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INVARIANT MEASURES AND EQUILIBRIUM STATES FOR
SOME MAPPINGS WHICH EXPAND DISTANCES

BY
PETER WALTERS

Abstract. For a certain collection of transformations T we define a
Perron- Frobenius operator and prove a convergence theorem for the powers
of the operator along the lines of the theorem D. Ruelle proved in his
investigation of the equilibrium states of one-dimensional lattice systems.
We use the convergence theorem to study the existence and ergodic
properties of equilibrium states for T and also to study the problem of
invariant measures for T. Examples of the transformations T considered are
expanding maps, transformations arising from /-expansions and shift
systems.

We study the problems of invariant measures and existence of unique
equlibrium states for a certain class of transformations which includes
expanding maps, subshifts of finite type, shifts on an infinite alphabet, and
the transformations arising from /-expansions. The results about invariant
measures and equilibrium states are deduced from a generalized Perron-
Frobenius theorem (Theorem 8) of the type proved by D. Ruelle [20]. R.
Sacksteder proved related convergence theorems for the case of/-expansions
[21] and the case of expanding maps [22] but neither of his results cover both
cases. The invariant measures and equilibrium states we obtain can be
characterized by a variational principle and in all the above examples have
Bernoulli natural extensions. For example if T is a C2 expanding map on a
compact connected manifold then T preserves a probability measure u
equivalent to the smooth measures and the natural extension of (7", p) is a
Bernoulli shift (Theorem 18). The existence of ¡x was also shown in [11] and
[22]. Any real-valued Holder continuous function q> has a unique equilibrium
state jUjp for an expanding map T and the natural extension of (T, p¿) is a
Bernoulli shift (Theorem 19). We do not have to use a symbolic repre-
sentation to get the measure p.

When T is a transformation arising from an /-expansion we show that the
invariant measure equivalent to Lebesgue measure has a Bernoulli natural
extension and is given by a variational principle (Theorem 22). The Bernoulli
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122 PETER WALTERS

property was proved in [19] and [2]. Also certain functions have unique
equilibrium states for T. Our results could also be used to give some of the
results on multidimensional /-expansions [27].

Our convergence theorem (Theorem 8) generalizes the Ruelle-Perron-
Frobenius theorem ([3], [5], [24]) and so implies the results on equilibrium
states for subsbifts of finite type. It also gives results for the case of shifts on
infinite alphabets (§3.3). Using these results we give an example (which
appears in [6] and [9]) of a continuous function with exactly two ergodic
equilibrium states for the shift transformation on the product space IIo^O, 1}.
We also deduce a Perron-Frobenius theorem for infinite matrices (Theorem
25).

We now summarize the notation used. We_ shall have a compact metric
space X and an open dense subset X of it C(X) will denote the Banach space
of real-valued continuous functions on X with the supremum norm. ||/|| will
denote the norm of /, and "z*" will denote convergence in the supremum
norm. C(X) will denote the space of continuous functions on X and UC(X)
will denote the space of uniformly continuous functions on X. M(X) will
denote the_collection of all probability measures onjhe o-algebra of Borel
sets ® of X. Since A!" is a compact metric space, M(X) is a compact convex
metrisable space in the weak* topology. We shall use E to denote the closure
of a set E, and Be(x) will denote the ball centered at x of radius c. aE will
denote the boundary of E (i.e., oE = E\ int(£)). diam(£) will denote the
diameter of E^

If p G M(X) and/ <=_C(X) we shall let p(f) denote the integral of/with
respect to p. If h E_C(X), A • p will denote the measure defined by (A • p)(f)
■ M(A •/)»/ G C(X). We shall use the notation for entropy from [18] or [26].
If T is a transformation preserving the measure u then H^Q, h^T, Q, h^T),
Hiiiv/Q will denote the entropy functions as defined in [18] or [26].

If X0 cX,T:X0-*Xisa map and <p: X-» R is a map we write S„<p(x) for
2,"iZo<p(T'x). A continuous map T: X-* X of a compact space is called
expansive (sometimes one-sided expansive) if there exists 8 > 0 with the
property that d(T"x, T"y) < 80 V« > 0 implies x = y. An equivalent
definition is to require Jhe existence of an open cover o of A" with the
property that rC07'"A¡, contains at most one point for all choices of {A^)
from a [26].

1. Convergence theorems. Let A' be a compact metric space with metric d
and let A' be an open dense subset of X. Let XQ be an open dense subset of X
and suppose T: X0 -» X is a continuous map of A'o onto X such that the set
{T~xx) is at most countable for each x E X. In some applications all three
spaces A'o, X, X coincide. We shall always assume T has the following
property:
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INVARIANT MEASURES AND EQUILIBRIUM STATES 123

I. There exists «o > 0 such that for every x E X, r~'(52eo(x) n X) can be
written uniquely as a disjoint union of a finite or countable number of open
subsets Ax(x), A2(x),... of X0 with for each /, T\AM being a homeomor-
phism of A¡(x) onto B2ta(x) n X not decreasing any distances (i.e., if y,
y' G A¡(x), d(Ty, Ty1) > "d(y, yf). We shall call the sets A¡(x) the compo-
nents of T~l(B2to(x) n X). Note that if d(x,xr) < e0 there is a natural
bijection between the sets {T~xx) and {T~xx') by letting v G T~lx corre-
spond to y' e T~xx' if y and y' lie in the same A¡(x). We shall use the
notation y ' to denote the point of T~xx' corresponding toy G T~xx when
d(x, x1) < try. Notice that d(y,y') < d(x, x') < e„ so the elements of {T~ V)
and {T~xy') are linked by a natural bijection too. This gives rise to a natural
bijection between {T~2x) and {T~2x') and in the same way we arrive at a
natural bijection between the sets {T~"x) and {T~nx'} (n > 1) when
d(x, x') < e0. We use the notation v' for the point in T~"x' corresponding to
y G T-"x. (So for/ < n - 1 3/} such that Py, Py' G A^P+'y).)

We want to define a Ruelle-Perron-Frobenius operator (or transfer matrix
operator) £9 :C(X)-+ C(X) for certain <p G C(X0) by the formula £,/(x) -
^•yeT-'x^^Viy) iS x E X. We now consider conditions on <p which allow us
to do this.

Consider the following conditions on ç> G C(X¿):
(i) 3A" such that 2yeT-,xevM < KVx E X,
(ii) S^t-uK«» - e^">\ -> 0 as ¿(x, *') -» 0.

(Here the sum is over the finite or countable set T~xx and y' is the point of
T~xx' corresponding to y G T~xx.)

If A'o = X_ ** X and | T~ xx\ < k Vx G X then (i) and (ii) always hold for
all c» G C(X).

If (ii) holds and we know 2ZJ>eT-ixe'fü') < oo for some x then (i) holds.

Lemma 1. Let T: X0^>X satisfy I and let <p G C(X0) satisfy (i) and (ii).
Then tj(x) ** 2yeT-<xe*Mf(y) defines amap ß^: UC(X)-* UC(X) which
extends to a positive continuous linear map tv: C(X) -» C(X).

Proof. The sum in the definition of £9 converges by (i). If / G UC(X)
then tyf G UC(X) since if d(x, x') < e0

+ A:   sup   |/(y)-/(/)|.   D

Let È; be the dual of £,,. The following will be useful in the study of
equilibrium states.

Lemma 2. Let T: XQ -» X satisfy I and let <p g C(X0) satisfy (i) and (ii).
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124 PETER WALTERS

There exists a real number X > 0 and v G M(X) such that £.* v «= Ar.

Proof. The map p-» £*u/(£*p)(l) is a continuous map of M(X) into
M(X) and hence has a fixed point v by the Schauder-Tychonoff fixed point
theorem. Let X = (£; »0(1).

Lemma 3. Let X > 0 and v G M(X) be as in Lemma 2. Let A¡ be a
component of T~\B2t¡)(x) n A') and let v\A¡ be the measure v restricted to A¡
((v\A)(E) = v(E n A,)). Then the Radon-Nikodym derivative

TET«-*""
for almost ally G A¡.

Proof. Let/ G C(A") have compact support inside A¡. Then

XJjdv = Xffdv = /ê>fc =fTAe^f(y¡)dv(x)

~(e^f(x)-^(x)dv(x)

where y¡ is the element of T ~ xx inside A¡. The result follows.   □

Corollary 4. Let X > 0 and v G M(X) be as in Lemma 2. Then v is
positively nonsingular and nonsingular for T. (I.e., if E c X0 and v(E) — 0
then v(TE) = 0; and if F c X and v(F) = 0 then v(T~lF) = 0.)

Proof. Since X is compact it is covered by a finite number of balls of
radius 2^, say /^(x,),..., B^xJ). Therefore X is covered by the sets
Pu0ixj) n X, 1 < / < p, and A'o is covered by the components of
T'XB^Xj) C\ X),l < j < p. To show Tis positively nonsingular it suffices
to show v(E) = 0 implies v(TE) = 0 when £ is a subset of some component
A¡ of some T'^B^xJ) n X). But by Lemma 3 v(TE) - /EXe~*Mdv(y) -
0.

