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Invariant measures for Burgers equation
with stochastic forcing

By Weinan E, K. Khanin, A. Mazel, and Ya. Sinai

1. Introduction

In this paper we study the following Burgers equation

(1.1)
∂u

∂t
+

∂

∂x

(u2

2
)

= ε
∂2u

∂x2
+ f(x, t)

where f(x, t) = ∂F
∂x (x, t) is a random forcing function, which is periodic in x

with period 1, and with white noise in t. The general form for the potentials
of such forces is given by:

(1.2) F (x, t) =
∞∑
k=1

Fk(x)Ḃk(t)

where the {Bk(t), t ∈ (−∞,∞)}’s are independent standard Wiener processes
defined on a probability space (Ω,F, P ) and the Fk’s are periodic with period
1. We will assume for some r ≥ 3,

(1.3) fk(x) = F ′k(x) ∈ Cr(S1), ||fk||Cr ≤
C

k2
.

Here S1 denotes the unit circle, and C, a generic constant. Without loss of
generality, we can assume that for all k,

∫ 1
0 Fk(x)dx = 0. We will denote

the elements in the probability space Ω by ω = (Ḃ1(·), Ḃ2(·), . . . ). Except
in Section 8 where we study the convergence as ε → 0, we will restrict our
attention to the case when ε = 0:

(1.4)
∂u

∂t
+

∂

∂x

(u2

2
)

=
∂F

∂x
(x, t) .

Besides establishing existence and uniqueness of an invariant measure for the
Markov process corresponding to (1.4), we will also give a detailed description
of the structure and regularity properties for the solutions that live on the
support of this measure.

The randomly forced Burgers equation (1.1) is a prototype for a very wide
range of problems in nonequilibrium statistical physics where strong nonlinear
effects are present. It arises in studies of various one-dimensional systems such
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as vortex lines in superconductors [BFGLV], charge density waves [F], directed
polymers [KS], etc. (1.1) with its high-dimensional analog is the differentiated
version of the well-known KPZ equation describing, among other things, ki-
netic roughening of growing surfaces [KS]. Most recently, (1.1) has received
a great deal of interest as the testing ground for field-theoretic techniques in
hydrodynamics [CY], [Pol], [GM], [BFKL], [GK2]. In fact, we expect that the
randomly forced Burgers equation will play no lesser a role in the understand-
ing of nonlinear non-equilibrium phenomena than that of the Burgers equation
in the understanding of nonlinear waves.

Before proceeding further let us give an indication why an invariant mea-
sure is expected for (1.1) even when ε = 0. Since energy is continuously
supplied to the system, a dissipation mechanism has to be present to maintain
an invariant distribution. In the case when ε > 0, the viscous term provides
the necessary energy dissipation, and the existence of an invariant measure
has already been established in [S1], [S2]. When ε = 0, it is well-known that
discontinuities are generally present in solutions of (1.4) in the form of shock
waves [La]. These weak solutions are limits of solutions of (1.1) as ε→ 0, and
satisfy an additional entropy condition: u(x+, t) ≤ u(x−, t), for all (x, t). It
turns out that this entropy condition enforces sufficient energy dissipation (in
the shocks) for maintaining an invariant measure. We will always restrict our
attention to weak solutions of (1.4) that satisfy the entropy condition.

The starting point of our analysis is the following variational characteri-
zation of solutions of (1.4) satisfying the entropy condition [Li]:

For any Lipschitz continuous curve ξ: [t1, t2]→ S1, define its action

(1.5) At1,t2(ξ) =
∫ t2

t1

{
1
2
ξ̇(s)2ds+

∑
k

Fk(ξ(s))dBk(s)

}
.

Then for t > τ , solutions of (1.4) satisfy

(1.6) u(x, t) =
∂

∂x
inf

ξ(t)=x

{
Aτ,t(ξ) +

∫ ξ(τ)

0
u(z, τ)dz

}

where the infimum is taken over all Lipschitz continuous curves on [τ, t] satis-
fying ξ(t) = x.

Here and below, we avoid in the notation explicit indication of the de-
pendence on realization of the random force when there is no danger of con-
fusion. Otherwise we indicate such dependence by a super- or subscript ω.
In addition, we will denote by θτ the shift operator on Ω with increment
τ : θτω(t) = ω(t+ τ), and by Sτωw the solution of (1.1) at time t = τ when the
realization of the force is ω and the initial datum at time t = 0 is w. We will
denote by D the Skorohod space on S1 (see [B], [Pa]) consisting of functions
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having only discontinuities of the first kind; i.e., both left and right limits exist
at each point, but they may not be equal.

It is easy to see that the dynamics of (1.4) conserves the quantity∫ 1
0 u(x, t)dx. Therefore to look for unique invariant measure, we must restrict

attention to the subspace

Dc = {u ∈ D,
∫ 1

0
u(x)dx = c}.

In this paper we will restrict most of our attention to the case when c = 0 but
it is relatively easy to see that all of our results continue to hold for the case
when c 6= 0. We will come back to this point at the end of this section. At
the end of Section 3, we will outline the necessary changes for the case when
c 6= 0.

Our basic strategy for the construction of an invariant measure is to show
that the following “one force, one solution” principle holds for (1.4): For almost
all ω, there exists a unique solution of (1.4), uω, defined on the time interval
(−∞,+∞). In other words, the random attractor consists of a single trajectory
almost surely. Furthermore, if we denote the mapping between ω and uω by Φ:

(1.7) uω = Φ(ω),

then Φ is invariant in the sense that

(1.8) Φ(θτω) = SτωΦ(ω).

It is easy to see that if such a map exists, then the distribution of Φ0 : Ω→ D:

Φ0(ω)(x) = uω(x, 0),

is an invariant measure for (1.4). Moreover, this invariant measure is neces-
sarily unique.

This approach of constructing the invariant measure has the advantage
that many statistical properties of the forces, such as ergodicity and mixing,
carry over automatically to the invariant measure. More importantly, it fa-
cilitates the study of solutions supported by the invariant measure, i.e. the
associated stationary Markov process. This study will be carried out in the
second half of the present paper.

The construction of uω will be accomplished in Section 3. The variational
principle (1.6) allows us to restrict our attention to t = 0.

Our construction of Φ relies heavily on the notion of one-sided minimizer.
A curve ξ (−∞, 0] → S1 is called a one-sided minimizer if it minimizes the
action (1.5) with respect to all compact perturbations. More precisely, we
introduce:
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Definition 1.1. A piecewise C1-curve {ξ(t), t ≤ 0} is a one-sided mini-
mizer if for any Lipschitz continuous ξ̃ defined on (−∞, 0] such that ξ̃(0) = ξ(0)
and ξ̃ = ξ on (−∞, τ ] for some τ < 0,

As,0(ξ) ≤ As,0(ξ̃)
for all s ≤ τ .

It is important to emphasize that the curves are viewed on the cylinder
R1 × S1. Similarly, we define one-sided minimizers on (−∞, t], for t ∈ R1.

The interest of this notion lies in the fact that we are considering an infinite
interval. It is closely related to the notion of geodesics of type A introduced
and studied by Morse [Mo] and Hedlund [H] and the notion of global minimal
orbits in Aubry-Mather theory [A], [M]. In the geometric context, it has been
studied by Bangert (see [Ba]) as geodesic rays. A somewhat surprising result
is that, in the random case, one-sided minimizers are almost unique. More
precisely, we have:

Theorem 1.1. With probability 1, except for a countable set of x values,
there exists a unique one-sided minimizer ξ, such that ξ(0) = x.

This theorem states that one-sided minimizers are intrinsic objects to
(x, ω). It allows us to construct Φ0(ω) by patching together all one-sided
minimizers:

(1.9) Φ0{ω(τ), τ < 0}(x) = uω(x, 0) = ξ̇(0)

where ξ is the unique one-sided minimizer such that ξ(0) = x. In (1.9) we
emphasized the fact that Φ0 depends only on the realization of ω in the past
τ < 0. Now (1.9) defines uω(·, 0) except on a countable subset of S1. Similarly
we construct uω(·, t) for other values of t ∈ R1. It is easy to verify that this
construction is self-consistent and satisfies the invariance condition (1.8), as a
consequence of the variational principle (1.6).

The existence part of Theorem 1.1 is proved by studying limits of minimiz-
ers on finite intervals [−k, 0] as k → +∞. The uniqueness part of Theorem 1.1
is proved by studying the intersection properties of one-sided minimizers. The
absence of two intersections of two different minimizers is a general fact in cal-
culus of variations. However, we will prove the absence of even one intersection
which is a consequence of randomness.

We are now ready to define formally the invariant measure. There are
two alternative approaches. Either we can define the invariant measure on the
product space (Ω×D0,F×D) with a skew-product structure, or we can define it
as an invariant distribution of the Markov process on (D0,D) defined by (1.4),
where D is the σ-algebra generated by Borel sets on D0. The skew-product
structure is best suited for the exploration of the “one force, one solution”
principle.
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Definition 1.2. A measure µ(du, dω) on (Ω × D0,F × D) is called an
invariant measure if it is preserved under the skew-product transformation
F t: Ω×D0 → Ω×D0,

(1.10) F t(ω, u0) = (θtω, Stωu0),

and if its projection to Ω is equal to P .

Alternatively we may consider a homogeneous Markov process on D0 with
the transition probability

(1.11) Pt(u,A) =
∫
Ω

χA(u, ω)P (dω)

where u ∈ D0, A ∈ D, and

(1.12) χA(u, ω) =
{

1 if Stωu ∈ A
0 otherwise .

Definition 1.3. An invariant measure κ(du) of the Markov process (1.11)
is a measure on (D0,D) satisfying

(1.13) κ(A) =
∫
D0

Pt(u,A)κ(du)

for any Borel set A ∈ D and any t > 0.

Let δω(du) be the atomic measure on (D0,D) concentrated at Φ0(ω) =
uω(·, 0), and let µ(du, dω) = δω(du)P (dω); we then have:

Theorem 1.2. If µ is an invariant measure for the skew -product trans-
formation F t, it is the unique invariant measure on (Ω×D0, F×D) with the
given projection P (dω) on (Ω,F).

Theorem 1.3. For the Markov process (1.11), κ(du) =
∫
Ω

µ(du, dω) is the

unique invariant measure.

The uniqueness result is closely related to the uniqueness of one-sided
minimizers and reflects the lack of memory in the dynamics of (1.4): Consider
solutions of (1.4) with initial data u(x,−T ) = u0(x). Then for almost all ω ∈ Ω
and any t ∈ R1, lim

T→+∞
u(·, t) exists and does not depend on u0. The key step

in the proof of uniqueness is to prove a strengthened version of this statement.
In the second half of this paper, we study in detail the properties of

solutions supported by the invariant measure. The central object is the two-
sided minimizer which is defined similarly to the one-sided minimizer but for
the interval (−∞,+∞) = R1. Under very weak nondegeneracy conditions,
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we prove that almost surely, the two-sided minimizer exists and is unique. In
Section 6, we show that the two-sided minimizer is a hyperbolic trajectory of
the dynamical system corresponding to the characteristics of (1.4):

dx

dt
= u,

du

dt
=
∂F

∂x
(x, t).

We can therefore consider the stable and unstable manifolds of the two-sided
minimizer using Pesin theory [Pes]. As a consequence, we show:

Theorem 1.4. With probability 1, the graph of Φ0(ω) is a subset of the
unstable manifold (at t = 0) of the two-sided minimizer.

We use this statement to show that, almost surely, uε(·, 0) is piecewise
smooth and has a finite number of discontinuities. This is done in Section 7.

Dual to the two-sided minimizer is an object called the main shock which is
a continuous shock curve xω: R1 → S1 defined on the whole line −∞ < t <∞.
The main shock is also unique. Roughly speaking, the main shock plays the
role of an attractor for the one-sided minimizers while the two-sided minimizer
plays the role of a repeller.

Finally in Section 8, we show that as ε → 0, the invariant measures of
(1.1) constructed in [S1], [S2] converge to the invariant measure of (1.4).

The results of this paper have been used to analyze the asymptotic be-
havior of tail probabilities for the gradients and increments of u (see [EKMS]).
It also provides the starting point for the work in [EV] on statistical theory
of the solutions. These results are of direct interest to physicists since they
can be compared with predictions based on field-theoretic methods (see [Pol],
[GM], [GK2], [CY]).

Our theory is closely related to the Aubry-Mather theory [A], [M] which is
concerned with special invariant sets of twist maps obtained from minimizing
the action

(1.14) 1
2

∑
i

(xi − xi−1 − γ)2 + λ
∑
i

V (xi)

where γ is a parameter and V is a periodic function. The continuous version
of (1.14) is

(1.15)
∫
{1

2(ξ̇(t)− a)2 + F (ξ(t), t)}dt

where F is a periodic function in x and t [Mo]. The main result of the Aubry-
Mather theory is the existence of invariant sets with arbitrary rotation number,
with a suitable a. Such invariant sets are made from the velocities of the two-
sided minimizers defined earlier. It can be proved that such an invariant set
lies on the graph of the periodic solutions of (1.4) [E], [JKM], [So]. In this
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connection, the results of this paper apply to the random version of (1.15):

(1.16)
∫
{1

2(ξ̇(t)− a)2dt+
∑
k

Fk(ξ(t))dBk(t)} .

Although only a = 0 is considered in this paper, extension to arbitrary a is
straightforward and the results are basically the same for different values of
a. This is because, over a large interval of duration T , the contribution of the
kinetic energy is of order T , and the contribution from the potential is typically
of order

√
T for the random case but of order T for the periodic case. This

gives rise to subtle balances between kinetic and potential energies in the latter
case. Consequently the conclusions for the random case become much simpler.
While in the deterministic case, there are usually many different two-sided
minimizers in the invariant set and they are not necessarily hyperbolic, there
is only one two-sided minimizer in the random case and it is always hyperbolic.

The value of a is closely related to the value of c discussed earlier. In the
setting of Aubry-Mather theory, a is the average speed of the global minimizers
and is related to c through the Legendre transform of the homogenized Hamil-
tonian. In the random case, a = c for the reason given in the last paragraph.

2. The variational principle

Let us first define in the probabilistic context the notion of weak solutions
of (1.4) with (deterministic) initial data u(x, t0) = u0(x). We will always
assume u0 ∈ L∞(S1).

Definition 2.1. Let uω be a random field parametrized by (x, t) ∈ S1 ×
[t0,+∞) such that for almost all ω ∈ Ω, uω( ·, t) ∈ D for all t ∈ (t0,∞). Then
uω is a weak solution of (1.4) if:

(i) For all t > t0, uω( ·, t) is measurable with respect to the σ-algebra Ftt0
generated by all Ḃk(s), t0 ≤ s ≤ t.

(ii) uω ∈ L1
loc(S

1 × [t0,∞)) almost surely.

(iii) With probability 1, the following holds for all ϕ ∈ C2(S1 × R1) with
compact support:

∫ 1

0
u0(x)ϕ(x, t0)dx+

∫ ∞
t0

∫ 1

0

∂ϕ

∂t
uω(x, t) dx dt+

1
2

∫ ∞
t0

∫ 1

0

∂ϕ

∂x
u2
ω(x, t)dx dt

= −
∫ 1

0

∑
k

{
Fk(x)

∫ ∞
t0

∂2ϕ

∂x∂t
(x, t)(Bk(t)−Bk(t0))dt

}
dx .
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Also, uω is an entropy-weak solution if, for almost all ω ∈ Ω,

uω(x+, t) ≤ uω(x−, t)

for all (x, t) ∈ S1 × (t0,∞).

Our analysis is based on a variational principle characterizing entropy
weak solutions of (1.4). To formulate this variational principle, we redefine
the action in order to avoid using stochastic integrals. Given ω ∈ Ω, for any
Lipschitz continuous curve ξ: [t1, t2]→ S1, define

At1,t2(ξ) =
∫ t2

t1

{
1
2 ξ̇(s)

2 −
∑
k

fk(ξ(s))ξ̇(s)(Bk(s)−Bk(t1))
}
ds

(2.1)

+
∑
k

Fk(ξ(t2))(Bk(t2)−Bk(t1)).

(2.1) can be formally obtained from (1.5) with an integration by parts. It has
the advantage that the integral in (2.1) can be understood in the Lebesgue
sense instead of the Ito sense, for example.

Lemma 2.1. Let u0(x) ∈ D. For almost all ω ∈ Ω, there exists a unique
weak solution of (1.4) satisfying the entropy condition, such that u(x, t0) =
u0(x). For t ≥ t0, this solution is given by :

(2.2) u(x, t) =
∂

∂x
inf

ξ(t)=x

{
At0,t(ξ) +

∫ ξ(t0)

0
u0(z)dz

}
and u( · , t) ∈ D.

This type of result was obtained for the first time in [Ho], [La] and [Ol] for
scalar conservation laws. The generalization to multi-dimensional Hamilton-
Jacobi equations is given in [Li]. Extension to the random case is straightfor-
ward, but requires some additional arguments which we present in Appendix A.

Any action minimizer γ satisfies the following Euler-Lagrange equation:

(2.3) γ̇(s) = v(s), dv(s) =
∞∑
k=1

fk(γ(s))dBk(s).

Under the assumptions in (1.3), the stochastic differential equation (2.3) has
a unique solution starting at any point x. It is nothing but the equation of
characteristics for (1.4). Therefore the variational principle (2.2) can be viewed
as the generalization of the method of characteristics to weak solutions. In
general, characteristics intersect each other forward in time, resulting in the
formation of shocks. Given initial data at time t0: u(x, t0) = u0(x), to find
the solution at (x, t), consider all characteristics γ that arrive at x at time t
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and choose among them the ones that minimize At0,t(γ) +
∫ γ(t0)

0 u0(z)dz. If
such a minimizing characteristic is unique, say γ( · ), then u(x, t) = γ̇(t). In
the case when there are several such minimizing characteristics, {γα( · )}, the
solution u( ·, t) has a jump discontinuity at x, with u(x−, t) = sup

α
γ̇α(t) and

u(x+, t) = inf
α
γ̇α(t).

This characterization is closely related to the notion of backward charac-
teristics developed systematically by Dafermos (see [D]).

Our task of finding the invariant measure for (1.4) is different from what
is usually asked about (1.4). Instead of solving (1.4) with given initial data,
we look for a special distribution of the initial data that has the invariance
property. Translated into the language of the variational principle, we will
look for special minimizers or characteristics.

3. One-sided minimizers

A fundamental object needed for the construction of invariant measures
for (1.4) is the one-sided minimizer. These are curves that minimize the action
(2.1) over the semi-infinite interval (−∞, t].

In the following we will study the existence and intersection properties
of one-sided minimizers. Before doing this, we formulate some basic facts
concerning the effect on the action as a result of reconnecting and smoothing
of curves.

Fact 1. Let ξ1, ξ2 be two C1-curves on [t1, t2] with values in S1. Then one
can find a reconnection of the two curves, ξr, such that ξr(t1) = ξ1(t1), ξr(t2) =
ξ2(t2) and

(3.1) |Aωt1,t2(ξ1)−Aωt1,t2(ξr)|, |Aωt1,t2(ξ2)−Aωt1,t2(ξr)|

≤ C{ω(τ), τ ∈ [t1, t2]}‖ξ1(t)−ξ2(t)‖C1(1+|t2−t1|)
(

1+ max
t∈[t1,t2]

(|ξ̇1(t)|, |ξ̇2(t)|)
)
.

Here and in the following we will use norms such as ‖ · ‖C1 for functions that
take values on S1. These will always be understood as the norms of a particular
represention of the functions on R1. The choice of the representation will either
be immaterial or obvious from the context.

Fact 2. If ξ is a curve containing corners, i.e. jump discontinuities of ξ̇,
smoothing out a corner in a sufficiently small neighborhood strictly decreases
the action.

Both facts are classical and are more or less obvious.
The following lemma provides a bound on the velocities of minimizers over

a large enough time interval.
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Lemma 3.1. For almost all ω ∈ Ω and any t ∈ (−∞,∞) there exist
random constants T (ω, t) and C(ω, t) such that if γ minimizes Aωt1,t(·) and
t1 < t− T (ω, t), then

(3.2) |γ̇(t)| ≤ C(ω, t).

Proof. Denote

(3.3) C1(ω, t) = 1
4 + max

t−1≤s≤t

∞∑
k=1

‖Fk(x)‖C2 |Bk(s)−Bk(t)|

and set C(ω, t) = 20C1(ω, t), T (ω, t) = (4C1(ω, t))−1. Clearly T (ω, t) < 1. If
|γ̇(t)| ≤ 16C1 then (3.2) is true with C = 16C1.

If |γ̇(t)| > 16C1, we first show that the velocity γ̇(s) cannot be too large
inside the interval [t− T, t]. Denote

(3.4) v0 = |γ̇(t)| and v = max
t−T≤s≤t

|γ̇(s)| .

Integrating by parts from (2.3), one gets for s ∈ [t− T, t]

|γ̇(s)| =
∣∣∣γ̇(t)−

∫ t

s

∞∑
k=1

fk(γ(r))dBk(r)
∣∣∣(3.5)

≤ v0 +
∣∣∣ ∞∑
k=1

fk(γ(s))(Bk(s)−Bk(t))
∣∣∣

+
∣∣∣∫ t

s
γ̇(r)

∞∑
k=1

f ′k(γ(r))(Bk(r)−Bk(t))dr
∣∣∣

≤ v0 + C1 + C1vT

= v0 + C1 +
1
4
v .

Hence

(3.6) v ≤ v0 + C1 +
v

4
,

implying

(3.7) v ≤ 4
3

(v0 + C1) ≤ 3
2
v0

since v0 > 16C1.
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Next we check that |γ̇(s)| remains of order v0, i.e. sufficiently large, for
s ∈ [t− T, t]. As before, we have

|γ̇(s)− γ̇(t)| =
∣∣∣∫ t

s

∞∑
k=1

fk(γ(r))dBk(r)
∣∣∣(3.8)

≤ C1 + C1vT

≤ C1 +
3
8
v0

≤ 1
2
v0 .

The last step is to show that (3.8) contradicts the minimization property
of γ(s) if v0 > 20C1. Consider a straight line γ1(s) joining γ(t) and γ(t− T ).
Clearly |γ(t)− γ(t− T )| ≤ 1 since γ(t), γ(t− T ) ∈ S1. Then
(3.9)

A
ω
t−T,t(γ1) ≤ 1

2

(
γ(t)− γ(t− T )

T

)2

T+C1+C1

∣∣∣∣γ(t)− γ(t− T )
T

∣∣∣∣T ≤ 1
2T

+2C1

while

(3.10) A
ω
t−T,t(γ) ≥ 1

2

(v0

2

)2
T − C1 −

3
2
v0C1T .

It is easy to see that 1
2
v2
0
4 T − 3

2 v0C1T > 1
2T + 3C1 for v0 > 20C1; i.e.,

(3.11) A
ω
t−T,t(γ1) < Aωt−T,t(γ) .

This contradicts the minimization property of γ. Hence v0 ≤ 20C1.

Now we are ready to prove the existence of one-sided minimizers that
arrive at any given point x ∈ S1.

Theorem 3.1. With probablity 1, the following holds. For any (x, t) ∈
S1×R1, there exists at least one one-sided minimizer γ ∈ C1(−∞, t], such that
γ(t) = x.

Proof. Given ω ∈ Ω, fix (x, t) ∈ S1 ×R1. Consider a family of minimizers
{γτ} for τ < t− T (ω, t), where γτ minimizes Aωτ,t(ξ) subject to the constraint
that ξ(t) = x, ξ(τ) ∈ S1. From Lemma 3.1, we know that {γ̇τ (t)} is uniformly
bounded in τ . Therefore, there exists a subsequence {τj}, τj → −∞, and
v ∈ R1, such that

lim
τj→−∞

γ̇τj (t) = v .

