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Invariant measures for Markov processes arising
from iterated function systems with place-dependent

probabilities
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Ann. Inst. Henri Poincaré,
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ABSTRACT. - Consider a discrete-time Markov process on a locally
compact metric space X obtained by randomly iterating Lipschitz maps
wl, ... , w~; the probability p~ (x) of choosing map w~ at each step is
allowed to depend on current position x. Assume sets of finite diameter
in X are relatively compact.

It is shown that if the maps are average-contractive, i. e.,

‘- 1 - 

B"7 J /

uniformly in x and y, and if the pi’s are bounded away from zero and
satisfy a Dini-type continuity condition (weaker than Holder-continuity),
then the process converges in distribution to a unique invariant measure.

Also discussed are Perron-Frobenius theory and primitive weakly
almost-periodic Markov operators, discontinuous maps, Julia sets, and
running dynamical systems backwards.

Key words : Invariant measures, discrete-time Markov processes, Markov operators.
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368 M. F. BARNSLEY et al.

RESUME. - On considère un processus de Markov en temps discret sur
un espace métrique localement compact obtenu par iteration aléatoirement
des cartes Lipschitzian W1’ w2, ..., wN. La probabilité Pi (x) qu’on choi-
sisse la carte wi peut dépendre sur la position courante. On suppose que
les ensembles de diamètre fini sont relativement compact.
On démontre que si les cartes sont moyen-contractunt, i. e.,

unif ormement dans x et y, et si les pi restent supérieur de zero et satisfont
une condition de continuité Dini, puis le processus converge en distribution
a une mesure unique.

Aussi on discute la théorie de Perron-Frobenius et les opérateurs de
Markov vaguement presque-périodique, les cartes discontinues, et les
ensembles de Julia.
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1. INTRODUCTION

We study certain discrete-time Markov processes defined on locally
compact metric spaces. These processes arise naturally when iterating
functions and have been studied in connection with population dynamics
[OM], learning models ([K], [DF]), Julia sets ([BD], [BGM]), fractals ([H],
[BD]), and computer graphics ([DS], [DHN]). The set-up in this paper is
as follows: (X, d) is a metric space in which sets of finite diameter are

relatively compact, so that X is locally compact and 03C3-compact; {wi }Ni=1
are Borel measurable functions from X into X; and }Ni= 1 is a non-

negative Borel measurable partition of unity on X. For a given XEX and

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



369INVARIANT MEASURES FOR MARKOV PROCESSES

Borel subset B ~ X the probability of transfer from x to B is defined by

where ~Z denotes the Dirac measure concentrated at z and 1 B denotes the
indicator function of B. Closely connected with P is the Markov operator
T defined for real-valued functions on X by

The space of continuous real-valued functions on X with compact

support will be denoted by C~(x). The space of bounded real-valued
continuous functions on X is C (X) and the space of finite signed Borel
measures on X is M (X). (X) c M (X) are the probability measures. C (X)
carries the supremum norm. If X is compact, then M (X) is the dual of

C (X). In general, however, the dual of C (X) is the space of finitely
additive regular finite signed Borel measures on X (see [DuS]).
The operator V : M (X) - M (X) defined by

describes how a probability distribution v on X is transformed in one step
of the process. It is easy to see that V is the adjoint T* restricted to

M (X). A Borel probability measure ~, is said to be invariant or stationary
if It is said to be attractive if for all v (X),

for all f E C (X); that is, vn v converges to ~. in distribution.

We now state these things in probabilistic notation, which we use later.
For let {Z~; n = o,1, ... } be the Markov stochastic process
(unique up to distribution) having initial distribution v and transition

probability as above. For xeX, be the process with initial

distribution concentrated at x; that is, Thus 

and is attractive if E f (Zn) -~ 

V fEC(X).
Let ... ) : 1 __ i~  N ~. For XEX, let Px be the

probability measure defined on "thin cylinders" of Q by
jth coordinate of i is i~, j =1, ... , n ~

Vol. 24, n° 3-1988.



370 M. F. BARNSLEY et al.

Then it is clear that the process {Zxn} may be realized on (Q, Px) as

This is the interpretation of the process as a random walk in X, using an
N-sided die (which may depend on position) to determine which map is
to be used to carry us to the next position.

If T maps C (X) into C (X) (i. e., the process is a Feller process), then

Vn v converges in distribution In this case, it is easily
seen that an attractive probability measure is necessarily invariant: since

T* is w* - w* continuous, 

This will be the case when the wi’s are continuous, but at times we consider
discontinuous w;’s.

