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ABSTRACT.    Let G be a finitely-generated group acting on a set X and
let A be a nonempty subset of X.   If G has polynomial growth then there ex-
ists a finitely-additive G-invariant positive extended real-valued measure p.
defined on all subsets of X such that ß(A ) = 1.  When G is solvable, it has
polynomial growth if and only if it does not contain a free subsemigroup on two
generators.   If G contains a free subsemigroup S  on two generators, then G has
exponential growth and there does not exist a measure p. as above with G act-
ing on itself by multiplication and A = S.

Introduction.   Let G be a group acting on a set  X.   Let   A C X with A non-
empty. The invariant measure problem here is when does there exist a finitely-

additive  G-invariant measure u defined on all subsets of X with values in [0, »]

such that ¡i(A) =1?   When the group G is amenable it is well known that this is

equivalent to whenever a ,»•••><*„ e R and gj »•••»£„ £ G then  2"    a^ ,A > 0
implies  2?    a. > 0. We say a group G is supramenable if whenever G acts on a set X
and A C X is nonempty, there exists a measure a. as above.

For solvable groups supramenability is nicely related to certain growth conditions in
the group. We say the group G is exponentially bounded when for any finite symmetric F

C G with e € F we have (card F   )   '    tends to 1 as  N —» «:.   If G is exponen-
tially bounded then it is supramenable.   Nilpotent groups have this property and

are therefore supramenable.   For finitely-generated solvable groups either we
have a nilpotent subgroup of finite index and the group is supramenable or there
is a subsemigroup on two free generators.   These cases are mutually exclusive
since, in the first, for all finite symmetric  F C G with e e F there exists K, L >
0 such that catd(FN) < KNL for all N > 1;  while, in the second, if a and  b
generate a free subsemigroup then card ({a, b\   ) > 2     for all N > 1.   Also, any

group  G which contains some free subsemigroup 5 generated by a and b is

not supramenable in an obvious way since  aS D bS C S while  aS is disjoint from
bS and so there does not exist a  G-invariant finitely-additive measure ¡i on G

such that   ¡i(S)= 1.   It follows from this that a solvable group is either
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34 J. M. ROSENBLATT

exponentially bounded and hence supramenable or it contains a free subsemigroup on two
generators but not both. This is also true for connected locally compact groups.

0. Preliminaries. We will let Z, Q, R, and C denote the integers, the ra-
tional numbers, the real numbers, and the complex numbers respectively.   Let Z ,
Q+, R* be the positive elements of Z, Q, and R respectively.  For c e C, \c\
denotes the absolute value of c. We will sometimes extend the real numbers by
« with a + oo = oo for all a e R ulooj.  For p € Z , R   = i(rp. • •, r ): r^, • • •,

rp £ R\ is p-dimensional Euclidian space.

C    = Kcp •••, c ): Cp •••, c   € C\    and    Zp = {(zp • • •, z ): Zp • • •, z   € Z\.

Given a set X and a subset A of X by Xa we wl^ denote the characteris-
tic function of A defined on X by XA(x)= 1 if x e A, xA(x)=* ^ ^ x ¿ ^. || A ||
will denote the cardinality of a finite set A.  If S is a finite sequence (&<*••• ♦*_)
then || s || = n.  For a set A C X and a finite sequence S = (s,.,- • •, s ), || A C\ S ||

= ^¡s{Ka^s?'  Tn*s ls consistent with the case that S has no repetitions and is
considered as a finite set. For sets A and B, A A ß = (A\ß) U (b\a).

For general group theory see Rotman [18] and Magnus, Karass, and Solitat
[12].  We say a semigroup S generated by distinct elements *.»••• » X   is freely
generated by x. ,• • •, x   if and only if whenever x.  • • • x.   = x    • • • x    then k =

1 " »1 '*      rl Tt
rand (z'p- • • , z'fe) = (rp- • • , rj.

Greenleaf [5] is a good reference for the subject of amenable groups and for
von Neumann's work introducing the subject of G-invariant finitely-additive mea-
ures.  As in Greenleaf [5] a finitely-additive measure on a set X is a function (I
defined on all subsets of X with values in  [0, «] such that when A and B are
disjoint subsets of X, u(A Uß) = p(A) + p(ß).  When a group G acts on X then p.
is G- invariant if p(gS) = p(S) for all 5 C X and g £ G.

1. The translate property.  The problem of the existence of a G-invariant
finitely-additive measure on X can be stated in terms of functional analysis. Let
G be a group acting on a set X.   Let A be a nonempty subset of X.  We say a
subset B of X is A-bounded provided that there exists gp*-* >g   £ G with

U"_jg¿^ 3 B. Given a function /: X —> R by supp /  we denote {x e X: /(x)/ 0|.
Let B^(X) denote the linear space under pointwise addition of all bounded functions

f : X —» R with supp / A-bounded.   G acts as a group of linear transformations of
BA(X) by letting gf(x) = f(g~lx) for all g e G,  f e Bj4(X),and x e X.   A linear
functional çS on ß^(X) is G-invariant if tpigf) = <£(/) for all g e G and / e
BA(X).

We have the usual vector ordering in ß^(X); /> 0 if and only if f(x) € R* for all x
e X.  A linear functional <p on BA(X) is then positive if <£(/)> 0 whenever /> 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INVARIANT MEASURES AND GROWTH CONDITIONS 35

The following two propositions can be found in Greenleaf foi

1.1 Proposition.   There is a G-invariant finitely-additive measure p on X
such that u(A) = 1  if and only if there is a G- invariant positive linear functional
<j> on BA(X) such that <p(X/^ = 1.

1.2 Proposition. Let S. be the span \xeA '• S e Gl. // G is amenable there
isa G-invariant finitely-additive measure ¡i on X suchthat ¡i(A) = 1 if and only

if there is a G-invariant positive linear functional (f> on S.  such that <p(Xa^ ~ !•

1.2 Corollary. There is a G-invariant positive linear functional tf> on SA

such that <p(.Xa) = * '/ and only if when a,,- • • , afl e R and gj,- • • , gn 6 G,
Í ,a.v    .  > 0 implies 2"  ,a.>0.isl   t^gjA   — e I al    I —

Proof. The only if part is immediate since <P^\.xa¡Xz.A)= ^"sifl,- The
converse follows by defining cf>: ̂ ■"xia-XgA *""* ̂¡mlai'    a

We say the translate property holds if the condition of Corollary 1.2 holds.
We will say there is an invariant for (G, X, A) if the condition of Proposition 1.1
holds.  An invariant for (G, X, A) will be any linear functional 0 as in 1.1.  It
should be understood that whenever (G, X, A) is written we mean G is a group
acting on a set X and A is a nonempty subset of X.