Furthermore, if we define γ to be a solution of (2.3) on (−∞, t] such that
γ(t) = x, γ̇(t) = v, then γτj converges to γ uniformly, together with their
derivatives, on compact subsets of (−∞, t]. We will show that γ is a one-sided
minimizer.
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Assume that there exists a compact perturbation γ1 ∈ C1(−∞, t], of γ
such that γ1(t) = x, support (γ1 − γ) ⊂ [t2, t3], and

A
ω
t2,t3(γ)−Aωt2,t3(γ1) = ε > 0 .

Let j be sufficiently large such that τj ≤ t2 and

(3.12) |Aωt2,t(γ)−Aωt2,t(γτj )| ≤
ε

3
and

(3.13) ‖γ(s)− γτj (s)‖C1[t2−1,t2] ≤ δ
(δ will be chosen later). Define a new curve γ2 by

(3.14) γ2(s) =


γτj (s), for s ∈ [τj , t2 − 1];

γr(s), for s ∈ [t2 − 1, t2];

γ1(s), for s ∈ [t2, t],

where γr is the reconnecting curve described in Fact 1. We have

A
ω
τj ,t(γτj )−A

ω
τj ,t(γ2) = A

ω
t2,t(γτj )−A

ω
t2,t(γ)(3.15)

+Aωt2,t(γ)−Aωt2,t(γ1)

+Aωt2−1,t2(γτj )−Aωt2−1,t2(γ2)

≥ − ε

3
+ ε− Cδ

≥ ε

3
,

if δ is small enough. Here the constant C depends only on ω and γ1. This
contradicts the minimization property of γτj (s).

Now we study the intersection properties of one-sided minimizers. We use
C1
x(−∞, t] to denote the set of C1 curves γ on (−∞, t] such that γ(t) = x. We

start with a general fact for minimizers (see [A], [M]).

Lemma 3.2. Two different one-sided minimizers γ1 ∈ C1(−∞, t1] and
γ2 ∈ C1(−∞, t2] cannot intersect each other more than once.

In other words, if two one-sided minimizers intersect more than once, they
must coincide on their common interval of definition.

Proof. Suppose that γ1 and γ2 intersect each other twice at times t3 and
t4, with t4 > t3. Assume without loss of generality

(3.16) A
ω
t3,t4(γ1) ≤ Aωt3,t4(γ2) .

Then for the curve

(3.17) γ3(s) =
{
γ2(s), for s ∈ (−∞, t3] ∪ [t4, t2];

γ1(s), for s ∈ [t3, t4],
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one has

(3.18) A
ω
t3,t4(γ3) ≤ Aωt3,t4(γ2) ,

where γ3 has two corners at t3 and t4. Smoothing out these corners, we end
up with a curve γ∗ ∈ C1(−∞, t2] for which

(3.19) A
ω
t3−τ,t2(γ∗)−Aωt3−τ,t2(γ2) < 0

for some τ > 0. This contradicts the assumption that γ2(s) is a one-sided
minimizer.

Exploiting the random origin of the force f , we can prove a result which
is much stronger than Lemma 3.2.

Theorem 3.2. The following holds for almost all ω. Let γ1, γ2 be two
distinct one-sided minimizers on the intervals (−∞, t1] and (−∞, t2], respec-
tively. Assume that they intersect at the point (x, t). Then t1 = t2 = t, and
γ1(t1) = γ2(t2) = x.

In other words, two one-sided minimizers do not intersect except for the
following situation: they both come to the point (x, t), having no intersections
before and they both are terminated at that point as minimizers. Of course
they can be continued beyond time t as the solution of SDE (2.3) but they are
no longer one-sided minimizers.

The proof of Theorem 3.2 resembles that of Lemma 3.2 with an additional
observation that, because of the randomness of f , two minimizers always have
an “effective intersection at t = −∞.” The precise formulation of this state-
ment is given by:

Lemma 3.3. With probability 1, for any ε > 0 and any two one-sided
minimizers γ1 ∈ C1(−∞, t1] and γ2 ∈ C1(−∞, t2], there exist a constant T =
T (ε) and an infinite sequence tn(ω, ε)→ −∞ such that

|Aωtn−T,tn(γ1)−Aωtn−T,tn(γ1,2)|, |Aωtn−T,tn(γ2)−Aωtn−T,tn(γ1,2)|,
(3.20)

|Aωtn−T,tn(γ1)−Aωtn−T,tn(γ2,1)|, |Aωtn−T,tn(γ2)−Aωtn−T,tn(γ2,1)| < ε ,

where γ1,2 is the reconnecting curve defined in Fact 1 with

γ1,2(tn − T ) = γ1(tn − T ), γ1,2(tn) = γ2(tn),

and γ2,1 is the reconnecting curve satisfying

γ2,1(tn − T ) = γ2(tn − T ), γ2,1(tn) = γ1(tn).
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Proof. Fix T sufficiently large. With probability 1, there exists a sequence
tn(ω, ε)→ −∞ such that

(3.21) max
s∈
⋃
n

[tn−T,tn]

∞∑
k=1

‖Fk(x)‖C2 |Bk(s)−Bk(tn)| ≤ C1 =
1

4T
.

Repeating the proof of Lemma 3.1, one can check that for any n

(3.22) max
tn−T≤s≤tn

(|γ̇1(s)|, |γ̇2(s)|) ≤ 4
3

(20C1 + C1) =
7
T
.

Using (3.22), we can choose γ1,2, γ2,1 such that

(3.23) max
tn−T≤s≤tn

(|γ̇1,2(s)|, |γ̇2,1(s)|) ≤ 7
T

+
1
T

=
8
T
.

We then have

|Aωtn−T,tn(γ1)−Aωtn−T,tn(γ1,2)|
(3.24)

≤
∣∣∣∣ ∞∑
k=1

(Fk(γ1(tn))− Fk(γ1,2(tn))) (Bk(tn)−Bk(tn − T ))
∣∣∣∣

+
∫ tn

tn−T

∣∣∣∣(1
2
γ̇1(t)2 − 1

2
γ̇1,2(t)2

)
−
∞∑
k=1

(Bk(t)−Bk(tn − T ))
(
fk(γ1(t))(γ̇1(t)− γ̇1,2(t))

+ (fk(γ1(t))− fk(γ1,2(t)))γ̇1,2(t)
)∣∣∣∣dt

≤ 1
4T

+ T

(
1
2

(
7
T

)2

+
1
2

(
8
T

)2

+ C1

(
7
T

+
8
T

)
+ C1

8
T

)
=

125
2T

≤ ε,

if T ≥ 125
2ε . Similarly, one proves other inequalities in (3.20).

Proof of Theorem 3.2. We will use τ to denote a sufficiently large negative
number. Suppose that γ1 and γ2 intersect each other at time t < max(t1, t2)
and for definiteness let t1 > t. Then the curve

(3.25) γ3(s) =
{
γ2(s), for s ∈ (−∞, t];
γ1(s), for s ∈ [t, t1]

has a corner at time t. This corner can be smoothed out according to Fact 2,
and the resulting curve γ∗ ∈ C1(−∞, t1] satisfies

(3.26) A
ω
τ,t1(γ3)−Aωτ,t1(γ∗) = δ > 0 .
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Set ε = δ/4. Choose sufficiently negative tn(ω, ε) defined in Lemma 3.3 such
that γ∗(s) = γ2(s) for s ∈ (−∞, tn].

Assume that

(3.27) A
ω
tn,t(γ2)−Aωtn,t(γ1) > 2ε .

Then in view of Lemma 3.3

(3.28) γ4(s) =


γ2(s), for s ∈ (−∞, tn − T ];

γ2,1(s), for s ∈ [tn − T, tn];

γ1(s), for s ∈ [tn, t],

is a local perturbation of γ2 ∈ C1(−∞, t] with

A
ω
τ,t(γ2)−Aωτ,t(γ4) = A

ω
tn−T,tn(γ2)−Aωtn−T,tn(γ2,1)(3.29)

+Aωtn,t(γ2)−Aωtn,t(γ1)

> − ε+ 2ε

= ε .

This contradicts the assumption that γ2 is a one-sided minimizer. Thus

A
ω
tn,t(γ1)−Aωtn,t(γ2) ≥ −2ε ,(3.30)

and

γ5(s) =


γ1(s), for s ∈ (−∞, tn − T ];

γ1,2(s), for s ∈ [tn − T, tn];

γ∗(s), for s ∈ [tn, t1]

(3.31)

is a local perturbation of γ1 ∈ C1(−∞, t1] with

A
ω
τ,t1(γ1)−Aωτ,t1(γ5) = A

ω
tn−T,tn(γ1)−Aωtn−T,tn(γ1,2)

+Aωtn,t(γ1)−Aωtn,t(γ2)

+Aωτ,t1(γ3)−Aωτ,t1(γ∗)

≥ − ε− 2ε+ δ

= ε > 0 .(3.32)

This contradicts the assumption that γ1 is a one-sided minimizer and proves
the theorem.

Theorem 3.2 implies the following remarkable properties of one-sided min-
imizers. Given ω and t, denote by J(ω, t) the set of points x ∈ S1 with more
than one one-sided minimizer coming to (x, t).

Lemma 3.4. The following holds with probability 1. For any t, the set
J(ω, t) is at most countable.
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Proof. Any x ∈ J(ω, t) corresponds to a segment [γ−(t − 1), γ+(t − 1)],
where γ− and γ+ are two different one-sided minimizers coming to (x, t) and
γ+(s) > γ−(s), for s < t. In view of Theorem 3.2, these segments are mutually
disjoint. This implies the lemma.

Lemma 3.5. Given ω and t, consider a sequence of one-sided minimizers
γn(s) defined on (−∞, t] such that γn(t)→ x and γ̇n(t)→ v as n→∞. Let γ
be the solution of the SDE (2.3) on (−∞, t] with the initial data γ(t) = x and
γ̇(t) = v. Then γ is a one-sided minimizer.

Proof. Suppose that γ∗ ∈ C1(−∞, t] coincides with γ outside an interval
[t1, t2] ⊂ (−∞, t] and Aωt1,t2(γ)−Aωt1,t2(γ∗) = ε > 0. It is clear that by taking
sufficiently large n one can make ‖γ(s)− γn(s)‖C1[t1−1,t] arbitrarily small. Let
γ1 be the reconnecting curve on [t1 − 1, t1] between γn(t1 − 1) and γ(t1), and
for some δ > 0, let γ2 be the reconnecting curve on [t − δ, t] between γ(t − δ)
and γn(t). Then the curve

(3.33) γ∗∗(s) =



γn(s), for s ∈ (−∞, t1 − 1];

γ1(s), for s ∈ [t1 − 1, t1];

γ∗(s), for s ∈ [t1, t2];

γ(s), for s ∈ [t2, t− δ];
γ2(s), for s ∈ [t− δ, t]

satisfies Aω−∞,t(γn)−Aω−∞,t(γ∗∗) > 0 if δ and ‖γ(s)− γn(s)‖C1[t1−1,t] are small
enough. This contradicts the assumption that γn is a one-sided minimizer since
γ∗∗ is a local perturbation of γn. Note that (3.33) cannot be used if t2 = t. In
this case in the segment [t − δ, t] one can directly reconnect γn and γ∗ and it
is not hard to check that for δ small enough, |Aωt−δ,t(γ∗)−Aωt−δ,t(γ∗∗)| can be
made arbitrarily small.

Lemma 3.6. With probability one, the following holds. Fix an arbitrary
sequence tn → −∞ and a sequence of functions {vn}, vn ∈ D0,

∫ 1
0 vn(z)dz = 0.

Consider (1.4) on the time interval [tn, t] with the initial condition u(x, tn) =
vn(x). Take any x ∈ S1 and a sequence of characteristics γn ∈ C1[tn, t],
γn(t) = x minimizing Aωtn,t(ξ) +

∫ ξ(tn)
0 vn(z)dz. Suppose that v is a limiting

point of the set {γ̇n(t)}. Then the solution γ of SDE (2.3) with initial data
γ(t) = x and γ̇(t) = v is a one-sided minimizer on (−∞, t].

Proof. The proof of this lemma is the same as the final part of the proof
of Theorem 3.1.
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Next we study the measurability issues. Fix a time t and consider all
integer times −n ≤ t. Introduce

(3.34) Aω−n,t(x) = min
ξ∈C1[−n,t]
ξ(t)=x

A
ω
−n,t(ξ) .

Lemma 3.7. The following statement holds with probability 1. Suppose
that γ ∈ C1

x(−∞, t] is a one-sided minimizer. Then for any ε > 0 there exist
an infinite number of integer times −n ≤ t such that

(3.35) |Aω−n,t(γ)−Aω−n,t(x)| ≤ ε .

Conversely, if a curve ξ ∈ C1
x(−∞, t] has the property that for any ε > 0 there

exist an infinite number of integer times −n ≤ t such that

(3.36) |Aω−n,t(ξ)−Aω−n,t(x)| ≤ ε ,

then ξ is a one-sided minimizer.

Proof. Suppose that for some ε > 0 and n0

(3.37) |Aω−n,t(γ)−Aω−n,t(x)| > ε

for all −n ≤ −n0. Consider the curves ξ−n ∈ C1
x[−n, t] such that Aω−n,t(ξ−n) =

Aω−n,t(x). Then, according to Lemma 3.3, there exist an interval [−n1,−n2] ⊂
(−∞,−n0] and a reconnecting curve γr with γr(−n1) = γ(−n1), γr(−n2) =
ξ−n1(−n2), such that

|Aω−n1,−n2
(γ−n1)−Aω−n1,−n2

(γr)| ≤
ε

2
.(3.38)

Then

γ1(s) =


γ(s), for s ∈ (−∞,−n1];

γr(s), for s ∈ [−n1,−n2];

ξ−n1(s), for s ∈ [−n2, t]

(3.39)

is a local perturbation of γ which lowers the action by at least ε/2. This
contradicts the assumption that γ is a one-sided minimizer.

Note that formally Lemma 3.3 cannot be applied here since ξ−n1 is not a
one-sided minimizer but Lemma 3.1 remains valid for all ξ−n with sufficiently
negative −n. Thus the same argument as in the proof of Lemma 3.3 proves
(3.38).

To prove the second statement, observe that if ξ1 is a local perturbation
of ξ lowering Aω−n,t(ξ) by some ε > 0, then Aω−n,t(ξ) ≥ Aω−n,t(x) + ε for all
sufficiently negative −n. This contradicts (3.36).
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Now we are ready to define the main object of this paper. We will denote
by {γx,t,α(s)} the family of all one-sided minimizers coming to (x, t) indexing
them by α.

Definition 3.1.

uω+(x, t) = inf
α
γ̇x,t,α(t) ,(3.40)

uω−(x, t) = sup
α
γ̇x,t,α(t) .(3.41)

It is clear that uω+(x, t) = uω−(x, t) for x /∈ J(ω, t).

Lemma 3.8. With probability 1, for every x ∈ S1

lim
y↑x

uω+(y, t) = uω−(x, t) ,(3.42)

lim
y↓x

uω+(y, t) = uω+(x, t) ,(3.43)

and hence uω+(·, t) ∈ D for fixed t.

Proof. We will prove (3.42). The proof of (3.43) is similar. It was shown
in Lemma 3.1 that |uω+(y, t)| ≤ C(ω, t). Suppose that there exists a sequence
yn ↑ x such that uω+(yn, t)→ v 6= uω−(x, t). Then, according to Lemma 3.5, the
solution γ of SDE (2.3) with the initial data γ(t) = x and γ̇(t) = v is a one-
sided minimizer. Theorem 3.2 implies that γ̇(t) > uω−(x, t) which contradicts
the definition of uω−(x, t).

It follows immediately from the construction that on any finite time in-
terval [t1, t2], uω+ is a weak solution of (1.4) with initial data u0(x) = uω+(x, t1).
Moreover, the following statement holds:

Lemma 3.9. Given t, the mapping uω+( · , t): Ω 7→ D is measurable.

Proof. Without loss of generality, let t = 0. Since D is generated by cylin-
der sets of the type A(x1, . . . , xn) with xi from a dense subset of S1, it is enough
to show that uω+(x, 0): Ω→ R1 are measurable for a dense set of x values. For
any positive integer n, denote by uω−n,+ the right continuous weak solution
of (1.4) on the time interval [−n, 0] with the initial data uω−n,+(x,−n) ≡ 0.
For any x ∈ S1 and v ∈ R1 denote by ξωx,v(s), s ∈ [−n, 0] the backward
solution of (2.3) with the initial data ξωx,v(0) = x and ξ̇ωx,v(0) = v. The
action Aω−n,0(x, v) = Aω−n,0(ξωx,v) is a continuous function on Ω × S1 × R1.
Hence the set M = {(ω, x, v): Aω−n,0(x, v) = Aω−n,0(x)} is closed. Let Mω,x =
{v ∈ R1: (ω, x, v) ∈ M}. We conclude that uω−n,+(x, 0) = max

v
Mω,x is a mea-

surable function on Ω× S1 and uω−n,+( · , 0) is a measurable mapping Ω 7→ D.
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As in the proof of Theorem 3.1, it is easy to check that for

(3.44) vω+(x, 0) = lim sup
n

uω−n,+(x, 0)

the corresponding curve γωx = ξωx,vω+(x,0) is a one-sided minimizer.

For positive integers k and m, introduce measurable subsets of Ω×S1×R1:

Mn(k,m) =
{

(ω, x, v) ∈ Ω× S1 × R1: |v − uω−n,+(x, 0)| ≥ 1
k
,

(3.45)

A
ω
−n,0(x, v)−Aω−n,0(x) ≤ 1

m

}
.

Let Π be the projection of the measurable set

∪k ∩m (∩l ∪∞n=lMn(k,m))(3.46)

on Ω× S1. The points (ω, x) in Π are characterized by the following property.
There exists a backward solution ξωx,v different from the one-sided minimizer γωx
such that at infinitely many negative integer times −n, the action Aω−n,0(ξωx,v)
is arbitrarily close to its minimal value Aω−n,0(x). In view of Lemma 3.7, Π
is precisely the set (ω, x) having at least two one-sided minimizers coming to
(x, 0); i.e.,

Π = J = {ω, x) ∈ Ω× S1: uω+(x, 0) 6= uω−(x, 0)} .(3.47)

Consider the sections Jx = {ω ∈ Ω: uω+(x, 0) 6= uω−(x, 0)} of J and define
I = {x ∈ S1: P (Jx) > 0}. Using the measurability of J , Lemma 3.4 and
Fubini’s theorem, we conclude that the Lebesgue measure of I is 0.

Fix x ∈ S1 \ I. Then for almost all ω one has

uω+(x, 0) = lim
n→∞

uωn,+(x, 0) .(3.48)

The functions uωn,+(x, 0): Ω 7→ R1 are measurable. Hence uω+(x, 0): Ω 7→ R1 is
also measurable. This proves the lemma, since S1 \ I is dense in S1.

Before ending this section, we formulate some corollaries of Lemmas 3.1
and 3.6 that will be useful later.

Lemma 3.10. The following estimate holds:

‖uω( · , t)‖L∞(S1) ≤ C̄({ω(s), s ∈ [t− 1, t)}) .

The stationary random variable C̄({ω(s), s ∈ [t− 1, t]}) has finite moments of
all orders.
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This estimate says that |uω(x, t)| can be bounded by a quantity that de-
pends only on {ω(s), s ∈ [t− 1, t)}.

Lemma 3.11. Let {vn} be a sequence of functions in D0. Let {tn} be a
sequence such that tn → −∞, and let un be the solution of (1.4) with initial
condition un(x, tn) = vn(x). Then for almost all ω, limtn→−∞ un( · , 0) =
uω+( ·, 0) almost everywhere.

This result follows directly from Lemma 3.6.
So far we restricted our attention to the case when

∫ 1
0 u(x, t)dx = 0.

This is reflected in the variational principle used in (2.1). In the case when∫ 1
0 u(x, t)dx = c 6= 0, the relevant action is replaced by

At1,t2(ξ) =
∫ t2

t1

{
1
2(ξ̇(s)− c)2 −

∑
k

fk(ξ(s))ξ̇(s)(Bk(s)−Bk(t1))
}
ds

+
∑
k

Fk(ξ(t2))(Bk(t2)−Bk(t1)).

In this more general case, we can also define one-sided minimizers in an anal-
ogous way, and all the results obtained so far hold in the general case. Instead
of giving all the details, let us just comment on the most important aspect
when c 6= 0. When c = 0, the one-sided minimizers stay roughly inside one
period so that their asymptotic speed (which is the analog of rotation number
in Aubry-Mather theory) is zero when lifted to the universal cover:

α(c = 0) = lim
t→−∞

ξ(t)
t

= 0.

In the general case,

(3.49) α(c) = lim
t→−∞

ξ(t)
t

= c.

Roughly speaking, this is because, if a curve has different asymptotic speed,
the cost to the action grows linearly in time, whereas the savings from the
random potential can at most grow as O(

√
t). For example, in Lemma 3.3

and Theorem 3.2, we showed that there are large time intervals on which the
one-sided minimizers are almost parallel. These results are still true except
that the minimizers are parallel with an average slope 1/c in the x − t plane.
Similarly, the reconnection used in Lemma 3.1 to prove a bound for the velocity
of minimizers will also have to be done with curves that have an average slope
of 1/c.

(3.49) is in sharp contrast with the case of periodic (in x and t) poten-
tial studied in Aubry-Mather theory. There the function α is usually a very
complicated function of c with Cantor-like structures.
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4. Construction and uniqueness of the invariant measure

In this section we prove Theorems 1.2 and 1.3 stated in Section 1. Let
δω(du) be the atomic measure on (D0,D) concentrated at uω+(·, 0).

Theorem 4.1. The measure

(4.1) µ(dω, du) = δω(du)P (dω)

is an invariant measure for the skew -product transformation F t (see Definition
1.2), and the measure κ(du) =

∫
Ω µ(dω, du) is a stationary distribution for the

Markov process corresponding to (1.4).

Proof. The second statement of the theorem follows trivially from the first
one since the δω(du)’s are measurable with respect to the σ-algebra F0

−∞. It
is a general fact that any measure which satisfies the measurability property
and which is invariant under F t generates a stationary distribution for the
Markov process (1.4). The first statement is an immediate consequence of the
construction of uω+(x, t). Indeed, uθ

tω
+ (x, 0) = uω+(x, t) by construction. Hence

Stωδ
ω = δθ

tω. This is exactly the condition for the invariance of µ.

The “one force, one solution” principle not only gives the existence of an
invariant measure, it also implies uniqueness.

Theorem 4.2. The measure µ(dω, du) is the unique invariant measure on
(Ω×D0,F×D) with given projection P (dω) on (Ω,F). The measure κ(du) =∫

Ω µ(dω, du) is the unique stationary distribution for the Markov process (1.4).

Proof. Assume λ is another invariant measure on Ω×D0. Write λ as

(4.2) λ(dω, du) =
∫

Ω
λω(du)P (dω).

For t < 0, let Hω
t be the operator which maps the solution of (1.4) at time t

to the solution at time 0 when the realization of the force is ω. By definition,
the invariance of λ implies that

(4.3) (Hω
t )∗λθtω(du) = λω(du)

for t < 0, where (Hω
t )∗ is the push forward action on the spaces of measures.

This means that there exists a subset B of D0 of full measure with respect to
λω(du), such that for every u ∈ B and n ∈ N, there exists a vn such that

Hω
−nvn = u.