If X is compact and T maps C (X) into C (X), then * (X) is w*-compact
in M (X) and T* is w* - w* continuous, so the existence of an invariant
probability follows from a fixed-point theorem. However, we shall be
concerned in Section 2 with non-compact X, so ~ (X) is not w*-closed in
M (X).
The main focus of this paper is on the existence and attractiveness of

invariant measures in the case that the p;’s are non-constant and the wi’s
not contractions and X is not necessarily compact. Constant p~’s and
contractive w;’s have been treated by several authors ([DF], [H], [DS],
[BD]), and have been used with some success to make computer pictures
of certain natural objects, ([DS], [DHN]). Variable pi’s in (1.1) were
studied by Onicescu and Mihoc [OM] in 1935 who made a connection
with the spread of tuberculosis, by Doeblin and Fortet [DoF] in 1937, by
Ionescu Tulcea and Marinescu ([ITM], [IT]) in 1948 and 1959, and by
Karlin [K] in 1953. Karlin’s paper was motivated by work of Bush and
Mosteller on learning models, cf [BM]. More recently, Bessis, Geronimo,
and Moussa [BGM] studied orthogonal polynomials and the associated
Jacobi matrices (or discrete Schrodinger operators) connected with
invariant measures for chains of the form ( 1. 1) where the wi’s and p;’s
satisfy

where S is a monic polynomial of degree N having a real Julia set J, the
wi’s are the inverse branches of S and Q is a monic polynomial of degree
N -1 constrained to insure that pi (x) &#x3E; 0 for x E J and i = 1, 2, ..., N.

The typically singular continuous nature of the resulting invariant measure

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



371INVARIANT MEASURES FOR MARKOV PROCESSES

and the close connection with fractal structures in the physical sciences
was a major motivation for this work.
The following "pure types" results for unique invariant measures for

our processes follows quickly from more general results of Dubins and
Freedman (Lemma 2. 2 and Theorem 2. 5 of [DF]).

THEOREM 1. 2. - (a) with ~, &#x3E; 0, then the discrete and the
continuous parts of  are also fixed points of V. In particular, if there is a
unique invariant probability measure, then it is either discrete or continuous.

(b) Suppose m is a probability measure on X such that m (A) = 0 implies
m (w;(A)) = 0 for If y is invariant for ( 1. 1), then so are the

absolutely continuous part and the singular part (with respect to m). Conse-
quently, if  is the unique invariant measure for ( 1. 1), then it is of pure
type.
Note that (b) applies if the w/s are Lipschitz (as in Section 2A) and m

is Lebesgue measure on fR".
The paper is organized as follows. In Section 2A we prove that there is

an attractive invariant measure under the assumptions that the moduli of
continuity of the p/s satisfy Dini’s condition and that the w/s are Lipschitz
continuous and satisfy an average contractivity condition between any two
points. This average contractivity condition was first formulated in [BE]
and does not require any of the w/s to be contractions. In Section 2B we
relax the continuity condition on the w/s and restrict attention to X =[0,1].
Section 3 considers Perron-Frobenius theory in the case of compact X; a
strong ergodic theorem is proved for primitive weakly almost periodic
Markov operators, which includes an important class of operators of type
( 1. 2). Section 4 is concerned with examples and applications.

All four authors of this paper were involved in formulating and motivat-
ing these problems, and in discovering the right background. Section 2A
is largely the work of John Elton, with assistance from Jeff Geronimo;
section 2B is largely due to Jeff Geronimo; section 3 is largely due to
Steve Demko, and section 4 is due to Michael Barnsley.

2A. LIPSCHITZ MAPS ON LOCALLY COMPACT METRIC SPACES

Let wt, i = l, ..., N be Lipschitz functions from X into X, with

d (w; x, y) for all x, y in X. Let s=max{si: ..., N}.
Let pi : X ~ [0, 1] be continuous, i = l, ..., N, with pi (x) _&#x3E;_ 0 and

N

03A3 pi(x) = 1 for all x in X.
i=i

Thus the operator T in ( 1. 2) takes C(X) ~ C (X) (but does not in
general take C~ (X) - C~ (X)).

Vol. 24, n° 3-1988. 
’



372 M. F. BARNSLEY et al.

The case of variable p;’s, when X = [0,1] and the w/s are affine contrac-
tions, was considered by Karlin [K]. In Section 6, p. 749, he states that an
attractive invariant measure exists when the p~’s are strictly positive and
merely continuous. However, there seems to be an error in his proof: he
assumes that the p;’s are differentiable in his proof (Lemma on page 750
and the application of it on page 751). But does not imply

uniformly in n, so it does no good to uniformly
approximate a continuous pi by a differentiable one.
We prove that it is sufficient that the moduli of uniform continuity cp~

of the pi’s satisfy "Dini’s condition", i. e., cp~ (t)/t is integrable over (0, ~)
for some 8 &#x3E; 0. This is a little more than continuity, but includes the case
when the p~’s are in Lipa for some a&#x3E;0. We do not require X to be
compact or any of the w/s to be contractions, but require only an average
contractivity condition between points, as in [BE]. These conditions

together will guarantee is equicontinuous for We
do not require that the p;’s be bounded away from zero, but do require
that the probability of contraction between any two points be bounded
away from zero in order to get an attractive invariant measure.
We now state the main results of this section.

