∈ X ′′ : BT

r′(x) 6⊂ [x]A′
}

. (A.3)

So when is BT
r′(x) 6⊂ [x]A′? Only if for some i there is a A ∈ Ai,a(i) so

that either
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• x ∈ A but BT
r′ 6⊂ A

• x ∈ X ′′ \ A but BT
r′ ∩ A 6= ∅

In either case, x ∈ Ui,a(i)−r′ \ Ui,a(i)+r′ .
Thus we see that

(A.3) ≤
N∑

i=1

µ(Ui,a(i)−r′ \ Ui,a(i)+r′) ≤ δ/2,

and r′, A′ and X ′′ satisfy (A.2).
Suppose α expands the T -leaves by at least a factor of c > 1. Then

for any x ∈ ∪A′

∂T
cnr′ [α

nx]αn(A′) ⊂ αn(∂T
r′ [x]A′).

Take n large enough so that cnr′ > r and set A = αn(A′), X ′ = αnX ′′.
Then (A.1) and (A.2) for A′, X ′′ and r′ imply the same for A, X ′

and r. �

Proof of Theorem A.1. Let Y = {x ∈ X : Mµ(f)[x] > R}, and for any
r > 0 define

Mµ,r(f)[x] = sup
0<ρ<r

1

µx,T (B̄ρ)

∫
B̄ρ

|f(t;T (x, s))| dµx;T (s)

Let r be sufficiently large so that

Y ′ = {x ∈ X : Mµ,r(f)[x] > R/2}

satisfies µ(Y ′) > µ(Y )/2. Let A and X ′ be as in Lemma A.2 for
δ = µ(Y )/4, and set

Y ′′ = Y ′ ∩
{
x ∈ X ′ : BT

r (x) ⊂ [x]A
}

,

so in particular µ(Y ′′) ≥ µ(Y )/4.
Choose x ∈ X ′, and let Yx = Y ′′ ∩ [x]A. For every y ∈ Yx there is a

ry < r so that ∫
B̄T

ry (y)

|f(z)| dµAx (z) > RµAx (BT
ry

(y))/2.

Note that since y ∈ Y ′′ and ry < r we have that BT
ry

(y) ⊂ [x]A. Find,
using the Besicovitch covering theorem, a countable sub collection F ={
B̄T

ri
(yi)
}

of the collection
{

B̄T
ry

(y) : y ∈ Yx

}
so that Yx ⊂ ∪F but no

point in [x]A is contained in more than P (T ) balls from the collection
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F . Then ∫
|f(y)| dµAx (y) ≥ P (T )−1

∑
B∈F

∫
B

|f(y)| dµAx (y)

≥ R

2P (T )

∑
B∈F

µAx (B)

≥ R

2P (T )
µAx (Yx).

We now integrate over x ∈ X ′ to get∫
X′
|f(y)| dµ(y) =

∫
X′

∫
|f(y)| dµAx (y)dµ(x)

≥ R

2P (T )

∫
X′

∫
µAx (Yx)dµ(x)

=
R

2P (T )
µ(Y ′′),

and so we indeed get the maximal inequality

µ(Y ) ≤ 8P (T ) ‖f‖1

R
.

�
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