From Lemma 3.6, if a solution of (1.4) can be extended backward to arbi-
trary negative times, that solution must coincide with uω+ at t = 0, for all
x ∈ S1 \ J(ω, 0). In particular, we have

u(x) = uω+(x, 0)

for x ∈ S1 \ J(ω, 0). Hence λω(du) = δuω+(du) and λ = µ.
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To prove the second statement suppose that ν(du) 6= κ(du) is another
stationary distribution for the Markov process (1.4). Let

A = {u: (u(x1), . . . , u(xk)) ∈ C ⊂ Rk}

be an arbitrary cylindrical set based on the points x1, . . . , xk ∈ Ic. By defini-
tion

ν(A) =
∫
D0

Pn(u−n, A)ν(du−n)(4.4)

=
∫
D0

(∫
Ω
χA(u−n, ω)P (dω)

)
ν(du−n)

=
∫

Ω

(∫
D0

χA(u−n, ω)ν(du−n)
)
P (dω) .

Denote by χA(ω) the indicator function of the event that uω+ ∈ A. Then for
ηn(ω) =

∫
D0
χA(u−n, ω)ν(du−n) one has

(4.5) lim
n→∞

ηn(ω) = χA(ω)

implying ν(A) =
∫

Ω χA(ω)P (dω) = κ(A).
Indeed, in view of the uniqueness of one-sided minimizers, coming to each

of the points (x1, 0), . . . , (xk, 0), one observes that

(4.6) lim
n→∞

ηn(ω) =
{

1 for (A \ ∂A) 3 (uω+(x1, 0), . . . , uω+(xk, 0)),

0 for (Ac \ ∂A) 3 (uω+(x1, 0), . . . , uω+(xk, 0)) .

Thus to obtain (4.3) one need only show that P{ω: (uω+(x1, 0), . . . , uω+(xk, 0)) ∈
∂A} = 0. Clearly it is enough to check that:

Lemma 4.1. For any v ∈ R1 and for any x ∈ X,

(4.7) P{ω: uω+(x, 0) = v} = 0 .

Proof. For fixed x and v the backward solution (for t ≤ 0) of the SDE (2.3)
with the initial data γ(0) = x and γ̇(0) = v is a random process with variance
Var γ̇(t) that grows like |t| as t → −∞. Thus with probability 1 this solution
cannot be a one-sided minimizer. This completes the proof of Theorem 4.2.

5. The two-sided minimizer and the main shock

Sections 5–7 will be devoted to the study of the structure of the solution
uω. In this section, we will define the two basic objects needed for this study,
the two-sided minimizer and the main shock.

Let (x, t) be a point of shock, i.e., x ∈ J(ω, t). Denote by ∆x,t(t1), t1 < t,
an open interval at time t1 generated by the shock at (x, t):
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(5.1) ∆x,t(t1) = (γ−x,t(t1), γ+
x,t(t1))

where we use γ−x,t and γ+
x,t to denote respectively the left-most and right-most

one-sided minimizers starting at (x, t). Roughly speaking, ∆x,t(t1) is the set of
points at time t1 that merge into the shock at x before time t, i.e. the one-sided
minimizer that passes through (y, t1), y ∈ ∆x,t(t1), intersects the past history
of the shock at (x, t) before time t.

Lemma 5.1. For almost all ω the following statements hold for any fixed
t1 and t such that t1 < t.

(a) For arbitrary x1 ∈ S1, either there exists a unique one-sided minimizer at
time t which passes through (x1, t1) or there exists a unique shock at (x, t)
for some x ∈ S1, such that (x1, t1) ∈ ∆x,t(t1). In the second case we will
say that (x1, t1) is covered by the shock at (x, t). In particular, if (x1, t1)
is a point of shock, i.e., x1 ∈ J(ω, t1), then there exists a unique shock
(x, t) which covers (x1, t1); i.e., (x1, t1) ∈ ∆x,t(t1).

(b) Let (x1, t1) ∈ J(ω, t1) be a point of shock. Denote by x(t), t ≥ t1, the
position of the shock at time t which covers (x1, t1). Then x(t), t ≥ t1, is
a Lipschitz continuous function.

Proof. Denote by A(t1, t) the set of points x1 ∈ S1 that correspond to the
first situation; i.e., there exists a one-sided minimizer at time t which passes
through (x1, t1). Obviously this minimizer is unique, and A(t1, t) is closed.
Hence B(t1, t) = S1 \ A(t1, t) is open and consists of nonintersecting open
intervals. Let (x′1, x

′′
1) be one of these intervals. Both (x′1, t1) and (x′′1, t1) are

reached by one-sided minimizers which start at (x′, t) and (x′′, t). It is easy to
see that x′ = x′′. Otherwise a minimizer which starts from some point between
x′ and x′′ will reach a point inside (x′1, x

′′
1). It follows that (x′, t) is a point of

shock, and (x′1, x
′′
1) ⊂ ∆x′,t(t1). Obviously a point of shock cannot be reached

by a one-sided minimizer that extends to time t. Thus if t1 < t, any point of
shock at (x1, t1) must be covered by a shock at (x, t) for some x ∈ S1. Clearly
such a covering shock (x, t) is unique. This completes the proof of (a).

(b) basically follows from the fact that the velocities of minimizers are
bounded. It is enough to show that x(·) is Lipschitz continuous at t = t1. It
follows from Lemma 3.1 that there exists a constant C1(t1, ω) such that for
all one-sided minimizers γ and t ∈ [t1, t1 + 1], |γ̇(t)| ≤ C1(t1, ω). Therefore
for any shock at (x(t), t), t ∈ [t1, t1 + 1], |x(t)− γ−x(t),t(t1)| ≤ C1(t1, ω)(t− t1),
|x(t)−γ+

x(t),t(t1)| ≤ C1(t1, ω)(t− t1). Since x1 ∈ (γ−x(t),t(t1), γ+
x(t),t(t1)), we also

have |x1−x(t)| ≤ C1(t1, ω)(t− t1). This estimate implies that x(t) is Lipschitz
continuous.
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Remark. It may happen for some points (x1, t1) that they are covered by
shocks and at the same time there exist one-sided minimizers passing through
them. This is possible only if there are more than two minimizers starting at
covering shock. This situation occurs when two shocks merge.

In this and following sections we study the detailed structure and reg-
ularity properties of solutions supported by the invariant measure. For this
purpose, we need certain nondegeneracy conditions on the forcing.

Nondegeneracy condition. If x∗ is the local maximum of some Fk, we will
denote by I(x∗) a closed interval on S1 containing x∗ which is contained in the
basin of attraction of x∗ for the potential Fk. In other words, fk < 0 on I(x∗)
to the right of x∗, and fk > 0 on I(x∗) to the left of x∗. Assume that

(A1) There exists a finite set of points X∗ = {x∗}, x∗ ∈ S1, each of which is a
local maximum of some Fk with the following property: for any (x1, x2)
∈ S1 × S1 there exists an x∗ ∈ X∗, such that x1, x2 ∈ I(x∗).

Below we will always assume that (A1) holds. Obviously (A1) fails if
there is only one term in the sum of F (x, t). Nevertheless (A1) is fulfilled in
generic situations. In particular, it is easy to see that three such intervals I(x∗)
suffice. However, by refining the argument in Appendix D, we can show that
the basic collision lemma below also holds when the potential contains two
shifted cosine functions, for example. We will come back to this point at the
end of this section.

Consider two points x0
1 and x0

2 at time t = 0. We say that x0
1 and x0

2

merge before t = τ > 0 if there exists a shock at (y, τ), y ∈ S1, which covers
both x0

1 and x0
2; i.e., x0

1, x
0
2 ∈ ∆y,τ (0). The following lemma is of fundamental

importance to what follows.

Lemma 5.2 (basic collision lemma). For any τ > 0, there exists a positive
number p0(τ) with the following property. Let u( · , 0) ∈ D0 and x0

1, x
0
2 be

two positions at t = 0 which are measurable with respect to F0
−∞. Then the

conditional probability under F0
−∞ that x0

1 merges with x0
2 before t = τ is no

less than p0(τ).

The proof of this lemma is given in Appendix D.

Lemma 5.3. The set of ω’s for which uω( · , t0) is continuous for some
t0 ∈ R1 has probability zero.

Proof. It follows from Lemma 5.1 that if uω( · , t0) is continuous, then
uω( · , t) is continuous for all t ≤ t0. Denote by C(t) the set of ω such that
uω( · , s) is continuous for s ≤ t. Then θsC(t) = C(t+ s) ⊆ C(t) for all s ≥ 0.
Using ergodicity we conclude that either P (C(t)) = 1 for all t, or P (C(t)) = 0
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for all t. Assume that P (C(t)) ≡ 1. It follows from Lemma 5.2 that there is a
positive conditional probability p({ω(t′), t′ < t}) under Ft−∞ that u( · , t + 1)
has at least one shock. Hence we have

(5.2) P (C(t+ 1)) =
∫
C(t)

(
1− p{ω(t′), t′ ≤ t}

)
dP < P (C(t)) .

Therefore P (C(t+ 1)) < 1. Hence P (C(t)) ≡ 0 for all t.

It follows from Lemma 5.3 that for almost all ω and arbitrary t0 there
exists at least one shock at t0. Since the number of shocks is at most countable
and the sum of their sizes is bounded, i.e.,∑

x∈J(ω,t0)

(uω−(x, t0)− uω+(x, t0)) ≤ Varuω+(x, t0) < +∞,

we can numerate all the shocks in a measurable way. The first shock is the
largest one, the second is next in size and so on. If two or more shocks have
the same size then we numerate them according to their order of occurrence
on the semi-interval [0, 1). Denote by ξi(t0) = (xi(t0), t0) the position of the
i-th shock. Obviously ξi(t0) is a measurable function with respect to Ft0−∞.

We will use `(I) to denote the length of the interval I.

Lemma 5.4. There exist positive constants C1, C2,K1,K2 > 0 such that
for all j, and t > t0,

P{ω: `j(t) = `
(

∆xj(t),t(t0)
)
≤ 1−K1 exp(−C1(t− t0))}(5.3)

≤ K2 exp(−C2(t− t0)).

Proof. Fix any j ∈ N. The position of the j-th shock at time t will be
denoted by x(t). The following estimates are independent of j.

Consider a sequence of times ti = t0 + i, i = 0, 1, 2, . . . . For each i let
Ii = S1 \ ∆x(ti),ti(t0) and zi be the mid-point of Ii. Denote by yi a point on
S1 at time ti which corresponds to zi at t = t0; i.e., either (yi, ti) is a point of
shock which covers (zi, t0), or there is a unique one-sided minimizer at (yi, ti)
which passes through (zi, t0). Clearly, yi is measurable with respect to Fti−∞.
Denote by ηi a random variable which takes the value 1 if yi is covered by
∆x(ti+1),ti+1

(ti) and 0 otherwise. Obviously ηi = 1 if and only if yi merges with
x(ti) before ti+1.

Notice that if ηi = 1 then the length of the complement to the inter-
val ∆x(ti+1),ti+1

(t0) is no more than half of the length of the complement to
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∆x(ti),ti(t0). For any fixed positive integer K, with n = t− t0,

P{ω: `(In) ≥ 2−K} ≤ P
(n−1∑
i=0

ηi ≤ K
)(5.4)

≤
K∑
m=0

∑
0<i1<i2<...<in−m≤n−1

P{ηi1 = ηi2 = . . . = ηin−m = 0}

≤
K∑
m=0

Cnm(1− p0(1))n−m

where we used Lemma 5.2 and the Markov property to conclude that

(5.5) P (ηi1 = ηi2 = . . . = ηis = 0) ≤ (1− p0(1))s,

for all 0 ≤ i1 < i2 < . . . < is.
It follows from (5.4) that for K ≤ n

2

(5.6) P{ω: `(In) ≥ 2−K} ≤ (K + 1)CKn (1− p0(1))n−K .

Let K = [αn] and choose α so small that

(5.7) q1 =
(

1
α

)α( 1
1− α

)1−α
(1− p0(1))1−α < 1 .

Then,

(5.8) P{ω: `(In) ≥ e−[αn] ln 2} ≤M
√
n qn1

where M is an absolute constant. It follows that

(5.9) P{ω: `
(
∆x(t),t(t0)

)
≤ 1− e−[αn] ln 2} ≤M

√
t− t0 qt−t01 .

Take any q such that q1 < q < 1 and let C1 = α ln 2, K1 = 4, C2 = − ln q.
Then (5.3) follows from (5.9) for large enough K2.

Using the Borel-Cantelli lemma, one gets from Lemma 5.4 the following:

Lemma 5.5. For almost all ω

(5.10) `
(

∆xj(t),t(t0)
)
→ 1 as t→∞.

Moreover for any shock at ξj(t0) there exists a random constant Tj(ω, t0) such
that for all t > Tj(ω, t0)

(5.11) `
(

∆xj(t),t(t0)
)
≥ 1− 2K1 exp(−C1(t− t0)) .

Remark. Since the intervals ∆xj(t),t(t0) do not intersect each other,
Lemma 5.5 implies that the shocks ξj1(t0), ξj2(t0) merge with each other after
time T = max(Tj1 , Tj2).
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Let us define now an object which will play a very important role in the
remaining part of this paper.

Definition 5.1. A C1 curve γ: (−∞,+∞)→ S1 is called a two-sided min-
imizer if for any C1 compact perturbation γ + δγ: (−∞,+∞)→ S1 of γ

A−s,s(γ + δγ) ≥ A−s,s(γ)

for all sufficiently large s.

In other words, a curve γ is called a two-sided minimizer if and only if for
arbitrary t0 ∈ R1, its restriction on (−∞, t0] is a one-sided minimizer.

Theorem 5.1. With probability 1 there exists a unique two-sided mini-
mizer.

Proof. Existence of the two-sided minimizer follows from a compactness
argument. Consider a sequence of curves γ(n): [−n, n] → S1 which minimize
A−n,n(γ) in the class of C1 curves. It follows from Lemma 3.3 that |γ̇(n)(0)|
≤ C(ω, 0). Hence the sequence of points (x(n)

0 , v
(n)
0 ) = (γ(n)(0), γ̇(n)(0)) belongs

to a compact set S1×[−C(ω, 0), C(ω, 0)]. Then there exists at least one limiting
point (x0, v0). A standard argument as in the proof of Theorem 3.1 shows
that the solution of the Euler-Lagrange equation (2.3) with initial conditions
x(0) = x0, v(0) = v0 defines a two-sided minimizer.

For uniqueness notice that points on a two-sided minimizer γ do not belong
to the intervals ∆xj(t),t(t0) for any j. Since `

(
∆xj(t),t(t0)

)
→ 1 as t→∞, the

two-sided minimizer is unique.

Denoting the two-sided minimizer by yω, we now construct another impor-
tant object, the main shock. For arbitrary t0 ∈ R1 consider a sequence of non-
intersecting intervals ∆xj ,t0(t), t ≤ t0 corresponding to shocks ξj(t0) = (xj , t0)
at time t0, xj ∈ J(ω, t0). Notice that here we consider intervals ∆xj ,t0(t)
for t ≤ t0. It turns out that for almost all ω there exists a unique shock at
(z(t0), t0) for which `(t) = `(∆z(t0),t0(t))→ 1 as t→ −∞.

Theorem 5.2. For almost all ω the following statements hold.

(a) For any t0 ∈ R1 there exists a unique shock at (z(t0), t0) such that

(5.12) `(t) = `
(
∆z(t0),t0(t)

)
→ 1 as t→ −∞.

Moreover, for any δ > 0 there exists a random constant Tδ,t0(ω) such that
for all t < Tδ,t0(ω)

(5.13) `(t) ≥ 1− exp(−(C1 − δ)(t0 − t)).
The position of the shock (z(t0), t0) is measurable with respect to the σ-
algebra Ft0−∞.
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(b) For all other shocks ξj(t0) = (xj(t0), t0)

`j(t) = `
(

∆xj(t0),t0(t)
)
→ 0 as t→ −∞.

(c) {(z(t), t), t ∈ R1} is a Lipschitz continuous curve.

Proof. Consider a sequence of times t̄i = t0 − i. It follows from Lemma
5.4 that with probability greater than 1 −K2 exp(−C2i) there exists a shock
at some point (x0(i), t0) such that

(5.14) `
(
∆x0(i),t0(t̄i)

)
≥ 1−K1 exp(−C1i) .

By the Borel-Cantelli lemma, there exists N1(ω) such that for all i > N1(ω),
(5.14) holds for some shock at (x0(i), t0). We will show that for i large enough
x0(i) does not depend on i. Suppose x0(i+ 1) 6= x0(i) for some i > N1. Then,

`
(
∆x0(i+1),t0(t̄i)

)
≤ K1 exp(−C1i)

and

`
(
∆x0(i+1),t0(t̄i+1)

)
≥ 1−K1 exp(−C1(i+ 1)).

Denote by ai, bi, ai+1, bi+1 the end points of ∆x0(i+1),t0(t̄i) and ∆x0(i+1),t0(t̄i+1),
respectively, and by v(ai), v(bi), v(ai+1), v(bi+1) the velocities of the corre-
sponding one-sided minimizers. It follows from Lemma B.8 that

|v(ai)− v(bi)| ≤ Li|ai − bi| ,

where Li = L0(θt0−iω). Thus,

Di = dist((ai, v(ai)), (bi, v(bi))) ≤
√

1 + L2
i K1 exp(−C1i),

(5.15)

Di+1 = dist((ai+1, v(ai+1)), (bi+1, v(bi+1))) ≥ 1−K1 exp(−C1(i+ 1)) .

On the other hand, we have Di+1 ≤ exp(di)Di, where di = d1(θt0−iω) and
d1(ω) is as defined in Lemma B.5. It follows that

(5.16) exp(di) ≥
Di+1

Di
≥ 1

2
√

1 + L2
i K1

exp(C1i).

Since Li and di have finite expectations, it follows that for any ε > 0 there
exists Nε(ω) such that

(5.17) |di| ≤ εi, |Li| ≤ εi, for all i > Nε(ω)

(see Lemma 6.2). Take ε < C1. Then for i > N̄ε(ω) > Nε(ω), (5.16) and
(5.17) contradict each other. Hence, for i > N̄ε(ω), x0(i + 1) = x0(i). Define
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z(t0) = x0(i), i > N̄ε(ω). Obviously, `(∆z(t0),t0(t̄i)) ≥ 1 − K1 exp(−C1i),
i > N̄ε(ω). It follows from the estimates (5.15)–(5.17) that for any δ > 0 there
exists a random constant Tδ,t0(ω) such that for all t < Tδ,t0(ω), (5.13) holds. A
shock that satisfies (5.12) is obviously unique. Clearly z(t0) is measurable with
respect to Ft0−∞. Notice that for any t > t0, the shock which covers (z(t0), t0)
also satisfies (5.12), (5.13). Hence for almost all ω such a shock exists for all
t0 ∈ R1. (a) is now proven. (b) follows from (a), since

0 ≤
∑

xj∈J(ω,t0)

`
(

∆xj(t0),t0(t)
)
≤ 1 and `

(
∆z(t0),t0(t)

)
→ 1 as t→ −∞ .

Since the shock at
(
z(t̃0), t̃0

)
covers (z(t0), t0) for all t̃0 ≥ t0, we get (c).

Definition 5.2. The shock (z(t), t) constructed in Theorem 5.2 is called
the main shock at time t.

As remarked in the introduction, the two-sided minimizer and the main
shock play dual roles. The former acts as a repeller, the latter acts as an
attractor. Indeed, it follows from Theorem 5.2 that for any two one-sided
minimizers γ1, γ2, dist(γ1(t), γ2(t)) → 0 as t → −∞. One can say that all
one-sided minimizers approach the two-sided minimizer as t→ −∞.

Lemma 5.6. (a) For any two minimizers γ1, γ2

(5.18) dist(γ1(t), γ2(t))→ 0 as t→ −∞ .

Moreover, for any δ > 0 there exists a random constant T 1,2
δ (ω) such that for

all t < T 1,2
δ (ω)

dist(γ1(t), γ2(t)) ≤ exp(−(C1 − δ)t) .

If γ1 starts at time t1, and γ2 starts at t2, then T 1,2
δ (ω) = Tδ,t1,2(ω), where

constant Tδ,t(ω) is defined as in Theorem 5.2 and t1,2 = min(t1, t2).
For minimizers starting at the same time convergence in (5.18) is uniform.

(b) Any shock at a given time t will be eventually absorbed by the main shock.

This is obvious.
Another way to characterize the curve of the main shock is to say that it

is the only shock curve defined for all t ∈ R1.

Lemma 5.7. For almost all ω there exists a unique shock curve

xω : (−∞,+∞)→ S
1

such that uω+(xω(t), t) < uω−(xω(t), t) and xω(t) is measurable with respect to
Ft−∞. This curve is the curve of the main shock.
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Proof. The existence follows from the existence of the main shock. Sup-
pose now that there exists another measurable shock curve xω(·) defined on
R1. Fix arbitrary t0 ∈ R1. It follows from Lemma 5.2 that with probability 1
the curves z(t) and xω(t) merge before t = t0. Since t0 is arbitrary, xω(t)
coincides with z(t) with probability 1.

Remark. Later we will prove a stronger result: the curve of the main shock
is the only shock curve which is defined for all sufficiently negative times.

We end this section with some discussion on the assumption (A1). Obvi-
ously, a necessary condition for the main result of this section to hold, namely
the existence of a unique main shock and two-sided minimizer, is that the
minimum period of all the Fk’s is equal to 1. However, this condition is not
sufficient, as we show now.

Theorem 5.3. If F (x, t) = cos 2πx dB(t), then with probability 1, there
are at least two main shocks, i.e., shock curves defined for all negative times.
There are also at least two two-sided minimizers on S1 × R1.

We will give an outline of the proof showing that with probability one,
x = 0 and x = 1/2 are points of shock for any time t. The main point is:

Lemma 5.8. With probability 1, ξ: (−∞, t]→ R1, ξ(s) ≡ 0, is not a one-
sided minimizer.

This follows from the observation that with probability 1, there are large
intervals on which B(t) − B(s) > 0. On such intervals, one-sided minimizers
are close to x = 1

2 . Hence ξ ≡ 0 is not minimizing.
As a consequence of symmetry, if ξ: (−∞, t]→ R1 is a one-sided minimizer

such that ξ(t) = 0, then −ξ is also a one-sided minimizer. Therefore, with
probability 1, x = 0 is a point of shock for all t ∈ R1. The same argument
applies to x = 1

2 . So there are at least two main shocks. The rest of the
statement in Theorem 5.3 follows from the same argument as in the proof of
Theorems 5.1 and 5.2.

It is easy to check that (A1) holds for
(5.19)
F (x, t) = cos 2π(x+ x1)dB1(t) + cos 2π(x+ x2)dB2(t) + cos 2π(x+ x3)dB3(t)

where x1, x2, x3 are fixed constants such that their differences are not integral
multiples of 1

2 . By refining the argument in Appendix D, one can actually show
that Lemma 5.2 also holds if there are only two terms in (5.19). On the other
hand, without shifting phases, (A1) does not hold if all of the Fk’s are of the
form cos 2πkx. It fails when x0

1 = 0, x0
2 = 1

2 . However, the following argument
shows that Lemma 5.2 still holds if:
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The set {Fk} contains either

{sin 2πx, cos 2πlx, for some l 6= 0}, or {cos 2πx, sin 2πlx, for some l 6= 0}.

We will illustrate how this claim can be proved when {Fk} contains
{cos 2πx, sin 4πx}. The only situation we have to reconsider is when x0

1 is
close to a critical point of F1(x) = cos 2πx, and x0

2 is close to a critical point of
F2(x) = sin 4πx. Without loss of generality, let us assume that x0

1 is close to
0, and x0

2 is close to 1
8 . Heuristically we can first use F1 to move x0

2 to a small
neighborhood of 1

2 . If in this process x0
1 has moved out of the neighborhood

of 0, then we can use Lemma 5.2 with F1. If not, we use F2 to move x0
1 to a

small neighborhood of −1
8 . The forces dB2 can be chosen such that x0

2 will stay
inside

(
1
8 ,

5
8

)
. Now both x0

1 and x0
2 are inside the region where F ′1 is bounded

away from 0, so we can apply the proof of Lemma 5.2 to x0
1 and x0

2 with the
potential F1. We will omit the detailed proof of these statements since they
follow closely the proof of Lemma 5.2.