THEOREM 2 . 1. - Suppose there exists r  1 and q &#x3E; 0 such that

with the norm taken in Lq (Q, Px) [recall Zi was defined by (1. 3)]. That is,

assume that the modulus of uniform continuity of each pi satisfies Dini’s
condition, and that there exists b &#x3E; 0 such that

for example, if pi (x) &#x3E;- ~ for all i, V x E X ]. Then there is an attractive (hence
unique) invariant probability measure for the Markov process described
above. For every f E C~ (X), Tn f converges to a constant uniformly on sets
of finite diameter.
Remark. - An ergodic theorem for the orbits of such processes has

recently been proved by one of the authors [E].
Remark. - A special case when the average contractivity condition in

Theorem 2. 1 hilds is if
1~T

The following gives a seemingly weaker average contractivity hypothesis.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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COROLLARY 2. 2. - Assume that there exists rl  1 such that

that is,

(For example, if 03A0spi(x) ~ r1, V x in X. Assume that the modulus of

uniform continuity of each pi satisfies D ini’s condition, and that there exists
~ &#x3E; 0 such that p~ (x) &#x3E;_ ~ for each i, V x in x. Then in fact the hypotheses of
Theorem 2 . 1 hold for some q &#x3E; 0 and some r  1, so the conclusions hold
also.

Remark. - It is not required that there is contraction on the average
between any two points; it is sufficient that before some fixed number of
iterations (independent of x and y), there is contraction on the average.
That is, there exists r  1 and an integer no such that for all x ~y in X,
3 n _ no such that

COROLLARY 3.3. - Suppose the wi are affine maps on f~n (any norm)
with linear part ai (i. e., wi x = ai x + bi). Suppose the moduli of uniform
continuity of the pi’s satisfy D ini’s condition, and pi (x) &#x3E;__ S &#x3E; 0 for all x.
Then the conclusions of Theorem 2. 1 hold if the following holds:

There exists r  1 and an integer mo such that for all x E ~" and for all
y E Rn with ~ y II =1, there exists m _ mo such that

that is

In case all the w/s are strict contractions (that is, s  1), one can give a
. much quicker proof than the one we give in Lemma 2. 5 is

equicontinuous. But we still seem to need the Dini’s condition on the
moduli of continuity of the p~’s even in this case; we do not, however,
have an example to show that continuity alone is insufficient.
Our argument in the proof of Theorem 2. 1 uses a modification of

Karlin’s clever decomposition of based on the idea of
recurrence. We use a conditional expectation argument together with
Chebyshev’s inequality to guarantee the occurrence of a desired event in
finite time; it is not quite a recurrent event in our case.

Vol. 24, n° 3-1988.
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We also give the following conditions for the existence of various
moments of the invariant measure; the stronger the average contractivity
condition, the faster the drop-off rate of the measure.

Assume 3 rq  1 such that the hypotheses of Thorem 2. 1 are satisfied, with
r=rn. Then

where

and y is the invariant probability measure which exists by Theorem 2. 1.

Proof of Theorem 2. 1 and Corollaries. - By the modulus of uniform
continuity (p of a uniformly continuous function p on X we mean the
function

We say "cp satisfies Dini’s condition" if cp (t)/t is integrable on (0, a) for
some a &#x3E; o.

LEMMA 2. 5. - Let cpi be the modulus of uniform continuity of pi, i = l,
..., N, and assume that each cp~ satisfies Dini’s condition. Assume 3 q &#x3E; 0
and r  I such that V x, y E X,

Then equi-uniformly continuous.

Proof. - Note that since cpi is a modulus of uniform continuity, it is

( a) continuous, ( b) non-decreasing, ( c) cp (0) = 0, and ( d) subadditive ( see
[Lor], p. 43).

It is easy to see that (po satisfies (a) - (d) also.
Let cp* = cpo v cpl v ... v Then it is easy to see that cp* satisfies

(a) - (d) (we denote max{t, u ~ = t v u).
Bet B the region under the graph of ç* on [0, oo ) and let (p be the

upper boundary curve of the convex hull of B. Note cp (t) =1 for t &#x3E;_ l, and
(p is a concave function. It follows from Theorem 8 in ([Lor], p. 45)
applied to the region under the graph of (p* for that (p satisfies

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



375INVARIANT MEASURES FOR MARKOV PROCESSES

(a) - (d) and in addition c~* __ cp _ 2 cp*. Thus cp satisfies Dini’s condition
also.

Let f E C~ (X), II f I) _ 1, and also assume f E Lipl, so
, - - _ ,

We may take C~2.
Without loss of generality, we may assume q _ 1 in the hypothesis of

the lemma.

Define

This is finite since (p is Dini. Then ~3* (0) =0, and ~3* is continuous and

strictly increasing. Also, P* is a concave function: compute

and this is non-increasing since (p is concave, by a simple argument.
Let y (t) = tq. Fix X, YEX. Let Then the second

assumption in the hypothesis can be expressed as

where p is the discrete probability measure p ~ i ~ = p; (x).
Let P = P* 0 y. Then po y-1 = p* which is concave and strictly increasing,

so by Jensen’s inequality

i. e.,

But fi o y -1 is increasing, so

That is,

Vol. 24, n° 3-1988.



376 ? M. F. BARNSLEY et al.

Next, observe

Now Jo du&#x3E;_Ct for 0_t l, and 03B2(t)~C~2 for t&#x3E;_ l, so we

conclude: P is a modulus of uniform continuity for f
Induction hypothesis. - P is a modulus of uniform continuity for f
Then

by the induction hypothesis. Thus using (2.1), we have

Thus P is a modulus of uniform continuity for Tm f also, so this is true
forallm.