To show T is nonsingular it suffices to show that if F c B^xß n X and
v(F) = 0 then v(T~xF n 4(*,-)) = 0 for all components A,(xj) of
T-KB^Xj) DX).But

w=L Xe-f^dv(y)
T-'FnAfa)

by Lemma 3 and so v(T~xF n A¡(xj)) = 0.   □
To prove the convergence theorems we require one more assumption on T

and one more on <p. The following is a mixing condition on T.
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INVARIANT MEASURES AND EQUILIBRIUM STATES 125

II. Ve > 0, 3M > 0 such that for each x E X, T~Mx is e-dense in X. (We
stress that M is independent of x.)

The following condition gives a further restriction on <p.
(iii) If d(x, x') < e0 then

Cv(x, x') = sup     sup    2 [viTy) - <p(7>')]
/i>l   yeT~"x i-0

exists, is bounded above by a constant C9, and C9(x, x') -+ 0 as rf(x, x*) -» 0.
We make some remarks about condition (iii).
Remarks, (a) For n > 1 and y E T~"x we have

- Cv(x',x) < 2[<p(Py) - <p(TY)] < C_(x,x'),
i-0

so that condition (iii) is equivalent to the following statement;

"2 Wy) - f(7V)]sup    sup
n>\   y&T~"x

< C,   whenever d(x, x') < e0

and

sup    sup
n>!   yST'"x

n-\

2 [v(Ty) - <p(Ty)]
i-0

0   as</(x,x')-»0.

(b) If C( is a component of T~n(Be¡¡(x) n X) (i.e., T" maps C¡ onto
5#o(x) n A" not decreasing distances) there exists d¡ such that \{S,,<p){y)\ < d¡
Vy G Q. This is because for any fixed y' G C¡

\s„<Piy)\ <\s„viy) - sm/)\ +\s„<pí/)\
<c9+\s„<p{y')\~d¡.

(c) Conditions (i) and (iii) imply condition (ii). This is because if x, x' G X
and d(x, x') < e0 then

V     levO') _ (jv0,')| _     V     e<p(y')te<p(y)-v<y') _ ¡i

< 2    ^^maxff?^*-*0- 1, 1 - <?-<;<*'.*)]

< Kma\[ec^x'^ - 1,1 - ,?-<;<*•*>].

(d) The conditions II, (i), (ii), (iii) do not depend on the choice of the metric
d on X. Condition I depends on d and in some examples we can change to an
equivalent metric for which I holds.

An important consequence of II and (iii) is the following:

Lemma 5. Let T: X0 -» X satisfy I and II and let <p G C(X) satisfy (i) and
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126 PETER WALTERS

(iii). Then Ve > 0, 3N > O and a G R such that Vx, w G X 3y G T~Nx n
Be(w) with l^MTy) > a.

Proof. Let e < e0 be given. Using II choose N so that T~Nx is e/4 dense
in X for each x G A*. Choose w,,..., wr so that Bt/2(wj) cover A". It suffices
to choose ay G Ä (1 < / < r) so that Vx G A1 3y G T~Nx n aí/2(mj-) with
SN<p(y) > ay, because then we can take a — minKy<r «x. Choose Xi,..., xm
so that 5e/4(x,) cover A'. Fix/. Since T~Nx¡ is e/4 dense 3y, G T"""*, with
¿Cft» «j) < c/4. Let x G X. Choose / so that d(x, x¡) < e/4. Let y be the
point of T~Nx corresponding toy,. Then

d(y, Wj) < d(y,y) + d(y„ wf) < e/4 + e/4 = e/2
soy G T~Nx n Bc/2(Wj). Also

SyvÇ'C)') = SN<p(y) - SNq>(y¡) + SNtp(y¡)
> sMy,) - cv
>rnïn[SN<p(y)-C<f] = aJ.   Q

We shall be especially interested in a certain subclass of C(X0). Let
G(A-0) = {g G C(A-0)|g > 0 and 2yeT->xg(y) = 1 Vx G A"}. For cp - logg
condition (i) holds with K = 1, and condition (ii) becomes

(")c 2    |*O0-*(/)|-* 0   as«7*(x,x')-»0.
.yer-'x

If (ii)c is satisfied then £,ogg: UC(X)-> UC(X) and ß,ogg: C^)-» C^)
are defined. Condition (iii) becomes

(iii)c If d(x, x') < e0 then

V siTy)Dg(x,x') = sup    sup    11 ——-
n>i /er'jfj.0 g(7>)

exists, is bounded above by Dg, and Dg(x, x') -+ 1 as d(x, x1) -+ 0. Equiva-
lently:

"tt1   s(rWD* (x, x') = sup    sup
n>l   yeT~"x

n^fi-i,-o *(ty)
</>,-!

for all x, x' with «7*(x, x') < e0 and D*(x, x') -> 0 as «f (x, x') -» 0. By remark
(c) above (iii)c implies (ii)c.

If T satisfies I and II and g G G (A'o) satisfies (iii)c then Lemma 5 asserts
that Ve > 0, 3N > 0 and b > 0 such that Vx, w G X By G T~Nx n Bt(w)
withïï^g(Vy) > b>0.

The following result appeared in [10] for the case of a shift space on a finite
alphabet (with a stronger assumption on g) and in [24] for the case of
subshifts of finite type.
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invariant measures and equilibrium states 127

Theorem 6. Let T: X0 -» X satisfy I and II and let g E G(X¿) satisfy (iii)G.
Then there existep E M_(X) such that Q!oggf^±n(f) V/ G C(X). p is the only
member of M(X) with ß,5ggjtt = p.

Proof. Write £ instead of £,ogg. Let/ G C(X). We show {&f\n > 0} is
equicontinuous. Let x, x' G X and d(x, x') < e < e0. Then

|£"/(x) - £"/(x')|

2   g(v)ár(7» • • • g(T"-xy)[f(y) -/(/)]
yeT~"x

2    f(y')[8(y)8iTy)--'g(T"-xy)
y&T--x

-g(y')g(Ty')---g(T"-y)]

<sup{|/(«) -f(v)\\d(u, v)<e}

I  2
yST~"x

g(y') ■ • • g(T"-xy')
g(y) • • • g(Tn~xy)

g(y')---g(Tn-\y')
-1

< sup{|/(M) -f(v)\\d(u,v) < e) +\\f\\D;(x,x').

Therefore {£"f\n > 0} is equicontinuous. Since \\l"f\\ < ||/||,/ G C(X), we
know the closure of (£"/| n > 0} in C(X) is compact. Hence there is a sequence
n¡ -»co and /* G C(X) with £"/=>../*• We have

min(/) < min(£/) < • • • < min(/*) < max(/*)

< • • • < max(£/) < max(/).

Clearly min(£*/*) = min(/*) for all fc > 0. We want to show min(f*) ** f*
and to do this we shall show that if e > 0 and 8 > 0 then f*(u) < min(/*) +
8 for all points u in an e-dense subset of X. Choose N > 0 and b > 0 so that
Vx, w E X 3y G T-^x Q Bt/2(w) with nf.To'gtT» > ¿» (by Lemma 5).
Choose zEX with min^"/*) = tNf*(z). If z G * then f*(y) = min(f*)
Vy G r-iV2 and so f*(y) = min(/*) for points y in an e-dense set. Suppose
that z E X. We shall show that if x G X is sufficiently close to z and if
W-JgCPy) > b for some y E T~Nx then f*(y) < min(/*) + 5. Suppose
y G T~Nx is such that IL?.To1g(T>) > ¿ but/*(y) > niin(/*) + «5. Then

£"/*(x) =    2    g(u)---g(TN-xu)f*(u)
u<ZT~Nx

> min(/*) + g(y) • • • gír^'y^ > min(/*) + ¿5,
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128 PETER WALTERS

and this does not happen if x is close enough to z.
Therefore min(/») = f*. Put p(f) - f*. Then p: C(X) -» R is a member of

M(X) by the Riesz representation theorem. Clearly £*p = p. If m G M (A")
and £*w = /wjhen integrating tnfz±p(f) with respect to /« gives m(f) =
p(/) V/ G C(X). Hence m - p.   Q

Iff: X0 -» R is not continuous we can still write

e.og*/(*)=   2   ¿rOO/OO,     *e*.

We shall use the following corollary when investigating Bernoulli properties
ofr.

Corollary 7. Let T and g be as in Theorem 6 and let p be the measure
obtained in that theorem. Ifp(dB) — 0 then

sup \tnXB{x) - p(B)\-^0   asn-*cx>.
xex

Proof. Let e > 0 be given. Choose an open set U with B c U and
p(U \B)- p(U \ B) < e. Let/+ G C(X) be chosen so that/+ = 1 on B,
0 < /+ < 1, and f+ =0 on X \U. Also choose a compact set C_C int(5)
such that p(B \ C) = p(int(5) \ C) < e and_ construct /_ G C(X) so that
/_ = 1 on C, 0 < /_ < 1, and /_ = 0 on X \ int(B). Then /_ < xb < /+
and p(/+) - p(B) < e, p(5) - p(/_) < e. Therefore

£"/_ (x) < ^(x) < £"/+ (jc)   for x G A-

and
|Ê"X.(*) - M(5)| < max(|£n/+ (x) - p(f+ )| +p(/+ ) - u(5),

|Ê"/-W-p(/_)|+p(5)-p(/_)).
We can choose N by Theorem 6 so that n > N implies

sup\ñnXB(x)-p(B)\<2e.   □
xex

Theorem 6 will be used to prove the following theorem which is the main
result of this paper. It was proved by Ruelle when T is the one-sided shift on
an alphabet of two points [20] and by Bowen for a general mixing subshift of
finite type [3], [5]. That case is also considered in [24] with the same scheme of
proof as we use here.