2.   Free subsemigroups and other examples.
2.1 Examples.  The most trivial example is when G is any group and AC X

is a finite set.   Let « = || A ||.   Then we can define a G-invariant finitely-addi-
tive measure u by p.(S) = n~ '|| S || for all S C X and u(A) will be 1.  So we will
be interested in general in only infinite subsets AC X.  Also, if the group G is

finite and A is arbitrary then we can define a G-invariant finitely-additive mea-

sure u by taking xQ € X fixed and letting u(S) = \\ S n Gx   ||.   If we choose x. e
A then v = f//|| AnGxQ \\ will be a G-invariant finitely-additive measure on all
subsets of X with v(A) = 1.  So in general we will also only be interested in in-
finite groups.

2.2 Examples.   Let G be a locally compact Hausdorff topological group.
Let G act on itself by the group multiplication.   Let U C G be a measurable set
with oo >«((/) >0 where m is left-invariant Haar measure.   Then  (G, G, U) has the

translate property since whenever 2", ,a.v   ,, > 0 then
'al   iAg,U —

0 < /( Z «,*,.(,) A» = Z a.m(g.U) = £   a.*((/).
\l' = l '   / ¿al tal

So 2"_ja¿ > 0.   Hence, if the underlying group structure of G is amenable, then
there exists an invariant for (G, G, U).
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36 J.M.ROSENBLATT

However, not all locally compact T2 groups are amenable.  It was shown by
von Neumann [l°], see also Greenleaf \5\ that 50(3, R) is a compact Lie group
which contains a subgroup on two free generators.  Hence, 50(3, R) as a discrete
group is not amenable.  More is true;   if U C 50(3, R) is a nonempty open set

then  U has the translate property since, with respect to Haar measure m on

50(3, R), m(U) > 0.  But 6^(50(3, R)) = lx (50(3, R)) by compactness of 50(3, R).
Therefore there does not exist an invariant 9 for (50(3, R), 50(3, R), U) since a
constant multiple of it would be a left-invariant mean for 50(3, R) as a discrete
group which does not exist.

In general, if G is an amenable group and B C G with G   B-bounded then
there exists an invariant for (G, G, B).  Also any subgroup B of an amenable G
will give an invariant for (G, G, B) since subgroups satisfy the translate prop-
erty.  To see this assume B is a subgroup of G and a, ,• • •, a   e R, g.," •, g
€ G such that  2" .ay„.a > 0.  We can choose X,,••• , x    each in a distinct1 = 1     I'vÇjD    — I 772

coset among the cosets \gS : i = 1 ,• • • , ni.  Then 0 < I7!1   1"   a^  ,ß(x.) =

j  lai*  Hence, when G is an amenable group there exists an invariant for
(G, G, B) when B is a subgroup of G.  This is only slightly stronger than saying
subgroups of amenable groups are amenable.

2.3 Examples. The nonexistence of an invariant for (50(3), 50(3), U)
where  U is a nonempty open set is due to the existence of a subgroup on two

free generators.   A related example is important here.   If we consider any

(G, G, 5) where 5 is a free subsemigroup on two generators a and b then aS U

bS C S and aS is disjoint from bS.  We write this aS w bS C 5.   In this case there
cannot exist an invariant 9 for (G, G, 5).

2.4 Proposition.   Lei G be a group and AC G some nonempty subset.   When
there exists a, b e G i¿<z'/.i aA U bA C A then either a and b generate a free sub-
semigroup or there exists z in the subsemigroup generated by a and b such that

zAC aAn bA.

Proof.  Suppose a and b do not generate a free subsemigroup.  Then there

exist two formal positive power words  W(x, y) ^ V(x, y) such that W(a, b) =
V(a, b).  If both words are nonempty then they may have the same first entry on
the left;  but by cancelling on the left we may assume without loss of generality

that this is not the case.  Now if one of the words is empty, say W(x, y), then A
= eA = V(a, b)A.  Using aA u bA C A we get  V(a, b)A C vA where v is the first
entry on the left of V(a, b) which exists since V(x, y) ¿ W(x, y) and is conse-
quently nonempty.   Hence, let z - a if v = b or vice versa;  then zA C aA n bA.
If neither word is empty then let v and w be the first entry on the left of  V(a, b)
and  W(a, b) respectively.   Let z= W(a, h) = V(a, b).  Then using aAubA C A we
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INVARIANT MEASURES AND GROWTH CONDITIONS 37

we have zA C vA and zA C wA.   Since  V(x, y) and W(x, y) were originally re-
duced so that v ¿ w we have zA C aA D bA.   D

2.5 Corollary.   G contains a free subsemigroup on two generators if and only
if there exists AC G nonempty and a, b £ G such that aA w bA C A.   In this case

a, b generate a free subsemigroup.

Proof.  Immediate from Proposition 2.4 and Example 2.3 which precedes it.    □

2.6 Corollary.   A group G contains a free subsemigroup on two generators if
and only if there exists AC G nonempty and gl," •, g   € G with « > 2 and Xa ~

*l.lXtiA Ï 0-

Proof.  Corollary 2.5 in disguise.    D
We can get a slightly stronger version of Proposition 2.4 as a corollary.

2.7 Corollary.   Let G be a group and AC G some nonempty subset.   Assume

there exist   gj,. • • , g    e G with U"a jg-A C A.   Then when the subsemigroup S
generated by g., • • • , g    does not contain a free subsemigroup on two generators
there exists x e S with xA C H"_[ g.A.

Proof.  Either g,Aug2A 3 x,A with x, in the subsemigroup generated by

g. and g2 or g, and g, generate a free subsemigroup.   This is directly from

Proposition 2.4.  So there exists x2 e G with x2A C g^A O g2A and x2 in the
subsemigroup generated by g, and g,.  The same argument shows there exists
x, e G with x,A C x-A n g2A and x, in the subsemigroup generated by x2 and

g2.  Therefore x, is in the subsemigroup generated by gj, g2, and g,.  Continue

inductively to get x., • • • , x   in the semigroup generated by gj, • • • , gn such that

x. = g. and each z>2 x A C x._.Ang.A.   This gives x = xn suchthat xAC

f\".   xg A  and x is the semigroup generated by g-li'"ign-    O
Corollary 2.6 lends some support to the conjecture that if a group contains no

free subsemigroup on two generators, then each (G, G, A) has the translate prop-
erty.  The difficulty is that more complicated cases than that of 2.6 occur.  For
instance, if G does contain a subsemigroup S freely generated by a and b then

we can let A = aS and let B = A U bA U b2A.  Then we have Xb + X,2r - XlbB
+ XaB + Xi,4ab atl1^ t^s d°es not immediately reduce to the simpler form of Xc -
•^■"-tX  -c ^or ^ nonempty except that we know exactly where the free subsemi-
group is in this case.  For this reason we have been unable to find a combina-
torial proof of the conjecture above which works for all groups.  The purpose of
the next two sections is to describe a wide class of groups for which the conjec-
ture is true besides the trivial example of finite groups.
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38 J.M.ROSENBLATT

3.  Exponentially bounded groups.  In this section we will be interested in a
certain growth condition in groups which always gives the translate property.