Finally, since n Cc (X) is dense in C~ (X), the result follows by
a 3 E argument. D

LEMMA 2 . 6. - Let pi(x)~03B4&#x3E;0, Vx, i = 1, ..., N, and suppose ~ r1  1
such that

Then for any r with rl  r  1, ~ qo &#x3E; 0 such that 

Proof - It is a standard fact that if f E L i (Jl) then

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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(see [HS], p. 201). It is easy to see that for 0  a  b this convergence is
uniform f or a _ f ’_ b. Now let

Thus (r1 s)
1

/03B4 ~fx, y(i)~s, ‘d i, Vx, y E X. One easily shows from the hypoth-

esis that

and the lemma now follows, using (2. 3).
The next lemma contains the probabilistic reasoning.

LEMMA 2. 7. - Assume that the hypotheses of Theorem 2. 1 hold. Let
Then V x, y in X, lim ( Tm f (x) - T m f (y) I = o, and the conver-

m -&#x3E; o0

gence is uniform on sets of finite diameter in X.

Proof - Let S be a set in X, of diameter M  ~. Then there exists
Coo such that d (x, for all x E S, all i.

Fix x, y E S. Let Q’ _ ~ i’ = ig, ... ) ~ be another copy of Q, and let

Let P* = Px x Py, a probability measure on Q*. Thus if we define on Q*,

then Z: and Zn are independent copies of the Markov process with initial
distributions concentrated on x and y.

Let a &#x3E; o. Let

[we suppress the 1* in etc.], so that the Gn are disjoint. Let
m

Bm = ~ U G". The key thing is to show that P* ( Bm) -~ 0 as m ~ oo, which
n=1

we shall do in the sublemma which follows. Then the following decomposi-
tion will conclude the proof; this idea (in a simpler setting and different
notation) is due to Karlin. The idea is to stop the two independent
processes when they are sufficiently close (which happens with probability

Vol. 24, n° 3-1988.
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where 03A3n above is the a-algebra in Q* generated by Zi, ..., Zn, ...,

Z~, and the expectation means with respect to the measure P*. The last
equation in the above decomposition follows by writing out, for example,

We shall now conclude the proof under the assumption that V r:l&#x3E; 0,
P* (Bm) -~ 0. Let E &#x3E; o, and choose, by Lemma 2. 5, a &#x3E; 0 such that
d (u, for all n. Then from (2 . 4),

since the Gn are disjoint. Thus the proof of the Lemma will be complete
when we prove the following:

SUBLEMMA. - For a &#x3E; o, P* ( Bm) -~ 0 as The convergence is
uniform over x, y in S.

Proof - We cannot use recurrence, as Karlin did. We look at blocks
of geometrically increasing length. Assume W.L.O.G. that q __ l. Now

N

using the hypothesis of the theorem. Thus if n2 &#x3E; nl,

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Repeating this argument, we are led to

Nnw

and repeating this, assuming W. L.O.G. sq &#x3E; 2, we get from (2 . 5)
r . -

Let and assume n2 ~ 03B3 n1; then

By Chebyshev’s inequality,

A similar result holds for the process {yn}, and since they are indepen-
dent, P* (d (Zn2, x) __ ~, and d (Zn2, y) _ ~, Zn2) &#x3E;_ 1/4.

Recall so that

Thus if n2 ~ y ni + k, then by the Markov property
_. , .., . ...

Now by the triangle inequality, the above yields

Take k so large that rk (2 ~, + M)  a. Thus

Vol. 24, n° 3-1988.
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Finally, let nl, n2, ... be a sequence of integers such that

V j. Then by the above, and the Markov property,

lj i - 
i

so P* (Bm)~( 1 - - 4 03B42k )l-1 if m &#x3E; ni. Thus P* (Bm) ~ 0 as m - ~, and the

convergence is uniform over x, y in S since y does not depend on x or y.
This completes the proof of the sublemma and the lemma. m

Proof of Theorem 2 . I. - The same conditional expectation argument
used in the proof of the sublemma above shows that for any x,

Let E &#x3E; 0. By the above and Chebyshev’s inequality,

for some p  00. Let K be the closed ball of radius p centered at x. Then
for any f E C (X), for all n,

where 
Now let f E Cc (X). By Ascoli’s theorem, since {Tn f} is equicontinuous,

for some subsequence T"~ f converges uniformly on compact sets to what
must be a constant function, say c, by Lemma 2. 7. Note K is compact,
so for sufficiently large j, I  E. Thus for 
,. . _ , , ,

Since E &#x3E; 0 is arbitrary, this shows T n f (x) - c, hence T n f (y) - c for all
y, by Lemma 2. 7.
We may now define, for L ( f ) = lim Tn f (x), which is clearly

a bounded positive linear, functional so by Riesz’s theorem,

lim Tn f (x) = f dJl for some positive Borel measure. A standard argu-J
ment using (2.6) and Urysohn’s lemma shows that Jl is a probability
measure. Finally, let v be any probability measure. Then for f E 