6. Hyperbolicity and unstable manifolds of the two-sided minimizer

In this section we prove that the two-sided minimizer yω(·) constructed
in Section 5 is a hyperbolic trajectory of the dynamical system (2.3), and we
establish the existence of its stable and unstable manifolds. The main technical
difficulty is associated with the fact that the hyperbolicity is nonuniform, as in
many other dynamical systems with noises. This is overcome by using Pesin’s
theory (see [Pes], [En]). Note in passing that

yω(t+ s) = yθsω(t).

Denote by Gωt the stochastic flow generated by the solutions of (2.3). Let
J ts(ω) be the Jacobi map, i.e., the tangent map that maps the tangent plane
T (yω(s), uω(yω(s), s)) onto the tangent plane T (yω(t), uω(yω(t), t)). This is
well-defined since yω(t) is a point of continuity of uω( · , t) for all t. Moreover
the Jacobi map has determinant 1 since the dynamical system (2.3) preserves
the Lebesgue measure. Obviously, we have

J t20 (ω) = J t2−t10 (θt1ω)J t10 (ω)

for all t1, t2. In the terminology of ergodic theory, {J t0(ω)} is a cocycle (see
[O]).

Lemma 6.1. Define log+ x = max(log x, 0), for x > 0. Then

sup
−1≤t≤1

log+ ‖J t0(ω)‖ ∈ L1(dP ) .
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This result, together with some other technical estimates, is proved in
Appendix B (Lemma B.5).

As a consequence of the multiplicative ergodic theorem [O], [En], we con-
clude that with probability 1:

(A) either

lim
t→±∞

1
t

ln ‖J t+t1t1
(ω)e‖ = 0

for all e ∈ Tt1 = T (yω(t1), uω(yω(t1), t1));

(B) or there exist a constant λ > 0 and a measurable normalized basis
{eut (ω), est (ω)} of Tt = T (yω(t), uω(yω(t), t)), such that

J tt1(ω)eut1(ω) = au(t, t1;ω)eut (ω), J tt1(ω)est1(ω) = as(t, t1;ω)est (ω) ,

where the functions au(t, t1;ω) and as(t, t1;ω) are also cocycles satisfying

au(t+ s, 0;ω) = au(s, 0; θtω)au(t, 0;ω) ,

as(t+ s, 0;ω) = as(s, 0; θtω)as(t, 0;ω) .

Furthermore,

lim
t→∞

ln au(t, t1;ω)
t− t1

= λ, lim
t→∞

ln as(t, t1;ω)
t− t1

= −λ .

If (B) holds, the cocycle {J ts(ω)} is said to be hyperbolic and the basis
{eut (ω), est (ω)} is called the Oseledetz basis.

Theorem 6.1. With probability 1, the cocycle {J ts(ω)} is hyperbolic.

We will prove Theorem 6.1 later. It is useful to recall the following simple
result:

Lemma 6.2. Let {ηi} be a sequence of identically distributed random vari-
ables such that E|ηi| < +∞. Then for any ε > 0, there exists a random variable
Nε > 0, such that for all i, |i| ≥ Nε,

|ηi| ≤ ε|i| .

This is a simple consequence of the Chebyshev inequality and the Borel-
Cantelli lemma. Lemma 6.2 is equivalent to the statement that

lim
i→∞

ηi
i

= 0

with probability 1. However, we will use it in the form of Lemma 6.2.
Let x(·) be an arbitrary one-sided minimizer defined on (−∞, 0]. Fix a

positive integer k and consider a sequence of times ti = −ki.
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Denote (yi, ui) = (yω(ti), uω(yω(ti), ti)), (xi, vi) = (x(ti), uω(x(ti), ti)),
Ji = J

ti−1

ti
(ω), `i = dist(xi, yi), ρi = dist((xi, vi), (yi, ui)).

Lemma 6.3. For any ε > 0 there exists a random constant `ε,k(ω) such
that with probability 1

(6.1) ρi ≤ (1 + ε)‖Ji+1‖ρi+1, i ≥ 0 ,

provided that `0 ≤ `ε,k(ω).

Proof. Let L0(i) = L0(θtiω), d(i) = dk(θtiω), d̄(i) = d̄k(θtiω), where L0 is
as defined in Lemma B.8, and dk, d̄k are as defined in (B.29–30) and Lemma
B.5. It follows from Theorem 5.2 that for any δ > 0 there exists a random
constant Nδ(ω) such that for all i > Nδ(ω)

(6.2) `i ≤ exp((C1 − δ)ti) .

Since |vi − ui| ≤ L0(i)`i, we have

(6.3) ρi ≤
√
L2

0(i) + 1 `i ≤
√
L2

0(i) + 1 exp((C1 − δ)ti) .

Let ∆i = {(x, v) = α(xi, vi) + (1 − α)(yi, ui), 0 ≤ α ≤ 1} be the interval
connecting (xi, vi) and (yi, ui). Clearly ∆i ∈ Bk(θtiω). It follows from the
definition of d(i) that for any (x, v) ∈ ∆i

(6.4) ‖Gθtiωt (x, v)−Gθtiωt (yi, ui)‖ ≤ exp(d(i))ρi, −k ≤ t ≤ 0 .

Since d(i), d̄(i), L0(i) have finite expectations, for any ν > 0, there exists
Nν(ω) such that

(6.5) |d(i)|, |d̄(i)|, |L0(i)| ≤ νi for i > Nν(ω) .

Hence, for i > max(Nδ(ω), Nν(ω))
(6.6)
‖Gθtiωt (x, v)−Gθtiωt (yi, ui)‖ ≤

√
ν2i2 + 1 exp(νi+ (C1 − δ)ti), −k ≤ t ≤ 0 .

Take ν < (C1 − δ). Then (6.6) implies that there exists

Nδ,ν(ω) > max(Nδ(ω), Nν(ω))

such that ∆i ⊂ Ok(θtiω) for all i > Nδ,ν(ω). Clearly, if ρ0 is small enough, then
∆i ⊂ Ok(θtiω) for i ≤ Nδ,ν(ω). Since the two-sided minimizer corresponds to
a point of continuity of uω+, we have ρ0 → 0 as `0 → 0. Thus, there exists
`0(ω) > 0 such that ∆i ∈ Ok(θtiω) for all i, provided that `0 ≤ `0(ω). Denote
now D(i) = Dk,2(ω), D̄(i) = D̄k,2(ω), where DT,r(ω), D̄T,r(ω) are defined as
in (B.22). Since ∆i ∈ Ok(θtiω), we have for all i ≥ 0

ρi ≤ ‖Ji+1‖ρi+1 +
1
2

exp(D̄(i))ρ2
i+1 = ‖Ji+1‖ρi+1

(
1 +

exp(D̄(i))
2‖Ji+1‖

ρi+1

)
.
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Since 1
‖Ji+1‖ ≤ ‖J

−1
i+1‖ ≤ exp(D(i)),

(6.7) ρi ≤ ‖Ji+1‖ρi+1

(
1 +

1
2

exp(D(i) + D̄(i))ρi+1

)
.

Again, since D(i) and D̄(i) have finite expectations, for any ν > 0, there exists
Nν(ω) such that

(6.8) |D(i)|, |D̄(i)| ≤ νi for i > Nν(ω) .

Thus, by (6.3), (6.5), (6.8), for i > max(Nδ(ω), Nν(ω), Nν(ω)):

(6.9)
1
2

exp(D(i) + D̄(i))ρi+1 ≤
1
2

√
ν2i2 + 1 exp(2νi+ (C1 − δ)ti) .

Take ν < C1−δ
2 . It follows from (6.9) that there exists N(ω) such that for

i > N(ω)

(6.10)
1
2

exp(D(i) + D̄(i))ρi+1 ≤ ε .

This implies (6.1) for i > N(ω). Now, in order to get (6.1) for all i, take ρ0(ω)
so small that for ρ0 ≤ ρ0(ω)

(6.11)
1
2

exp(D(i) + D̄(i))ρi+1 ≤ ε, 0 ≤ i ≤ N(ω) .

As above, we can choose `ε,k(ω) < `0(ω) so small that `0 < `ε,k(ω) implies
ρ0 ≤ ρ0(ω). (6.1) obviously follows from (6.10), (6.11).

Proof of Theorem 6.1. Assume that (A) holds. It follows from the subad-
ditive ergodic theorem that

(6.12) lim
n→∞

∫
ln ‖Jn0 (ω)‖P (dω)

n
= 0 .

Then, for any ε > 0 there exists k ∈ N such that Ak = 1
k

∫
ln ‖Jk0 (ω)‖P (dω)

< ε. By the ergodic theorem, with probability 1,

(6.13)
1
kn

n∑
i=1

ln ‖Jk0 (θtiω)‖ −→
n→∞

1
k

∫
ln ‖Jk0 (ω)‖P (dω) = Ak .

Hence there exists a random constant nε(ω) such that, with probability 1,

(6.14)
1
kn

n∑
i=1

ln ‖Jk0 (θtiω)‖ ≤ Ak + ε ≤ 2ε

for all n > nε(ω).
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Consider now a one-sided minimizer x(·) at time t0 = 0 such that `0 =
|x(0) − yω(0)| ≤ `ε,k(ω), where `ε,k(ω) is defined as in Lemma 6.3. Then, by
Lemma 6.3 for all n > 0:

(6.15) `0 ≤ ρ0 ≤ (1 + ε)n
n∏
i=1

‖J ti−1

ti
(ω)‖ρn .

Thus for n > nε(ω)

ρn ≥
ρ0

(1 + ε)n
n∏
i=1
‖J ti−1

ti
(ω)‖

=
ρ0

(1 + ε)n exp
( n∑
i=1

ln ‖Jk0 (θtiω)‖
)(6.16)

≥ ρ0e
−εn exp(−2εkn) .

On the other hand, it follows from Theorem 5.2 that for large enough n

ρn ≤
√
L2

0(n) + 1 `n ≤
√
L2

0(n) + 1 exp(−(C1 − δ)kn)

(6.17)

≤
√
ν2n2 + 1 exp(−(C1 − δ)kn) .

Here, as in the proof of Lemma 6.3, we used again that |L0(n)| ≤ νn for n
large enough. Take ε so small that 3ε < C1 − δ. Then, (6.16) and (6.17) are
contradictory to each other.

Remark. It follows from the proof of Theorem 6.1 that λ ≥ C1− δ. Since
δ is arbitrarily small, λ ≥ C1.

Next we construct stable and unstable manifolds of the two-sided mini-
mizer. We will denote by Γω the trajectory in the phase space of the two-sided
minimizer Γω = {(yω(t), uω(yω(t), t)), t ∈ R1}, and let (x(t;x0, u0), u(t;x0, u0))
be the solution of the SDE (2.3) with initial data x(0) = x0, u(0) = u0. We
will concentrate on t = 0 but the same holds for any other t.

Definition 6.1. A local stable manifold of Γω at t = 0 is the set

W s
δ,ε = {(x0, u0), dist((x(t;x0, u0), u(t;x0, u0)),

(yω(t), uω(yω(t), t))) ≤ δe−(λ−ε)t}

for some ε > 0, δ > 0 and all t > 0. A local unstable manifold of Γω at t = 0
is the set

W u
δ,ε = {(x0, u0), dist((x(t;x0, u0), u(t;x0, u0)),

(yω(t), uω(yω(t), t))) ≤ δe−(λ−ε)|t|}

for some ε > 0, δ > 0 and all t < 0.
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Pesin [Pes] gave general conditions under which such local stable and
unstable manifolds exist for smooth maps of compact manifolds. It is easy
to check that his results can be extended directly to the current situation of
stochastic flows. Below we will formulate Pesin’s theorem and later verify that
its conditions are satisfied for our problem.

Denote by Si the Poincaré map at t = i associated with the SDE (2.3).
In other words, Si maps (xi, ui) at t = i to the solution of (2.3), (xi+1, ui+1)
at t = i+ 1. Similarly we denote by Sni , S

−n
i the maps that map the solution

of (2.3) at t = i to the solution at t = i+ n, t = i− n respectively.
Define λui , λ

s
i by the relations

J i+1
i (ω)eui = eλ

u
i eui+1, J

i+1
i (ω)esi = e−λ

s
i esi+1

where {esi , eui } constitutes the Oseledetz basis.

Pesin’s Theorem. Assume that there exist constants λ, µ > 0, and
ε0 ∈ (0, 1), and for ε ∈ (0, ε0), one can find a positive random variable C(ε, ω)
such that for i ∈ Z

‖DSni esi‖ ≤ C(ε, ω)e−(λ−ε)neε|i|(I)

‖DS−ni eui ‖ ≤ C(ε, ω)e−(µ−ε)neε|i| ,

(II) | sin 〈esi , eui 〉 | ≥
1

C(ε, ω)
e−ε|i|.

(III) Let ri = 1
C(ε,ω)e

−ε|i|, and

Bi(ω) = {(x, u), ‖(x, u)− (yω(i), uω(yω(i), i))‖ ≤ ri} .

Then for some r ≥ 2,

sup
(x,u)∈Bi

max
1≤j≤r

(
‖DjSi(x, u)‖, ‖DjS−1

i (x, u)‖
)
≤ C(ε, ω)eε|i| .

Under these assumptions, there exist positive ε1(λ, µ, ε0) and δ(ε), defined
for 0 < ε < ε1, and Cr−1 curves W s

δ,ε, W
u
δ,ε in the phase space of the dynamical

system (2.3), such that

(i) W s
δ,ε and W u

δ,ε are respectively the stable and unstable manifolds of Γω at
t = 0. Moreover, they are Cr−1 graphs on the interval [−δ1(ε), δ1(ε)] for
some δ1(ε) > 0.

(ii) W s
δ,ε ∩W u

δ,ε = (yω(0), uω(yω(0), 0)).

(iii) The tangent vectors to W s
δ,ε and W u

δ,ε at (yω(0), uω(yω(0), 0)) are respec-
tively es0 and eu0 .
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(iv) If (x, u) ∈ B0, and n ≥ 0,

dist
(
S−n0 (x, u), (yω(−n), uω(yω(−n),−n))

)
≤ δ̄e−χn

for some constants χ > 0 and δ̄ > 0, then (x, u) ∈W u
δ,ε.

Our task is reduced to checking the assumptions (I), (II) and (III) in
Pesin’s Theorem.

To begin with, let us observe that (II) follows from the next argument
(see [R]). Since

lim
t→∞

ln as(0, t)
t

= λ, lim
t→∞

ln au(0, t)
t

= −λ

and the area of the parallelogram generated by est and eut is independent of t,
we have

lim
t→∞

ln | sin 〈est , eut 〉 |
t

= 0 .

To see that (III) holds, define

di(ω) = sup
−1≤t≤0

sup
(x,u)∈B0(θiω)

‖DGθiωt (x, u)‖ ,

d̄i(ω) = sup
0≤t≤1

sup
(x,u)∈B0(θiω)

‖DGθiωt (x, u)‖ ,

where Gωt is the stochastic flow defined earlier.

Lemma 6.4. For any ε > 0, there exist random constants C1(ε, ω),
C2(ε, ω) such that, with probability 1,

di(ω) ≤ C1(ε, ω)eε|i|, d̄i(ω) ≤ C2(ε, ω)eε|i|

for i ∈ Z.

Proof. Assume C(ε, ω) > 1. Then it follows from Lemma B.5 that∫
log+ d0(ω)dP < +∞,

∫
log+ d̄0(ω)dP < +∞ .

Now Lemma 6.4 follows directly from Lemma 6.2.

Let C(ε, ω) > max(C1(ε, ω), C2(ε, ω)), and

di,r(ω) = sup
(x,v)∈Bi

max
1≤j≤r

‖DjSi(x, v)‖ ,

d̄i,r(ω) = sup
(x,v)∈Bi

max
1≤j≤r

‖Dj(Si−1)−1(x, v)‖ .

Statement (III) follows from the next result.
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Lemma 6.5. For any ε > 0, there exist random constants C3(ε, ω) and
C4(ε, ω) such that

di,r(ω) ≤ C3(ε, ω)eε|i|, d̄i,r(ω) ≤ C4(ε, ω)eε|i|

for i ∈ Z.

Proof. Let (x0, v0) ∈ Bi(ω). Consider the solution of (2.3), (x(t), v(t)),
such that x(i) = x0, v(i) = v0, for t ∈ [i, i+ 1],

|v(t)− uω(yω(i+ t), i+ t)| ≤ di(ω)‖(x0, v0)− (yω(i), uω(yω(i), i))‖ ≤ 1

from Lemma 6.4. Therefore Bi(ω) ⊂ O1(θiω) where O1(ω) is defined as in
Appendix B. Lemma 6.5 now follows directly from Lemma B.4 and Lemma
6.2. The second estimate can be proved in the same way.

Finally, we prove statement (I).

Lemma 6.6. For any ε > 0, one can find random constants C5(ε, ω) and
C6(ε, ω) such that

‖DSni esi‖ ≤ C5(ε, ω)e−(λ−ε)neε|i|, n ≥ 1 ,

‖DS−ni eui ‖ ≤ C6(ε, ω)e−(λ−ε)|n|eε|i|, n ≤ −1 .

Proof. We will prove the first statement. The second one can be proved
in the same way.

From the ergodic theorem,

lim
n→+∞

1
n

n−1∑
j=0

λsj = −λ < 0 .

Thus for any ε ∈ (0, λ), there exists a constant C7(ε, ω) ≥ 0 such that

e

n−1∑
j=0

λsj
≤ C7(ε, ω)e−n(λ−ε) .

For any δ ∈ (0, 1), define K(δ) by:

K(δ) = inf{K : P (C(ω) ≤ K) ≥ δ} .

Denote

δ1 = P (C(ω) ≤ K(δ)) ≥ δ, m1(m,ω) = max{i : 1 ≤ i ≤ m, C(θiω) ≤ K(δ)} .

Notice that m1(m,ω) is defined for large enough m. By the ergodic theorem,

lim
m→∞

#{i : 1 ≤ i ≤ m, C(θiω) ≤ K(δ)}
m

= δ1
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where # denotes cardinality. Thus for any δ2 ∈ (0, δ1), there exists a random
constant M(δ2, ω) such that for all m > M(δ2, ω),

#{i : 1 ≤ i ≤ m, C(θiω) ≤ K(δ)}
m

≥ δ1 − δ2 .

Hence
m1 ≥ (δ1 − δ2)m.

Consequently for m > M(δ2, ω),

‖DSnmesm‖ = e

m+n−1∑
j=m

λsj
= e

m+n−1∑
j=m1

λsj

e
−

m−1∑
j=m1

λsj

≤ C(θm1ω)e−(m+n−m1)(λ−ε)e
−

m−1∑
j=m1

λsj

≤ K(δ)e−n(λ−ε)e−(m−m1)(λ−ε)e

m−1∑
j=m1

(−λsj)
.

We also have, with δ3 = δ1 − δ2

m−1∑
j=m1

(−λsj) ≤ max
δ3m≤k≤m−1

m−1∑
k

(−λsj)

≤ max
δ3m≤k≤m−1

m∑
j=k+1

log+ ‖D(S−1
j )(yω(j), uω(yω(j), j))‖

≤ max
δ3m≤k≤m−1

m∑
j=k+1

d1(θjω)

where d1(ω) is defined as in (B.29). Using Lemma B.5 and standard prob-
abilistic estimates, one can show that for appropriate δ3 < 1 there exists a
constant M1(ω) such that for all m > M1(ω),

m−1∑
j=m1

(−λsj) ≤ max
δ3m≤k≤m−1

m∑
j=k+1

d1(θjω) ≤ εm .

In fact, it is enough to have δ3 so close to 1 that (1 − δ3)Ed1(ω) < ε
2 , where

Ed1(ω) =
∫
d1(ω)P (dω). Hence we choose δ = 1− ε

8Ed1(ω) , δ2 = ε
8Ed1(ω) . Then

for m > max(M1(ω),M(δ2, ω)),

‖DSnmesm‖ ≤ K(δ)e−n(λ−ε)eεm .

This completes the verification of the assumptions in Pesin’s theorem,
and establishes the existence of local stable and unstable manifolds W s

δ,ε, W
u
δ,ε.
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One can also define, in a standard way, global stable and unstable manifolds
W s, W u:

W s =
∞⋃
i=1

S−ii W s
δ,ε(yθiω(0), uω(yθiω(0), 0)) ,

W u =
∞⋃
i=1

Si−iW
u
δ,ε(yθ−iω(0), uω(yθ−iω(0), 0)) .

Obviously, W s, W u are also Cr−1 curves which coincide with W s
δ,ε, W

u
δ,ε in

some neighborhood of (yω(0), uω(yω(0), 0)).
The following theorem is a consequence of the properties of unstable man-

ifolds.

Theorem 6.2. a. The graph {(x, uω+(x, 0)), x ∈ S1} is a subset of the
global unstable manifold W u.

b. There exists a (random) neighborhood of (yω(0), uω(yω(0), 0)) such that
W u
δ,ε consists of one-sided minimizers in this neighborhood, i.e., the solu-

tions of (2.3) with initial data on W u
δ,ε in this neighborhood give rise to

one-sided minimizers.

Proof. a. As was shown earlier, any one-sided minimizer (x, u) con-
verges exponentially fast to (yω(t), uω(yω(t), t)) as t → −∞. It follows that
S−i0 (x, u) ∈ B0(θ−iω) for some i > 0. Hence S−i0 (x, u) lies on the local unstable
manifold W u

δ,ε(yθ−iω(0), uω(yθ−iω(0), 0)), as a consequence of Pesin’s theorem
(iv), and (x, u) lies on the global unstable manifold.

b. The local unstable manifold W u
δ,ε is a Cr−1 curve with the tangent

vector eu0 at (yω(0), uω(yω(0), 0)). Let Mα = {(x, u): x ∈ (yω(0) − α, yω(0) +
α), (x, u) corresponds to a one-sided miminizer}. Since yω(0) is a point of
(Lipschitz) continuity of uω+(x) it follows that there exists α0(ω) such that for
all α < α0(ω), Mα ⊂ W u

δ,ε. Hence eu0 is not a vertical vector; i.e., e0 6= (0, 1).
Therefore there exists a neighborhood Oω of (yω(0), uω(yω(0), 0)) such that in
this neighborhood W u

δ,ε is a graph of a Cr−1 function; i.e.,

W u
δ,ε ∩Oω = {(x, u): x ∈ (yω(0)− α1(ω), yω(0) + α2(ω)), u = ū(x)} ,

where α1(ω), α2(ω) > 0, and ū(x) is a Cr−1 function. Now choose α so small
that Mα ⊂ W u

δ,ε ∩ Oω. It follows that for x ∈ (yω(0) − α, yω(0) + α), ū(x) =
uω+(x, 0), which proves b.

Corollary 6.3. There exists α(ω) > 0 such that there are no shocks
inside the interval (yω(0)− α, yω(0) + α). Moreover,

uω+ ∈ Cr−1(yω(0)− α, yω(0) + α) .
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7. Regularity of solutions

In this section, we give a complete description of the solution uω+ in terms
of the unstable manifold W u, and prove that the number of shocks is finite for
almost all ω. We also prove a stronger version of Lemma 5.8, namely, that all
shocks except the main shock have finite prehistory. We will start with the
latter statement.

Theorem 7.1. Fix arbitrary t0 ∈ R1. With probability 1 there exists a
random constant Tt0(ω) such that all shocks at time t0, except the main shock,
are generated after the time t0 − Tt0(ω). In other words, all shocks at time
t0 − Tt0(ω) merge with the main shock before t = t0.