3.1 Lemma.  Any (G, X, A) has the translate property if for all finite FC G
and for all ( > 0 there exists a finite sequence S(C X such that for all f e F

||5f n/A||/||5f nA|| e (1-6,1 +().

Proof.   Let ^"ala.xg.A > 0.   Let F = ügp- • • , gj and choose 5f as above.
Summing over Sf we get that 0 < ^^S^ap^ix) = 2?.^ || S{ n g.A ||.  Di-
viding by   || 5f nA || and taking the limit as e —> 0 we get 0 < 2?.a.,   a

3.2 Definition.   Let G be a group.   We say G is exponentially bounded if for
all finite, symmetric FC G with e £ F as n —* oo, || F" \\l/" —> 1  where F" =

l/l'"/.»/,««-

3.3 Theorem.   Given (G, X, A) where G is exponentially bounded then
(G, X, A) has the translate property.

Proof.   Let xQ £ A.   By Lemma 3.1 we will be done if we show that given a
finite symmetric set F C G with e £ F and e > 0 there exists N > 1 such that

for all f £ F we have that

||/FNx0 n A||/||F% n A|| e(l-(,l+().

A well-known fact for sequences |a j of positive numbers is that lim inf a    Ja

< lim inf a1/" < lim sup a^/n.   Let bn = || F"xn O A || and an = b2n.  Then a„ > 1
and ax/n< ||F2n||1/n -► 1.  Hence, lim inf a    ,/a   =1 since each a   ,/a >1.

71 —   " " " 72+1        77 72+1       72 —
Therefore there exists a sequence n¿ of positive integers such that hmfe&    .Jb    »1.

Since

||(Fn*+2x0V%0)nA||    ||F"*+2x0nA||
1 +-= -

||F"*xonA|| ||F"*xonA||

we have

||(F"*+2x0VV)nA||
lim-= 0.
k ||F"*x0OA|r

Hence for all f £ F since F is symmetric
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INVARIANT MEASURES AND GROWTH CONDITIONS 39

n, +1
WfPk   xnnA\

n, +1
||F * 'x, nA\

,    n,+l „      „      n,+l „.
||F *    x0nA||-||/F k   x0nA\\\

\\f k  *0nA\\

||(F *    x0A/F *    x0)nA|

||f"*+1x0 nA||

(F"*+1xn\/Fn*+1x0) n A|| + ||/Fn*+1*0\Fn*+1*n)n A||

|Fn*+1xnnA|

n, +2

<2
||(F"*+x0\Fnfex0)nA|

If **„ nA

Thus, for all t > 0 there exists &   large enough so that, for all  / £  F,
|| /Fnfe+1x0 n A ||/1| Fn*+1x0 n AI e (l- f, l + A   o

3.4 Remark.  It is worth noting here that we have proved something a lot

stronger.  We have shown that when G is exponentially bounded then for any fi-

nite symmetric set F with e e F and any e > 0 there is N > 1 and K = F xQ c X
such that for all / e F we have  ||(/KAK) n A ||/|| KnA|| < e.   It should be under-
stood that implicitly  || K C\ A || > 0.  As is shown in  [17] this is actually equiva-
lent to the existence of an invariant for (G, X, A).

Also, in the previous proof we used only lim inf || F     \\       = 1.   But there
was no loss of generality in assuming  || F" ||1/n —» 1 since  limj| F" W1'" always
exists.  This follows from an observation of Milnor  [l4]that if y : Z   —» Z    is

nondecreasing and y(s + t)<y(s)y(l) for all s, t e Z* then y(s)l's always con-
verges as s —► ¿o.

3.5 Corollary.   // G is an exponentially bounded group then whenever G

acts on a set X and AC X is a nonempty set there exists an invariant ¡or

(G, X, A).

Proof.  Combining Proposition 1.2 and Theorem 3.3 we need only show that

an exponentially bounded group is amenable.  But given a finite symmetric F C G
with e e F we can apply Remark 3.4 to (G, G, G) and get for all e > 0 there

exists  N > 1 such that, for all f £ F,  \\ fFNAFN ||/|| FN || < e.  This Feiner crite-
rion implies G is amenable.    D
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40 J.M.ROSENBLATT

3.6   Remark.  In proving Corollary 3.5 we could have gotten away with prov-
ing less.  If a group G is given such that there exist  invariants for all (G, G, A)
then whenever G acts on a set X and A C X is nonempty, there exists an invari-
ant for (G, X, A).   Let xQ £ A.   Define n : G —» X by 77(g) = gxQ.  Then tt is equi-
variant in the sense that n(gh) = g77-Cb) for all g, h £ G.   For any 5 C G let
77    (5) = {g £G: n(g) £ S\. Then n~l(A) is nonempty and there exists a finitely -additive
G-invariant measure p on G such that p(n~ KÁ)) = 1. Define i/,S) = ¡in' l(S)) tot all 5 C
X. It is easy to check using the equivariance of 77 that v is a finitely-additive G-invari-

ant measure on X such that v(A) = 1. So we could have considered only triples
(G, G, A) to get Corollary 3.5.

4.   Growth conditions in solvable groups.  In §2 we saw if a group G con-
tains a free subsemigroup 5 on two generators, then there does not exist an in-
variant for (G, G, 5).   In §3 we saw if G is exponentially bounded, then there ex-
ists an invariant for (G, G, A) for any nonempty subset A of G.   In this section
we will show that at least for solvable groups, these are the only two cases.  Do-
ing this will depend heavily on the work of Wolf [20] and Milnor [l5l on growth
conditions in solvable groups.

Assume G is generated by a finite set F with e £ F and F = F~ .

4.1 Definition.   G has polynomial growth if there exist   K,L>0 constants

such that for all N > 1  we have \\ F    \\ < KN   .   G has exponential growth if there
exist   K > 0. and y > 1 constants such that for all N > 1  we have \\ F" \\ > KyN.