Theorem 8. Let_ T: X0 -» X satisfy I andll. Let «p G C(X0) satisfy (i) and
(iii). Let v G M(X) and X > 0 be such that ñ*v = Xv(v and X exist by Lemma
2). Then

(a) 3A G C(A-), A > 0 íkcA that v(h) = 1, £„A = AA and

¿E^A-K/)   V/GC(*).
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invariant measures and equilibrium states 129

(tí) The function g = (ev-h)/(X-h « T) belongs to G(X0), satisfies (iii)c,
and the measure p determined by Theorem 6 is h • v. (Therefore p and v are
equivalent)

(c)_Thepair (X, v) is uniquely determined by the conditions X > 0, v E M(X)
andt*v =*Xv.

(d) h satisfies h(x) < ec*i*'x^h{x') if d(x, x') < Eq. his uniquely determined
by this condition and the properties h > 0, v(h) ** 1 and tvh = Xh.

Proof. We shall write £ instead of £9 and C, C(x, x1) instead of Cv,
C9(x, x'). We first show the existence of h. Let

A = {/ EC(X)\f > 0, v(f) = 1 and/(x) < ec(x'x)f(x')

if x, x' G X and d(x, x') < e0}.

A is nonempty because we can show A~'£l G A as follows. Clearly, this
function is nonnegative and has integral 1, and if x, x' G X and d(x, x1) < e0
then

£l(x)=    2    ^w<exp(   sup   [<p(v) - 9(/)])    2    ^
yeT~lx Ve7"'x ' yeT-lx'

< ec{x-x,)ll(x').

A is clearly convex and closed. We shall show it is also bounded and
equicontinuous.

Fix some e, < e0. Lei N and a be chosen for e, by Lemma 5. Let x, w E X.
Choose some point.y0 G T~Nx n Bt{w) with SN<p(y¿) > a. Then

£7(*) =    2    es»*Wf(y) > es"^">/(y0)
ye.T-"x

> e"f(y0) > e°-cf(w).
Therefore/iw) < ec~a£?f(x) for all w, x E X and hence for all w,x EX.

This gives f(w) < ec-"v(tNf) = ec~aXN ** Q for all w E X. Hence A is
bounded.

A is equicontinuous because if / G A and x, x' G X satisfy d(x, x') < e0
then

|/W "/Ml = max(/(x) -f{x'),f{x') - f(x))
< max(f(x')[ec{x'x') - l],f(x)[ec{x'<x) - 1])

< Q ma\(ec{x-x) - 1, ec(xJ>x) - 1),

and this is small when d(x, x') is small, by condition (iii).
Therefore A is a nonempty, compact, convex subset of C(X). We now

show that a-1£ maps A into A. If/ G A and x, x' G X, d(x, x) < e0 then
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130 PETER WALTERS

TË/(*) = T    2    e^f(y)
yeT~lx

< 1    2    e,f{y')f(y')(e'f{y)~'f^)ec(yy))
X

1    S»    A,C(l,»1

yGT-'x

f Ifix'V
We can now apply the Schauder-Tychonoff fixed point theorem to obtain a
fixed point A G A for a"'£. Therefore £A = XA, v(h) = 1, A > 0 and A(x) <
eCix-3r>h(xr) if d(x, x") < eo. We now show A > 0. If A(x) = 0 for some
x G A" then since £"A(x) — X"A(x) = 0 we conclude that A vanishes on the set
U ™„0T~"x, which is dense by condition II. Then A = 0 contradicting v(h) =
1. Therefore A > 0 on X. Let x G X. The ball Bto/2(w) contains points x„ of X
which converge to w and they satisfy A(x') < ech(x„) for any point x' G X
n Bto/2(w). Then h(w) > e~ch(x') > 0.

Put g « evh/(Xh ° T). Clearly g G G (A'o). We show g satisfies (iii)c. Let x,
x' EX and d(x, x1) < e0. Ify G T~"x then

"iri™ ..*-»-*->»*<£ Ííf2
/-o *(7V) *M   *W

so that
t1 *(rv)

eS.9.0-)-S'.T0-')-C(y»-C(x,x') <  ]
1-0   *(7V)

< es,.90)-s.9i>')+coy)+c(*',x)

and hence

1,-1   ziTSi)
e-C(x,x-)-C{x;x) < ] [     6V    ^    < eC(x,x')+CU»

i-o *(7V)
Therefore (iii)c is satisfied._

By Theorem 6 we have £fogg/:±p(/) V/ G C(A") where p G M (AT) is the
only fixed point of ££gg in M(X). We have

¿ (£^)(x) - A(x)(£2,„//A)(x)X"
so that (l/X"p%fz±h-v(f/h). We want to show p(//A) - v(f). Let m G
MfAQ be defined by m(/) = v(hf). Then

"(O) » KA • W) = X '(W"A)) - "(/' A) = m(f)
so that m<= p. Therefore p(f) = y(A/).

It remains to check (c). This follows because by (a) we get
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Il f
log X - lim   - log £ 1   and   v(f) ** lim • -^- .   U

n->oo    n v '      n-»oo    £„|

Some Corollaries of this theorem will be stated later (Corollary 12).
Given <p G C(X0) satisfying (i) and (iii) we shall use the notation X, v, h, g,

a to denote the objects given by Theorems 6 and 8. If we wish to emphasize
the dependence on <p we will add a subscript <p.

So far we have not used the fact that X is an open subset of X but we use
this in part (2) of the next result where we show p (and therefore r) is
concentrated on XQ. When X ** X this follows immediately from part (1). In
the problem of invariant measures the measure v is given and so part (2) is
redundant in that case. It is only needed for the case of equilibrium states
when X *£ X. If we know that pv(Xc) = 1 then the results of_the paper are
true for p^ when X is a (not necessarily open) dense subset of X and XQ is an
open and dense subset of X. However we need to assume X open to get
P(X(¡) =B I f°r au" me functions satisfying conditions (i) and (iii).

Lemma 9. Let T:X0^>X satisfy I and II and let <p satisfy (i) and (iii). Then
(1) T: XQ-*X is measure preserving relative to the measures p\X0 and p\X

(i.e., ifB E X then p(T~lB) ** p(B)).
(2)m(*o)-K*o)-1.
Proof. (1) We shall show that iff E C(X) is nonnegative and has compact

support inside some X n B2t£x) then jfT dp = if dp. Let the components of
T~X(X n B2to(x)) tíeAx, A2!... and let 7) = T\¿. Then/» 7) has compact
support inside A¡ and we can consider it as defined on all of X by putting it
zero outside A¡. Then f (Tz) = ^J(T¡z) and

/>, dp =/0/7.) dp = / g(T~x (x))f(x) dp(x).

Summing this equation gives ffT dp = ffdp.
(2) By (1) we know p(X0) = p(X) so we have to show p(dX) = 0, or

equivalently v(dX) = 0.
Choose e, > 0 so that e, < e0 and so that X contains a ball of radius 4e,.

Choose N sothat T~Nx is e,-dense for all x. Let U8 be the 5-ball of BX i.e.,
Ut=*{xE X\d(x, BX) < 8). Since dX is compact choose a finite cover
Vx.Vr of dX by open balls of radius e,. Let V¡(8) = Us n V¡, 1 < i < r.
Then V¡(8),..., Vr(8) is an open cover of dX and as «5->0 U?.,^)
decreases to 9A". Since V¡(8) c V» condition I implies T-N(V¡(8) n X) is a
disjoint union of open sets of diameter less then 2e,. Since T~Nx is e,-dense,
one of these open sets, say E¡(8), has distance greater than e, from dX. We
can choose the sets E¡(8) to decrease as 5 decreases. Consider r\s>oE¡(a) m
ß. ñ is disjoint from dX by choice of E¡(8), and we now show that
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ß C X \ T~NX. If not then let x G ß n T~NX. Then

tnx gT^) nA- c Us n v,]n x
for ail 8 > 0 and so TNx EdX n ^ n A" = 0, a contradiction. Therefore

¿v-i
Qcx\t~nx= n r-^iA'xr-'A')

y'-0

which is a null set by part (1). Hence v(Q) - 0. This implies v(E¡(8)) -» 0 as
8 -» 0. Fix 5 > 0. Let e > 0 be_given and choose an open set U D E¡(8) with
p(U \ E¡(8)) < e. Let/ G C(A") be so that/= 1 on E¡(8), 0 < / < 1, and
/ =0 outside U. Then

A"[r(^(t5)) + e] > XNffdv -fe"fd>
>\    inf   e**w"WaA* n ^(5))L^e£,(i) J v

= [    inf   es"^]v(dX n K).