Proof. Fix any t ∈ R1. It follows from Theorem 6.2 that there exists
ε1(t, ω) > 0 such that the velocities of all one-sided minimizers in
(yω(t)− ε1, yω(t) + ε1) lie on a Cr−1 curve. Hence there are no shocks in the
ε1-neighborhood of yω(t). Notice that the random constant ε1(t, ω) has station-
ary distribution. We can choose an α > 0 so small that P (ω: ε1(t, ω) > α) > 0.
Then there exists an infinite sequence ti → −∞, such that ε1(ti, ω) > α, i ∈ N.
Since minimizers at t = t0 converge uniformly to the two-sided minimizer as
t→ −∞, there exists It0(ω) such that for i ≥ It0(ω), all minimizers starting at
t = t0 pass through the ε1-neighborhood of yω(ti). Now let Tt0(ω) = t0−tIt0 (ω).
We conclude that the complement (on S1) of the ε1-neighborhood of yω(tIt0 (ω))
will merge into the main shock before time t0. Since the ε1-neighborhood of
yω(tIt0 (ω)) contains no shocks, this completes the proof of Theorem 7.1.

Let s be the signed arc-length parameter for the unstable manifold W u of
the two-sided minimizer at t = 0:

(7.1) W u = {(x(s), u(s)), x(s) ∈ S1, u(s) ∈ R1} ,

with s = 0 at (yω(0), uω(yω(0), 0)). From the proof of Theorem 6.2, dxds (0) 6= 0.
We will fix orientation of the parameter s by the assumption dx

ds (0) > 0. Let
Γ̃0 be the lifting of W u to the universal cover

(7.2) Γ̃0 = {(x̃(s), u(s)), x̃(s) ∈ R1, u(s) ∈ R1} .

Also, denote by (xs(t, ω), vs(t, ω)) the solution of (2.3) with initial data
xs(0, ω) = x(s), vs(0, ω) = u(s). Since for all s, the solutions (xs(t, ω), vs(t, ω))
converge exponentially fast to (yω(t), ẏω(t)) as t → −∞, we can define the
function

(7.3) A(s) =

0∫
−∞

{
1
2

(v2
s(t, ω)− ẏ2

ω(t)) + (F (xs(t, ω), t)− F (yω(t), t))
}
dt .
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Since W u is almost surely a Cr−1 manifold, A(s) is almost surely a Cr−1

function. Let

(7.4) Ā(x) = min
s:x(s)=x

A(s) .

In the following, we will enumerate the shocks as in Section 5, except we
number the main shock (which is not necessarily the strongest shock at a
given time) as the zeroth shock.

Our next theorem describes the following picture. When we view the
unstable manifold W u as a curve on the cylinder {x ∈ S1, u ∈ R1}, the two-
sided minimizer divides W u into left and right pieces. It turns out that all
shocks correspond to double folds ofW u, i.e., graphs of a multi-valued function.
A single-valued function is obtained by introducing jump discontinuities which
are vertical cuts on the double fold. These are the shocks in the solution. The
end points of the cut define two points on W u with the same x-coordinate
(namely the position of the shock) and the same value of the action A in
(7.3). If x denotes the position of the shock, then the end points of the cut
are (x, uω+(x, 0)) and (x, uω−(x, 0)). Except for the main shock, the one-sided
minimizers starting from (x, uω+(x, 0)) and (x, uω−(x, 0)) approach the two-sided
minimizer as t→ −∞ from the same side. However, for the main shock, they
approach the two-sided minimizer from different sides. We formulate this as:

Theorem 7.2. Fix arbitrary t0 ∈ R1.

I. Let (x(s), u(s)) ∈ W u. Now (x(s), u(s)) gives rise to a one-sided mini-
mizer if and only if A(s) = Ā(x(s)). With probability 1, Ā(x) is defined
for all x ∈ S1; i.e., the minimum in (7.4) is attained. Moreover Ā is a
continuous function on S1.

II. Let xi be the position of the ith shock, i ≥ 1 (not the main shock !). Then
there exists an interval `i = [si, si] such that

si = min{s: x(s) = xi, A(s) = Ā(xi)} ,
si = max{s: x(s) = xi, A(s) = Ā(xi)} .

Also, `i lies either to the left or to the right of the two-sided minimizer, i.e.
s = 0 /∈ `i, i ≥ 1 and `i ∩ `j = ∅, i 6= j. If x̃ is the x-coordinate of points
on the unstable manifold lifted to the universal cover, then x̃(si) = x̃(si).

III. The main shock corresponds to the only point z(t0, ω) ∈ S1 such that
there exist s(1) < 0, s(2) > 0 for which A(s(1)) = A(s(2)) = Ā(z(t0, ω)),
x(s(1)) = x(s(2)) = z(t0, ω). Denote

S = max{s < 0: x(s) = z(t0, ω), A(s) = Ā(z(t0, ω))}
S = min{s > 0: x(s) = z(t0, ω), A(s) = Ā(z(t0, ω))} .

Then, x̃(S)− x̃(S) = 1.
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IV. Let ∆ω = [S, S)\ ∪
i≥1

[si, si). Then for almost all ω the graph of uω+(x, 0),

x ∈ S1, coincides with {(x(s), u(s)), s ∈ ∆ω}.

Proof. I. Clearly minimizers correspond to minima of A when the x coor-
dinate is fixed. Since with probability 1, minimizers exist for all x ∈ S1, Ā(x)
attains its minimum. Since the set of minimizers is closed, Ā(x) is continuous.

II. For every shock (except the main shock), denote by si, si the values
of the parameter s corresponding to the left-most and right-most minimizers.
Since both the left-most and right-most minimizers approach the two-sided
minimizer from the same side, the interval li = [si, si] does not contain s = 0.
Since minimizers do not intersect, the intervals `i do not intersect. It follows
from Theorem 7.1 that all shocks, except the main shock, have finite past
history. Notice that, at the moment of creation of a shock, si = si. Hence,
x̃(si) = x̃(si). Since x̃(si) − x̃(si) is a continuous function of time between
merges and it takes only integer values, x̃(si)− x̃(si) ≡ 0 for all shocks except
the main shock.

III. The main shock is the only shock for which the two extreme one-sided
minimizers approach the two-sided minimizer from different sides. Thus [S, S]
has nonempty interior. Clearly the intervals `i constructed above belong to
[S, S]. As a consequence of periodicity, we have x̃(S) = 1 + x̃(S).

IV. IV follows easily from I–III.

We next prove that for fixed time t0 the number of shocks is finite. Con-
sider time t0 − 1. Although the position of the two-sided minimizer at time
t0 − 1 is not measurable with respect to Ft0−1

−∞ , the position of the main shock
and the unstable manifold are measurable with respect to Ft0−1

−∞ . Consider the
unstable manifold W u(t0) at time t0 as the image of W u(t0 − 1) under the
time-1 stochastic flow G1 = Gθ

t0−1ω
1 :

(7.5)

W u(t0) = {(x(s), v(s)) = G1(y(s), w(s)), (y(s), w(s)) ∈W u(t0 − 1), s ∈ R1} .

Let E be the event that there exists s0 ∈ R1 such that dx
ds (s0) = d2x

ds2
(s0) = 0.

Lemma 7.3.
P{E|Ft0−1

−∞ } = 0

for almost all conditions.

Proof. Consider an arbitrary interval [s1, s2], s1, s2 ∈ R1. Denote by E1

the event that there exists s0 ∈ [s1, s2] such that dx
ds (s0) = d2x

ds2
(s0) = 0. It is

enough to show that P{E1|Ft0−1
−∞ } = 0 for all s1, s2. Let G1 = (G(1)

1 , G
(2)
1 ). We
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have

dx

ds
=
∂G

(1)
1

∂y

dy

ds
+
∂G

(1)
1

∂w

dw

ds
,
dv

ds
=
∂G

(2)
1

∂y

dy

ds
+
∂G

(2)
1

∂w

dw

ds
(7.6)

d2x

ds2
=
∂2G

(1)
1

∂y2

(
dy

ds

)2

+ 2
∂2G

(1)
1

∂y∂w

dy

ds

dw

ds
+
∂2G

(1)
1

∂w2

(
dw

ds

)2

+
∂G

(1)
1

∂y

d2y

ds2
+
∂G

(1)
1

∂w

d2w

ds2
.

Denote by

(7.7)
A(ω) = max

s1≤s≤s2

{∣∣∣∣∂kG(1,2)
1

∂yi∂wj
(y(s), w(s))

∣∣∣∣ , ∣∣∣∣ dds
(
∂kG

(1,2)
1

∂yi∂wj
(y(s), w(s))

)∣∣∣∣ ,
1 ≤ k ≤ 2, i+ j = k, i ≥ 0, j ≥ 0

}
,

B(ω) = max
s1≤s≤s2

{
1,
∣∣∣d2y

ds2

∣∣∣, ∣∣∣d2w

ds2

∣∣∣} .
Notice that B(ω) is measurable with respect to Ft0−1

−∞ . Take a small ε > 0
and divide the interval [s1, s2] into subintervals of length ε. Denote by s(j),
1 ≤ j ≤

[
s2−s1
ε

]
+ 2, the end-points of the elements of the partition. Assume

that there exists s0 ∈ [s(j), s(j + 1)], such that dx
ds (s0) = d2x

ds2
(s0) = 0. Then

(7.8)
∣∣∣dx
ds

(s(j))
∣∣∣ =

∣∣∣dx
ds

(s0) +
d2x

ds2
(ξ)(s(j)− s0)

∣∣∣ =
∣∣∣d2x

ds2
(ξ)(s(j)− s0)

∣∣∣,
where ξ ∈ (s(j), s0). Denote by

V (ε, ω) = max
s1≤s′,s′′≤s2,|s′−s′′|≤ε

{∣∣∣∣dyds (s′)− dy

ds
(s′′)

∣∣∣∣, ∣∣∣∣dwds (s′)− dw

ds
(s′′)

∣∣∣∣ ,
(7.9)

∣∣∣∣d2y

ds2
(s′)− d2y

ds2
(s′′)

∣∣∣∣, ∣∣∣∣d2w

ds2
(s′)− d2w

ds2
(s′′)

∣∣∣∣} .
Obviously V (ε, ω) is measurable with respect to Ft0−1

−∞ and V (ε, ω) → 0 as

ε → 0. Using
(
dy
ds

)2
+
(
dw
ds

)2
= 1 and (7.6) it is easy to show that for all

s1 ≤ s′, s′′ ≤ s2, |s′ − s′′| ≤ ε,

(7.10)
∣∣∣∣d2x

ds2
(s′)− d2x

ds2
(s′′)

∣∣∣∣ ≤ A(ω)(10V (ε, ω) + 2εB(ω) + 4ε) .
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Notice that |ξ − s0| ≤ ε. Hence, using (7.8), (7.9), we have

(7.11)
∣∣∣dx
ds

(s(j))
∣∣∣ ≤ A(ω)(10V (ε, ω) + 2εB(ω) + 4ε)ε .

Fix arbitrary δ > 0. We will show that the conditional probability that s0

exists is less than δ for almost all conditions. Clearly there exists a random
constant K(ω) > 0 which is measurable with respect to Ft0−1

−∞ such that

(7.12) P (A(ω) > K(ω)|Ft0−1
−∞ ) <

δ

2
for almost all conditions. If A(ω) ≤ K(ω) then

(7.13)
∣∣∣dx
ds

(s(j))
∣∣∣ ≤ T (ε, ω) = K(ω)(10V (ε, ω) + 2εB(ω) + 4ε)ε,

where T (ε, ω) is measurable with respect to Ft0−1
−∞ .

Fix s̃ ∈ [s1, s2] and consider the random process xs(t) = ∂x
∂s (t, s̃), vs(t) =

∂v
∂s (t, s̃), where (x(t, s), v(t, s)) = Gθ

t0−1ω
t (y(s), w(s)). Clearly (xs(t), vs(t)) sat-

isfies the stochastic differential equations

ẋs(t) = vs(t), xs(0) =
dy

ds
(s̃) ,(7.14)

v̇s(t) =
∑
k

f ′k(x(t, s̃))xs(t)Ḃk(t), vs(0) =
dw

ds
(s̃) .

It follows from Lemma B.9 that the joint probability distribution for
(
∂x
∂s (1, s̃)

= xs(1), ∂v∂s (1, s̃) = vs(1)
)

has density p(xs, vs) which is uniformly bounded
inside any compact set for all s̃ ∈ [s1, s2]. If A(ω) ≤ K(ω) then, as follows
from (7.6),

(7.15) max
s1≤s≤s2

max
(∣∣∣dx
ds

∣∣∣, ∣∣∣dv
ds

∣∣∣) ≤ 2K(ω) .

Denote by

O(ω) = {(xs, vs) ∈ R2 : x2
s + v2

s ≤ 8K2(ω)},
Πε(ω) = {(xs, vs) ∈ R2 : |xs| ≤ T (ε, ω)} .

Let R(ω) = max
s1≤s̃≤s2

sup
(xs,vs)∈O(ω)

p(xs, vs). Then, for any s̃ ∈ [s1, s2],

(7.16)

P

((
∂x

∂s
(1, s̃),

∂v

∂s
(1, s̃)

)
∈ O(ω) ∩Πε(ω)|Ft0−1

−∞

)
≤ R(ω)(4K(ω))2T (ε, ω) .

Clearly, R(ω) is measurable with respect to Ft0−1
−∞ . Using (7.12), (7.16),

we have

(7.17) P (E1|Ft0−1
−∞ ) ≤ δ

2
+ 8K(ω)R(ω)T (ε, ω)

([s2 − s1

ε

]
+ 1
)
.
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Choose ε so small that

8K2(ω)R(ω)ε
([

s2 − s1

ε

]
+ 1
)

(10V (ε, ω) + 2εB(ω) + 4ε) ≤ δ

2
.

Then, P (E1|Ft0−1
−∞ ) ≤ δ for almost all conditions.

Lemma 7.3 easily implies the following theorem.

Theorem 7.4. Fix t0 ∈ R1. With probability 1, the number of shocks at
time t0 is finite.

Proof. As above, consider the unstable manifold W u(t0) parametrized by
the arc-length parameter of the unstable manifold W u(t0−1). Denote by S

′
, S
′

the values of the parameter corresponding to the main shock. For every shock
at time t0 (except the main shock) there exists an interval ` = [s′, s′′] ⊂ [S

′
, S
′
],

such that x(s′) = x(s′′). Thus there exists a point ŝ ∈ (s′, s′′) for which
dx
ds (ŝ) = 0. Notice that the intervals ` corresponding to different shocks do
not intersect. If there are infinitely many shocks, then there exists an infinite
sequence of ŝi’s in [S

′
, S
′
], such that dx

ds (ŝi) = 0. Let s0 be an accumulation
point for the sequence {ŝi}. Obviously, dx

ds (s0) = d2x
ds2

(s0) = 0. It follows from
Lemma 7.3 that the conditional probability for the existence of such an s0 is
equal to zero. This immediately implies the theorem.

8. The zero viscosity limit

In this section, we study the limit as ε→ 0 of the invariant measures for
the viscous equation

(8.1)
∂u

∂t
+

∂

∂x

(u2

2
)

=
ε

2
∂2u

∂x2
+
∂F

∂x
.

Under the same assumptions on F , it was proved in [S2] that for ε > 0, there
exists a unique invariant measure κε defined on the σ-algebra of Borel sets
of D0. Furthermore, as in the inviscid case studied in this paper, κε can be
constructed as the probability distribution of an invariant functional

(8.2) uωε (·, 0) = Φε
0(ω)(·)

such that uωε is a solution of (8.1) when the realization of the forces is given
by ω. The main result of this section is the following:

Theorem 8.1. With probability 1,

uωε (x, 0)→ uω(x, 0) ,
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for almost all x ∈ S1, as ε → 0. More precisely, let x ∈ I(ω) = {y ∈ [0, 1]:
there exists a unique one-sided minimizer passing through (y, 0)}. Then

(8.3) uωε (x, 0)→ uω(x, 0) as ε→ 0 .

As a simple corollary, we have:

Theorem 8.2. κε converges weakly to κ as ε→ 0.

Our proof of Theorem 8.1 relies on the Hopf-Cole transformation: uωε =
−ε(logϕ)x where ϕ satisfies the stochastic heat equation

(8.4)
∂ϕ

∂t
=
ε

2
∂2ϕ

∂x2
− 1
ε
ϕ ◦ F .

As explained in Appendix C, the product F ◦ ϕ should be understood in the
Stratonovich sense. The solution of (8.4) has the Feynman-Kac representation

(8.5) ϕ(x, t) = E

{
e−

1
ε

∫ t
s
F (x+β(τ),τ)dτϕ(x+ β(s), s)

}
for s < t, where E denotes expectation with respect to the Wiener measure
with variance ε, β(t) = 0, and

(8.6)
∫ t

s
F (x+ β(τ), τ)dτ =

∑
k

Fk(x+ β(t))Bk(t)−
∑
k

Fk(x+ β(s))Bk(s)

−
∑
k

∫ t

s
fk(x+ β(τ))Bk(τ)dβ(τ) .

The integrals in (8.6) are understood in the Ito sense.
For x, y ∈ R1, τ1 > τ2, define

Kε(x, τ1, y, τ2) = e

1
ε

(∑
k

Fk(x)Bk(τ1)−
∑
k

Fk(y)Bk(τ2)

)

×
∫
e

1
ε

∑
k

∫ τ1
τ2

fk(β(s))Bk(s)dβ(s)

dW
(x,τ1)
(y,τ2) (β)

where dW (x,τ1)
(y,τ2) (β) is the probability measure defined by the Brownian bridge:

β(τ1) = x, β(τ2) = y, with variance ε. Using (8.5), for s < t, we can write the
solution of (8.1) as

(8.7) uε(x, t) = −ε
∫ 1

0
∂
∂xM(x, t, y, s)e−

1
ε
hε(y,s)dy∫ 1

0 M(x, t, y, s)e−
1
ε
hε(y,s)dy

where hε(y, s) =
∫ y

0 u
ε(z, s)dz, and

M(x, τ1, y, τ2) =
∞∑

m=−∞
Kε(x, τ1, y +m, τ2)

for x, y ∈ [0, 1]. M is the transfer matrix for Brownian motion on the circle S1.
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Define also

A(x, τ1, y, τ2) = inf
ξ(τ1)=x,ξ(τ2)=y

Aτ2,τ1(ξ) .

Lemma 8.1. For almost every ω ∈ Ω, there exists a τ = τ(ω) > 0, and
C0 = C0(ω) > 0, such that

(8.8)
1
gm
≤ Kε(x, τ, z +m, 0)e

1
ε
A(x,τ,z+m,0) ≤ gm

for all x, z ∈ [0, 1], m ∈ N, where

(8.9) gm =

{
C1(ω), if (|m|+ 1) ‖F‖τ ≤ C0(ω)

C2(ω)e
8(|m|+1)2

ε
‖F‖2τ τ , if (|m|+ 1) ‖F‖τ > C0(ω) .

C1(ω) and C2(ω) are constants depending only on ω and ‖F‖τ is defined as in
Appendix B.

Proof. We will assume m ≥ 0. Let γ: [0, τ ] → R1 be a minimizer such
that γ(0) = z +m, γ(τ) = x, and

A(x, τ, z +m, 0) = A0,τ (γ) .

Now, γ satisfies the Euler-Lagrange equation:

(8.10)
∫ τ

0
γ̇(s)dη(s)−

∫ τ

0

∑
k

Bk(s)
(
f ′k(γ(s))γ̇(s)ds+ fk(γ(s))dη(s)

)
= 0

for test functions η on [0, τ ]. Performing a change of variable β = γ +
√
εη in

the functional integral in Kε, we obtain, using (8.10) and the Cameron-Martin-
Girsanov formula:

(8.11) Kε(x, τ, z +m, 0) = e−
1
ε
A(x,τ,z+m,0)

Eηe
1
ε
H

where the exponent H is given by

H = H1 +
√
εH2 ,

(8.12)

H1 =
∫ τ

0

∑
k

{
fk
(
γ +
√
εη
)
− fk(γ)− f ′k(γ)

√
εη
}
Bk(s)γ̇(s)ds ,

H2 =
∫ τ

0

∑
k

Bk(s)
{
fk
(
γ +
√
εη
)
− fk(γ)

}
dη(s) .

In (8.11), Eη denotes expectation with respect to the standard Brownian bridge
η(0) = 0, η(τ) = 0.

We now estimate H. A simple Taylor expansion to second order gives:

(8.13) |H1| ≤ ε‖F‖τ max
0≤s≤τ

|γ̇(s)|
∫ τ

0
η2(s)ds .



    

INVARIANT MEASURES FOR BURGERS EQUATION 925

Using Lemma B.1, we get for τ = τ(ω),

(8.14) |H1| ≤ ε‖F‖τ
C(ω)(|m|+ 1)

τ

∫ τ

0
η2(s)ds ≤ C(ω)ε‖F‖τ (|m|+ 1)(η∗)2 ,

where η∗ = max
0≤s≤τ

η(s). For H2, we use the mean value theorem to write

(8.15)
1√
ε
H2 =

∫ τ

0

∑
k

Bk(s)f ′k
(
γ +
√
εθkη

)
η(s)dη(s) = H21 +H22

where θk ∈ [0, 1], H21 = 1√
ε
H2 −H22 with

(8.16) H22 =
α

2

∫ τ

0

(∑
k

Bk(s)f ′k
(
γ +
√
εθkη

))2
η2(s)ds ≤ α

2
‖F‖2ττ(η∗)2 .

We will choose the value of α later (α = 3 will suffice). Note that (8.14) and
(8.16) can be combined to give:

1
ε
|H1|+ |H22| ≤ C(ω)‖F‖τ (|m|+ 1)(η∗)2 .

The constant C(ω) is changed to a different value in the last step. Now we
have
(8.17)

Eηe
1
ε
H = Eηe

1
ε
H1+H21+H22 ≤

(
Eηe

C(ω)‖F‖τ (|m|+1)(η∗)2
)1/2 (

Eηe
2H21

)1/2
.

Using the fact that for a > 0

(8.18) P {η∗ > a} ≤ C√
πτ

∫ +∞

a
e−

λ2

2τ dλ

we have

(8.19) Eηe
C(ω)‖F‖τ (|m|+1)(η∗)2 ≤ Constant

if

(8.20) C(ω)‖F‖τ (|m|+ 1) <
1
2τ

.

For the second factor in (8.17), we use the inequality (see [McK])

(8.21) P{H21 > β} < e−αβ .

Then

(8.22) Eηe
2H21 ≤

∞∑
N=0

e2(N+1)P{H21 > N} ≤
∞∑
N=1

e2(N+1)−αN < +∞

if we choose α > 2.
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When m violates (8.20), we estimate H1 using Lemma B.1:

H1 =
√
ε

∫ τ

0

∑
k

Bk(s)
(
f ′k
(
γ +
√
εθkη

)
− f ′k(γ)

)
η(s)γ̇(s)ds ,

(8.23)

|H1| ≤ 2
√
ε ‖F‖τ

(|m|+ 1)
τ

∫ τ

0
|η(s)|ds ≤ 2

√
ε ‖F‖τ (|m|+ 1)η∗ .

(8.24)

Hence

Eη

(
e

1
ε
H1

)2
≤ C(ω)

∫ +∞

0
e

4(|m|+1)√
ε
‖F‖τ

√
τ λ−λ2

2 dλ(8.25)

≤ C(ω)e
16(|m|+1)2

ε
‖F‖2τ τ .

As before we have then

Eηe
1
ε
H ≤ C(ω)e

8(|m|+1)2

ε
‖F‖2τ τ .

These give the upper bounds.
Similarly we can prove the same bounds for (Eηe

1
ε
H)−1. This completes

the proof of Lemma 8.1.