These definitions of exponential growth and polynomial growth do not depend

on which finite symmetric generating set we use.  This was shown in Wolf [20],
but is originally an observation due to Milnor [14]. It follows that when lim || F"||
= y > 1  there exists  S > 1  and  N > 1   such that for all n>N || F" || > 5".
Using Milnor's observation, we replace the generating set F by F   , and we see
that  || (FN)m || > (SN)m for all m > 1 which implies G has exponential growth.  It

is not clear that when lim  || F" ||       = 1 then G has polynomial growth in general.
It is true for solvable groups as we will see later. For other details see Emerson
and Greenleaf [3].

4.2 Remark.  It follows that if G has polynomial growth, it is exponentially

bounded since  || F" \\ = 0(n   ) for any finite F C G and if G has exponential
growth, then it is not exponentially bounded.

A solvable group G is polycyclic if every subgroup H oí G is necessarily
finitely-generated. Wolf [20] gives other characterizations of polycyclic groups,
one of the most important of which is there exists a normal series for G with fi-
nitely-generated abelian factors. This means there exist GQ C Gj C • • • C Gn
with GQ = (e), G = G and each G. a normal subgroup of G. . with C ./G. a

finitely-generated abelian group for all i = 0,- • • , n — 1.
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INVARIANT MEASURES AND GROWTH CONDITIONS 41

4.3 Remark.  Two properties of polycyclic groups which follow from the above
characterization will be important later.   One is that if H is a normal subgroup of
G with H and G/H polycyclic, then G is polycyclic.  Another is that we can

choose generators y., • • • , y   of a polycyclic group G such that every element of
G is of the form y"1 • • > y"p where ".,•••,«   e Z.

4.4 Remark.  Wolf [20] shows that a polycyclic group either has a nilpotent
subgroup of finite index and has polynomial growth or the group has exponential

growth.  These cases are mutually exclusive.   He actually proves a theorem on
the polynomial growth of nilpotent groups which shows how to find the constants
K and  L in the definition.  Another theorem in the same source gives criteria in

terms of eigenvalues for deciding if a polycyclic group has a nilpotent subgroup of
finite index.  Milnor [15] shows that if a finitely-generated group is not polycyclic,

then G has exponential growth.
One immediate application of these results is that the class of groups with

nilpotent subgroups of finite index is included in the class of exponentially

bounded groups.   In particular, abelian groups are exponentially bounded.  A group

G which is locally nilpotent, every finite subset generates a nilpotent subgroup,

or one which is locally nilpotent up to taking a finite index subgroup, will also be
exponentially bounded since our criterion for being exponentially bounded is a lo-
cal one.  Thus, there is a large class of groups  G which give invariants for all

(G, X, A).
4.5 Definition. A group G is supramenable if and only if whenever AC G

with A nonempty there exists an invariant ¡or (G, G, A).
Remark.   By Remark 3.6 this is the same as having an invariant for all

(G, X, A).
We formalize some previous results in this terminology.

4.6 Theorem.   All exponentially bounded groups are supramenable.   A group

with a free subsemigroup on two generators is not supramenable.

Our conjecture is that a group is supramenable if and only if it is amenable

and has no free subsemigroups on two generators.  The only if part is clear.  By
the work of Frey [4] an amenable group has no free subsemigroup on two genera-

tors if and only if every subsemigroup is amenable.  So our conjecture is that a

group is supramenable if and only if it is amenable and every subsemigroup is

amenable.
Following Wolf [20] and Milnor [15] we will show that at least for solvable groups

this conjecture is true. In fact, we will show that a finitely-generated solvable
group either is polycyclic, contains a nilpotent subgroup of finite index and thus
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has polynomial growth, or it contains a free subsemigroup on two generators and
thus has exponential growth.  These cases are mutually exclusive.  The conjee?
ture  for solvable groups will follow ftom this.   Jenkins [ll ] has parallel results
for connected separable locally compact topological groups. The above also has applica-
tion in the problem of symmetry of the group algebra; see Jenkins [10] andHulanicki [8].

Remark.  We will not need it later, but any group G will be supramenable if
and only if every finitely-generated subgroup is supramenable.  To see this first
note that each property implies  G is amenable, so"by Proposition 1.2 we need
only verify the respective translate properties.  Given G is supramenable, the
translate property for (H, H, A) where ACH and H is a finitely-generated sub-
group of G follows immediately.  Suppose we know the translate property for all

such (H, H, A).   Given AC G which is nonempty we need to check the translate

property.   Let gp* ••»£„£G and a.,.>>,an £ R. Suppose '2f_]aix .A>0.  Let
H be the subgroup generated by gp- • • , gn and gQ where gQ £ A.   Let AQ =

A n H.  Then we have 2?.,«,*^ \H > 0. Since we know xtjA\ H = Xgl(Anf,)
= X8iA0' We have 2¿=lfl2^«¿A0 > 0.  Since (H, H, AQ) has the translate property,

2*=1a¿ > 0.  Since the  ^lmla(Xg.A was arbitrary, we have that (G, G, A) has the
translate property for any subset AC G, A nonempty.

We first consider finitely-generated nonpolycyclic groups.

4.7 Theorem.   Let G be a finitely-generated solvable group with no sub-
semigroup on two free generators.   Then G must be polycyclic.

The converse is not true as we will see when we consider polycyclic groups.
We need some lemmas before proving the theorem.  The proof via the lemmas giv-
en here is identical in form to Milnor [15] replacing "not of exponential growth"

with "no free subsemigroup on two generators."   The only difference is in the

following lemma.

4.8 Lemma.   Consider an exact sequence e —»A —► B —> D —► e where A is

abelian and B is finitely-generated.   If B has no subsemigroup on two free gen-

erators then, ¡or each a £ A and b £ B, {b ab~   : k £ Z\  spans a finitely-gen-

erated subgroup of A.

Proof.   First wè show that if G is a group with no free subsemigroup on two

generators, then for all x, y £ G there exists a nontrivial relation of the form
X"lymX-   . . .  *«*/»• = ZV 1   . . .  X V   With   ̂ =1(n¿ + 777.) = X"^ + /.),   *j = 0,
71,7:0//., and all n,, m,, k., I. > 0.  To do this find a nontrivial relation with* * «*77 i,.,

,    ,       . 72 1     772 1 ns   ms «1    '1 fef   '/        . ,nonnegative powers of the form x ly    l • • • x    y      =x    y     • - • x   y    with

n-, 77z¿, k., /. > 0 except possibly nv k^, ms, lf.   By cancelling terms on the left
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and then multiplying on the right by x or y, we can assume without loss of gen-

erality that «} > 0, ¿j = 0, and /j > 0.  This gives two formal positive power
words  WAu, v) ¿ W2(u, v) with Wj(x, y) = W2(x, y) such that Wj begins on the

left in u, W    begins on the left in v.   Let RAu, v) = W^(u, v)W2 (u, v) and
R2(u, v)= V/2(u,v)WAu,v).   Then  RAx, y) = R2(x, y) and Rj /= R2 as formal
words since one begins in u and the other in v.  Also the lengths are the same.