T*n v (~ = by Lebesgue’s theorem. Since

Jl is a probability measure, this holds for any f E C (X) as well, so

T*n v ~ , as desired. D

Proof of Corollary 2. 2. This follows immediately from Lemma 2. 6 and
Theorem 2.1.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



In case U  q _ l, it was already shown in the proof of Theorem 2 . 1
that

Now suppose By Minkowski’s inequality, for any n  m, it
follows that

by a similar argument to the one in the sublemma. Thus

by Minkowski again. Therefore, by induction

so

Now let By Theorem 2 . 1, so 

so d M  oo. Now let M ~ ~, so fM ~ f; by the
monotone convergence theorem, also. D

2 B. DISCONTINUOUS MAPS ON [0,1]

We will now consider the case when the maps wi have discontinuities;
we will still assume that the are continuous. For simplicity, we discuss
only the following special cases: let X = I = [0,1] and let r = ~ xi, be
any countable subset of I. We shall say fED (I) if f is continuous except
on r where f may have discontinuities of the first kind, and is right
continuous.
The special hypotheses imposed on the maps in Theorems 2. 9 and 2. 10

below to obtain existence and attractiveness of an invariant measure were

Vol. 24, n° 3-1988.
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motivated by analogy with the case of inverse branches of rational
functions on the complex plane, i. e., Julia set theory. The application of
our theory to the Julia set theory with place-dependent probabilities will
appear in a future paper.

Let cp E D (I)*; then it is not difficult to show that

for all f E D (I), where a is a finite signed Borel measure and £ )  oo.

We shall assume that the w;’s are such that the operator T of (1.2)
takes D (I) into D (I) [but not necessarily C (I) - C (I)].

LEMMA 2. 8. - There exists a positive, norm-one functional cp E D (I) *
which is invariant; that is, T* cp = cp.
Proof - This follows from a fixed-point theorem, as in [BD] or

[DF]. D
Suppose
(a) For every xel and every n, the points Win... wi x, as ..., in)

ranges over the n-tuples of integers between 1 and N, are all distinct, and
(b) There is 8 &#x3E; 0 such that p j (x) ~ b for all x and all j.

THEOREM 2.9. - Given (a) and (b), an invariant positive
norm-one f unctional, then cp is a probability measure which is continuous

(i. e., has no atoms).
Proof - In (2.7), note and 0 is a positive measure since cp is

positive.
First we show that o is a continuous measure. Let xo be any point in

I, and let E &#x3E; 0. We shall Choose n so that ( 1- ~)"  ~.
One may choose f with the following properties: f is continuous, 0 - f _ l,
f (xo) = l, and for all x, T" f (x)  E. To see this, note that for each x E 
continuous with 0 - f x  l, f x (xo) = l, and f x (Win ... wil x) = 0 except for
at most one choice of (ii, ..., in) ; this follows from hypothesis (a). Then

Then by right continuity of Tnfx, there is bx&#x3E;x such
that Tnfx(y)E for xybx. By compactness, there is a finite set F such
that I is covered by {(x, bx) : x E F}. Let f= min {f x’ x E F}. Then Tnf (y)  E

for all y.
Now we have

Next we shall show each Fix i. Let E &#x3E; 0; we shall show ci  E. By
the same compactness argument as above, there is a function f such that

Annales de t’Institut Henri Poincaré - Probabilités et Statistiques
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f is continuous except at for and
for all y. Consequently

v

Now we shall discuss attractiveness of the invariant measure. Suppose
now that

(c) each modulus of continuity cpi of p~ satisfies Dini’s condition (see
the paragraph preceeding Lemma 2. 5);

(d) there exists an integer m o, real numbers q&#x3E;O and 0  r  1 such that
if m &#x3E;_ m o,

for all x, y.

THEOREM 2.10. - Given (a) - (d), there exists an invariant probability
measure p such that for every probability measure v, T*n v (, f’ ) --~ p ( f) for

w*

every f E D (I); that is, v -~ p.

Proof - Using (c) and (d) and following the proof of Lemma 2.5, one
finds that for all f E C (I), if m &#x3E;_ mo,

for all x and y and all n. Here, @ is as in the proof of Lemma 2.5. Using
this, one modifies the proof of Lemma 2.7 in an obvious way (it is
somewhat simpler since X is now compact) to conclude: for all f E C (I),

for all x and y in I; the convergence is uniform.
Since T"/ is not continuous, we cannot use Ascoli’s theorem as was

used in the proof of Theorem 2.1. Fix x0 ~ I. By a diagonal argument,
Tn~ f (xo) converges for all f in a countable dense subset of C (I), and a
3 E-argument gives this for all f in C (I). Let = lim Tnj f (xo). By the
previous paragraph, for all x in I. This is a linear,
positive, norm-one functional, so Jl is a probability measure. By
Theorem 2.9, there exists an invariant probability measure a. Then for

f E C (I), ~ ( f ) = ~, ( f ) d~ = ~, ( f ). Thus, ~ _ ~,. It now follows

by Lebesgue’s theorem that for all probability measures

v and f ~ C (I). Suppose for some other subsequence f dv - ’ ( f ) for

all v. Then since Jl is invariant, Thus for all probability measures

Vol. 24, n° 3-1988.