Therefore X'Vi^CS)) > d,v(dX n F|) for some constant d¡ (see remark (b)
after the statement of condition (in)) and when 8-* Owe get v(dX n P)) = 0.
Hence v(dX) = 0.   □

We now know the measures p^, we are interested in are concentrated on A'o-
We now took at equivalent ways of describing measures that have the
property £¡Sggu - p for some g G G (A'o). This next theorem generalizes
the one given in [12] for shift systems. Even though X is not compact if
X & X we shall still use M (A") to denote the collection of all probability
measures defined on the Borel subsets <& of X, and M(X, T) to denote the
T-invariant ones. If 6 is a subalgebra of ® and m G M (A") then Em(f/Q)
will denote the conditional expectation of/with respect to Q; and 7m(®/(3)
will denote the conditional information of ® with respect to (3.

Theorem 10. Let Tsatisfy I and let g G G(Ar0) satisfy (ii)c. Let a G M(X).
The following are equivalent:

(1) E^o - a.
(2)aEM(X,T)and

£0(//r-'©)(x)=    2     SOO/OO   o.e. (a)   V/6C(f).

(3)trGA/(A\ 7)t7/iif
»(/.(a/r-'^-h logg) > /«(/„.(Œ/r-'ftJ + logg)   Vm G M(X, T).

Proof. We shall write £ instead of £,ogr The proof that (1) implies
a G M (X, T) is exactly the same as the proof of part (1) of Lemma 9. Let
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/ G C(X). Then

¡fdo **¡lfdo =¡tfdo =/(£/) o Tdo **¡     2     8(y)f(y) do(x).
yBT-'Tx

Therefore

E.(f/T-*®)(x)-     2     g(y)f(y)   a.e.(a).
yeT-'Tx

Now assume (2) holds. Then Ia(%/T'1®) = -logg. Let m G M(X, T)
and let gm: X0 -* R be the function defined a.e. (m) by

Em(f/T-X<&)(x)**   2   gm(y)f(y)-
yeT-'Tx

Im(<& /T-'©) = -log gm, therefore

«(US/r-'«) + logg) = m(logg/gm) < m((g/gm) - 1)

Therefore (3) holds.
Now assume (3) holds and we verify (1). By the above reasoning, if a

satisfies (3) then a(g/ga - 1) = o(log g/g,) so that g„**g a.e. (a). If / G
C(X) then

oCtf)**¡tfdo**¡tfoTdo**¡     2     SOO *(*)-*(/).   G

Notice that we have shown that if a satisfies (3) then

0(4(®/r-'®) + logg) = O.
If |a(logg)| < oo then this becomes H„(%/T-x%) + o(logg) = 0. If XQ =
X ** X and T is expansive then any partition of small diameter is a one-sided
generator for every invariant measure and so we can restate (3) as

he(T) + a(logg) > hm(T) + m(logg)   Vm G M(X, T).
We shall call a measure a a g-measure if a(X) ** 1 and a satisfies (1), (2)

and (3). By Theorem 6 and Lemma 9 we know that when g satisfies condition
(iii)c there is a unique g-measure and it is the measure u with the property
%„/=♦/»(/).

Corollary 11. Let T: X0 -» X satisfy I and let g E G(X¿) satisfy (ii)c. Let
oE M(X,T)be a g-measure. Then £,<„,/(*) » 2ZyeT-ixg(y)f(y) defines a
positive linear operator on Lx(o) and
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/(£,ogÄ/) • / da - ff- (l ° T) da   V/ G L'(a) V/ G L»(o).

Proof.

/(£/) • / Ja = ((£/• l)°Tdo=f     2     g(y)f(y)l(Tx) da(x)
J J J  yST->Tx

=/    2     g(y)f(y)l(Ty)do(x)=(Z(f-(loT))do
J  yBT-'Tx J

= ff'(l°T)do.   D
We now collect together some facts that follow from Theorems 8 and 10.

Corollary 12. Let T:X0->X satisfy I and II and let <p G C(X¿) satisfy (i)
and (iii). Le/ X, v, h, p, g be the objects determined by Theorem 8. Then the
following are true.

(1) p is the unique g-measure (recall g = t'A/(XA ° T)).
(2) p is positive on nonempty open sets and has no atoms.
(3) v»T-n^>p in M(X).
(4) IfJ/ G C(A'o) also satisfies (i) and (iii) then p^ = p^ iff Be E R and

f G C(A-) with <p(x) - xb(x) = f(Tx) - f(x) + C, x G *<,.
(5) p^Cft/T-1®) + <p) > m(/m(©/r-'©) + <p) Mm G M(X, T) and

the value of the left-hand side is log X.
(6) X is also given by

logX= lim   - log£"l.
/i-»oo   n v

(log X is called the pressure oftp and denoted P (tp).)
(7) (T, p) is an exact endomorphism (i.e. C\^0T~"% consists only of sets of

measure 0 or 1 for p).

Proof. (1) This follows by Theorem 6 and Lemma 9.
(2) Let e > 0. By Lemma 5 BN > 0 and b > 0 such that if x, w G X

By E T~Nx n Be(w) with Jl^siTy) > b. Therefore

^BtM)=¡^06gXB,MÍx)dp(x)

= /       2       g(y)---giTN-xy)dp(x)>b.
yBT~NxnB,{w)

Hence every e-ball has p-measure at least b, and so p is positive on nonempty
open sets.

If p has atoms let x0 be a point with largest measure among all atoms. Then
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f*(*o)=f    2    g(y)Xx0(y)dp(x) = g(x0)p(Tx0).
yBT-'x

But g(x0) < 1 so by choice of x0 we must have g(x¿) ** 1 which contradicts
g > 0 and 2,67-^^(2) = 1.

(3) Let/ G C(X).

¡fdv « 7~" =*¡foTndv**±; ¡t;(f »r-)«*

= jñ¡f°%ldv-*¡f'hdv   by Theorem 8.

(4) If /^ = ^ then gv=*g+ a.e. (pj by part (2) of Theorem 10. Therefore

K K<p - «/< = log \, - log\, + log j- o T - log j-    a.e. (pj.

Both sides are continuous on X0 and p is positive on nonempty open sets by
(2) so we get equality on XQ. Conversely, suppose œ — ̂  = / ° T — / + c on
X0 for some c E R and some/ G C(A"). Then £$/ = ¿-"^(/e^r'so that

&/ &(/e0 ,  //e/\

Therefore \, = e^, fy = Ä9«?_/ and p+(l/h¿) ** p^Qe^/h^). The last two
equations imply p¡, ** p^.

(5) Since p is the unique g-measure by (1), Theorem 10 asserts that

p{l^/T~x^) + logg) >m(/m(®/r-'a) + logg)
for all m G Ai (*, T1). Since <p = log g + log X + log A » T - log A this is
equivalent to ^(/„(a/r-1®) + 9) > m(Im(<&/T-x<&) + <p) for all m E
M(X, T). We note after the proof of Theorem 10 that p(Ill(<S>/T~x<S)) +
log g) = 0 for a g-measure so p(IA3 / T~x% ) + <p) ** log X.

(6) This is immediate from Theorem 8 by putting / = 1 and taking
logarithms.

(7) Let £ denote £,ogg. Then £/(x) - S_,,e7-ug(y)/(y) defines an opera-
tor on ¿'(u). We get that f\&f - p(f)\ dp -»0 V/ G Lx(p) because for any
e > 0 we can choose / G C(X) with j\f - l\ dp < e and then

f\t"f-p(f)\dp
</jey- £n/| dp +f\eri - p(i)\ dp +\p(i) - p(f)\

<f\f-1\ dp+\p(i) - p(f)\ +f\ei - p(i)\ dp,
which is small by Theorem 6. We show (T, p) is exact by showing
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£(//naT-"«) - p(f) a.e. V/ G L'(p).

/ e(// H r-"«) - M(/) * </ *(// ñ T- ) - E(f/T~N%) dp

■f\E(f/T-N%)-p(f)\dp.
The first term is small for large N by the Martingale theorem and the second
term equals f\(t"f)TN - p(f)\ dp - j\tN - p(f)\ dp which is small for large
N by the above comment.

The fact that (T, p) is an exact endomorphism implies strong ergodic
properties such as having Lebesgue spectrum of infinite multiplicity [17]. This
implies (T, p) is strong mixing.

It is natural to ask if (T, p) has the property that its natural extension is a
Bernoulli shift (see [17] or [18] for the definition of natural extension). We
shall show this is so if a reasonable partition exists. Such partitions exist for
our examples. Some of our examples will have infinite entropy and so will be
generalized Bernoulli shifts in the terminology of [14]. The idea of the proof is
taken from [3]. See also [15] for similar ideas.

If £ » {A,, A2,... } is a partition then 3£ will denote U ¡oA¡.

