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INVARIANT MEASURES FOR AFFINE FOLIATIONS

WILLIAM M. GOLDMAN, MORRIS W. HLRSCH AND GILBERT LEVITT

ABSTRACT. A (transversely) affine foliation is a foliation with an atlas whose

coordinate changes are locally affine. Such foliations arise naturally in the

study of affine structures on manifolds. In this paper we prove that an affine

foliation with nilpotent affine holonomy group always admits a nontrivial

transverse measure. Two proofs are given: one for noncompact manifolds, and

another, valid for compact manifolds with (G, X)-foliations (not necessarily

affine) having nilpotent holonomy. These results are applied to prove that a

certain cohomology class on a compact affine manifold with nilpotent holonomy

is nonzero. Examples are discussed.

Introduction. A smooth foliation of a manifold M is a partition of M into

submanifolds (leaves) together with a transverse differentiable structure. In the

presence of a more rigid transverse structure (e.g. an affine structure, or more

generally a geometric structure), one may infer more detailed information on the

possible properties of the foliation (for example, the existence of a transverse

measure).

To illustrate this idea, we shall first study (transversely) affine foliations and

prove

THEOREM A. Let 7 be an affine foliation of a manifold M. If the (affine)
holonomy group of 7 is virtually nilpotent, then there exists a transverse measure for

7.

A group if virtually nilpotent if it contains a nilpotent subgroup of finite index.

Note that if the fundamental group tx\(M) is (virtually) nilpotent then the holonomy

group of 7 is as well.

This result is based on the following theorem, for which we give a constructive

proof.

THEOREM B. Let H be a virtually nilpotent group of affine transformations of

R™. For any H-invariant open subset U c R™, there exists a nontrivial H-invariant

Radon measure on U.

Recall that a Radon measure is a nontrivial Borel measure which is finite on

compact sets.

For closed manifolds, Theorem A is a special case of a general result on (G, X)-

foliations (i.e. foliations with a transverse geometric structure—see below).

THEOREM C Let 7 be a(G, X)-foliation of a closed manifold M. If the holonomy
group T of 7 is virtually nilpotent then 7 admits a transverse measure.
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This result follows from the work of Plante [10] and the fact that, for a (G, X)-

foliation, the growth type of any leaf is dominated by the growth type of T (a fortiori

by the growth type of 7Ti(M)). In §3 we deduce it from the following theorem, which

is a fairly straightforward consequence of results of Plante but has apparently never

been explicitly stated.

THEOREM D. Let H be a finitely generated group acting on a locally compact

space Y such that some compact subset of Y meets every orbit. If the orbit Hy of

a point y EY has nonexponential growth (in particular, if H is virtually nilpotent),

there exists an H-invariant Radon measure on Y whose support is contained in

Hy.

These results will be applied to the study of closed affine manifolds with nilpotent

holonomy. If M is such a manifold, then there is a natural pair of transverse

foliations of M by parallel affine submanifolds. For one of these foliations there

is a transverse parallel differential form u) defining a smooth transverse measure.

Applying Theorem A, we prove in §4,

THEOREM E.   The cohomology class ofw inH*(M;R) is nonzero.

In contrast we give examples of nonzero parallel differential forms on compact

affine manifolds, and of exterior forms transverse to affine foliations of compact

manifolds, which are exact.

We thank the referee for the following generalization of Theorems A and B. The

referee's proof is given in §3.

THEOREM R. Let G be a real algebraic group acting algebraically on a variety

X.

(a) If a (G,X)-foliation 7 of a manifold M has virtually nilpotent holonomy, then

7 has a transverse measure.

(b) // a virtually nilpotent subgroup T c G leaves invariant an open set (in the

Hausdorff topology) U c X then V preserves a Radon measure on U.

REMARK. Not every nilpotent action preserves a Radon measure. In fact,

M. Herman has constructed a diffeomorphism of a noncompact surface having no

invariant Radon measure.

1. Definitions. In what follows, M denotes a connected closed n-manifold and

J is a codimension-g foliation of M. Let X be a connected g-manifold upon which

a group G acts. We shall always assume that no element of G, except the identity,

fixes a nonempty open set in X. For example, X could be a finite dimensional real

vector space E and G the group AffLE1) of affine transformations of E.