Now for b £ B and a £ A since we are assuming b and ba do not generate

a free subsemigroup, there exists a nontrivial positive power relation of the form

b  Hba)   H Hba)   2 ••• b s(ba)   s = (ba) H 2(ba) 2 ■■■ b '(ba) '
where  2? . («. + m¿) = 2'    (as. + /.) with k. = 0.  So we have a nontrivial relation

of the form ban ■ • • ba'm-- ban ••• ba'm  where if, jf - 0, 1 and  z, =0, jl = 1.
Then for convenience let a. = è^aè-*. We have fcafl ... ¿>aZm = a\Jai2.. - a'mbm.

* \     ¿ m
Therefore our relation becomes

z      •••a     »û,    •••ö        or    a, • • • # = el m i m l m

-iwhere not all i — j =0. Choosing m as small as possible and conjugating by b~    if

necessary, we may assume i. £ jl and i    \l j  .  Note that without loss of gener-
ality m > 2 since m = 1 implies  aj-   = e implies a = e.

It follows that am is a word in a, ,• • • , a     ,.  Hence, a     ,  is a word inm 1 m—I '    m 4-1
a2'* " ' flm an<* tnerer°re in aj,. • • , «m_ j also.  By induction one can show that
a^ for k > 0 is a word in a, ,• • • , a      ,.  Similarly,   a.  is a word in a,,. • • » a
so aQ is a word in a^,- • •, «„,_!•  Then a, is a word in a.,« • •, a     , and
therefore in Sjf» » am„y   By induction all A: < 0, afc is a word in a,,« • •,
«m_j.  Hence, aj,-••, am_j generate the subgroup generated by la, : & e Zi =
je*a¿>-*: /fe eZ|.    D

We say a group D has a /znz'fe presentation when D is presented with a fi-
nite number of generators on which there are a finite number of relations needed to
define D.

4.9   Lemma.   Let e—»A—»B-^D—»e be exact, A arbitrary, B finitely-

generated.   If D has a finite presentation then there  exist   a.,"', a    £ A such
that every element of A is a product of the conjugates of \a.\.

Proof. Choose generators b.,---,b, for B and then n(b. ),•••, ""(b^) gen-
erate D. Since D has a finite presentation, it has a presentation with these ele-

ments as generators subject only to a finite number of relations rjWèj),*" ,iÁb¡J)
= ... = r   (77(f) ,),..• , n(b.)) = e.   Define a. = r. (b, ,• • • , £>.).   The normal

ml ft f j      1 m
subgroup generated by the set of relations \r.(n(b.),- • • , n(bk))\ in the presenta-
tion of D gives all relations in D.   Since this normal subgroup is all products of
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conjugates of {r^nib. ),• • • , n(bk))}> it follows by exactness that every element of
A can be expressed as a product of the conjugates of \a.\.    □

4.10 Lemma. Let e —»A—> B —>D—» e be exact, A abelian, B finitely-
generated, and D polycyclic. If B has no free subsemigroup on two generators
then B must be polycyclic.

Proof.  As we remarked 4.3 we can choose yp • • • , yp generating D such

that every element of D can be expressed as a product yx    ••• yp   with z'p- • • ,

1    £ Z.   Choose fcp. • • , b   £ B such that 4>(b^ = y¿.   By Lemma 4.9 there exists
a.,- • • , a    £ A such that every element of A can be expressed as a product of

the conjugates of \a\.  Since A is abelian each conjugate of a. can be written

as some element (èj1 • • • bpp)~ a.(b\   - • • bp).   Let AQ denote the subgroup of A
spanned by a.,.. • , a  .  Apply Lemma 4.8 to see there exists a finitely-generated

group Aj spanned by all conjugates   b\ a.bj1  where 1 </<777, z'j £ Z.   Apply
the same lemma again to each generator of Aj and b2 £ B to see that all
b2    (¿>j    a.b1  )b2   span a finitely-generated group A2.   By induction AQC A.C
A2 C .. • C A   = A gives A finitely-generated.  Since A is then polycyclic and
since D is polycyclic, B must be polycyclic by Remark 4.3.    O

Proof of Theorem 4.7.   Let the series G = G° ^ G1   3 • • • 3 Gs+1 = (c) be the
commutator series of a finitely-generated solvable group G.  Then  e —> Gs —» G
—► G/Gs —> e is exact, G is finitely-generated, and Gs is abelian.  So by Lemma

410, if G/Gs is polycyclic and G has no subsemigroup on two free generators,

then G is polycyclic.   G/Gs is a finitely-generated solvable group of one shorter
commutator series and  G/Gs has no subsemigroup on two free generators if G
has none.   From this an easy induction shows that  G is polycyclic.    □

4.11 Examples.  If G is not a polycyclic group but is finitely-generated and
solvable then there exists a free subsemigroup on two generators.  This proof is

unfortunately not constructive and so a few examples are in order.   Let G =

(a, b\ bab~   = a).  That is, G is generated by a and b with the relation bab~
= a .  If we let N = subgroup generated by \b a b~   : k, I £ Z] then it is not hard

to check Af is an abelian normal subgroup of G and G/N is cyclic.  So G is
solvable.   But we can see this without a computation by embedding G in another
group.   Let G„ be the group of additive reals  R extended by an element g such
that t , conjugation by g, is the automorphism of R given by multiplying by 2.
This group is given by the presentation (R, g \ for all r £ R, grg~   = 2r).   It can
be checked that g has  °= order and no relations are imposed on R.  Thus, we
have  GR as described.  Note that 0 is the identity of GR.  We get an isomorphism

i of G into GR by letting  i(a) = 1,  i(b) = g.   It is clear GR is a solvable group;
therefore G is a solvable group too.  The subgroup N oí G corresponds to
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1á¡/2  : k, I £ Z\ under i.  This subgroup is not finitely-generated and therefore G
is not polycyclic and must contain a free subsemigroup on two generators.  We
will see later in this section why it is natural to suspect b and ba are (tee
semigroup generators in G.  For now though let A = \ ab : I, k>2 and k m 0 mod 2|.
Then baA W bA C A, so ba and b generate a free subsemigroup by Corollary 2.5.  The
disjointness requires knowing that a and b are infinite order.  This can be
checked easily but also follows from a theorem of Magnus Ü2, p. 252].