It is easy to see that for fixed τ , z andm, A(x, τ, z+m, 0) is differentiable at
x, if and only if there exists a unique minimizer γ such that A(x, τ, z+m, 0) =
A0,τ (γ) and γ(τ) = x, γ(0) = z +m. In this case we have

(8.26) γ̇(τ) =
∂

∂x
A(x, τ, z +m, 0) .

When the minimizer is not unique, A(x, τ, z + m, 0) has both left and right
derivatives. Moreover

D+
x A(x, τ, z +m, 0) = γ̇+(τ) ,

D−x A(x, τ, z +m, 0) = γ̇−(τ)

where γ+ and γ− are the right-most and left-most minimizers. In either case,
let us define

v(x, z +m, τ) = D−x A(x, τ, z +m, 0) .

Lemma 8.2. The following inequality holds:

∣∣∣ 1
Kε(x, τ, z +m, 0)

(
ε
∂Kε

∂x
(x, τ, z +m, 0) + v(x, z +m, τ)Kε(x, τ, z +m, 0)

)∣∣∣(8.27)

≤
√
ε ‖F‖τgm

where gm is as defined in Lemma 8.1.
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Proof. For simplicity, we will write

Km = Kε(x, τ, z +m, 0), vm = v(x, z +m, τ) .

A straightforward computation gives
(8.28)

ε
∂Km

∂x
= e
− 1
ε

∑
k

Fk(x)Bk(τ) ∫
G(β)e

1
ε

∑
k

∫ τ
0
fk(β(s))Bk(s)dβ(s)

dW
(x,τ)
(z+m,0)(β)

where

G(β) = −
∑
k

fk(x)Bk(τ)− x− (z +m)
τ

(8.29)

+
∑
k

∫ τ

0
Bk(s)

[
f ′k(β)

s

τ
dβ + fk(β)

1
τ
ds
]
,

and

ε
∂Km

∂x
+ vmKm = e

− 1
ε

∑
k

Fk(x)Bk(τ)

×
∫

(G(β)−G(γ−))e
1
ε

∑
k

∫ τ
0
fk(β(s))Bk(s)dβ(s)

dW
(x,τ)
(z+m,0)(β) .

Performing a change of variables β = γ− +
√
εη, we get

(8.30) ε
∂Km

∂x
+ vmKm = e−

1
ε
A(x,τ,z+m,0)

Eη

(
(G(γ− +

√
εη)−G(γ−))e

1
ε
H
)

where H is defined as before. Write G(γ− +
√
εη)−G(γ−) as

G(γ− +
√
εη)−G(γ−)

=
√
ε

τ

∑
k

[∫ τ

0
Bk(τ)f ′′k (γ− + θk

√
εη)sη(s)γ̇−(s)ds

+
∫ τ

0
Bk(s)f ′k(γ− +

√
εη)sdη(s) +

∫ τ

0
Bk(τ)f ′k(γ− + θk

√
εη)η(s)ds

]
.

We can then follow the steps in the proof of Lemma 8.1 to establish (8.27).

Remark. The estimates in Lemmas 8.1 and 8.2 are proved for the time
interval [0, τ ]. We see easily that they hold for arbitrary intervals of the type
[t, t+τ ] and [t−τ, t] by choosing suitable τ which in general depend on t. For t
in a compact set, we can choose τ to be independent of t such that (8.8) holds.

Our next lemma gives uniform estimates of uε.
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Lemma 8.3. There exist positive constants ε0(ω, t), C(ω, t), such that

(8.31) |uεω(x, t)| ≤ C(ω, t)

for x ∈ [0, 1], 0 < ε ≤ ε0(ω, t). Furthermore, ε0( · , t) and C( · , t) are station-
ary random processes in t.

Proof. The basic idea is to use the fact that for ε small, the functional inte-
gral is concentrated near minimizers whose velocities are estimated in Lemma
B.1. We will prove (8.31) for t = 0 by working on the time interval [−τ, 0]
where τ is as defined in Lemma 8.1. It will be clear that the proof works with
little change for arbitrary t.

LetN = C0(ω)
‖F‖τ , where C0(ω) is as defined in Lemma 8.1. Denote A∗(x, z, τ)

= inf
m∈N

A(x, 0, z +m,−τ) for x, z ∈ [0, 1]. It is easy to see that for τ ¿ 1,

(8.32) A(x, 0, z +m,−τ)−A∗(x, z, τ) ≥ 1
3

(|m|+ 1)2

τ
− C(ω)

for |m| > N .
Again for simplicity of notation, we will denote Km = Kε(x, 0, y+m,−τ),

µ(dy) = e−
1
ε
hε(y,0)dy. Using Lemma 8.2 and (8.7), we have

|uε(x, 0)| ≤ I1 +
√
ε‖F‖τI2

where

I1 =

∑
m

∫ 1
0 vmKmµ(dy)∑

m

∫ 1
0 Kmµ(dy)

,(8.33)

I2 =

∑
m

∫ 1
0 gmKmµ(dy)∑

m

∫ 1
0 Kmµ(dy)

.

For |m| > N , we can use (8.32) and Lemma 8.1 to get

Km ≤ e−
1
ε
A(x,0,y+m,−τ)gm

≤ C(ω)e−
1
ε
A∗(x,y,τ)e−

1
3ε

(|m|+1)2

τ
+

8(|m|+1)2

ε
‖F‖2τ τ

≤ C(ω)−
1
ε
A∗(x,y,τ)e−

1
4ε

(|m|+1)2

τ
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if τ is small enough. Hence we get, using the fact that |vm| ≤ C(ω)(|m|+1)
τ ,

|I1| ≤

∑
|m|<N

∫ 1
0 |vm|Kmµ(dy)∑

m

∫ 1
0 Kmµ(dy)

+

∑
|m|>N

∫ 1
0 |vm|Kmµ(dy)∑

m

∫ 1
0 Kmµ(dy)

≤ C(ω)N · 1
τ

+ C(ω)

( ∑
|m|>N

C(ω)(|m|+1)
τ e−

1
4ε

(|m|+1)2

τ

) ∫ 1
0 e
− 1
ε
A∗(x,y,τ)µ(dy)∫ 1

0 e
− 1
ε
A∗(x,y,τ)µ(dy)

≤ C(ω) .

In the last step we used the fact that τ depends only on ω. Similarly

|I2| ≤ C(ω) +

∑
|m|>N

∫ 1
0 gmKmµ(dy)∑

m

∫ 1
0 Kmµ(dy)

≤ C(ω)

where we used
Kmgm ≤ C(ω)e−

1
ε
A∗(x,y,τ)e−

1
4ε

(|m|+1)2

τ

for small enough τ . This completes the proof of Lemma 8.3.

Define for C > 0

QC =
{
h ∈ Lip[0, 1], such that(8.34)

h(y) =
∫ y

0
u(z)dz, |u| ≤ C,

∫ 1

0
u(z)dz = 0

}
.

Take x ∈ I(ω). Denote the unique minimizer that passes through (x, 0)
by ξ∗. For h ∈ QC , T < 0, define the modified action as

(8.35) A
h
T,0(ξ) = AT,0(ξ) + h(ξ(T ))

and denote by ξ∗∗h the minimizer of AhT,0. Obviously ξ∗∗h in general depends on
h and T .

Lemma 8.4. Fix a constant C > 0. For any δ > 0, there exists T ∗ =
T ∗(δ) < 0, such that

(8.36) |ξ̇∗∗h (0)− ξ̇∗(0)| < δ

2
for T < T ∗ and all h ∈ QC (T ∗ in general depends on C).

Proof. Assume to the contrary that there exists a sequence Tj → −∞,
hj ∈ QC , such that

|ξ̇∗∗hj (0)− ξ̇∗(0)| ≥ δ

2
.
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Then from Lemma 3.3, the {ξ̇∗∗hj (0)}’s are uniformly bounded and we can choose
a subsequence, still denoted by {ξ∗∗hj}, such that ξ∗∗hj converges (uniformly on

compact sets of (−∞, 0] and ξ̇∗∗hj (0) → ˙̃
ξ(0) to a limiting path ξ̃ defined on

(−∞, 0]. From Lemma 3.6, ξ̃ is also a one-sided minimizer. Since ξ̃(0) = x,
and

| ˙̃ξ(0)− ξ̇∗(0)| ≥ δ

2
,

this violates the assumption that there exists a unique one-sided minimizer
passing through (x, 0).

Lemma 8.5. Fix a constant C > 0. There exists a function α(·) defined
on (0,+∞), α > 0, with the following properties: For any δ > 0, one can find
a T ∗ = T ∗(δ) < 0, such that for any path ξ defined on [T ∗, 0], with ξ(0) = x,
the inequality |ξ̇(0)− ξ̇∗(0)| > δ implies

(8.37) |AhT ∗,0(ξ)−AhT ∗,0(ξ∗∗h )| > α(δ)

for all h ∈ QC .

Proof. Assume to the contrary that there exist a δ > 0, and a sequence
{Tj}, Tj → −∞, hj ∈ QC , and ξj defined on [−Tj , 0], such that |ξ̇j(0)− ξ̇∗(0)|
> δ, and

(8.38)
∣∣∣AhjT ∗j ,0(ξj)−AhjT ∗j ,0(ξ∗∗hj )

∣∣∣ < 1
j
.

From the estimates proved in Section 3, {ξ̇j(0)} are uniformly bounded. There-
fore we can choose a subsequence, still denoted by {ξj}, such that ξj con-

verges (uniformly on compact sets of (−∞, 0] and ξ̇j(0) → ˙̃
ξ(0)) to ξ̃ defined

on (−∞, 0]. From (8.38), ξ̃ is also a one-sided minimizer. Since ξ̃(0) = x,
| ˙̃ξ(0) − ξ̇∗(0)| > δ, we arrive at a contradiction to the assumption that there
exists a unique one-sided minimizer passing through (x, 0).

Now we are ready to prove Theorem 8.1.

Proof of Theorem 8.1. Fix an x ∈ I(ω). Denote by ξ∗ the unique one-
sided minimizer passing through (x, 0). Take δ > 0. From Lemmas 8.4 and
8.5 we can find a T ∗ < 0, such that (8.36) and (8.37) hold.

Let n be a sufficiently large integer (depending only on ω and T ∗), such
that the estimates in Lemma 8.1 hold on the intervals [(k + 1)s, ks] where
s = T ∗

n , k = 0, 1, . . . , , n− 1. Using Lemma 8.2, we have τ = −s, for,

uε(x, 0) = −ε
∫ 1

0
∂
∂xM(x, 0, y, T ∗)µ(dy)∫ 1

0 M(x, 0, y, T ∗)µ(dy)
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where

µ(dy) = −1
ε
h(y), h(y) =

∫ y

0
uε(z, T ∗)dz .

Hence

uε(x, 0) =
−ε
∫ 1

0

∫ 1
0

∂
∂xM(x, 0, z1, s)M(z1, s, y, T

∗)dz1µ(dy)∫ 1
0

∫ 1
0 M(x, 0, z1, s)M(z1, s, y, T ∗)dz1µ(dy)

=

∫ 1
0

∫ 1
0

(∑
m
v(x, 0, z1 +m, s)Kε(x, 0, z1 +m, s)

)
M(z1, s, y, T

∗)dz1µ(dy)∫ 1
0

∫ 1
0

(∑
m
Kε(x, 0, z1 +m, s)

)
M(z1, s, y, T ∗)dz1µ(dy)

+O(1)
√
ε‖F‖τ

∫ 1
0

∫ 1
0

(∑
m
gmKε(x, 0, z +m, s)

)
M(z1, s, y, T

∗)dz1µ(dy)∫ 1
0

∫ 1
0

(∑
m
Kε(x, 0, z +m, s)

)
M(z1, s, y, T ∗)dz1µ(dy)

= I3 +O(1)
√
ε‖F‖τI4

where O(1) denotes a uniformly bounded quantity. As in the proof of Lemma
8.3, we can show:

|I4| ≤ C(ω)N =
C(ω)C0(ω)
‖F‖τ

.

For zk, zk+1 ∈ [0, 1] we have, using Lemma 8.1,

M(zk, ks, zk+1, (k + 1)s)

=
∑
|m|<N

Kε(zk, ks, zk+1 +m, (k + 1)s)

+
∑
|m|>N

Kε(zk, ks, zk+1 +m, (k + 1)s)

≤ e− 1
ε
A∗(zk,ks,zk+1,(k+1)s)

(
C(ω)N +

∑
|m|>N

e−
(|m|+1)2

3ε
+

8(|m|+1)2

ε
‖F‖2τ τ

)
≤ C(ω)Ne−

1
ε
A∗(zk,ks,zk+1,(k+1)s) .

Letting x = z0, y = zn, we obtain for fixed {z0, z1, z2, . . . , zn},

n−1∏
k=1

M(zk, ks, zk+1, (k + 1)s) ≤ (C(ω)N)ne
− 1
ε

n−1∑
k=0

A∗(zk,ks,zk+1,(k+1)s)

.

Denote by
∫ ′
dz1

∑′
m

and
∫ ′′
dz1

∑′′
m

summation and integration over the sets of

(z1,m) such that |vm− ξ̇∗(0)| > δ and |vm− ξ̇∗(0)| < δ respectively, where vm =
v(x, 0, z1 + m, s). From Lemma 8.4, the second sum and integral

∫ ′′
dz1

∑′′
m
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cover the set |vm − ξ̇∗∗h (0)| < δ
2 . We have

I5 =
∫ ′

dz1

∑′

m

Kε(x, 0, z1 +m, s)M(z1, s, y, T
∗)µ(dy)

=
∫ ′

dz1

∑′

m

Kε(x, 0, z1 +m, s)

×
∫

[0,1]n−1

n−1∏
k=1

M(zk, ks, zk+1, (k + 1)s)dz2 . . . dznµ(dy)

≤ (C(ω)N)n
∫ ′

dz1

∑′

m

×
∫

[0,1]n−1

e
− 1
ε

(A(x,0,z1+m,s)+
n−1∑
k=1

A∗(zk,ks,zk+1,(k+1)s)+h(zn)

dz2 . . . dzn

≤ (C(ω)N)n
∫ ′

dz1

∑′

m

∫
[0,1]n−1

e
− 1
ε

n−1∑
k=0

A∗(zk,ks,zk+1,(k+1)s)+h(zn)

dz2dz3 . . . dzn

≤ (C(ω)N)ne−
1
ε

(Ah
T∗,0(ξ∗∗h )+α(δ))

.

In the last step, we used (8.39). On the other hand, there exists a δ2 > 0, such
that if |z − ξ∗∗h (s)| < δ2, then

|v(x, 0, z, s)− ξ̇∗∗h (0)| < δ

2
.

Choose a δ1 > 0, such that δ1 < δ2, δ1 <
α(δ)

2nC3(ω) , with C3(ω) to be defined
later. Using Lemma 8.4 we get

I6 =
∫ ′′

dz1

∑′′

m

Kε(x, 0, z1 +m, s)M(z1, s, y, T
∗)µ(dy)

≥
∫

|zk−ξ∗∗h (ks)|<δ1

n∏
k=1

Kε(zk−1, (k − 1)s, zk, ks)e−
1
ε
h(zn)dz1 . . . dzn

≥ 1
C(ω)n

∫
|zk−ξ∗h(ks)|<δ1

e
− 1
ε

(
n∑
k=1

A∗(zk−1,(k−1)s,zk,ks)+h(zn)

)
dz1 . . . dzn .

It is easy to see that if |zk − ξ∗h(ks)| < δ1, |zk−1 − ξ∗h((k − 1)s)| < δ1, then

|A∗(zk−1, (k − 1)s, zk, ks)−Aks,(k−1)s(ξ
∗∗
h )| ≤ C3(ω)δ1 ,

and if |zn − ξ∗∗h (T ∗)| < δ1, then

|h(zn)− h(ξ∗∗h (T ∗))| ≤ C3(ω)δ1 ,
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with C3(ω) defined by the above estimates. Hence we have

I6 ≥
1

C(ω)n
δn1 e
− 1
ε

(Ah
T∗,0(ξ∗∗h )+nC3(ω)δ1)

.

Therefore ∣∣∣I5

I6

∣∣∣ ≤ C(ω)2n ·Nnδ−n1 e−
1
2ε
α(δ) .

Similarly, if we define

I7 =
∫ ′

dz1

∑′

m

v(x, 0, z1 +m, s)Kε(x, 0, z1 +m, s)M(z1, s, y, T
∗)µ(dy) ,

I8 =
∫ ′′

dz1

∑′′

m

v(x, 0, z1 +m, s)Kε(x, 0, z1 +m, s)M(z1, s, y, T
∗)µ(dy) ,

then we can also get ∣∣∣I7

I6

∣∣∣ ≤ C(ω)2nNnδ−n1 e−
1
2ε
α(δ) .

Finally we obtain

|uε(x, 0)− ξ̇∗(0)| ≤
∣∣∣I7 + I8 − ξ∗(0)(I5 + I6)

I5 + I6

∣∣∣+
√
εC(ω)‖F‖τ

≤
∣∣∣I8 − ξ∗(0)I6

I6

∣∣∣+
|I7|
I6

+ |ξ̇(0)|I5

I6
+
√
ε‖F‖τC(ω)

≤ δ + C(ω)2nNnδ−n1 e−
1
2ε
α(δ) +

√
ε‖F‖τC(ω)

≤ δ + δ = 2δ

if we choose ε sufficiently small. This completes the proof of Theorem 8.1.

Appendix A. Proof of Lemma 2.1 for the random case

In this appendix we comment on the proof of Lemma 2.1 for the random
case. Let F δ(x, t) =

∑∞
k=1 Fk(x)Ḃδ

k(t), where Bδ
k is the standard mollification

of Bk. Denote by uδ(x, t) the unique entropy solution of

(A.1)
∂u

∂t
+

∂

∂x

(u2

2
)

=
∂F δ

∂x

with the initial data u(x, t0) = u0(x). We will assume that ‖u0‖L∞ ≤ Const,∫ 1
0 u0(z)dz = 0. From classical results [Li] we know that uδ(x, t) is given by

(A.2) uδ(x, t) =
∂

∂x
inf

ξ: ξ(t)=x

{
A
δ
t0,t(ξ) +

∫ ξ(t0)

0
u0(z)dz

}
,
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where

A
δ
t0,t(ξ) =

∫ t

t0

1
2
ξ̇(s)2ds+

∫ t

t0

∞∑
k=1

Fk(ξ(s))dBδ
k(s)

(A.3)

=
∞∑
k=1

Fk(ξ(t))(Bδ
k(t)−Bδ

k(t0))

+
∫ t

t0

(
1
2
ξ̇(s)2 −

∞∑
k=1

fk(ξ(s))ξ̇(s)(Bδ
k(s)−Bδ

k(t0))

)
ds .

It is easy to see that the boundary terms at the right hand side of (A.3) resulted
from integration by parts do not affect the variational formula (A.2) and can
be neglected. Denote

U(x, t) = inf
ξ: ξ(t)=x

{
At0,t(ξ) +

∫ ξ(t0)

0
u0(z)dz

}
(A.4)

and

U δ(x, t) = inf
ξ: ξ(t)=x

{
A
δ
t0,t(ξ) +

∫ ξ(t0)

0
u0(z)dz

}
.(A.5)

It is clear that U(x, t) is well-defined; i.e., the variational problem in (A.4)
does have a solution. We will show that uδ(x, t) → u(x, t) = ∂U

∂x (x, t) in
L1

loc(S
1× [t0,∞)) as δ → 0 and consequently u(x, t) is a weak entropy solution

of (1.1). This follows from:

Lemma A.1. For almost all ω, there exist c1, c2, c3, depending only on
ω, t and t0, such that

‖U δ( · , t)− U( · , t)‖L∞(S1) ≤ c1(ω, t, t0)δ1/3,(A.6)

‖uδ( · , t)‖L∞(S1) ≤ c2(ω, t, t0) ,(A.7)

and

‖uδ( · , t)‖BV(S1) ≤ c3(ω, t, t0)(A.8)

where BV(S1) is the space of functions on S1 with bounded variation.

Proof. For any ξ ∈ C1[t0, t] we have

|Aδt0,t(ξ)−At0,t(ξ)| ≤
∑
k

∫ t

t0

|fk(ξ(s))| |ξ̇(s)| |Bδ
k(s)−Bk(s)|ds .
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For almost every ω, {Bk( · )} is C
1
3 for all k. Hence

|Bδ
k(s)−Bk(s)| ≤ C(ω)δ1/3 .

This gives

(A.9) |Aδt0,t(ξ)−At0,t(ξ)| ≤ max
t0≤s≤t

|ξ̇(s)|C(ω)δ1/3(t− t0) .

Denote by ξ∗δ and ξ∗ the minimizers in (A.5) and (A.4) respectively. We
have, using Lemma B.1,

U δ(x, t)− U(x, t) = A
δ
t0,t(ξ

∗
δ ) +

∫ ξ∗δ (t0)

0
u0(z)dz −

(
At0,t(ξ

∗) +
∫ ξ∗(t0)

0
u0(z)dz

)
≤ Aδt0,t(ξ

∗) +
∫ ξ∗(t0)

0
u0(z)dz −

(
At0,t(ξ

∗) +
∫ ξ∗(t0)

0
u0(z)dz

)
≤ max

t0≤s≤t
|ξ∗(s)|C(ω)δ1/3|t− t0|

≤ C(ω, t, t0)δ1/3 .

Similarly,
U(x, t)− U δ(x, t) ≤ C(ω, t, t0)δ1/3 .

To prove (A.7) we use the theory of backward characteristics (see [D]). If
(x, t) is a point of continuity of uδ( · , t), then there exists a unique backward
characteristic γ coming to (x, t) and, for s ∈ [t0, t],

uδ(γ(s), s) = u0(γ(t0), t0) +
∞∑
k=1

(
Fk(γ(s))Bδ

k(s)− Fk(γ(t0))Bδ
k(t0)

)(A.10)

−
∫ s

t0

∞∑
k=1

fk(γ(r))uδ(γ(r), r)Bδ
k(r)dr .

Hence

(A.11) |uδ(γ(s), s)| ≤ |u0(γ(t0), t0)|+ c(ω) + c(ω)
∫ s

t0

|uδ(γ(r), r)|dr

and |uδ(γ(t), t)| ≤ c2(ω, t− t0). Since the points of continuity form a set of full
measure in S1, we have (A.7).

Now consider two points of continuity for uδ( · , t), x1 and x2, and let γ1(s)
and γ2(s) be the characteristics coming to (x1, t) and (x2, t) respectively. For
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i = 1, 2 denote ui(s) = uδ(γi(s), s). Then

d

ds

(
u1 − u2

γ1 − γ2

)
= −

(
u1 − u2

γ1 − γ2

)2

+
1

γ1 − γ2

d

ds
(u1 − u2)

(A.12)

= −
(
u1 − u2

γ1 − γ2

)2

+
∞∑
k=1

(∫ 1

0
fk(γ1 + r(γ2 − γ1))dr

)
dBδ

k(r)

by the mean value theorem and (2.3). This implies
u1 − u2

γ1 − γ2
≤ c(ω) since it

solves an equation of the form ẏ = −y2 + C. This, together with (A.7), gives
(A.8).

Lemma A.2. For almost every ω, the sequence uδ converges in
L1

loc(S
1 × [t0,∞)) to a limit u as δ → 0. Moreover u(x, t) = ∂

∂xU(x, t) and
u is an entropy-weak solution of (1.4).

Proof. Integrating (A.1) on S1 × [t, t+ τ ], we get∫ 1

0
dx|uδ(x, t+ τ)− uδ(x, t)| ≤ 1

2

∫ t+τ

t
ds‖(uδ)2‖BV(S1)

+
∑
k

|Bk(t+ τ)−Bk(t)|
∫ 1

0
|fk(x)|dx

≤ C1(ω)τ + C2(ω)τ1/3 .