384 M. F. BARNSLEY et al.

v, for all fEC(I). It now follows from a standard fact
about convergence in distribution that since the set of discontinuities of

any fED (I) is contained in r which has p-measure 0 (r is countable and
u is continuous),

for all f E D (I) as well. D

3. COMPACT METRIC SPACES; PRIMITIVE
AND IRREDUCIBLE OPERATORS

We now assume that X is compact and that T maps C (X) into C (X).
This does not force the the w;’s to be continuous as the following examples
show.

Example 3.1. - 
pi =1 /2. Here, we take - ~  8 _ ~. So, the w/s
are not continuous along the negative real axis. However, if f E C (X) then
T f is also in C (X), as one readily checks.

Example 3.2. - Let X be the Riemann sphere C and let R be a rational
function, R : ~ -~ C, of degree N and let 1 be a complete assignment
of the inverse branches of R. Then, with pi =1/N, T maps C (X) into itself.
More generally one can consider the iterated Riemann surfaces of [BD].
As was stated in the Introduction the existence of a stationary distribu-

tion is immediate. The next result gives a sufficient condition for unicity.

PROPOSITION 3. 3. - Suppose that for each non-zero f E C (X) there is a

sequence of polynomials with degree of qn = n with coefficients summing
to 1 such that converges boundedly pointwise to a constant c = c ( f ).
Then, there is unique stationary distribution v*. Furthermore, for any Borel

probability measure ~ on X and for g E C (X), g d (qn (T*) ~,] - g dv*.
Proof - Suppose v and J.l are distinct probability measures which are

stationary for (1). Let be strictly positive with 

Now,

In the limit we get c (g) dv &#x3E; c (g) dJ.1 which is a contradiction. 0
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Perron Frobenius Theory

It is possible to extend the classical Perron-Frobenius theory for n x n
stochastic matrices to Markov operators on C(X). Irreducible Markov
operators have been extensively studied ([R], [JS], [J], [S], [Kr]). For our
application we consider in addition primitive Markov operators, to get an
ergodic theorem which applies to an important class of operators of our
type (see Propositions 3.6 and 3.8).

First we point out that T is not weakly compact in general, even in the

simplest cases. For example, consider T/(x)= -/( -x )+ -/( -x+ - )
on X=[0,l]. If fn is any bounded sequence supported on 0, - ) which

has no weakly convergent subsequence, then has no

weakly convergence subsequence, either (such sequences do exist since the
unit ball of C[0,l] is not weakly compact).
Now, it is clear that the number 1 is an eigenvalue of T wi(h the

constant function being eigenvectors. There may be other eigenvectors for
T, see [K]. If 1 was the only eigenvalue of modulus one and was a simple
pole of the resolvent operator, then for any /eC(X) we would have

constant at a geometric rate independent of f. However, it can

happen that 1 is not even an isolated point of the spectrum of T, even
though constant uniformly.

Example. - Let X={z:~=l} be the unit circle and let

(T/) (z) = ~ (~/z) + ~ (- /). With define

m

for Since for and we see

So the spectrum of T is the closed unit disk. Nevertheless
constant uniformly, by the second corollary of Proposition 3.9.

As this example shows, T" in general cannot be close to a compact
operator so the uniform ergodic theorem of Kakutani doesn’t apply;
see [DuS]. But the Perron-Frobenius theory we now consider does apply
to such examples. The following definitions apply to any Markov operator
on C (X).

DEFINITIONS. - ( 1) T is irreducible if for every f E C (X) with f _&#x3E;_ 0 and
f ~ 0 and every xeX, there exists k such that Tk f (x) &#x3E; 0 ([R], [JS]).
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Because X is compact, it is easy to see that the following definition is
equivalent:

( 1’) T is irreducible iff for every f E C (X) with and f ~ 0, there
exists k such that for all xeX, Skf (x) &#x3E; 0, where

(2) T is primitive if for every f E C (X) with f &#x3E;_ 0 and f  0 there exists
k = k ( f ) so that for all XEX, (Tkf) (x) &#x3E; 0.

If X is finite, these definitions are equivalent to the standard definitions,
see [G] for example. The next two propositions show what these conditions
mean for operators of type (1.2).

PROPOSITION 3.4. - for all i and x, then the following are
equivalent. We use standard multi-index notation: i = (it, ..., ik) and fl = k.

(a) T is irreducible.
(b) For every closed, proper subset A of X, there is an integer k = k (A)

so that

(c) For every open, non-empty subset 6 of X, there is an integer k = k (6)
so that

Proof - (&#x26;)=&#x3E; (c) follows from de Morgan’s Laws.
(a) ~ (b). Let A be as in (b) and let f E C (X) satisfy

k

f -1 (o) = A, f &#x3E;_ o, f ~ 0. Since L (T" f ) &#x3E; 0 for some k,
n=0

But

if and only if for because f is non-negative and all
pi’s are positive. That is, (T’ f) (x) = 0 if and only if x E n w-1i (A).

(b) ~ (a). If for some f &#x3E;_ o, f ~ 0, for every k there is xk with
k

03A3 Tj f (xk)=0, then xk~ ~ w-1i (f-1(0)). []
.1=0 

We just state an analogue for primitive T.