Theorem 13. Let T: X0-*X satisfy I and II antf let <p G C(X0) satisfy (i)
and (iii). Suppose there exists a finite or countable measurable partition £ =
{Ax, A2, A3,... } of X0 with the following properties: (a) T\A is one-to-one for
each i, (b) u(3£) — 0, (c)for eachj, TAj is p-aj. a union of sets from £. (d)for
all choices of the sequence in the set C\ ̂ 0T~"A¡ contains at most one point, (e)
each A¡ is a subset of some component of T~lBt(x,) for some x¡. Then the
natural extension of(T, p) is a (generalized) Bernoulli shift.

Proof. We note that it follows from (d) that Vt > 0 3 integers d, m so that
if x, x' belong to the same element of the partition

\/T-'ÍAx,A2,...,Ad.x, \Ja]
-°       I j>d   J

then d(x, x') < t.
For d > 2 let £¿ denote the partition {Ax, A2,... ,Ad_x, U^^Ay). We

shall show £, is a weak-Bernoulli partition [7] and the result will then follow
by applying the result that an increasing sequence of Bernoulli shifts is a
(generalized) Bernoulli shift [14]. When £ is a finite partition then we do not
need to apply this last result. Fix d > 2. We have to show for each e > 0
there exists N such that n > N implies

(*)     2 2       |p(Pn r-(fl+i)(2)-p(P)p(Ô)|<3e   foralli.
rGV'0T-%QeV'T-%
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We can suppose we are in the situation where p is the unique g-measure for
g G G(X0) satisfying (iii)c. Let £ denote £,ogg. Let e > 0 be given. Choose
«5 > 0 so that (1 + 5)3 < max(l + e, 1/(1 - e)). By condition (iii)c choose
t > 0, t < eo, so that d(x, x') < t, x, x' E X implies

(l + 8)-x<f[^-<l + 8
¡-o g(Ty)

for all y G T~"x and all n > 1. Using assumption (d) choose dx> d and
m > 0 so that if x, x' are in the same element of V/lo^'t/ then d(x, x') <
t, and such that the total measure of the atoms C\JLqT~jA¡ E Vylo-^~7£
with some i} > dx is less than e.

We shall find N so that (*) holds with d replaced by dx. It then follows that
(*) holds since dx > d. Also we clearly need only show (*) for s > m. Let
s > m.

Let Cj = Aj j < dx and Q, = UJ>dAj so that £,, = {C„ C2,..., QJ.
Those nUoT~'Cjl e VÎ-oT'~,£/1 with M ̂  dx for s - m < i < s have
measure at least 1 - e by choice of dx and m. We shall call these good atoms.
Let P be such an atom. Then P ** \JqPq where Pq E Vo7""'^ and if
Pq " r\'oT~iAjl then/ < dx for s - m < i < s. Suppose Pq = Çl^T^Aj..

Consider
v-mxp,(x) -      2      árOO • • • g(^~m"V)x^(v).

/er-<'-">(x)

This is nonzero iff x G T*~mPq. By assumption (c)
m

T'-mPa = H r-fc. a.e.
H '    ■ Ji + s-m

i=0
By assumption (a) the map Ts~m: Pq-* Ts~mPq is a bijection and so if x,
x' G r,_,"P4 and y = Pq n 7,_(i_m)x then P? n T'""(î~m)x' = y', the element
of T~is~m)x' corresponding to y in the sense of condition I. This is because of
assumption (e). Therefore if x, x' G Ts~mPq we have

(1 + «)->< Z°-mXr,(x)/&-»>Xr,(x')<(I + «)•

Fix x' G 7,_mP and let c = £i_mx>ï(x'). Then

(1 + 8)-1cXt,-^(x) < Z'-mXp,(x) < (1 + 8)cXr-^(x)

for all x and we can eliminate c by integrating to give

0 + 8y\(T-"Pq)XT'-mp<{X) < &"%W

m(p«)
< (1 + c5)2    /      g\ xr-j. W-
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Since £ is a positive operator we get

,     mTO

<(1 + a)%(r-^)£B+Wxr'-^(x)-

Multiplying this by xq and integrating gives

(1 + 8y2 u(T>P-i , /£n+m^-^ • ̂  * < 'ft n t-***q)p(r-mP9)

V + 8)\(TsP-mp J^Xr-^-Xadp.
We know that

n(T"mPq)

T~mPq = D T-'A^_m = p;   a.e.
;-o

and/,+,-,» < d\ for all i < m. There are at most dx choices for these sets P'q
and since they have boundaries of zero-measure by assumption (b) we can
apply Corollary 7 to obtain N(t) with the property that n > N (e) implies

\jtn+mxp-xQdp-p(p^)p(Q) <Mß)-rf5-

for all Q E % and all sets Pq - r\T-oT~'Akl with A, < dx all /. But since
T'~mPq - P'q a.e. we get the same property with Pq replaced by T'~mPq, so
that if n> N(e) then

(1 + 8)~3p(Pq)p(Q) < p(P, n r-<»+*>ß) < (1 + S)VTOM(ß)-
Summing over q gives

(1 - e)u(P)u(ß) < p(P n 7-("+i>ß) < (1 + e)p(P)p(Q)
for all good atoms P of Vo7"-'^ and all g G ÍB. Therefore

2 2       \riiPnT-^Q)-p(P)p(Q)\
Pe V'0r"£,, ße V^r-'fc,

can be split into a sum over the good atoms P and the bad atoms P, and we
see from the above that the sum is less than 3e if n > N(e).

In some examples, such as shifts and transformations from/-expansions, it
is clear that a partition satisfying properties (a)-(e) exists.

2. Invariant measures and equilibrium states. We now describe how to use
the results of §1 in the problems of invariant measures and of equilibrium
states.
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2.1 Invariant measures. Suppose T: X0^>X satisfies I and II. Suppose we
are given v E M(X) such that v(X0) ** 1. Suppose also that v is nonsingular
and positively nonsingular for T (i.e., v(E) = 0 implies v(T~xE) ** 0 and
v(TE) = 0). The problem is to see if there exists p E M(X, T) which is
equivalent to v (i.e., p and v have the same null sets). The theorem below
gives a sufficient condition to ensure the existence of such a p with a
continuous Radon-Nikodym derivative dp/dp.

Since T is a homeomorphism on a neighborhood of each point of X0 and
since v is positively nonsingular for T we can define the local Radon-Niko-
dym derivative dvT/dv at each point of X0 to give a map dvT/dv: X0 -» R.
This is uniquely defined a.e. (v) and we assume it can be chosen to be
continuous. Put <p = —log dvT/dv E C(X¿). We now see what it means for <p
to satisfy conditions (i) and (iii). Since

V    i / dvT , -,     dvT~x , v

yBT   'x

condition (i) is equivalent to

0)m ^£-w<* yxEX-
Using simple properties of Radon-Nikodym derivatives we see that (iii) is

equivalent to
am dvT" r >\ I dvT" , v(m)M sup   sup   —r-(y)   —r-(y)

«>1   yeT—x      av av

is bounded for d(x, x') < e0 and converges to 1 as d(x, x') -» 0.
The following simple lemma puts the problem in the context of Theorem 8.

Lemma 14. For <p = -log(dvT/dv) we have £*v = v.

Proof. Let x G X and let T~1(B2e<¡ n X) = U'.^/W as in condition I.
Let 7) denote T\Ux). Then (dvTr1 /dv)(Ty)(dvT¡/dv)(y) = 1 so if E c 52to
n X and/ G C(A'),

r- r   °°    dvT"1 r   °°

-2/ ,/*-/ ,/*•
The result then follows because v is concentrated on X.   fj

We can now apply Theorem 8, Corollary 12 and Theorem 13 to get the
following result.

Theorem 15. Suppose T: XQ-*X satisfies conditions I and II and let
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v G M(X) be nonsingular and positively nonsingular for T. Suppose dvT/dv
satisfies conditions (ï)M and (iiï)M above. Then:

(1) There exists A G C(X), A > 0 such that £^/r»A • v(f) V/ G C(X). (If
x EX then

£"/(*)=   2  fiy)/È&iy)-
yeT~nx uy

(2) The measure p — A • v is T-invariant and (T, p) is an exact
endomorphism.

{3)v°T-n-4pinM(X).
(4) p is the unique member ofM(X, T) with the property

p(/,(®/r-'®)-iog^)>m(/m(®/r->®)-iog^)

V/m G M(X, T).

The value of the left-hand side is zero.
(5) If there is a partition £ with the properties listed in Theorem 13 then the

natural extension of (T, p) is a Bernoulli shift.
Notice that this theorem does not use any of the results giving properties of

v (such as Lemma 9) since v is given at the start of the problem. When
A'o = X = X and 7* is expansive then any partition into sets of small diameter
is a one-sided generator for every invariant measure and so we can replace
the inequality in (4) by

K(T)-p{log*£)>hm(T)-m{log!f).