A (G,X)-structure on a foliation 7 is a maximal atlas {(Ua, i¡)a)} of submersions

*q : Ua —* X defining 7 such that for every component C of Ua n Up there is a

transformation / = fa,ß,c E G making the following diagram commute.

c-"
ua—a-^x

f

*<3

Ju->x
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REMARKS. (1) When 7 is the foliation of M by points, a (G,X)-structure on

7 is precisely a (G, X)-structure on M. For more details on (G, X)-structures see

Thurston [15], Goldman [4] or Kulkarni [9].

(2) A (G, X)-structure on 7 induces a (G, X)-structure on any g-dimensional

submanifold transverse to 7.

(3) When (G, X) = (AffLE1), E) we simply speak of affine structures.

It is well known (see, e.g., Goldman [4] or Thurston [15]) that every (G,X)-

foliation can be constructed as follows. First let M —► M be a universal covering

with group of covering transformations it = ni(M). Suppose D: M —► X is a

submersion which is equivariant with respect to a homomorphism qo : it —► G. The

submersion D defines a codimension-g foliation 7 on M which has a canonical

(G, X)-structure. This (G, X)-foliation is invariant under ix and therefore descends

to a (C7,X)-foliation 7 on M. The map D is called a developing map for 7 and <f>

is the (G,X)-holonomy homomorphism. The image of (¡> is the holonomy group of

7 and will henceforth be denoted T.

It is a general principle that T-invariant "objects" defined on the developing

image D(M) pull back to 7r-invariant "objects" on M, which in turn define "objects"

on M. We shall apply this principle to foliations, tensor fields and measures. In

particular any T-invariant Radon measure on D(M) defines a transverse measure

on 7 in the sense of Plante [10] and Ruelle and Sullivan [12].

2. Nilpotent groups of affine transformations. The purpose of this section is to

present a direct proof of the following result.

PROPOSITION 2.1. Let E be a finite dimensional real vector space and H a

virtually nilpotent group of affine transformations of E. Suppose U c E is an H-

invariant open subset. Then there exists a nontrivial H-invariant Radon measure p

on U and a finite union S(U) C U of sectors (see below) such that p,(V) > 0 whenever

V is an open subset of U meeting S(U) and p(A) = 0 whenever A is disjoint from

S(U).

A sector of U is a subset of the form

U n {x E E: h(x) = ■■■ = fq(x) = 0, fq+1(x) > 0,..., f3(x) > 0}

where f\,...,fs are affine maps E —► R whose linear parts are linearly independent.

Proposition 2.1 contains Theorem B, and also implies Theorem A (take U =

D(M) and H = T).

Our basic tool in the proof of Proposition 2.1 will be the following pair of struc-

ture theorems for affine representations of nilpotent groups (see Fried, Goldman

and Hirsch [2]). For any subgroup H C AS(E) we denote by L(H) c GL(E) its

linear part, i.e., the image of H under the homomorphism An\E) —»• Gh(E) which

to the affine transformation x h» Ax + b assigns the linear transformation A.

PROPOSITION 2.2.  Let H be a nilpotent subgroup ofAñ\E).

(a) (Fitting splitting) Let Erj cE be the maximal L(H)-invariant linear subspace

on which L(H) acts unipotently. Then H leaves invariant a unique coset of Eu and

L(H) leaves invariant a unique complementary linear subspace F. Then E has the

L(H)-invariant splitting Eu © F. Moreover H permutes the cosets of Eu, and of F;

the induced affine action of H on E/Eu has a unique stationary point. This induced
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action is conjugate via a translation to a linear action of H on E/Eu, and thus to

the linear action ofL(H) on F.

(b) (Primary decomposition) Suppose that H C GL(E). Then there exists a

subgroup Hi c H of finite index in H, an Hi-invariant linear decomposition

\i=l      J      \i=r+lj

(where each Ei is endowed with a complex structure for r + l<i<r + c) and

homomorphisms X¿ : Hx —> R* (i = 1,..., r), \ : Hi —► C* (i = r +1,..., r 4- c), such

that (h — \(h)I) acts unipotently on Ei for each hEHi. (Here I denotes the identity

transformation on Ei.)