Another good example of a nonpolycyclic finitely-generated solvable group is
the group H generated by x and lZ¿ : i £ Z\ with the relations  x*Z¿x~* = Z¿ .,
Z2.^ = Z^Z-.  Actually G is generated by x and Z,.  Also if N is the subgroup
generated by \Z{ : i £ Z\, N is a free abe lian normal subgroup of G with free
abelian generators  lZ¿ : i £ Z\ and G/N is cyclic.  So H is finitely-generated
solvable but not polycyclic.  Here x and Z, generate a free subsemigroup as an
easy argument shows.

Both groups above are simple examples of solvable and hence amenable
groups with subsemigroups on two free generators.  Höchster [6] was the first to

give an example of this phenomenon with a slightly more complicated finitely-
generated solvable group with two elements which he shows generate a free sub-
semigroup.  The example he gives is not polycyclic.

Now we consider polycyclic groups.  We will show after some lemmas,

4.12 Theorem. // G is a polycyclic group then G either has a nilpotent sub-
group of finite index or G contains a free subsemigroup on two generators but not
both.

From this we can get the following:

4.13 Corollary.   // G is a polycyclic group then either G has polynomial

growth or G contains a free subsemigroup on two generators but not both.

Proof.  As in Remark 4.4 we use Wolf [20] to prove that when the group con-

tains a nilpotent subgroup of finite index, then it has polynomial growth.  If there
exists a free subsemigroup on two generators a, b then given any generating set

F of G with e £ F = F'1 we let FQ = Fula, b, a"1, b'H. Then FQ is the
same kind of generating set and  || F™ || > || la, b\m || > 2m.  Therefore G has expo-

nential growth.  As in Remark 4.2 these cases are mutually exclusive.   D

4.14 Corollary.   // G is a solvable group then either G is supramenable or

G contains a free subsemigroup on two generators but not both.

Proof.   It is clear both conditions do not occur at once.   If we take a finite
subset FC G with  e £ F and F= F-1,then the subgroup H generated by F is
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solvable.  If H is not polycyclic then it and G contain a free subsemigroup on
two generators   by Theorem 4.7.  If H is polycyclic, then Corollary 4.13 implies
that H contains a free subsemigroup on two generators or H has polynomial
growth.  As in Remark 4.2, since  F was arbitrary, G is exponentially bounded or
contains a free subsemigroup on two generators.  Theorem 4L completes the proof

of the corollary.    Ü
We see now that everything we claimed depends on Theorem 4.12.  As in

Corollary 4.13, the two conditions are mutually exclusive.  We will need several

lemmas before giving the proof of Theorem 4.12.
Let i?[x] be all polynomials with real coefficients.  If V is a square matrix

and p(x) = S^r/i*' e Rbc] then P(r) - 2"=0r«r2 where r° = '•

4.15   Lemma.   Let F bean nxn real matrix.   Let a.,...,a    be the can-I 72

onical basis in Rn.   Let tb be an eigenvalue of T.   Then there exists K.,"-,K
£ C not all zero such that whenever P., Q{ £ R[x], i = 1 ,• • • , n, with ^_yP.(r)a..
= ^=ie.(r)a. then 2«=1P.(<¿)K. = 2^0^..

Remark.  We will see that each K. can be taken to be a polynomial in fp with

coefficients in the smallest subfield of R containing the coefficients of T.
Proof.  Given an eigenvalue tp for V, <p"  is an eigenvalue of the transposed

matrix TT.  There exists a nonzero vector v = 2? .K^a. with Ki £ C such that
r  v = 4>v.   We claim these K. are what we want.  We need only verify that if
2n ,P.(T)a.= 2" ,r.a. where r. £ R and P.(x) e R[x],then 2" ,P.(<p)K.=2 = 1     I I 2 = 1   2     2 2 2 23l     2 I

2" ,7-.K..   By linearity of the forms and since jap- • •, an\ is a basis, it is easy
to see that we need only verify that when Fma. = 1"_.r.a. then tpmK. =

2",r.K. for all 772 > 1 and for all i.  In this case, if we write V as (T\.) where
i denotes the row and /' the column, then r. = T^..  For 777 = 1, T  v = tpv tells
us for any i we have <pKi = 2."_lTj.K. = 2? .r.^K..  We may therefore assume in-
ductively that 777 > 2 and   tpm-1Ks = 2^1™": Kj lot all s.  We then have for
all z

tpmK. = tbm-x(tbKUtpm-'í ¿ T..K.
i-1

k=l \y=l / fe=l

4.16   Lemma.   Let x e G» \x I ̂  3.   Assume we have two sets of integers
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0<ai<a2<...< an andQ<bx<b2<.-.< bm.  If S^X*' = ^/X'' vbere
f. and 8. are +1 for all i and j then « = m and (a, ,• • • , a ) = (b, ,• • • , b   ).

1 / I 72 1 771

Proof.  If a   s¿ è   , then without loss of generality a   > b   .  Write í Va« =71 777 ° ' H IB 7I/V

M "=k„X"l<2    Z   1x1s - 2 ;
s=o Ixl - !

therefore  |xl " < Ixl " - ! since  |x| > 3.  This is a contradiction and therefore
a   = f>  .  If t   £ 8    then without loss of generality (   = 1 and 5    = -1.   But77.777.77.771 b 3       n 777 ■*"•*

then

2x"n - «,/" - 8mXbm - Z  S-x*' - "¿ e/' .
y=i 7=1

So 21x1a" < 2(|x|a" - l)/(|xl - D< Ixl""- Therefore ffl = 8m. Cancelling the
highest terms of the power series and continuing inductively, we get n = m and
(a,,-.., a )= (è.,... , í>).    □1 72 1 772

4.17 Theorem.   Consider an exact sequence e —> Zr —* G —>// —te.   For

each g £ G let r (x) = gxg"l for all x £ ZT.   If some g e G, r    has an eigen-

value <p £ C  with  \<f>\ /= 1  then G has a free subsemigroup on two generators.