2.2 Equilibrium states. Let T:-X0-*X satisfy conditions I and II. Let
<p G C(A"o). We shall say that pE M(X, T) is an equilibrium state for <p if

/^(a/r-'ffi) + tp) > m(lmi<&/T-l<$>) + tp)   Vm G M(X, T).
When A'o = X — X and T is expansive then this definition reduces to the
usual definition, namely

K(T) + p{<p) > hm(T) + m(tp)   Vm G M(X, T).
The results of §1 give

Theorem 16. Let T: X0-*X satisfy I and II and let tp E C(A'0) satisfy (i)
and (¡ii). Then:

(1) cp Aítj a unique equilibrium state p.
(2) p^ Aítí no atoms and is positive on nonempty open sets.
(3) (TtpJ is an exact endomorphism.
(4) If there is a partition £ with the properties listed in Theorem 13, then the
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natural extension of(T, p^) is a Bernoulli shift.
(5) //j// G C(X0) also satisfy (i) and (iii) then p^, = /^<=>3c G R and

fEC(X) with <p(x) - uV(x) = /(7x) - f(x) + c Vx G X0.

3. Examples.
3.1 Expanding maps. Let X be a compact connected manifold and let T:

X-*XtíeaCl map of X onto itself. T is an expanding map if there are real
numbers c > 0, X > 1 and a Riemannian metric on X for which ||Z>7''*t?|| >
cX" \\v\\, n > 0, for all tangent vectors v. Here DT denotes the tangent map of
T [23]. If a different metric is chosen then the same condition holds with a
new choice of the constant c, and it is well known that one can choose a
metric for which c = 1. We shall assume the metric is chosen with this
property. Hence \\DTv\\ > X||r|| for all tangent vectors v. In the notation of
§1 we take XQ ** X = X for this example. Let d be the metric on X
determined by the Riemannian metric. There exists 50 > 0 such that if
d(x, xO < So m«n d(Tx, Tx') > Xd(x, x1). An expanding map is a covering
map and so condition I holds, each set T~xB2t (x) being a union of k sets
A ,(x),..., Ak(x) such that T maps A¡(x) homeomorphically to B2t (x).

Lemma 17. Condition II holds for an expanding map T: X -» X.

Proof. Let f: X -> X denote the universal cover of T: X -> X. Let e > 0
be given. For w E X we have f"(Be(w)) d B^(f"w), « > 0 [23]. Choose N
so that XNe > dian^X). Then fN(Bc(w)) covers X for all w E X and so
TNB, (z) **XVz EX. Therefore condition II holds.   □

We now know T:X-*X satisfies our conditions I and II. We first consider
the problem of invariant measures. Let v be the smooth probability measure
on X determined by the Riemannian metric on X. We seek a /"-invariant
probability measure which is equivalent to v. Consider the linear map DXT:
TXX -» TTxX. Using the Riemannian metric we can take its determinant and
therefore we can define 7"(x) = det(¿>xr). Then (dvT/dv)(x) = \T'(x)\ by
the charge of variables formula, so the function <p defined in §2.1 is <jp(x) =
-log|7"(x)|. Since X is connected 7"(x) always has the same sign. If T is C
then o; is C~l. Since the cardinality of {T~xx) is bounded, condition (i)M
holds. If T is C2 then we now show condition (iii)^ holds. It will be more
convenient to show condition (iii) holds for qp = - log| 7"(x)|.

Suppose d(x, x1) < cq and y G T~"x. Then

2 <p(Ty) - <p(ry) < c 2 d(Ty, TY)
/-o /-o

for some constant C since <p = -log|7"| is C1. However d(Ty, T'y') < d(x,
x')/X"-'' so that
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d(x, X')
< C X- 1 for all n> 1.

Theorem 18. Let T: X-*X be a C2 expanding map. Then there is an
invariant measure p for T which is equivalent to the smooth measure v. The
following properties hold:

f(y)m     J^wm**'™vecm
and p = A • v where h E C(X) and A > 0.

(2)v'T-"-*pinM(X).
(3) (T, p) is an exact endomorphism.
(4) The natural extension of(T, p) is a Bernoulli shift.
(5) p is the only member of M(X, T) such that

h¿T) - p(log|7"(x)|) > hm(T) - m(log|r(x)|)   Vm G M(X, T).

(6)Ail(7) = p0og|r(x)|).
1(7) vEM(X,T)**    2

yGT~lx \T'(y)\
= 1   Vx G X.

Proof. The first six parts are given in Theorem 15. The existence of a
partition that will imply the Bernoulli property is given later in Corollary 21.
To prove (7) note that

1,GM(A-,r)<*A = l~   2
yST-'x  \J  (y)\

1.

Except for parts (3), (4) and (5), the above results have been obtained by
Krzyzewski[ll].

We now consider equilibrium states for expanding maps. Since {T~lx) is
of bounded cardinality every <p G C(A') satisfies condition (i). There are
many functions satisfying condition (iii). For example, let 9 be Holder
continuous (|9(x) - 9(x')| < Md(x, x')° where 0 < a < 1). Then

2 (viTy) - vim)
i-0

"-1 «        «-1 d(x,x'y
<M2,d(Ty,m<M?, "f¿~

i-0 i-0    A

M< Ka _ t d(x, x')    if d(x, x') < e0 andy G T-"x.

Theorem 19. Let T: X-*X be a Cx expanding map and let 9: X^> R be
Holder continuous. Then 9 Acts «7 unique equilibrium state p^. Also:

(1) Uç, A«7J no atoms and is positive on nonempty open sets.
(2) (T, Py) is exact and has a Bernoulli natural extension.
(3) If yp: X -* R is also Holder continuous then uv = u^,<=»9 — u>=/° T —
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/ + cfor somef E C(X) and some c E R.
(4) Suppose the smooth measure v is T-invariant and T is C2. Then v is the

unique measure with maximal entropy (i.e., the equilibrium state for the function
0)<*>\T'(x)\EZ\IxEX.

Proof. All except part (4) follow from Theorem 16. Consider the measure
Pq of maximal entropy and let Xq, Pq, Aq, g0 be the quantities for the function
O.Then

/   2    f(y)dp0(x)**X0ffdv0   VfEC(X),
yeT-'x

so that Xq*= k. We easily see that A0 = 1. Therefore g0 = l/k. If v E M(X,
T) then v is the unique equilibrium state for <p(x) = -log|7"(x)|, so that
v » po iff g„ = g0. By (7) of Theorem 18,g9(y) = l/|F(y)|, so v ** p* iff
\T'(y)\**k\fyEX.   D

The same result is true if X0 ■ X = X and T:X-*X satisfies conditions I,
II and also there exist <S0 > 0 and X > 1 so that d(x,xr) < 80=> d(Tx,
Tx') > Xd(x, x'). Parts (1) and (2) have recently been obtained by Ledrappier
[13]. We stated similar results in [24].

We now indicate why an expanding map has a partition which will satisfy
the conditions of Theorem 13 for any reasonable measure. The reasoning is
contained in Bowen's construction of Markov partitions for Axiom A
diffeomorphisms ([4], [5, p. 79]).

Lemma 20. Let X be a compact metric space with metric d and let T:X-*X
be such that there exists <50 > 0 and X > 1 with d(Tx, Tx1) > Xd(x, x') if
d(x, x0 < <S0. 77j<?«

(1) T has the pseudo orbit shadowing property i.e., V/? > 0 3a > 0 with the
property that if {x¡)q is a sequence of points of X with d(Tx¡, x/+1) < a for all
i then there exists x E X such that d(x¡, Px) < ß for all i. The point x is
unique if2ß is less than the expansive constant of T.

(2) For sufficiently small ß there is a cover {Rx,..., Rm) of X by closed sets
that intersect only in their boundaries, X \ U ¡dR¡ is open and dense, diam(R,-)
< ß all i, T( U ¡dR¡) C U ¡dR¡ and if mt(R¡) n T int(Rj) i* 0 then R, c Tit,.

Proof. We sketch the proof. The proof of (1) can easily be written along
the lines of Proposition 3.6 of [5].

To prove (2) let Aß be less than the expansive constant of T and choose a,
by part (1), to correspond to ß. Choose y so that y < ß, y < a/2 and
d(x, x') < y => d(Tx, Tx') < a/2. Let C = {x„ ..., xr) be a y-dense subset
of X. Put 2(C) = {q E KC\d(Tqit qi+x) < a, i > 0, where q - {*,},?}.
Define 9: 2(C) -» X by letting 0 (q) be the unique point given by part (1). 0 is
a continuous map of 2(C) onto X. Let P¡ = {0(«7)|t7o » x,}. (Px,..., Pr) is
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a closed cover of X and X \ U,3P, is open and dense. We then obtain a
collection of disjoint open sets {Dx,..., Dm) by considering all intersections
of sets of the form int(P, n Pf) and int(P* \ Pe). Then put R¡ = D¡. One can
show that {Rx,..., Rm) is the required cover.

Corollary 21. Let T: X -» X be as in Lemma 20 and let £ denote the cover
{Rx,..., Rm). If p is an ergodic T-invariant measure which is positive on
nonempty open sets then £ is a partition a.e. (p) and satisfies all the conditions
of Theorem 13.

Proof. Let 3£ = U ¡oR¡. Then 3£c7,_1(3£) so p(3£) = 0 or 1 by
ergodicity. But X \3£ is open and dense so p(3£) — 0. Therefore (b) of
Theorem 13 holds. Clearly (c) of Theorem 13 also holds by (2) of Lemma 20.
Conditions (a), (d), (e) hold because of the loca![ expansion property of T.