In the last step, we used Lemma A.1 and Hölder continuity of the Wiener
process. Hence uδ is uniformly continuous in t, viewed as a function of t in
L1(S1). Therefore there exists a subsequence, still denoted by uδ, and u ∈
L∞loc([t0,∞),BV(S1)) ∩ C([t0,∞), L1(S1)) such that

uδ → u in L1
loc(S

1 × [t0,∞)) ,

as δ → 0. From (A.6), we have

u =
∂U

∂x
.

From (A.8), the convergence also takes place in Lploc(S
1× [t0,∞)) for p < +∞.

Hence u is an entropy weak solution of (1.4).

Finally, observe that the solution operator for the mollified problem is
order-preserving; i.e., uδ1( · , t0) ≤ uδ2( · , t0) implies uδ1( · t) ≤ uδ2( · , t) for t ≥ t0.
Therefore the limiting solution, as δ → 0, is also order-preserving. Together
with the conservation properties, we see that the solution operator is contrac-
tive in L1(S1) by the Crandall-Tartar lemma [CM]

(A.13) ‖u1( · , t)− u2( · , t)‖L1(S1) ≤ ‖u1( ·, t0)− u2( ·, t0)‖L1(S1) .
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This implies uniqueness of order-preserving weak solutions. In particular,
since the solutions obtained in the zero-viscosity limit of (1.1) is also order-
preserving, as a consequence of the comparison principle, we conclude that
u = ∂

∂x U is the viscosity limit.

Appendix B. Some technical estimates

Denote by (x(t;x0, v0), v(t;x0, v0)) the solution of (2.3) with initial data
x(0;x0, v0) = x0, v(0;x0, v0) = v0. Sometimes we will also use the abbreviation
(x(t), v(t)). Consider the stochastic flow Gωt defined by

(B.1) Gωt (x0, v0) = (x(t;x0, v0), v(t;x0, v0)) .

Since fk ∈ Cr the stochastic flow Gωt is Cr smooth with probability 1. For
τ > 0 and ω ∈ Ω, define Γτ to be the set of τ -minimizers,
(B.2)

Γτ = {γ ∈ C1[−τ, 0]; γ(0), γ(−τ) ∈ S1,A−τ,0(γ) = min
ξ(0)=γ(0)

ξ(−τ)=γ(−τ)

A−τ,0(ξ)} .

We shall also consider the case when endpoints belong to the universal cover
R1, rather than S1. Denote

Γτ,m ={γ ∈ C1[−τ, 0]; 0 ≤ γ(0) ≤ 1,m ≤ γ(−τ) ≤ (m+ 1),
(B.3)

A−τ,0(γ) = min
ξ(0)=γ(0)

ξ(−τ)=γ(−τ)

A−τ,0(ξ)}.

Of course Γτ ,Γτ,m depend on ω. Let

Vτ (ω) = sup
γ∈Γτ

|γ̇(0)| ,

Vτ,m(ω) = sup
γ∈Γτ,m

|γ̇(0)| ,

V̄τ (ω) = sup
γ∈Γτ

max
−τ≤s≤0

|γ̇(s)| ,

V̄τ,m(ω) = sup
γ∈Γτ,m

max
−τ≤s≤0

|γ̇(s)| .

In Lemma 3.3 it was shown that Vτ (ω) ≤ C(ω) for τ ≥ T (ω). We consider
now the case of small τ .

Lemma B.1. There exists a constant τ(ω) such that for 0 < τ < τ(ω)

(B.4) Vτ (ω) ≤ V̄τ (ω) ≤ 2
τ
.
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Furthermore, for any m ∈ Z1

(B.5) Vτ,m(ω) ≤ V̄τ,m(ω) ≤ 2(|m|+ 1)
τ

.

Proof. The proof is similar to the proof of Lemma 3.3. Let

(B.6) ‖F‖τ = max
−τ≤s≤0

∑
k

‖Fk(x)‖C3(S1)|Bk(s)−Bk(0)| .

For arbitrary solutions of (2.3), (x(t), v(t)), t ∈ [−τ, 0], if we denote γ(t) = x(t),
v0 = |γ̇(0)|, v = max

−τ≤t≤0
|γ̇(t)|, then we have

v ≤ v0 + ‖F‖τ + ‖F‖ττv(B.7)

or

v ≤ v0 + ‖F‖τ
1− ‖F‖ττ

(B.8)

provided that ‖F‖ττ < 1. Now

(B.9) |γ̇(t)− γ̇(0)| ≤ ‖F‖τ + ‖F‖τvτ ≤
‖F‖τ (1 + v0τ)

1− ‖F‖ττ
.

Assume that τ ≤ 1 is small enough so that ‖F‖τ ≤ ε (to be chosen later).
Then we have

v ≤ v0 + ε

1− ε ,(B.10)

|γ̇(t)− γ̇(0)| ≤ ε(v0 + 1)
1− ε .(B.11)

Thus, provided that v0 ≥ 1, we have

(B.12) |γ̇(t)| ≥ 1− 3ε
1− ε v0

for t ∈ [−τ, 0]. From (B.12), we get

A−τ,0(γ) ≥ 1
2

(1− 3ε
1− ε

)2
v2

0τ − ‖F‖ττv − ‖F‖τ

≥ 1
2

(1− 3ε
1− ε

)2
v2

0τ −
ε

1− ε (v0 + 1) .

Let γ1 be the straight line such that γ1(0) = γ(0), γ1(−τ) = γ(−τ). Then

A−τ,0(γ1) ≤ l2

2τ
+ l‖F‖τ + ‖F‖τ ≤

l2

2τ
+ (l + 1)ε,

where l = |γ1(0) − γ1(−τ)|. Since A−τ,0(γ1) ≥ A−τ,0(γ), one can easily show
that v0 ≤ 3l

2τ if l ≥ 1 and ε ≤ 1
40 . If l < 1, then

A−τ,0(γ1) ≤ 1
2τ

+ 2‖F‖τ ≤
1
2τ

+ 2ε,
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which together with A−τ,0(γ1) ≥ A−τ,0(γ) gives v0 ≤ 3
2τ if ε ≤ 1

40 and τ ≤ 1. It
follows that Vτ (ω) ≤ 3

2τ , V̄τ (ω) ≤ 2
τ and Vτ,m(ω) ≤ 3(|m|+1)

2 , V̄τ,m(ω) ≤ 2(|m|+1)
τ .

In summary τ(ω) ≤ 1 can be chosen such that ‖F‖τ(ω) ≤ 1
40 .

Lemma B.2. For any K > 1, there exists τ̄(ω) > 0, such that for all
0 < τ ≤ τ̄(ω)

(B.13) ‖DiGωt (x, v)‖ ≤ K
for 1 ≤ i ≤ r, |v| ≤ Vτ (ω) + 1, x ∈ S1, t ∈ [−τ, 0].

Proof. We will prove Lemma B.2 for i = 1. For 2 ≤ i ≤ r the proof is
similar.

Consider the Jacobi matrix

DGωt =
(
J11(t), J12(t)
J21(t), J22(t)

)
where

J11(t) =
∂x(t)
∂x0

, J12(t) =
∂x(t)
∂v0

, J21(t) =
∂v(t)
∂x0

, J22(t) =
∂v(t)
∂v0

.

Obviously (J11, J12) and (J21, J22) satisfy{
J̇11(t) = J21(t)

J̇21(t) =
∑
k

fk(x(t))J11(t)Ḃk(t) ,
(B.14)

J11(0) = 1, J21(0) = 0; and{
J̇12(t) = J22(t)

J̇22(t) =
∑
k

fk(x(t))J12(t)Ḃk(t) ,
(B.15)

J12(0) = 0, J22(0) = 1.

Consider first (B.14). Let J(τ) = max
−τ≤s≤0

|J21(s)|. Then

(B.16) |J11(s)| ≤ 1 + J(τ)τ

for s ∈ [−τ, 0].

J21(s) =
∫ 0

s

∑
k

fk(x(t))J11(t)dBk(t)

(B.17)

= −
∑
k

fk(x(s))J11(s)Bk(s)−
∫ 0

s

∑
k

f ′k(x(t))v(t)J11(t)Bk(t)dt

−
∫ 0

s

∑
k

fk(x(t))J21(t)Bk(t)dt .
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Using (B.8), (B.4) we have

(B.18) max
−τ≤s≤0

|v(s)| ≤ v0 + ‖F‖τ
1− ‖F‖ττ

≤ 3
τ

if τ is sufficiently small. Therefore

(B.19) J(τ) ≤ ‖F‖τ
(

1 + J(τ)τ
)

+ 3‖F‖τ
(

1 + J(τ)τ
)

+ ‖F‖ττJ(τ) .

It follows from (B.19) that

J(τ) ≤ 4‖F‖τ
1− 5‖F‖ττ

→ 0

and

|J11(s)− 1| ≤ J(τ)τ → 0

as τ → 0. Hence we have

|J11(s)|, |J21(s)| ≤ K

for s ∈ [−τ, 0], if τ is sufficiently small. In the same way, we can prove

|J12(s)|, |J22(s)| ≤ K

for s ∈ [−τ, 0] if τ is sufficiently small. This completes the proof of Lemma
B.2.

Denote Bτ = {(x, v), x ∈ S1, |v| ≤ Vτ (ω) + 1}, and Bτ (t) = Gωt Bτ , for
t ∈ [−τ, 0]. Then, similar to Lemma B.2, we have:

Lemma B.3. For any K > 1, there exists τ̃(ω) > 0, such that for all
0 < τ ≤ τ̃(ω)

(B.20) ‖Di(Gωt )−1(x, v)‖ ≤ K

for 1 ≤ i ≤ r, (x, v) ∈ Bτ (t), t ∈ [−τ, 0].

Proof. Lemma B.3 follows immediately from Lemma B.2 together with
the estimate

(B.21) ‖DGωt (x, v)− I‖ ≤ max
(

5‖F‖τ
1− 5‖F‖ττ

,
τ

1− 5‖F‖ττ

)
for t ∈ [−τ̄(ω), 0], (x, v) ∈ Bτ . (B.21) can be proved in the same way as
(B.19).

We will denote by τr,K(ω) the maximum value of τ̄(ω) such that both
(B.13) and (B.20) hold for all τ ≤ τ̄(ω).
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Let OT (ω) = {(x0, v0), |v(t;x0, v0)| ≤ sup
γ∈Γτ

|vγ(t)|+ 1, for t ∈ [−T, 0]} and

OT (t, ω) = Gωt OT (ω). Define

(B.22) DT,r(ω) = sup
−T≤t≤0

sup
(x,v)∈OT (ω)

max
1≤i≤r

log+ ‖DiGωt (x, v)‖ ,

D̄T,r(ω) = sup
−T≤t≤0

sup
(x,v)∈OT (t,ω)

max
1≤i≤r

log+ ‖Di(Gωt )−1(x, v)‖ .

Lemma B.4. For any positive integer m,

(B.23)
∫
DT,r(ω)mP (dω) <∞,

∫
D̄T,r(ω)mP (dω) <∞ .

Proof. The proof is similar to the proofs of similar statements in [Bax],
[K2]. Define a sequence of stopping times τn:

τ0 = 0, τ1 = τr,K(ω), τi+1 = τr,K(θtiω) ,

where ti is defined by t0 = 0, t1 = −τ1, ti = −
i∑

j=0
τj . Choose n such that

|tn(ω)| ≤ T < |tn+1(ω)|. Then

(B.24) Gω−T (x, v) = fn+1 ◦ fn ◦ . . . ◦ f1(x, v)

where f1 = Gω−τ1 , f2 = Gθ
t1ω
−τ2 , . . . , fi = Gθ

ti−1ω
−τi for 1 ≤ i ≤ n, and fn+1 =

Gθ
tnω
tn(ω)−T . Notice that for all (x, v) ∈ OT (ω),

(B.25) sup
1≤i≤r

‖Difj((fj−1 ◦ . . . ◦ f1)(x, v))‖ ≤ K ,

for 1 ≤ j ≤ n + 1, since fj−1 ◦ . . . ◦ f1(x, v) ∈ Bτj . We now use the following
fact. Consider f ◦ g(x, v). Assume that

sup
1≤i≤r

‖Dig(x, v)‖ ≤M1 and sup
1≤i≤r

‖Dif(g(x, v))‖ ≤M2 .

Then there exists a constant Cr depending only on r such that

sup
1≤i≤r

‖Di(f ◦ g)(x, v)‖ ≤ CrM2M
r
1 .

Using (B.24) and (B.25), we obtain

(B.26) sup
(x,v)∈OT (ω)

‖DiGω−T (x, v)‖ ≤ K(CrKr)n

provided that |tn(ω)| ≤ T < |tn+1(ω)|.
Since for any t ∈ [−T, 0], we can write

(B.27) Gωt (x, v) = f̄l ◦ fl−1 ◦ . . . ◦ f1(x, v)
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for some l, 1 ≤ l ≤ n+ 1 and (B.25) holds, we get

(B.28) sup
−T≤t≤0, (x,v)∈OT (ω)

‖DiGωt (x, v)‖ ≤ K(CrKr)n .

We now have∫
Dr(ω)mdP ≤

∞∑
n=0

logm(K(CrKr)n)P{|tn(ω)| ≤ T < |tn+1(ω)|} .

Let q = P{τr,K(ω) ≤ T}. Obviously q < 1 since there exists a set of ω’s with
positive probability such that τr,K(ω) > 1. Using the strong Markov property
we have

P{|tn(ω)| ≤ T < |tn+1(ω)|} ≤ P (τj ≤ T, 1 ≤ j ≤ n)

=
n∏
j=1

P (τj ≤ T ) = qn .

Thus, ∫
Dr(ω)mdP ≤

∞∑
n=0

(log K + n log(CrKr))mqn < +∞ .

The other estimate can be proved in the same way.

A stronger estimate holds for the first derivative DGωt . For T > 0, define

dT (ω) = sup
−T≤t≤0

sup
(x,v)∈BT

log+ ‖DGωt (x, v)‖ ,(B.29)

d̄T (ω) = sup
0≤t≤T

sup
(x,v)∈BT

log+ ‖DGωt (x, v)‖ .(B.30)

Lemma B.5. Let m be a positive integer, then

(B.31)
∫
Ω

(dT (ω))mdP < +∞,
∫
Ω

(d̄T (ω))mdP < +∞ .

Remark. Lemma B.5 is stronger than Lemma B.4 for r=1 since BT ⊃OT .

Proof. Let x(t) = x(t;x0, v0), v(t) = v(t;x0, v0). Now,

v(t) = v0 −
∫ 0

t

∑
k

fk(x(s))dBk(t)

= v0 −
∑
k

fk(x(t))Bk(t) +
∫ 0

t

∑
k

f ′k(x(s))Bk(s)v(s)ds .

Let Mω(t) = max
t≤s≤0

|v(s)|; then for t ∈ [−T, 0]

Mω(t) ≤ |v0|+ ‖F‖T +
∫ 0

t
‖F‖TMω(s)ds .
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This implies, for t ∈ [−T, 0],

Mω(t) ≤ (|v0|+ ‖F‖T )e‖F‖T |t| .

Consider next (B.14) and (B.15). Let Jω(t) = max
t≤s≤0

|Jω21(s)|, ∆t,τ,k =

sup
t−τ≤s≤t

|Bk(s) −Bk(t)|, for τ > 0, and ‖fk‖ = sup
0≤x≤1

|fk(x)|. Since

Jω21(s) = Jω21(t)−
∫ t

s

∑
k

fk(x(u))Jω11(u)dBk(u) ,

we have (without loss of generality, we can assume Bk(t) = 0)

Jω(t− τ) ≤ Jω(t) + sup
t−τ≤s≤t

∣∣∣∑
k

fk(x(s))Bk(s)Jω11(s)
∣∣∣

+
∫ t

t−τ

∣∣∣∑
k

f ′k(x(u))Bk(u)v(u)Jω11(u)
∣∣∣du

+
∫ t

t−τ

∣∣∣∑
k

fk(x(u))Bk(u)Jω21(u)
∣∣∣du

≤ Jω(t) +
(∑

k

‖fk‖∆t,τ,k

)
(1 + Jω(t− τ)T )

+ (1 + Jω(t− τ)T )Mω(T )2‖F‖T τ + Jω(t− τ)2‖F‖T τ .

Choosing τ small enough so that

(B.32)
∑
k

‖fk‖∆t,τ,k ≤
1

6T
, 2TMω(T )‖F‖T τ <

1
6
, 2‖F‖T τ ≤

1
6
,

we get

(B.33) Jω(t− τ) ≤ 2
(
Jω(t) +

1
3T

)
.

Define a sequence of stopping times τ̄i, i ≥ 1, by

τ̄1 = inf
{
τ :
∑
k

‖fk‖∆0,τ,k =
1

6T

}
,

τ̄i+1 = inf
{
τ :
∑
k

‖fk‖∆ti,τ,k =
1

6T

}
,

where ti = −
i∑

j=1
τ̄j . Assume that |tk−1| ≤ T < |tk|. We can divide [ti+1, ti],

0 ≤ i ≤ k − 1, into subintervals such that (B.32) holds on each subinterval.
The total number of these subintervals can be estimated from above by

R(k, T ) = k + 12T‖F‖T (1 + TMω(T )) .
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From (B.33) we get

(B.34) Jω(T ) ≤ 2R(k,T )
(
Jω(0) +

2
3T

)
=

2
3T

2R(k,T ) .

We now show that

(B.35)
∫
R(k, T )mdP < +∞ .

Denote q = P (τ̄1 ≤ T ) < 1. Using the strong Markov property, we have

(B.36) P{|tk−1| ≤ T ≤ |tk|} ≤ qk−1 .

Hence

(B.37)
∫
kmP (dω) ≤

∞∑
k=1

kmP{|tk−1| ≤ T ≤ |tk|} ≤
∞∑
k=1

kmqk−1 <∞ .

On the other hand, since Mω(T ) ≤ (|v0|+ ‖F‖T )e‖F‖T T ,∫
(Mω(T )‖F‖T )mP (dω) ≤

∫
(|v0|+ ‖F‖T )2mem‖F‖TTP (dω)

≤
∫

(VT (ω) + 1 + ‖F‖T )2mem‖F‖TTP (dω) .

Recall that ‖F‖T =
∑
k

‖Fk‖C3 max
−T≤t≤0

|Bk(t)|. There exist constants A,B > 0,

such that

(B.38) P (‖F‖T ≥ x) ≤ Ae−Bx2
.

Therefore for any positive integers l and m

(B.39)
∫
‖F‖l

T
em‖F‖T TP (dω) <∞ .

We also have from Lemma 3.3 and (B.38) that∫
VT (ω)lem‖F‖TTP (dω) < +∞ .

Hence we obtain ∫
(Mω(T )‖F‖T )mP (dω) < +∞ .

An estimate for Jω11(t) follows from (B.16). Similar estimates can also be
proved for Jω12(t) and Jω22(t). Together we obtain the first inequality in (B.31).
The second inequality can be proved in the same way.

Consider two minimizers γ1 and γ2 on (−∞, 0], γ1(0) = y, γ2(0) = x.
Denote v1(τ) = γ̇1(τ), v2(τ) = γ̇2(τ).



      

INVARIANT MEASURES FOR BURGERS EQUATION 945

Lemma B.6. Assume y − x > 0, v1(0) − v2(0) = L̃(y − x) and
L̃ > 4‖F‖1(6 + 21‖F‖1). Then

v1(t)− v2(t) ≥ 0(B.40)

for t ∈ [−τ0, 0], where τ0 = min
(

1, 1
2‖F‖1

)
and

v1(t)− v2(t) >
L̃

4
(y − x)(B.41)

for t ∈ [−τ1, 0], where τ1 = min
(

1, 1
4‖F‖1

)
.

Proof. We first prove (B.40). We shall consider γ1, γ2 as curves on the
universal cover. Suppose that for some −τ0 < t ≤ 0, v1(t)− v2(t) = 0. Denote
by

t1 = max{−τ0 ≤ t ≤ 0: v1(t)− v2(t) = 0} ,
t2 = min{t: −t1 ≤ t ≤ 0, v1(t)− v2(t) = L̃(y − x)} .

Clearly 0 ≤ v1(t) − v2(t) ≤ L̃(y − x), t1 ≤ t ≤ t2. Also, since minimizers do
not intersect, 0 ≤ γ1(t)− γ2(t) ≤ γ1(0)− γ2(0) = y − x. Now,

v1(t1) = v1(t2) +
∑
k

fk(γ1(t1))Bk(t1)−
∑
k

fk(γ2(t2))Bk(t2)

+

t2∫
t1

∑
k

f ′k(γ1(s))v1(s)Bk(s)ds ,

v2(t1) = v2(t2) +
∑
k

fk(γ2(t1))Bk(t1)−
∑
k

fk(γ2(t2))Bk(t2)

+

t2∫
t1

∑
k

f ′k(γ2(s))v2(s)Bk(s)ds .

Thus, 0 = v1(t1)− v2(t1) = v1(t2)− v2(t2) + ∆v, where

∆v =
∑
k

(fk(γ1(t1))− fk(γ2(t1)))Bk(t1)−
∑
k

(fk(γ1(t2))− fk(γ2(t2)))Bk(t2)

+

t2∫
t1

∑
k

(f ′k(γ1(s))− f ′k(γ2(s)))v1(s)Bk(s)ds

+

t2∫
t1

∑
k

f ′k(γ2(s))(v1(s)− v2(s))Bk(s)ds .
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Let C1 = 1
4 + ‖F‖1, C = 20C1. It follows from Lemma 3.3 and (B.8) that

|v1(0)|, |v2(0)| ≤ C and for all −τ0 ≤ s ≤ 0:

|v1(s)|, |v2(s)| ≤ 2(C + ‖F‖1) ≤ 10 + 42‖F‖1 .

Thus,

|∆v| ≤ 2‖F‖1(y − x) + (t2 − t1)‖F‖1(10 + 42‖F‖1)(y − x)

+ (t2 − t1)‖F‖1 · L̃(y − x) ≤
(

(12 + 42‖F‖1) + τ0L̃
)
‖F‖1(y − x) .

Since τ0 ≤ 1
2‖F1‖ , (12 + 42‖F‖1)‖F‖1 < L̃

2 we have from the estimate
above:

|∆v| <
(
L̃

2
+
L̃

2

)
(y − x) < L̃(y − x) ,

which contradicts the fact that |∆v| = L̃(y − x).
Next we prove (B.41). Suppose −τ1 ≤ t ≤ 0. Then v1(t) − v2(t) ≥ 0.

Suppose for some −τ1 ≤ t ≤ 0: v1(t)− v2(t) = L̃
4 (y − x). Denote

t3 = max{−τ1 ≤ t ≤ 0 : v1(t)− v2(t) =
L̃

4
(y − x)} ,

t4 = min{−t3 ≤ t ≤ 0 : v1(t)− v2(t) = L̃(y − x)} .

Clearly, L̃
4 (y − x) ≤ v1(t) − v2(t) ≤ L̃(y − x), 0 ≤ γ1(t) − γ2(t) ≤ y − x,

t3 ≤ t ≤ t4. Using the same estimates as above, we have

L̃

4
(y − x) = v1(t3)− v2(t3) = v1(t4)− v2(t4) + ∆v ,

where

|∆v| ≤ 2‖F‖1(y − x) + (t4 − t3)‖F‖1(10 + 42‖F‖1)(y − x)

+ (t4 − t3)‖F‖1L̃(y − x)

≤ ((12 + 42‖F‖1) + τ1L̃)‖F‖1(y − x) <

(
L̃

2
+
L̃

4

)
(y − x) =

3L̃
4

(y − x) .

On the other hand, v1(t4) − v2(t4) = L̃(y − x), and ∆v = −3
4 L̃(y − x), which

contradicts the estimate above.