PROPOSITION 3.5. - If pi (x) &#x3E; 0 for all i and x, then the following are
equivalent.
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(a) T is primitive.
(b) For every closed, proper subset A of X there is an integer k with

(c) For every open, non-empty subset 8 of X there is an integer k with

Now we give a natural class of primitive operators.

PROPOSITION 3.6. - Let X be the Julia set for the rational map Rand
let wl, ..., wN be the inverse branches of R and let

map C (X) into itself Then, if the pi’s are always positive, T is primitive.
Proof - For any open, non-empty set 8, U (8) is just R ° k (9).

It is well known (cf. [B]) that if 8 is open and non-empty then after a
finite number of iterations R° k (9) contains X. D

Notice that the nature of the pi’s does not have much to do with
irreducibility or primitivity.
Now we discuss convergence of the iterates of T, for any Markov

operator. T is called weakly almost periodic [JS] if for every f E C (X),
has a weakly convergent subsequence, i. e., a subsequence which

converges pointwise to a continuous function. It is well-known [JS],
p. 1047, that for such a T, the averages Skf converge uniformly for each
f E C (X); this follows from the mean ergodic theorem [Dus], p. 661. If in
addition, T is irreducible, then Skf converges uniformly to a constant for
each f E C (X ), and there is a unique invariant measure (see [Kr], p. 179).
This follows from the fact that for an irreducible operator, T f = f iff f is
constant.

A remarkable theorem of Jamison [J], making use of de Leeuw-

Glicksberg’s decomposition, asserts that if T is irreducible and weakly
almost periodic, then T is in fact strongly almost periodic; that is, 
has a uniformly convergent subsequence for each f E C (X). The following
lemma combined with Jamison’s theorem gives the convergence result we
seek for primitive operators.

LEMMA 3.7. - Let T be primitive, and f E C (X). If ~T" f } has a uniformly
convergent subsequence, then the whole sequence converges uniformly
to a constant.

Proof - Suppose uniformly for some subsequence. Then

say, and 
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Since T is positive, min h _ min T h _ max T h __ max h for any h E C (X), so
in fact for the entire sequence,

If m = M we are done, so suppose m  M. Then and 0,
so by primitivity, there exists k such that for all x, so
minTkg&#x3E;m. But Tni+kfTkg uniformly, so min Tni+kfminTkg&#x3E;m,
a contradiction. D

PROPOSITION 3.8. - Let T be a primitive, weakly almost periodic Markov
operator. Then for all f E C (X), Tn f -~ constant uniformly, so there is an
attractive invariant measure.

Proof - Lemma 3.7 and Jamison’s theorem. D
Remark. - Even in the matrix case, irreducibility could not be substi-

tuted for primitivity in the above, of course; consider for example

~ ). As far as determining conditions on the w;’s that imply the

hypotheses of Proposition 3.8, we have the following easy result.

PROPOSITION 3.9. - Let ~wi ~ ~ ~ ~ -1 be equicontinuous, then for all g E C (X),
equicontinuous if ally’s are constants.

COROLLARY. - Let 1 be non-expansive and let T be primitive and
let the pL’s be constant, then for all g E C (X), ~T" g~ converges uniformly to
a constant.

COROLLARY [FLM], [L]. - Let R be a rational function with Julia set X.
Let ~w~~N 1 be the inverse branches of R. Then, with pi = N -1 for all i,

converges uniformly to a constant for all f E C (X).
Proof - That T is weakly almost periodic follows from Ljubich’s

Lemma 1, p. 359. The result now follows from Proposition 3.8. D
The main result of [FLM] actually says that v~ converges weak *

to a unique measure for any starting measure and that the limit measure
has support on the Julia set. But attractiveness to the Julia set is really a
consequence of the basic properties of Julia sets.

4. - EXAMPLES

Let f : [0, 1] - [0, 1] be piecewise differentiable with I f I &#x3E; o. Let continu-
ous branches of the inverse ... , n ~ . Extend the
domain of each wi from its natural one, denoted D1, to all of [0, 1], by
making wi constant on each component of [0, 1] B Di in such a way that
w; : [0, 1] - [0, 1] is continuous. Then wt may have distinct left and right
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derivatives at the end points of Di: for specificity we define w~ (x) = 0 for
x E D~ and w~ (x) is its value on its domain from left or right.

Example : 
’

LEMMA 4. 1. - f admits an absolutely continuous Borel measure ~ of the
form

if and only if

Proof - We first show that absolute continuity implies ( 1). The invari-
ance of Jl means

whence, by changing variables,

and so

which implies (1). Conversely, starting from the last inequality here we
deduce the first one. D
For example, with f (x)=4x (I-x) on [0, 1] we can have

with f (x) = 7 x mod 1 we can have p(x)= 1; and with f (x) =1 /x - [ 1 /x]
(on [0,1]) we can have p (x) =1 /( 1-I- x). This last example is not strictly
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speaking within the framework because it is not piecewise differentiable,
possessing infinitely many discontinuities, but nonetheless, we include it
because all of the formalism still applies. ~,