Proof of Proposition 2.1. First we observe that if Proposition 2.1 is true

for a subgroup H' c H of finite idex then it is also true for H: we simply average

an //'-invariant measure over the right cosets of H' in H. This allows us to pass to

subgroups of finite index whenever convenient. In particular we can assume that

H is nilpotent.

We first consider the special case where H is linear. We thus restrict attention to

nilpotent subgroups H of GL(E) which admit a primary decomposition as in 2.2(b).

Since h — \i(h)I acts unipotently on Ei for each hEH, there exists a nonzero linear

functional u¿ : Ei —► R (respectively, u¿ : Ei —* C) such that Ui(hx) = \i(h)ui(x) for

all hEH, xEEi.

We proceed by induction on n = dixnE, noting that the case dim/? = 0 is trivial.

Assume the result has been proved for spaces of dimension less than n. Let F¿ c Ei

be the kernel of u¿; let p¿ : E —► £¿ be the projection of the primary decomposition.

Each p~1(Fi) is an //-invariant subspace of E having dimension strictly less than

n.

First suppose that some p~1(Fi) meets U. By the induction hypothesis there

exists a nonzero //-invariant Radon measure p¿ on U(~\p~1Fi satisfying 2.1. Define

p by p(A) = Hi(AC\F%) for Borel sets A c U. Clearly p is a Radon measure on U

satisfying 2.1.

We can therefore assume that U is disjoint from each set p~1(Fi); thus U C

\~Yi=i(Ei — Fi) (Cartesian product). Let \dxi] denote Lebesgue measure on Ei. Set

dimR.Ei = ki. Then

ßi = ]ui(x)\~k']dxl\

defines an //-invariant Radon measure on Et— Fi. The product measure Yiitn is

an //-invariant Radon measure on f\a(ßi — Fi) whose restriction to U satisfies 2.1.

Now consider the general case H c Aft%E). Let E = Eu © F be the Fitting

decomposition for the action of H on E. Let p : E —► E/Eu be the canonical

projection.

By 2.2(a) we may assume that H leaves Eu invariant and thus induces a linear

action on E/Eu- Therefore the special case yields an //-invariant measure p¿r

on p(U) supported in a finite union of sectors. As L(H) acts unipotently on Eu,

the Lebesgue measure pu on Eu is //-invariant and the restriction to U of the

"product" measure //jrX pu clearly satisfies the conclusions of 2.1 (given that pp-

does relative to p(U)).     Q.E.D.
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3. Existence of invariant measures. Say that a group action on a locally compact

space is syndetic (Gottschalk and Hedlund [7]) if there exists a compact set which

meets every orbit. Theorem D can then be rephrased as follows.

THEOREM D. Let H be a finitely generated group acting syndetically on a locally

compact space Y. If the orbit Hy of a point y EY has nonexponential growth, there

exists a nontrivial H-invariant Radon measure on Y whose support is contained in

Hy.

This theorem is a corollary of Theorem 3.1 and Lemma 3.2 of Plante [10]. Note

that by using Plante's techniques one can give a proof of Theorem D that does not

use the notion of pseudogroup and yields directly a countably additive measure.

REMARKS. If H is virtually nilpotent, then every orbit has nonexponential

growth.

There are counterexamples to Theorem D for nonsyndetic actions of the group

of integers on R2 — {0}.

Here is how to deduce Theorem C from Theorem D.

PROOF of Theorem C. Let J be a (G,X)-foliation of a closed manifold M,

and let T be the holonomy group. Since M is compact the action of T on D(M)

is syndetic. As F is assumed to be virtually nilpotent, every orbit of T in D(M)

has nonexponential growth, and Theorem D yields a T-invariant Radon measure on

D(M). Therefore 7 admits a nontrivial transverse measure.    Q.E.D.

REMARK. If D: M —► X is not a fibration onto its image, there may exist

transverse measures of / which do not come from T-invariant measures on D(M).