3.2 Transformations from f-expansion. Let X — [0, 1] and X — (0, 1). Let
i0«)-» De a finite or countable collection of points in X with «7„ < «7n+, for
all n and let I¡ = («7,-,, a¡). Then tj = {/„}"«, is a finite or countable
collection of open intervals in (0, 1). Put A'o = UT--»1^ Let T: X0-+X be
a map such that T\It is a C1 diffeomorphism of I¡ onto X for each / > 1. Let
v be Lebesgue measure on X. This is clearly nonsingular and positively
nonsingular for T. The problem of existence of a T-invariant probability
measure equivalent to v has been considered by Rényi [16] and several
authors have considered the ergodic properties of this measure. See for
example [2], [17] and [19]. We shall deduce the following theorem from the
results of §1. The theorem was given in [2], except for the variational
principle, and has the advantage that its conditions are easily checked for
important examples. Similar results can be proved by our method with
slightly different hypotheses.

Theorem 22. Let Tbe as above. Suppose that
(a) T\h is C2 for each i.
(b)BkEZ+with

(c) sup
x.y.zSl,

¡ez

¡■fKi*y(x)|-x>i

T"(x)

X
iez

T'(y)T'(z) = ß<oo.

Then
(1) There is a T-invariant probability measure p — A • v where h E C([0, 1]),

A>0.
(2)v> T-n-*pinMQ0,1]).
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(3) (T, p) is an exact endomorphism and its natural extension is a Bernoulli
shift.

(4) p is the unique member ofM((0,1), T) such that

M(/,(»/7-'«) - login) > m(lm(^/T-x9>) - log\T'\)

Mm E M((0,1), T).

The left-hand side has value 0.

Proof. We are not assuming |7"(x)| > 1 Vx G X0 so we shall have to
change the metric so that condition I is verified. To do this we first show
3c > 0 so that 17"(x)| > c\fxEXq. If not then for each n > 1 3/„ G Z and
some^ G I¡n with \T'(y¡)\ < 1/n. From condition (c) we get supjee/j7"'(x)|
< Q/n2 so by the mean value theorem

|r(2)|<|r(z)-r(^|+|r(^|

<%\z-y¡\+- <4 + -    forallrG/,.

For large n this gives | T'(z)\ < } Vx £ ^ contradicting the fact that T maps
¿^ onto X.

Define a new metric on (0, 1) by p(x, x') = supye7-.ï;,1>0|y - y'\, and
extend to a metric on [0, 1]. Since |7'| > c and |(7*)'| > X > 1 we have
|x - x'| < p(x, x*) < max(l, c~*)|x - x'| so p is equivalent to the usual
metric. Condition I clearly holds for the metric p, with e0 = 1. As mentioned
before we can check conditions II, (i)M, (va)M in either metric. We now show
condition II holds.

Let e > 0 be given. We need to choose N so that for all x G X TN(Bt(x))
« X. (When we write TN(E) it is understood to mean TN(E n T~NX).) We

know 7* is a C2 diffeomorphism of each member of % = Vo-17"'7! onto X
and it increases distances by at least a multiple X on each such member. Let
U be an open interval of length 2e. Either U contains a member of %, in
which case TkU - X, or U intersects two members of r¡k. Suppose these
members are the intervals (a, b) and (b, c). Let

Tí (b) ** Um 7* G {0,1}   and   7* (b) = Urn Tk (x) G {0,1}.
X'b — XsA +

If Ti(b) = 7£(6) then Pi(U) has length at least Xe and is an interval of the
form (0, d) or (e, 1). Then 7a*(U) has length at least X^ and is again of the
form (0, dx) or (e„ 1). Hence if M is chosen so that XMe > 1 we have
TMkU - X. On the other hand if Tk_(b) * 7*(A) then Tk(U) is a union of
an interval of form (0, d) and one of the form (e, 1) and has total length 2Xe.
At least one of these intervals has length at least Xe and we can argue with it
as above to get TMkU = X. Therefore condition II holds.
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We now check condition (i)M. For x, x' G A",

dvT-i
dp

■(*)-  2 i
« |ï"O0I

i>-   2 1 1

dvT'

T'(y)       T'(y')

T'(y')
+ y3-<x- \ny')\

dv (*')-   2
yer-'x T(y)T(y") >**£■&-Q

by condition (c). Since this holds for all x, x' G X condition (i)M holds.
We now verify condition (iii)M, which is equivalent to verifying condition

(iii) for 9(y) = -log|7"(y)|. Let x, x' G X, y G T~nx and let / be the
corresponding point of T~"x'. Then

<p(Ty) - tpim = ¥(*d(Ty - T'y')
for some z, between Ty and T'y'

*>'(*.)
(T'-')'{w,)(X    X>)

for some w, between Ty and Ty'.

But9'(2)= T"(z)/T'(z) so

|9(7>) - 9(ry)| =
7"(z,.)

T'(zi)(T"-')'(wi)

Q\x - x'\

x — X

Therefore

\T(Tw) • • • r(r"-'-1wl)|     xk»-*-»/*lc*

Ô

|x - x'|.

Sw^-'W^^-d |x - x'l   Vy G r-"x, n > 1.

Condition (iii) is therefore verified.
The result now follows from Theorem 15. The partition tj satisfies the

conditions of Theorem 13, condition (d) of that theorem following easily from
the fact that d(Tkx, Tkx') > Xd(x, x') if x, x' G I¡ for some I.   □

The theorem in [19] which proves the natural extension of (T, p) is
Bernoulli can be deduced from Theorem 15. The conditions R3 and (i) of [19]
imply our condition (iii)^.

The most important special case of Theorem 22 is when «7n — 1/|«| for
n < 0, a„ = 1, n > 0 and Tx = 1/x (mod 1). In condition (b) we can take
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k ** 2 and X = 4, and in condition (c) Q = 16 will suffice. Here
t,f \ ! !*<*>" ITI'togl

as is well known. Since | /i(log x2)| < oo we know H^ij) < oo (see [17, p. 32]
or Lemma 23 below) and (4) of Theorem 22 gives that u is the unique
measure with

A„(7) + u(logx2) > ro(/m($/7-'®) + (logx2))   Mm G M((0,1), 7).

Also

A,(7)--M(logx2)-»76-l
(log 2)

The problem of equilibrium states can be considered for transformations
arising from/-expansions. A result with conditions in the spirit of Theorem 22
is the following.

Theorem 23. Let 7 be as above and suppose it satisfies (a), (b) of Theorem
22 and also that 3c > 0 with \T'(x)\ > c Vx G Xq. Suppose <p G C(X¿)
satisfies

(d) SKsuch that S^r-»*«*00 < K, and
(e) |<p(x) - <p(z)\ < M,\x - z\a Vx, z E I¡ for some a < land

M¡
sup   -- < W < oo.
'■« \T'(y)\

Then
(1) op has a unique equilibrium state p^.
(2) Py has no atoms and is positive on nonempty open sets.
(3) (7, ju^) is an exact endomorphism.
(4) (7, /Ujp) has a Bernoulli natural extension.
(5) IfjP E C(XQ) also satisfies (d) and (e) then /^ = ^ iff Be E R and

fEC(X)with

<p(x) = *(*) + /(7x) - f(x) + c   Vx G X0.

If the number of intervals I¡ is finite then any Holder continuous <p: X-*R
satisfies (d) and (e).

Proof. By the first part of the proof of Theorem 22 we can change the
metric to show 7 satisfies conditions I and II. The result will follow from
Theorem 16 when we have shown <p satisfies condition (iii) because (d) is the
same as condition (i). Let y G 7~"x then
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\<p(Ty) - tp(m\ < M\Ty - T'y']"
M

<-'-ä \ix ~ x')\"   f°r somey2 betweeny andy'.
|(r-')'(^2)|

Therefore
"«*. .    "«' W a     Wlx-x'l"
2 Wi» - ,(W| < 2 >fe.,.^ i- - *r< ̂4^ ■

and condition (iii) holds,   n
For the example 7x = 1/x mod 1, the function 9(x) = log xT (r > 2)

satisfy these conditions.
The result from [17, p. 32] used above can be extended to give the following

result, which can be applied to transformations from /-expansions and to
shifts.

Lemma 24. Let T: X0-*X satisfy conditions I and II in the stronger sense
that T~XX is a finite or countable union of open sets Ax, A2,... with T\A¡
being a homeomorphism of A¡ onto X not decreasing any distances. Let tj — {A x,
A2,...). Let g E G (A'o) satisfy (iii)c. Then the unique g-measure satisfies
H^riX co iff |p(logg)|<oo.

Proof. From (iii)c we know 3D > 0 such that
g(y)D-* <-f4 <D   Vv,/G4,   alli.siy)

If T, - T\A, then p(A¿ - fxg(Trxx) dp(x) so

2 p(4)log(min g) <2 /»(¿,)log/i(4) <2 p(^)log(max g).
i A> i i "I

Also

2 M(4)log(min g) < flog g dp <2 p(4)log(max g).

But

log(max g) - log(min gj <logZ)

so the outside series either both converge or both diverge. Hence H^-n) < co
*>l/*(logg)|< oo.