Proof.   Let g £ G with r   having an eigenvalue <f> where  \<f>\ ¿ 1.  Then
r _ i will have an eigenvalue   l/(f>;  therefore without loss of generality we assume
|(/>| >1.   Let r be the matrix of r    with respect to the canonical basis   aj,.--,

a .  Choose  K. ,• • • , K   for <f> as in Lemma 4.15.  At least one  K.   ■/= 0.   Let a =
a.    and  K = K. .   Let x = g"a and y = g".  We claim that when « is large enough

so that  |^|" > 3 then x and y generate a free subsemigroup.  To prove this let
A be the set of elements of G of the form   [P(T")a]gm where m > 1 and  P is a poly-

nomial with coefficients  0 or 1 and no constant term.  Notice we are mixing ad-
ditive and multiplicative notation in G.  We claim xA U y A C A.   First, given any
[P(Vn)a\gm in A we compute x[P(Tn)a}gm =[(rnP(Tn) + Tn)a\gn*m and

y[P(T")a]gm = \rnP(rn)a]gn+m.  Thus, xA UyACA.   If xA intersects yA then
for some m., «z, > 1 and  P, Q polynomials with coefficients 0 or 1 and no con-
stant term, we have  [(PW) + rn)a]g"+ml = \TnQ(rn)a]gn*m2.  This implies

that « + m, = « + »z    since otherwise there is some M > 1 with g    £ Zr and thus

r    would have all eigenvalues of absolute value 1. Since « + m. = « + z»    we
can cancel g""1""1 and get (TIP(rn) + rn)a - rnQ(T")a.   By Lemma 4.15, we have
(<f>nP(4,n)+cj>n)K = (<f>nQ(4>n))K.   Cancel K and use Lemma 4.16 to get that the
polynomials  zP(z) + z and zQ(z) aie identical.   But since   P and  Q have no
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constant term, this is nonsense.   Thus xA and yA are disjoint.  This proves the
claim xA U yA C A and Corollary 2.5 implies x and y generate a free subsemi-

group.    D
Remark.   The converse of this theorem is not true without more assumption on

H.   For instance let G be Zp ® H, p > 1, where H contains a free subsemigroup
on two generators.  Then G contains a free subsemigroup on two generators but

each r   = identity on Zp for g £ G.g

4.18 Lemma.   Given a group of real matrices under composition which is solv-

able, there exists a subgroup of finite index which can be simultaneously upper-
triangulated over the complex numbers.

Proof.  See Mal'cev [l3J.
Proof of Theorem 4.12.   Let G be a polycyclic group with G = G° 3 • • • 2

G +1 = (e) the commutator series.  Assume that G has no subsemigroup on two
free generators.  We will show that G has a nilpotent subgroup of finite index. We

have the exact sequence  e —» G   —» G —» G/G   —» e.  For what we are to show
without loss of generality G    is free abelian.   To see this let T be the subgroup
of torsion elements in G .  Since  G is polycyclic, T is a finite normal subgroup
of G.   e —» GS/T —• G/T —» G/G  —» c is exact if we take  i* the quotient of the
map i.   G/T is free abelian and G/T is polycyclic and has no free subsemi-

group on two generators.  Also the commutator series for G/T is  G/T = G /T 3
... D G /T 3 (e).   If we show there exists a nilpotent subgroup N of finite index

in G/T then we have  e —> T —► G -2* G/T —► e is exact and 77     (/V) is a sub-

group of finite index in G.   Let /i C 77-1(iV) be the centralizer of T in ?7~  (N);
/V = jx £ 77     (A/):  conjugation by x on T is the identity!.  Since  T is finite, H
is finite index in tt~1(N).  Therefore H is finite index in G.   H is also nilpotent.
To see this, let ZH = Center (H);  then  T C ZH.  The sequence  e —» ZH —»//—»
H/ZH —> e is exact where   H/ZH is a quotient of H/T.   But H/T Cn~l(N)/T S
A/.   Since /V is nilpotent, H/ZH is nilpotent which implies  W is nilpotent.

Now we are assuming we have  e —» G  —» G —» G/G   —» e exact and G
free abelian.   G/G    is polycyclic of one shorter commutator series than G and
has no free subsemigroup on two generators since  G does not.  By induction, the
case 5 = 0 being trivial, we may assume there exists a nilpotent subgroup M oí
finite index in G/G .  Then p~ (M) is a subgroup of finite index in G with
p'x(M)/GS S M which is nilpotent.

Therefore, without loss of generality we have the following to show: given
an exact sequence e —* Z —* G —» A/ —» e where N is nilpotent and G has no
free subsemigroup on two generators, then G has a nilpotent subgroup of finite
index.    Each r , conjugation by g £ G on Z , extends to an automorphism of C
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with respect to the canonical basis  a, ,• • • , a,  of Z .  Theorem 4.17 implies all
eigenvalues of r   are absolute value  1.   Let U be \g £ G: r    has all eigenvalues
1|.   By Lemma 4.18 there exists a subgroup G* of G with Z^CG* and [G:GJ|C]<
« such that the group KG*) can be put simultaneously in upper-triangular form over  C.

Let  Uç= U O G*. We claim  U^ is nilpotent and the index of U^ in G = [G : U%]
<■*>.

First, we show [G:l/i(.]<«1 by showing [G* : f_/*] < °°.  To do this write
each r   = A   U    where A    and U   ate polynomials over 0 in T   such thatg       g   g g 8 r   ' *- g

(a) V." V.'
(b) A    is diagonalizable over C,
(c) U    has all eigenvalues  1.

A    and  G    are also uniquely determined by these properties.  When we put KG*)

in upper-triangular form, A    becomes the diagonal and  U   — I the part above the

diagonal.  Thus, A = \A  : g £ G^\ is an abelian group of automorphisms of C

and g r-* A    is a group homomorphism on G^ with kernel U^..  Hence,  G^/G* S

A.  Each A    £ A has diagonal elements which are the eigenvalues of r .  Since

r    is an automorphism of Z    these eigenvalues are algebraic integers of abso-

lute value 1^ It follows that each is a root of unity;  see Borevich and Shafare-

vich [2, pp. 104-105 or the remark at the end of the proof].   It follows each A
has finite order.  Since A is finitely-generated abelian, A is finite and [G+ : G*]
= order of A < °o.

In addition we have the exact sequence  «? —» Z   —» G* —» G^/Z   —» e.
VjZ    is nilpotent since it is a subgroup of G/Z   which is nilpotent.  Each r
for u £ U% acts on C   and KG*) can be simultaneously upper-triangulated over

C with respect to some basis Vj,.-. , v,.  Since each r    tot u £ G* has eigen-
values 1, the matrices when in upper-triangular form have l's on the diagonal.