For a simple example we may start from a transversely affine Anosov foliation on

a hyperbolic torus bundle over S1 and "tubularize" it, creating a compact leaf.

The resulting foliation is affine and possesses an atomic transverse measure, but T

preserves no Radon measures on D(M) = R.

One can construct examples, using (real and complex) projective structures on

surfaces of genus > 1 whose developing map is onto projective space but whose

holonomy group preserves no measure on D(M). See, e.g., Sullivan and Thurston

[14] or Hejhal [8].
Theorem C can also be deduced from Theorem 4.1 of Plante [10], using the

following fact proved by R. A. Blumenthal [16].

Lemma. Let 7 be a (G,X)-foliation of a closed manifold M, with developing

map D: M —► X and holonomy group T C G. If x E M projects down to x E M,

the growth type (in the sense of [10]) of the leaf of 7 through x is dominated by the

growth type of the orbit of D(x) under T.

COROLLARY. For a (G,X)-foliation of a closed manifold M, the growth type of

any leaf is dominated by the growth type of-Ki(M).

PROOF OF LEMMA. Choose a regular covering of M (in the sense of [10, p.

337]) by open sets Ui (1 <i <q) such that L7¿ U Uj is contained in a ball whenever

U% and Uj intersect. As in [10], for each i, we can define the space X¿ of plaques of

Ui (identified with tp'1 (Dk X {0})), and the transition functions *y»y. Choose local

developing maps D¿ : (7¿ —► X. If (7¿ n Uj is nonempty, the transition function fij

is defined; because Ui U Uj is contained in a ball, there is a unique element hij in T

such that Dj(^jix) = hjiDi(x) for x E X¿ in the domain of 7«. By induction on k
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we get £>»*(7tit»*_r-"1iihx) = hiidk-i',"'1»j»î 'A,(i) whenever the left-hand side is

defined.

We can assume that x 6 Xi and Di(x) = D(x). To a chain of plaques (pi,..., pfe)

C Xi xX¿2 x ■ ■ ■ XXik starting at a; we can associate the point hikik_1 - - -h^i ■ Di(x)

in D(M); this point depends only on the end plaque in the chain, and because L\ is

injective two chains ending at different plaques in the same X¿fc give rise to different

points in D(M). This shows that the growth function of the leaf of 7 through x is

dominated by q times the growth function of the orbit of Di(x) = D(x) under the

subgroup of T generated by the elements hij. This proves the lemma.     Q.E.D.

Proof of Theorem R. Let A denote the Zariski closure of V in G. The

closure of each A-orbit Ax in S is the union of Ax together with A-orbits of smaller

dimension. Let Ix C A denote the isotropy group of x E X in A. Then the orbit

Ax of x under A is equivariantly homeomorphic to the left coset space A/Ix.

Fix x E U so that Ax has minimal dimension of all A-orbits meeting U. Since A

is a nilpotent algebraic group A/Ix carries an A-invariant Radon measure. Conse-

quently Ax carries an A-invariant Radon measure po- Define an A-invariant measure

p on U by p(s) = po(s n Ax). Since Ax has minimal dimension it is closed in the

relative Hausdorff topology on U. This implies that p is a Radon measure, proving

(b).
The derivation of (a) from (b) is the same as that of Theorem C from Theorem

D.     Q.E.D.
It is interesting to note that the proofs of Proposition 2.1 and Theorem R, when

applied to a nilpotent group of affine transformations, can give different invariant

measures. For example if

: ígrI

and

U = {(x,y)ER2:x>0, y > 0}

then Proposition 2.1 gives the invariant Radon measure dx/x - dy/y whose support

is all of U. But if a and b axe both integers, then the proof of Theorem R gives a

measure whose support is 1-dimensional.

4. Applications to affine manifolds. Let M be a closed oriented affine manifolds

with nilpotent holonomy group T. Denote by Erj the Fitting subspace for T as in

2.2(a) and let p: E —► Eu be the projection with kernel F, invariant under L(r).

Since T acts unipotently on Eu the Euclidean volume form uu on Erj is preserved.

It follows that p*uiu defines a T-invariant parallel fc-fonn on E (where k = dim/?[/),

and it therefore defines a parallel fc-form w« on M.