Corollary 25. Let X0^X be as in Lemma 23. //ç£ C(X¿) satisfies
conditions (i) and (iii) then the unique equilibrium state p^ of tp satisfies
^(l)<oo.jr/|/v(9)|<oo.
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3.3 Shifts. The methods of §1 generalize those used in [24] for the special
case of subshifts of finite type. (The condition 2"„,var„((p) < oo used in [24]
implies condition (iii) because C9(x, x') < 2n.*var,(<p) if x and x' agree in
their first k coordinates.) These results are basic to the Ergodic Theory of
Axiom A diffeomorphism [3], [5]. The results in §1 allow us to deal with the
case when the alphabet is infinite. Let Z + denote the one-point compactifi-
cation of Z+ = {1, 2, 3,...} and let oo denote the new point. A metric on
this space is

i_ J.
n     m

p(n, m) = p(n, oo) = -v       '     n

Let ß be the one-sided direct product of an infinite number of copies of Z+,
i.e., ß = IlffZ +. Let d be the metric on ß defined by

jfr      ■\00    r      i°°\ V    P\   *'y«)rfWo>Wo    ■ 2        2„      ■
n-0 *

Let a: ß -» ß be the shift map. Put ß = ß, ß0 = {{xn}g° G ß|x0 =/= oo} and
7 = olj^. Then 7: ß0 -» ß satisfies conditions I and II. A function <p: ß0 -* R
satisfies condition (i) if 2ieZ+e'piix} < KVx EÜ (where ix =* (i, x„, x„ ... )
if x = (x„, x„ x2,... )), and satisfies condition (iii) if

C(x.x') = sup   sup  (2 <p(P(ax • ■ • a„x)) - <p(P (ax ■ ■ • «7Bx')))
n>l a,eZ+ \ , = 0 /

is bounded and C(x, x') -> 0 as d(x, x') -> 0. Note that condition (i) implies
lim,^ <p(ix) = - oo.

A simple example where these conditions hold is when <p({x„}o°) = bXo
where {6,}™ is a given sequence of numbers with 1.iBZ*eb> < oo. Then the
unique equilibrium state ju implied by Theorem 16 is the direct product of the
measure on Z+ which gives mass eb>/,L]eb¡ to /'. If tj denotes the natural
partition of X0 defined by the Oth coordinate then Lemma 23 implies that
H^-n) < oo iff \p(<p)\ < oo. Hence if |2/ez+A,c*i < oo then tj is a generator
with finite entropy with respect to p and we can assert that p is the unique
measure such that

K(T) + /*(*) > rn{lm(%/T'x%) + <p)   Vffie A/(ß, 7).

We can use the above simple case to give a proof of the existence of a
continuous function without a unique equilibrium state on the space X **
üfftO, 1}, the one-sided infinite direct product of the two point space {0, 1}.
Let Ak - {{xn}^ G X\x„ =0 for 0 < n < k - 1, xk = 1}, k - 0, 1,
2,..., and A^ ** {0} where 0 is the point 0 = (0, 0, 0,... ). Ax, Aq, Ax,
A2,... is a partition of X. Let {ak)ô be a sequence of real numbers with the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ISO PETER WALTERS

following three properties
(1) ak -* 0 as k -* oo,
(2)2?_0efl<>+ • •+* = 1,
(3) 2£_0(* + l)ea°+ '+* < <*>•

Define 9 G C(X) by 9(x) = ak i! x E Ak, k = 0, 1, 2,..., and 9(0) = 0.
Then 9 has exactly two ergodic equilibrium states. The existence of at least
two such measures was demonstrated in Fischer [6] and Hofbauer [9], but we
present a different proof using the above result on the shift on a space with
an infinite state space.

Let T: X-» X be the shift transformation. Let AQk — {{x„} G .40|x0 — 1,
x, = 0 for 1 < i < k, xk+l = 1}, k > 0, and let A'0 = AQ \ U ?-0T~n{0) and
A'ok m A0k n A0. We can take the induced transformation on A'0 to get a map
T*: A'Q^A'0 defined by T*(x) - Tk{x\x) where k(x) is the smallest natural
number with TkM E A'0. Hence k(x) = k if x G ^0*- Every w G M(*> ^
with m(0) = 0 has m(A0) = m(A'0) and determines m* G M(A'0, T*) by
m*(5) = m(B n A0)/m(A0). Conversely every r E M(A'0> T*) is of the form
m* for a unique «1 G ¿/(A", T) with w(0) = 0 provided Z*_o(A + l)r(y40A)
< 00.

Let ß' = n¿°Z+. Define ß: A'0-*ü' by ßix) = (wq, w„ w2, ... ) where
T*"x G A^^. ß is a homeomorphism and ßT* = S/Ï. Define 9* G C(^q)
by 9*(x) = «70 + • • • + ak = sk if x G v40a- Then 9* » y3 ~ '(wq, w„ w2,... )
— j and so 9* ° ß~x can be considered as defined on ß0. Condition (2)
ensures that the product measure it on ß0 with weights e'k/2?loe*' *s the
unique equilibrium state for 9* ° ß ~x on ß0 and the pressure is log(2".0ei")-
This last expression equals 0 by condition (2). ir(Qr) — 1. Let p* denote the
member of M(A'0, T*) obtained by pulling it back by ß. Then ^.(T*) +
p*(9*) - 0 and A, (7"*) + r(<p*) < 0 Vt G M (A'o, T*). Condition (3) ensures
that p* determines a unique p E M(X, T) with p(0) - 0. If m E M(X, T)
and m(0) = 0 then by direct calculation 171(9) = m(Ao)m*{<p*) and by taking
natural extensions and using Abramov's formula we have hm(T) —
m(A0)hm.(T*)[l]. Hence

hm(T) + m(<p) = m(A0)[hm.(T*) + m*(9*)].

Also since 2?-o(£ + i)m*(AQk) < 00 it follows that Hm.(r¡) < 00 where tj is
the partition {A'^, A'ox, A'^,...} of A'0 (using the simple result that for a
sequence  {ak) of positive numbers the condition 2kkak < 00  implies
— "2kaklog ak < 00). Hence tj is a one-sided generator with finite entropy for
each m* and since p* is the unique equilibrium state for 9* we have
AM.(7*) + p*(9*) = 0 and for all other m E M(X, T) with m(0) = 0 we have
hm.(T*) + m*(<p*) < 0. Therefore A„(r) + p(9) = 0 and hm(T) + m(tp) < 0
if m E M(X, T), m(0) = 0, and m ¥= p. p is ergodic because p* is ergodic.
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The point measure, 80, concentrated at 0 also satisfies A5o(7) + 80(<p) = 0.
Hence the only measures m E M(X, 7) with hm(T) + m(y) = 0 are convex
combinations of p and S0.'

From the results of §1 we can deduce the following Perron-Frobenius
theorem for positive infinite matrices, which generalizes the usual theorem for
finite matrices [8].

Theorem 26. Let A = (a^-)"-», be so that ay > Ofor all i,j and satisfy the
following two conditions.

(1) 3 A" > OímcA that 2,<ty < Kfor allj.
(2) 3C > 0 such that s\xp¡(ay/ay) < Cfor allj,/ and s\ip¡(ay/ay)-» 0 as

10//)-(1/7)1-0.
TActi there exists X > 0, u¡ > 0, v¡ > 0, i > 1 such that

2 v¡ = !»    2 u¡v¡ = h    2 u¡ay = H»    2 auvj " toi
i i i j

and for each iifL/Xn){A.H)¡¡ -> UjV¡ uniformly inj.

Proof. Let X ** ÏÏ£Z+, X = {{x„) G X\x0 *h oo} and XQ = {{x„} G
A'Ixq =7* oo, x, *M oo}. Define <p G C(X¿) by <p(x0, x„ ... ) = log a^ s
bXoX. Then <p satisfies conditions (i) and (iii) for the shift transformation. So
3X > 0, A G C(X), v E M(X) with £,,A = XA, t*v = Xv, v(h) = 1 and

-^rzih-v(f)   VfEC(X).
Putting / = 1 in the last statement we get £9l(x)/X"z±A(x) for x G X.
Hence A(x) only depends on x0 so define u¡ to be A(/x,x2 ... ) for any choice
of x„ x2,_Then 2ih,oí/ = Xw,. The corresponding g function is

_ e«*>h(x) _ a^u^
8W      Xh(Tx) XuXt   '

Therefore the unique g-measure p is the Markov chain with initial probability
p¡ and transition probabilities

K-^bU**--.)--^.
Let v¡ = p¡/u¡. Then since 2,% = 1 we have 2;«^«,. = Xu(. Also 2,kiü/ = 2,ju,
= 1. Moreover

"\ñ (A")y— Tïï ^fi(fxlx2 • • • )

where

'F. Ledrappier has also obtained this result by a similar method.
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JSíxo,*,,**...)-^    ^mi\

so for each i,

Yjr iA")¡f±h(jxxx2 ... )v(f¡) - Ujv,

uniformly in/.
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