We are interested in what happens when such dynamical systems are

"run backwards". We show that the measure ~, = p dx is invariant for
the iterated function ... , n ~ with place dependent
probabilities

provided p(x»O. First we argue the result by recourse to a picture, then
we formalize. The Figure shows f : [0, 1] consisting of two continuous

components and wit, together with the probability density p (x)
which is invariant under f Imagine that the dynamical system is running,
and that a point has just arrived in a certain interval [y, y + ~y]. How
did it get there? Either it came from [w 1 (y), w 1 (y)] or fr6m

(w2 (y), w2 (y) + bw2 (y)]. Consequently, if when we are at y, we send next
to with relative probability ( and to W2 (y) with
relative probability , then the probability density p (x)
should be preserved on running the system backwards. Because of ( 1) the
correct normalization factor for the probabilities is simply p ( x),
yielding (2).
Next we formalize. Recall that a measure il is invariant for the i. f. s.

{ w; : = 1,2, ..., n ~ with place dependent probabilities pi (x) if and only if
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What is the analogue of Lemma 4.1, when § is absolutely continuous?

LEMMA 4. 2. - The i. f with place dependent probabilities ~ pi ~
admits an absolutely continuous Borel measure ~, of the form

if and only if

for almost all x E [0, 1], (3)
where Ri = range of wi.

Proof. - Again this is just an exercise in change of variables. Choosing
h above to be the characteristic function of B we obtain

THEOREM 4. 3. - Let  = 03C1 dx be invariant for f, as in Lemma 4 . 1,
with p (x) &#x3E; 0 for all x E [0, 1]. Then ~. is invariant for the i. f 
constructed from the branches of f ‘ 1 as above, with place dependent probabil-
ities

Proof - We verify the condition of Lemma 4. 2. Substituting into the
r. h. s. of (3), with p (x) = p (x) we obtain

where we use (x))’= 1 and the fact that the R~s intersect
on a set of measure zero. D

An example is f (x) = 2 x mod 1 with p(x)= 1. We find w~ (x)= -x and

Another example is f (x) = 4 x ( 1- x) with p (x) =1 /~ x ( 1- x). A short
calculation shows w 1 (x) _ ( 1- 1- x)/2, w~ (x) _ ( 1 + /l+x)/2 and
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p 1 (x) = p2 (x) =1 /2. (More generally, this explains why on any Julia set
the natural invariant measure for forward iteration measure is exactly the
same as the equilibrium measure obtained by random iteration of the
inverse branches, with equal weights on the branches.) For the Gauss

measure associated we find for

n = l, 2, 3, ... pn (x) _ ( 1 + x)/(n + 1 + x) (n + x), wn (x) =1 /(n + x),
P (x) =1 /( 1 + x).

Here, we remark on the Lasota-Yorke theorem [LY]. If f is piecewise
C2 and inf I f (x) ~ &#x3E; 1 then there exists an absolutely continuous invariant

measure p = p dx, with p E L 1 and p is of bounded variation. This theorem
does not ensure p (x) &#x3E; 0 for (almost) all x.
We conclude with two further examples. In the first we consider a

smokestack located at the origin giving off sulphur dioxide (S02) at a

steady rate. A simple model for the resulting time-averaged steady state
two dimensional distribution of S02 is as follows. S02 spreads in two
dimensions under the actions of various wind directions and speeds, which
effect corresponding mappings of a gas particle at x to new locations w~ (x),
w~ (x), ..., w~ (x) with probabilities p2 (x), p3 (x), ... , pn (x), determined by
the local geography (mountain ranges, lakes, etc.). With probability pi (x)
the particle at x is lost from the system by absorption through rain to the
ground or other atmospheric reaction processes. Since we are looking for
steady state distributions we set W 1 (x) = 0, which causes a new particle to
be emitted from the smokestack whenever one is lost. Existence of an
invariant measure u in this set-up shows existence of a "steady state"; and
attractiveness of Jl implies stability of the steady state. Diverse random
emission-diffusion-absorption models of this type can be conceived. Better
models would derive from usage of continuous time random iteration

processes, which remain to be investigated.
For a second example we consider a dynamical system evolving under

competing force laws. Consider an autonomous system in (~2 of the form

Here a (x, 1,2} is a random variable which at time t = n takes value
1 with probability PI (x) and value 2 with probability p2 (x), and which
remains constant throughout the interval [n, n + 1 ), for n = 0, 1, 2, ....
Both F (x, 1) and F (x, 2) are continuous maps on R2 into itself. Such an
example might be a grandfather clock whose equations of motion are
sensitive to the length of the pendulum. Some days the thermostat in the
house is set on high, whilst on other days, at the whim of the owner, it is
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set on low. (In reality the time scales for relaxation and length scales
would be small and cause the iterated function system effects to be

unmeasurably small; but the clock is a good mechanism for helping
envisage the process.)

If the system is observed at time n, its state then being :!n (position and
velocity of pendulum), and if is the state at time 1 when
a (xo, 0) = k, k e {1, 2}; then wk : (~ ~ (~ is a diffeomorphism and the x"’s
will be distributed on the attractor of the iterated function system
{ R, wk : k = l, 2 ~ with place dependent probabilities pi (x) and p2 (x).
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