THEOREM E.   The cohomology class [ujm] E Hk(M;R) is nonzero.

After proving Theorem E we shall give several examples of cohomologically

trivial parallel forms which are transverse to an affine foliation of complementary

dimension.

PROOF OF THEOREM E. Let 7f(E) denote the foliation on E by cosets of F,

and 7u(E) the foliation by cosets of Eu- These foliations are T-invariant and thus

induce a transverse pair of foliations 7f, 7u of M. The holonomy of the affine

foliation 7u can be identified with the nilpotent group L(T) acting on E/Eu- By

exp
at    0

0    bt
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Theorem A there is an invariant transverse measure p for Tu- Also the parallel

form u>m defines a transverse measure v for 7f-

Choose a transverse orientation for Tu- The measure p, together with the

orientation, determines a cohomology class [p] E Hn~k(M;R). The pair of foliations

7u, 7f intersect transversely and the foliation 7u^7f, whose leaves are connected

components of intersection of leaves of 7u with leaves of 7f, is the foliation of M

by points. As in Ruelle and Sullivan [12] there is a "product measure" p X u on

7u^7f defined as follows: If Tu is an ^/-transversal and Tf is an ^-transversal,

then Tu X Tf is a transversal to 7u <"> ?F and (p X v)(Tu X Tf) is just the product

measure ¡jl(Tu) X u(Tf)- There is a unique extension of p X v from transversals of

the form Tu X Tp to arbitrary transversals of Tu H 7f- Moreover, if Tu H 7f is given

the transverse orientation determined by those of 7u and 7f, the cohomology class

[p X i/] is just the cup-product [p][wm]-

Since Tu n Jf is the foliation of M by points, the transverse measure p X i^m is

a measure of M. It is clearly a Radon measure. Moreover the evaluation of [p X v]

on the fundamental class [M] E Hn(M;R) is (up to sign) the total mass /M(pX u),

which is positive. Hence [/i][wm] = [p X v] is nonzero in Hn(M;R) and therefore

[w] is nonzero in //fc(M; R).    Q.E.D.

EXAMPLES. (1) let T be the nilpotent group consisting of all affine transforma-

tions

"l -u t

0 1 0

0      0      1

where s, t, u are integers. One can easily prove that T acts properly discontinuously

and freely on E = R3 and the quotient M = E/T is a compact complete affine

nilmanifold (see [3] for the definition). Moreover, the contact form dx — zdy + ydz

on E is T-invariant and defines an affine 1-form 9 on M. Then d6 is a nonzero

parallel exterior 2-form on M, which is exact even though it is "transverse" to the

affine foliation defined by the parallel vector field d/dx.

(2) In [3, §6] an example is given of an affine structure on a hyperbolic T2-bundle

over S1 which has both a radiant vector field R (in local coordinates R = xd/dx +

yd/dy + zd/dz) and a parallel 2-form «. Let tfjw denote the interior product of R

and w. Then w = diRW and thus the cohomology class [w] is zero. Moreover it is

easy to see that u defines an area form transverse to a parallel line field. Compare

also [5].

(3) Here is an example of an affine foliation which does not arise from an affine

structure on a manifold, and which has a transverse parallel volume form u which

is zero in cohomology. Let SL(2, R) act on R2 — {0} in the standard way, and

on itself by left-multiplication. The evaluation map /: SL(2,R) —> R2 — 0 at any

Xo E R2 — {0} is an SL(2, R)-equivariant fibration. It defines a codimension-2 affine

foliation on SL(2,R) which is invariant under left multiplication. Thus it defines

an affine foliation 7 of M = T\SL(2,R) for any discrete cocompact subgroup T C

SL(2,R). The Euclidean area form dx A dy on R2 — {0}, which is invariant under

SL(2,R), defines a transverse parallel area from n to 7■ The cohomology class [n] E

H2(M;R) is zero for the following reason. The radial vector field xd/dx + yd/dy

on R2 — {0} defines a nonsingular vector field R on M which is transverse to 7.

s

t

u
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Moreover it is easy to check in local coordinates that d(tRn) = n so that [rj\ = 0 as

desired.
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