Let Cr = Cvj © ••• © Cvr.   Let Df= Cfr\ Zk.   Each  Dr is a normal subgroup

of  U .   Let a e D    ..   Then a = cu    . + h where  c £ C and h £ Cr.  So for

u e G*, r (a) = r (cv   ,) + r (/>) = (cf   [ + £) + r (/>) for some k £ Cf. Hence, each u,

ru(a) m cvT j ■ amod Cf. Since r (a)- a e Z*n C = Dr, r (a) ■ a mod Dr.
This says, each x e Df ./Df is in the center of UjDT.  Since D^ = Z* and
G+/Z    is nilpotent, we can get a central series e C D, C • • • C D, C Cj C • • • C

C = fA where C. = n~  (Z.) with Z. the  z'th element of a central series forr *■ 2 2 2

UjZk= U^/D^  Hence, G* is nilpotent.    □
Remark.  We can give a simple proof here that the group A in the above is

finite.  We need only show that when r is an automorphism of Z" with eigen-

values Aj,. • • , Xn all absolute value 1 then each A¿ is a root of unity.   In this
case we have Trace Ak is an integer for all k > 1.  Since Trace A* is A* + •..
+ A*, A* + • • • + A* is an integer for all k > 1.  If S* = {A £  C: | A | m 11 then
S1 x • • • x S1 is compact.  So the sequence 1 (A*, • • • , Afe): k £ Z*\ must have a
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subsequence KAj',-• • , An')! which converges.  It follows that (Aj1+1~  ',•••»

An!+       ') —» (l,. « « , l).  Thus, there exists a sequence j /.| C Z+\j0i such that

A ' —» 1 for all /'.   But since Aj  + • « • + A^   is an integer for all », there exists

k = I. for i sufficiently large such that A* +...+ A* = n. But then Re A* + ... + Re A*
= Re n = n with k>l.  Since each A. has absolute value 1, Re A* < 1 and Re A* = 1
if and only if A. =1. Hence, we must have for all /', Re A. = 1 and therefore A* = 1

where k>l. Thus, each A. is a root of unity. We quoted Borevich and Shafarevich in

the proof of 4.18 because they prove the stronger result, which is interesting in
itself, that any algebraic integer of absolute value 1 is a root of unity.

Examples 4.19.  We can see now what was going on in Example 4.11 where
we considered a special case of  (a, b \ bab~   = am).   If  17771 / 1 then G is a
nonpolycyclic finitely-generated solvable group.   It therefore contains a free sub-

semigroup on two generators.   In fact, b    and b a generate a free subsemigroup
since b2ab~2 = am   , m2 > 1;  and so if A = \alV: i, /> 1 and   z'= 0 mod 7?z2i,
then b A U b aA C A.   But another way of looking at this which compares with

Lemma 4.17 is the following.  We embed G in GR where GR = (R, g \ grg~   =
mr for all r £ R) by mapping a H» 1, b (-» g.   This makes it clear that for  17721 /
1, the normal subgroup generated by a in G is not finitely-generated since it

corresponds to   {k/m : k, I £ Z\ in GR which is not finitely-generated.  Thus, G
is not polycyclic.  Also, r    on R has an eigenvalue 777, 17721 / 1.  So as in Lemma
4.17 g" and gnl generate a free subsemigroup on two generators if  17771" > 3.

Since  177z I > 2, we need only take n = 2.   This says b   and  b a generate a free

subsemigroup in G.   Also, if  17721 = 1 then G and GR have nilpotent subgroups

of finite index.
Indeed, whenever we have an exact sequence e —» R —» G —* H —* e and some

r    with g  £ G has an eigenvalue A, A > 1, then for A" > 3 we can argue that

g"l and g" generate a free subsemigroup.   The argument is easier than in Lemma

4.17 because we can let A be all elements of the form kg' where i > 1 and k is

a sum of positive powers of A".  Then g"lA U g"A C A with disjointness follow-

ing by an argument about power series analogous to the one in Lemma 4.17.

Similarly, if we are given e—*C—*G—*H—*e exact and r : C   —* C

with eigenvalue A such that  |A| > 1 then we choose  h £ G such that r¿ has

eigenvalue y, \y \ > 3, and choose any eigenvector v £ C    for r   with respect

to y.  Then an argument as above will show hv and h generate a free subsemi-
group.   These examples are simpler than Lemma 4.17 because we can choose ei-

genvectors in G itself.

4.20   Corollary.   // G is a connected locally compact group, then G either

contains a free subsemigroup on two generators or is supramenable but not both.
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Proof. In [21], Balcerzyk and Mycielski show that G is solvable or it con-
tains a free group on a continuum of generators. So if G contains no free sub-

semigroup on two generators, then G is solvable and Corollary 4.14 finishes
the proof.    □

Remark.  We have seen there is some support for the conjecture that an am*li-
able group is supramenable if and only if it has no free subsemigroup on two gen-

erators in Corollary 4.14 and Corollary 4.20.  For general amenable groups this is
unresolved.  Even for groups  G which are periodic, every element of finite order,
this is unknown.  These groups have no free subsemigroup on one generator, but
it is not known if they are even amenable.   It is possible to construct periodic
groups with exponential growth.  Another discouraging aspect of this conjecture
concerns some common constructions in the category of groups.   Both classes, the
supramenable groups and the groups with no subsemigroup on two free generators,

are closed under factor groups and subgroups.  The only part of this that is per-
haps not clear is  G supramenable implies  G/H supramenable for a normal sub-

group H.   But if n: G —» G/H then G acts on G/H by gn(k) = n(gk). Since G is
supramenable by Remark 3.6 there exists an invariant for (G, G/H, A) lot any A.
By the definition of the G action on G/H this shows  G/H is supramenable since

A is arbitrary.
We have not been able to show that G © H is supramenable if G and H ate

supramenable.   It is clear if G and H ate solvable.   But the following proposi-
tion is true:

4.21 Proposition.   // G and H have no free subsemigroups on two generators,
then G © H has no free subsemigroup on two generators.

Proof.   Let a, b £ H.   Then as in Lemma 4.8 there exist positive power
words S. and 5, with SAa, b) = SAa, b) and with equal lengths such that S.
and S2 begin on the left with different entries.  So let (x, y) and (w, z) £ G © H.

For i» 1,2 let  W.(7í,cf) = S.(Rj(77, £), R2(r/-, £)) where we choose R¿ and then
S. as follows :

(a) Pj and R2 ate positive power words with Rj(x, w) =■ P2(x, w) but Rj

begins with 77 and R2 begins with f.
(b) 5j(Rj(y, 2), R2(y, 2))= 52(Rj(y, 2), R2(y, 2)) where Sj and S2 are

positive power words with lengths the same number / but Sj begins with Rj and

$2 with  R2.
Then
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Wj((x, y), (w, z)) = 5p(Rj(x, w), R^y, z)), (i?2(x, w), R2(y, z)))

- (5j(i?pX, w), R2(x, w)), 5pRj(y, z), R2(y, z)))

= (Rj(x, w)1, 5j(Rj(y, z), R2(y, z)))

- (Rj(x, u/)', 52(Rry, z), R2(y, z)))

= (52(Rj(x, w), R2(x, u/)), 52(Rry, z), R2(y, z))) = W2((x, y), (w, z)).

Also, Wj(r/,f)^ W2(r/,f) since one begins with q and the other with f. Since
(x, y) and (w, z) were arbitrary, G @ H has no free subsemigroup on two gen-

erators.    D
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