Lemma B.7. Let y − x > 0, v1(0) − v2(0) = L̃(y − x). Then, with
P -probability 1, L̃ ≤ max (4‖F‖1(6 + 21‖F‖1), 4).
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Proof. Suppose L̃ > 4‖F‖1(6 + 21‖F‖1). Then, for all −τ1 ≤ t ≤ 0,
v1(t)− v2(t) > L̃

4 (y − x). Thus the two minimizers would intersect before the
time τ∗ = − (y−x)

L̃
4

(y−x)
= − 4

L̃
, where −τ1 ≤ τ∗ ≤ 0 since

L̃ > max (4‖F‖1(6 + 21‖F‖1), 4) .

This contradiction proves Lemma B.7.

Denote

‖F‖−1,1 = max
−1≤s≤1

∑
k

‖Fk(x)‖C3 |Bk(s)−Bk(0)| .

Let L0 = 4 + 24‖F‖−1,1 + 84‖F‖2−1,1. Obviously,

L0 > max (4‖F‖1(6 + 21‖F‖1), 4) .

Consider two minimizers at time t = 1: γ1(τ), γ2(τ), −∞ ≤ τ ≤ 1. Denote
y = γ1(0), v(y) = γ1(0), x = γ2(0), v(x) = γ̇2(0).

Lemma B.8. With P -probability 1,

|v(y)− v(x)| ≤ L0|y − x| .

Proof. Suppose y− x > 0. Then, it follows from Lemma B.7 that: v(y)−
v(x) ≤ L0(y − x). Similarly we can prove an estimate from the other side.

Lemma B.9. Consider the process

dx = vdt ,

dv =
∑
k

fk(x(t))dBk(t) ,

da = bdt ,

db = a
∑
k

f ′k(x(t))dBk(t) ,

and let a(0), b(0) satisfy a(0)2 +b(0)2 = 1. Assume that there exists a constant
α0 > 0, such that ∑

k

f ′k(x)2 ≥ α0

for all x ∈ [0, 1]. Then the joint probability distribution of (a(1), b(1)) has
density p̄(a, b) which is uniformly bounded (with respect to (a(0), b(0))) on any
compact domain.

Proof. We will give only an outline for the proof. The generator L for the
diffusion process can be written as

L = La,b + L′
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where

La,b = b
∂

∂a
+

1
2
a2

(∑
k

f ′k(x)2

)
∂2

∂b2
,

L
′ = v

∂

∂x
+ a

∑
k

f ′k(x)fk(x)
∂2

∂b∂v

+
1
2

∑
k

fk(x)2 ∂
2

∂v2
.

The operator La,b is hypoelliptic on R2 \ {(0, 0)} for each fixed x ∈ [0, 1]
(see [IK]). Therefore for each fixed x ∈ [0, 1], the solution of

∂tp
x = L

∗
a,bp

x ,

px(a, b, 0) = δ(a− a(0), b− b(0))

is smooth for t > 0, except at (a, b) = (0, 0) [IK]. Since the delta function
px(·, 0) is concentrated on the unit circle, we have that for 0 ≤ t ≤ 1, px is
uniformly bounded (with respect to x and (a(0), b(0))) on the circle

0 ≤ px(a, b, t) ≤ C∗

if a2 + b2 = 1
4 , and 0 ≤ t ≤ 1. Using the maximum principle for the operator

La,b on the domain
{

(a, b), a2 + b2 ≤ 1
4

}
× [0, 1], we conclude that

px(a, b, t) ≤ C∗

if a2 + b2 ≤ 1
4 , and t ≤ 1. Since C∗ is independent of (x, v) and (a(0), b(0)),

and since px is smooth away from the origin, we obtain the desired result.

Appendix C. Hopf-Cole transformation
and the Feynman-Kac formula

The Hopf-Cole transform and the Feynman-Kac formula are standard
tools used in the analysis of (1.1). In the random case, some care has to
be taken because of the appearance of stochastic integrals [S2].

Consider the stochastic PDE

(C.1) dψ =
ε

2
∂2ψ

∂x2
dt+

(
−1
ε

∑
k

Fk(x)dBk(t) + c(x)dt
)
ψ

(the function c(x) to be defined later). In the following, stochastic integrals
will be understood in the Ito sense.

Let v = −ε ln ψ. Using the Ito formula, we have

(C.2) dv = −ε
2

2
1
ψ

∂2ψ

∂x2
dt+

∑
k

Fk(x)dBk(t) + c(x)dt+
1
2ε
a(x)dt
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where
a(x)dt = E

(∑
Fk(x)dBk(t)

)2
=
(∑

k

F 2
k (x)

)
dt .

Choosing c(x) = − 1
2ε a(x), we get

(C.3) dv = −ε
2

2
1
ψ

∂2ψ

∂x2
dt+

∑
k

Fk(x)dBk(t) .

Let u = −vx. It is straightforward to verify that u satisfies

(C.4) du+
(
u
∂u

∂x
− ε

2
∂2u

∂x2

)
dt =

∑
k

fk(x)dBk(t) .

The Feynman-Kac formula for (C.1) takes the form

(C.5) ψ(x, t) = Eβψ
(
x+
√
ε β(t0), t0

)
e
− 1
ε

∫ t
t0

∑
k

Fk(x+
√
ε β(s))dBk(s)

,

where Eβ denotes expectation with respect to the Wiener process on [t0, t] such
that β(t) = 0. It is easy to verify that the extra terms that occur in the Ito
formula for the exponential function in (C.5) are accounted for by the last term
c(x)ψdt in (C.1).

(C.1) can also be rewritten as

(C.6) dψ =
ε

2
∂2ψ

∂x2
dt− 1

ε
ψ ◦

∑
k

Fk(x)dBk(t)

where “◦” denotes product in the Stratonovich sense.

Appendix D. The basic collision lemma

This appendix is devoted to the proof and discussion of Lemma 5.2. We
will use the notion of the backward Lagrangian map. It will be convenient
to work with R1 instead of S1. Fix t, s ∈ R1, t > s, and x ∈ R1. Let ξ+,
ξ− be the maximal and minimal backward characteristics (see [D]) such that
ξ+(t) = ξ−(t) = x. We define Y +

s,t(x) = ξ+(s), Y −s,t(x) = ξ−(s).
We will study the case of

F (x, t) = − 1
2π

cos(2πx)dB(t) ,

f(x, t) = sin(2πx)dB(t) .

It will be clear that the general situation follows from the same argument. From
Lemma B.1, we can assume, without loss of generality, that ‖u(· , 0)‖L∞ ≤ C

for some random constant C. Otherwise we change the initial time from
t = 0 to some positive number, say 1

16 . It follows from Lemma B.1, that∥∥u (· , 1
16

)∥∥
L∞ ≤ C1 for some random constant C1 depending on the forces on
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0, 1

16

]
. In addition, we will consider a particular case when x0

1 = 1
8 , x0

2 = 7
8 .

It is easy to see from the proof that the argument works in the general case as
well. We will use the notation O(δ) to denote quantities that are bounded in
absolute value by Aδ, where A is an absolute constant.

The basic strategy is to construct forces that are large on [0, t1] and small
on [t1, 1] for some t1 in order to set up approximately the following picture:
At t = t1, u is very positive for x ∈ [0, 1

2 ] and very negative for x ∈ [1
2 , 1]. If

the forcing is small on [t1, 1], a shock must form which will absorb a sufficient
amount of mass, if we imagine that there is a uniform distribution of masses
on [0, 1] at t = t1. In order to make this intuitive picture rigorous, we must
carefully control the value of u when the forcing is small.

On B and t1, assume

(D.1) B(0) = 0, max
0≤s≤t1

|B(s)| ≤ 2B(t1), 4πt1B(t1) < δ0, B(t1) > C̄

with C̄, δ0 as chosen below. We will show that if B satisfies (D.1), then x0
1 and

x0
2 merge before t = 1. Therefore the probability of merging is no less than the

probability of the Brownian paths satisfying (D.1) which is positive.
Fix x ∈ [0, 1]. Let ξ be a genuine backward characteristic emanating from

x at t = t1; ξ(t1) = x. Denote y = ξ(0); then

(D.2) u(x, t1) = u(y, 0) + sin(2πx)B(t1)−
∫ t1

0
2π cos(2πξ(s))ξ̇(s)B(s)ds .

Hence |u|∞ = max
0≤x≤1
0≤t≤t1

|u(x, t)| satisfies

|u|∞ ≤ C +B(t1) + 2π|u|∞
∫ t1

0
|B(s)|ds .

Therefore
|u|∞ ≤M =

C +B(t1)
1− δ0

.

We now estimate u(· , t1). The idea is that on the set where the force is bounded
away from zero, u is either very negative or very positive, reflected by the term
involving δ2 below. We will bound u on the complement of this set. For
x ∈

[
1
16 ,

1
2 − ε

]
, 0 < ε¿ 1, ε to be fixed later, we have

u(x, t1) ≥ −C + δ1B(t1)− 2πM
∫ t1

0
|B(s)|ds

≥ −C + δ1B(t1)− δ0M

with δ1 = sin
(
2π
(

1
2 − ε

))
= sin(2πε). For x ∈

[
1
16 ,

7
16

]
, with δ2 = sin π

8 , this
can be improved to

u(x, t1) ≥ −C + δ2B(t1)− δ0M .
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The size of ε is chosen such that there is a finite gap between δ2 and δ1. For
x ∈

[
1
2 − ε, 1

2

]
, we have

|u(x, t1)| ≤ C + δ1B(t1) + δ0M .

Similarly on
[

1
2 , 1
]

we have the estimates

|u(x, t1)| ≤ C + δ1B(t1) + δ0M ,

for x ∈
[

1
2 ,

1
2 + ε

]
;

u(x, t1) ≤ C − δ2B(t1) + δ0M

for x ∈
[

9
16 ,

15
16

]
; and

u(x, t1) ≤ C − δ1B(t1) + δ0M

for x ∈
[

1
2 + ε, 15

16

]
.

Next on [t1, 1] we will choose B(t) to be so small that

(D.3) max
t1≤s≤1

|B(s)−B(t1)| ≤ δ .

The value of δ will be chosen later. We first prove the following approximate
monotonicity lemma.

Lemma D.1. Let x∗ be a point of shock at t = 1, y1 = Y −t1,1(x∗), y2 =
Y +
t1,1

(x∗) and y ∈ (y1, y2). Then∫ y

y1

(z + tu(z, t1))dz − x∗(y − y1) ≥ −Cδ|u|∞ ,

x∗(y2 − y)−
∫ y2

y
(z + tu(z, t1))dz ≥ −Cδ|u|∞ ,

where t = 1− t1, |u|∞ = ||u(·, t1)||L∞ .

Remark. In the absence of forces, the correct statement is∫ y

y1

(z + tu(z, t1))dz − x∗(y − y1) ≥ 0 .

These statements were used in [ERS] as the basis for an alternative formulation
of the variational principle. In the presence of force, similar statements appear
to be invalid due to the presence of conjugate points. However, when the force
is small, the error is also small, as claimed in Lemma D.1.

Proof of Lemma D.1. Define y∗ by:

(D.4) y∗ + tu(y∗, t1) = x∗ .
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Denote by ξ+, ξ− the maximal and minimal backward characteristics such
that ξ+(1) = ξ−(1) = x∗. Then

y1 +
∫ 1

t1

u(ξ−(s), s)ds = x∗ ,

y2 +
∫ 1

t1

u(ξ+(s), s)ds = x∗ .

Furthermore, for s ∈ [t1, 1], we have

(D.5) u(ξ+(s), s) = u(y2, t1) + sin(2πξ+(s))(B(s)−B(t1))

−
∫ s

t1

2π cos(2πξ+(s))ξ̇+(s)(B(s)−B(t1))ds .

Hence

(D.6) |u(ξ+(s), s)− u(y2, t1)| ≤ O(δ)|u|∞
and

(D.7) y2 + tu(y2, t1) = x∗ +O(δ)|u|∞ .

Similarly

(D.8) y1 + tu(y1, t1) = x∗ +O(δ)|u|∞
and

(D.9) |u(ξ−(s), s)− u(y1, t1)| ≤ O(δ)|u|∞ .

From the action minimizing property of ξ−, we get, by comparing the
action of ξ− and ξ(s) = y∗ + (s− t1)u(y∗, t1),∫ 1

t1

u2(ξ−(s), s)
2

ds− 1
2π

cos(2πx∗)(B(1)−B(t1))

+
∫ 1

t1

ξ̇−(s) sin(2πξ−(s))(B(s)−B(t1))ds

≤tu
2(y∗, t1)

2
− 1

2π
cos(2πx∗)(B(1)−B(t1))

+
∫ 1

t1

u(y∗, t1) sin 2π(y∗ + (s− t1)u(y∗, t1))(B(s)−B(t1))ds

+
∫ y∗

y1

u(y, t1)dy .

This gives

t
u2(y1, t1)

2
≤ tu

2(y∗, t1)
2

+
∫ y∗

y1

u(y, t1)dy +O(δ)|u|∞ .
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Finally, we get, using (D.4), (D.7) and (D.8):∫ y∗

y1

u(y, t1)dy ≥ t

2
(u2(y1, t1)− u2(y∗, t1)) +O(δ)|u|∞ ;

∫ y∗

y1

(z + tu(z, t1))dz − (y∗ − y1)x∗

=
(y∗)2

2
− y2

1

2
+ t

∫ y∗

y1

u(z, t1)dz − (y∗ − y1)x∗

≥ (y∗)2

2
− y2

1

2
+
t2

2
(u2(y1, t1)− u2(y∗, t1))− (y∗ − y1)x∗ +O(δ)|u|∞

= O(δ)|u|∞ .

Proof of Lemma 5.2. Let z0
1 and z0

2 be the Eulerian positions of x0
1 and x0

2

respectively at time t1 following the forward characteristics defined by u. They
are well-defined if the forward characteristics are continued properly by shocks
[D]. Moreover, |x0

1−z0
1 | ≤ O(δ0), |x0

2−z0
2 | ≤ O(δ0), since t1 is small. Assume to

the contrary that z0
1 and z0

2 do not merge until time 1. Then there exist x1 and
x2, such that x1 < x2, and z0

1 ∈ [Y −t1,1(x1), Y +
t1,1

(x1)], z0
2 ∈ [Y −t1,1(x2), Y +

t1,1
(x2)].

Let α1 = Y −t1,1(x1), α2 = Y +
t1,1

(x1), β1 = Y −t1,1(x2), β2 = Y +
t1,1

(x2). We have
α1 < α2 < β1 < β2. Using the estimates obtained earlier on u(·, t1), we have
the following:

If α2 <
3
8 , then

(D.10) x1 = α2 + (1− t1)u(α2, t1) +O(δ)|u|∞
≥ α2 + (1− t1)(−C + δ2B(t1)− δ0M) +O(δ)|u|∞ .

Similarly, if β1 >
5
8 , then

(D.11) x2 = β1 + (1− t1)u(β1, t1) +O(δ)|u|∞
≤ β1 + (1− t1)(C − δ2B(t1) + δ0M) +O(δ)|u|∞ .

To deal with the case when either β1 <
5
8 , or α2 >

3
8 , we introduce the

parametrized measure dQs(·) which is the pullback of Lebesgue measure by
the backward Lagrangian map from t = t1 to t = s: Qs[x1, x2) = Y +

t1,s
(x2) −

Y −t1,s(x1).
If we define ρ = dQs, u(x, t) = 1

2(u(x+, t) + u(x−, t)), then it is easy to
see that (ρ, u) satisfies

(D.12) ρt + (ρu)x = 0

in the distributional sense.
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Let ξ1, ξ2 be two genuine backward characteristics defined on [t1, 1], such
that ξ1 < ξ2. Multiplying the above equation by x and integrating over the
region: t1 ≤ s ≤ 1, ξ1(s) ≤ x ≤ ξ2(s), we get

(D.13)

ξ2(1)∫
ξ1(1)

xdQ1(x)−
ξ2(t1)∫
ξ1(t1)

xdx =

1∫
t1

ds

ξ2(s)∫
ξ1(s)

u(x, s)dQs(x) .

Lemma D.2. For s ∈ [t1, 1],

ξ2(s)∫
ξ1(s)

u(x, s)dQs(x) =

ξ2(t1)∫
ξ1(t1)

u(y, t1)dy +O(δ)|u|∞ .

Proof. First we assume that x is a point of continuity of u(· , s). Then
from the arguments presented earlier, we have

(D.14) u(x, s) = u(y, t1) +O(δ)|u|∞
where y = Y +

t1,s
(x) = Y −t1,s(x).

If x is a point of discontinuity of u(· , s), let y1 = Y −t1,s(x), y2 = Y +
t1,s

(x).
We then have

u(x, s) =
1
2

(u(x−, s) + u(x+, s))

=
1
2

(u(y1, t1) + u(y2, t1)) +O(δ)|u|∞ .

On the other hand, similar to the proof of Lemma D.1, we also have

y1 + (s− t1)u(y1, t1) = y2 + (s− t1)u(y2, t1) +O(δ)|u|∞
u2(y1, t1)

2
(s− t1)

=
u2(y2, t1)

2
(s− t1) +

∫ y2

y1

u(y, t1)dy +O(δ)|u|∞ .

Hence∫ y2

y1

u(y, t1)dy =
s− t1

2
(u2(y1, t1)− u2(y2, t1)) +O(δ)|u|∞

=
s− t1

2
(u(y1, t1)− u(y2, t1))(u(y1, t1) + u(y2, t1)) +O(δ)|u|∞

= (y2 − y1)
u(y1, t1) + u(y2, t2)

2
+O(δ)|u|∞ .
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This can be written as

(D.15) u(x, s)Qs({x}) =
∫ y2

y1

u(y, t1)dy +O(δ)|u|∞.

Now Lemma D.2 follows from (D.14) and (D.15) when we use a standard
approximation argument.

We now continue with the proof of Lemma 5.2. Using Lemma D.2, we can
rewrite (D.13) as

ξ2(1)∫
ξ1(1)

xdP1(x)−
ξ2(t1)∫
ξ1(t1)

xdx = (1− t1)

ξ2(t1)∫
ξ1(t1)

u(y, t1)dy +O(δ)|u|∞ .

Applying this to Y ±t1,1(x1), Y ±t1,1(x2), we get

x1 −
1

α2 − α1

α2∫
α1

{x+ (1− t1)u(x, t1)}dx =
O(δ)|u|∞
α2 − α1

,

x2 −
1

β2 − β1

β2∫
β1

{x+ (1− t1)u(x, t1)}dx =
O(δ)|u|∞
β2 − β1

.

Assume that α2 >
3
8 . Then α2− z0

1 >
1
4 −O(δ0). Integrating both sides of

the equation ut +
(
u2

2

)
x

= −Fx over the region: 0 ≤ t ≤ t1, ξ1(t) ≤ x ≤ ξ2(t),

where ξ1(t) = Y −t,t1(x0
1), ξ2(t) = Y +

t,t1
(α2), we get

α2∫
x0

1

u(x, t1)dx−
ξ2(0)∫
ξ1(0)

u(x, 0)dx =
1
2

t1∫
0

[u(ξ1(t), t)2 − u(ξ2(t), t)2]dt

(D.16)

− 1
2π
B(t1)

(
cos(2πξ2(t1))− cos(2πξ1(t1))

)
+

t1∫
0

B(t)
(
ξ̇2(t) sin(2πξ2(t))− ξ̇1(t) sin(2πξ1(t))

)
dt .

This implies that
α2∫
x0

1

u(x, t1)dx ≥ − 1
2π
B(t1)

(
cos(2πα2)− cos(2πx0

1)
)

− C − t1|u|2∞ − |u|∞
t1∫

0

|B(s)|ds .
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Hence, using Lemma D.1, we obtain

x1 ≥
1

α2 − x0
1

α2∫
x0

1

(z + (1− t1)u(z, t1))dz +O(δ)|u|∞(D.17)

≥ − 2
2π

(1− t1)B(t1)
(

cos(2πα2)− cos(2πx0
1)
)

− C − 4t1|u|2∞ − 4δ0|u|∞ +O(δ)|u|∞ .
Similarly, if β1 <

5
8 ,

x2 ≤
1

x0
2 − β1

x0
2∫

β1

(
z + (1− t1)u(z, t1)

)
dz +O(δ)|u|∞(D.18)

≤ 2
2π

(1− t1)B(t1)(cos 2πx0
2 − cos 2πβ1)

+ C + 4t1|u|2∞ + 4δ0|u|∞ +O(δ)|u|∞ .
If β1 ≥ 3

8 , we have cos(2πx0
2) − cos(2πβ1) ≥ 0, and if α2 ≤ 5

8 , we have
cos(2πα2) − cos(2πx0

1) ≤ 0. Otherwise, we can use (D.10) and (D.11). In
any case, we always have, for some positive constant C∗,

(D.19) x1 − x2 ≥ C∗B(t1)− C0(1 + t1|u|2∞ + δ0|u|∞ + δ|u|∞)

≥ C∗B(t1)− C0 − C0(4δ0 + δ)|u|∞

≥
[
C∗ − 2C0(4δ0 + δ)

1− δ0

]
B(t1)− C1 .

The constants C∗, C0, C1 do not depend on δ0, δ, B(t1).
If we choose δ0, δ, such that

(D.20) C∗ − 2C0(4δ0 + δ)
1− δ0

> 0

we can then choose C̄, such that

x1 − x2 > 0 ,

contradicting the assumption that x1 ≤ x2. This completes the proof of
Lemma 5.2.

We now estimate the location of the shock x∗ where x0
1 and x0

2 have merged
at t = 1, assuming that the forces are chosen as in the proof of Lemma 5.2.
Let y1 = Y −t1,1(x∗), y2 = Y +

t1,1
(x∗). Now,

x∗ =
1

y2 − y1

y2∫
y1

(y + (1− t1)u(y, t1))dy +O(δ)|u|∞ .
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Also,

(D.21)

∣∣∣ 1
y2 − y1

y2∫
y1

y dy − 1
2

∣∣∣ < 1
2

(1− x0
2 + x0

1) ,

∣∣∣ y2∫
y1

u(y, t1)dy
∣∣∣ ≤ (1− x0

2 + x0
1)|u(· .0)|∞ + t1|u|2∞

+
1

2π
|(cos 2πy2 − cos 2πy1)B(t1)|+ δ0|u|∞ ,

where we used an analog of (D.16). The factors 1 − x0
2 + x0

1,
1
2(1 − x0

2 + x0
1)

can be made arbitrarily small by choosing x0
1 close to 0, and x0

2 close to 1.
Notice that in (D.21) the coefficient in front of B(t1) is approximately

equal to |y1 + 1 − y2| sin 2πȳ for some ȳ ∈ (y2, y1 + 1), whereas C∗ in (D.19)
is bounded from below by min(sin 2πx0

1, sin 2πx0
2). Therefore by choosing x0

1

close to 0, x0
2 close to 1, and B(t1) such that (D.20) holds but | cos 2πy2 −

cos 2πy1|B(t1) is small, we can make x∗ arbitrarily close to 1
2 . We have arrived

at:

Lemma D.3. Assume that F (x, t) = − 1
2π cos(2πx)dB(t). Fix any ε1,

ε2 > 0. Then the following event has positive probability p0(ε1, ε2). There
exists x∗ ∈

[
1
2 − ε1,

1
2 + ε1

]
, such that [ε2, 1 − ε2] ⊂ [Y −0,1(x∗), Y +

0,1(x∗)]. In
other words, the interval [ε2, 1− ε2] is mapped to a point x∗ ∈

[
1
2 − ε1,

1
2 + ε1

]
by the forward Lagrangian map.

To prove this, we just have to take an ε3 < ε2, and x0
1 = ε3, x0

2 = 1 − ε3

and use the argument outlined above. We omit the details.
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